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Abstract

In the problem of learning a mixture of linear classifiers, the aim is to learn a
collection of hyperplanes from a sequence of binary responses. Each response
is a result of querying with a vector and indicates the side of a randomly chosen
hyperplane from the collection the query vector belong to. This model provides
a rich representation of heterogeneous data with categorical labels and has only
been studied in some special settings. We look at a hitherto unstudied problem
of query complexity upper bound of recovering all the hyperplanes, especially for
the case when the hyperplanes are sparse. This setting is a natural generalization
of the extreme quantization problem known as 1-bit compressed sensing. Suppose
we have a set of ` unknown k-sparse vectors. We can query the set with another
vector a, to obtain the sign of the inner product of a and a randomly chosen vector
from the `-set. How many queries are sufficient to identify all the ` unknown
vectors? This question is significantly more challenging than both the basic 1-
bit compressed sensing problem (i.e., ` = 1 case) and the analogous regression
problem (where the value instead of the sign is provided). We provide rigorous
query complexity results (with efficient algorithms) for this problem.

1 Introduction
One of the first and most basic tasks of machine learning is to train a binary linear classifier. Given a
set of explanatory variables (features) and the binary responses (labels), the objective of this task is
to find the hyperplane in the space of features that best separates the variables according to their re-
sponses. In this paper, we consider a natural generalization of this problem and model a classification
task as a mixture of ` components. In this generalization, each response is stochastically generated
by picking a hyperplane uniformly from the set of ` unknown hyperplanes, and then returning the
side of that hyperplane the feature vector lies. The goal is to learn all of these ` hyperplanes as
accurately as possible, using the least number of responses.

This can be termed as a mixture of binary linear classifiers [33]. Similar mixture of simple ma-
chine learning models have been around for at least the last thirty years [9] with mixture of linear
regression models being the most studied ones [8, 19, 23, 30, 32, 34, 35, 37]. Models of this type
are pretty good function approximators [4, 21] and have numerous applications in modeling het-
erogeneous settings such as machine translation [25], behavioral health [11], medicine [5], object
recognition [28] etc. While algorithms for learning the parameters of mixture of linear regressions
are solidly grounded (such as tensor decomposition based learning algorithms of [7]), in many of
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the above applications the labels are discrete categorical data, and therefore a mixture of classifiers
is a better model than mixture of regressions. To the best of our knowledge, [33] first rigorously
studied a mixture of linear classifiers and provided polynomial time algorithm to approximate the
subspace spanned by the component classifiers (hyperplane-normals) as well as a prediction algo-
rithm that given a feature and label, correctly predicts the component used. In this paper we study
a related but different problem: the sample complexity of learning all the component hyperplanes.
Our model also differs from [33] where the component responses are ‘smoothened out’. Here the
term sample complexity is used with a slightly generalized meaning than traditional learning theory
- as we explain next, and then switch to the term query complexity instead.

Recent works on mixture of sparse linear regressions concentrate on an active query based setting
[24, 26, 36], where one is allowed to design a sample point and query an oracle with that point. The
oracle then randomly chooses one of the component models and returns the answer according to that
model. In this paper we adapt exactly this setting for binary classifiers. We assume while queried
with a point (vector), an oracle randomly chooses one of the ` binary classifiers, and then returns
an answer according to what was chosen. For the most of this paper we concentrate on recovering
‘sparse’ linear classifiers, which implies that each of the classifiers uses only few of the explanatory
variables. This setting is in spirit of the well-studied 1-bit compressed sensing (1bCS) problem.

1-bit compressed sensing. In 1-bit compressed sensing, linear measurements of a sparse vector
are quantized to only 1 bit, e.g. indicating whether the measurement outcome is positive or not,
and the task is to recover the vector up to a prescribed Euclidean error with a minimum number of
measurements. An overwhelming majority of the literature focuses on the nonadaptive setting for
the problem [1, 2, 14, 17, 20, 27]. Also, a large portion of the literature concentrates on learning
only the support of the sparse vector from the 1-bit measurements [1, 17].

It was shown in [20] that O(kε log(nε )) Gaussian queries1 suffice to approximately (to the Euclidean
precision ε) recover an unknown k-sparse vector β using 1-bit measurements. Given the labels of
the query vectors, one recovers β by finding a k-sparse vector that is consistent with all the labels.
If we consider enough queries, then the obtained solution is guaranteed to be close to the actual
underlying vector. [1] studied a two-step recovery process, where in the first step, they use queries
corresponding to the rows of a special matrix, known as Robust Union Free Family (RUFF), to
recover the support of the unknown vector β and then use this support information to approximately
recover β using an additional Õ(kε ) Gaussian queries. Although the recovery algorithm works in
two steps, the queries are nonadaptive.

Mixture of sparse linear classifiers. The main technical difficulty that arises in recovering mul-
tiple sparse hyperplanes using 1-bit measurements (labels) is to align the responses of different
queries concerning a fixed unknown hyperplane. To understand this better, let us consider the case
when ` = 2 (see Figure 1). Let β1,β2 be two unknown k-sparse vectors corresponding to two
sparse linear classifiers. On each query, the oracle samples a βi, for i ∈ {1, 2}, uniformly at ran-
dom and returns the binary label corresponding to it (+ or −). One can query the oracle repeatedly
with the same query vector to ensure a response from both the classifiers with overwhelmingly high
probability.

For any query vector if the responses corresponding to the two classifiers are the same (i.e., (+,+)
or (−,−)), then we do not gain any information separating the two classifiers. We might still be
able to reconstruct some sparse hyperplanes, but the recovery guarantees of such an algorithm will
be poor. On the other hand, if both the responses are different (i.e., (+,−)), then we do not know
which labels correspond to a particular classifier. For example, if the responses are (+,−) and
(+,−) for two distinct query vectors, then we do not know if the ‘plusses’ correspond to the same
classifier. This issue of alignment makes the problem challenging. Such alignment issues are less
damning in the case of mixture of linear regressions even in the presence of noise [24, 26, 36] since
we can utilize the magnitude information of the inner products (labels) to our advantage.

One of the challenges in our study is to recover the supports of the two unknown vectors. Consider
the case when supp(β1) 6= supp(β2), where supp(v) denotes the support of the vector v ∈ Rn.
In this case, we show that using an RUFF in combination with another similar class of union-free
family (UFF), we can deduce the supports of both β1 and β2. Wielding known constructions of

1all coordinates of the query vector are sampled independently from the standard Gaussian distribution
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Figure 1: Recover the two lines given red triangles and blue dots. How many such points do we require in
order to recover the two lines?

such UFFs from literature, we can recover the supports of both k-sparse vectors using O(k3 log2 n)
queries. Once we obtain the supports, we use an additional O(kε log nk) Gaussian queries (with a
slight modification) to approximately recover the individual vectors.

We then extend this two-step process (using more general classes of UFFs) to recover a mixture of `
different sparse vectors under the assumption that the support of no vector is contained in the union
of supports of the remaining ones (Assumption 1). The assumption implies that if the sparse vectors
are arranged as columns of a matrix, then the matrix contains the identity matrix as a permutation
of the rows. This separability condition appears before in [3, 12, 31] in the context of nonnegative
integer matrix factorization, which is a key tool that we will subsequently use to prove our results. To
quote [3] in the context of matrix factorization, “an approximate separability condition is regarded as
a fairly benign assumption and is believed to hold in many practical contexts in machine learning.”
We believe this observation holds for our context as well (each classifier uses some unique feature).

We show that with this support separability condition, Õ(`6k3) queries suffice for support recovery
of ` different k-sparse vectors. Further, using Õ((`3k/ε)) queries, we can recover each of the βi’s,
for i ∈ {1, . . . , `} up to ε precision (see Theorem 1 and Theorem 2).

The two-stage procedure described above, can be made completely non-adaptive using queries from
union free families (see Theorem 3).

Furthermore, for ` = 2, we see that the support condition (Assumption 1) is not necessary. We can
approximately recover the two unknown vectors provided a) they are not extremely sparse and, b)
each βi ∈ δZn for some δ > 0. To prove this, we borrow the tools from [2] who give guarantees
for 1-bit compressed sensing using sub-Gaussian vectors. In particular, we use queries with inde-
pendent Bernoulli coordinates which are sub-Gaussian. These discrete random queries (as opposed
to continuous Gaussians) along with condition (b), enables us to align the labels corresponding to
the two unknown vectors. (see Theorem 4 for more details). Note that condition (a) is due to the
result by [2] and is necessary for recovery using sub-Gaussian queries and (b) is a mild assumption
on the precision of the unknown vectors, which was also necessary [24, 36] for learning the mixture
of sparse linear regressions.

Technical take-away. As stated above, the main technical hurdle in the paper lies in the support
recovery problem for the sparse vectors. We do it in a few (non-adaptive) steps. First, we try to
design queries that will lead us to estimate the size of the intersections of supports for every pair of
sparse vectors. If we can design such a set of queries, then using a nonnegative integer matrix factor-
ization techniques we can estimate all the supports. Indeed, this is where the separability assumption
comes in handy. Further, because of the separability assumption, it is also possible to design queries
from which we can simulate the response of every unknown vector with a random Gaussian query
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and tag it. This allows us to recover and cluster the responses of every unknown vector to a set of
random Gaussian queries from which we can approximately recover all the unknown vectors.

To estimate the size of the intersections of supports for the vector-pairs, we rely on combinatorial
designs (and related set-systems), such as pairwise independent cover free families [15]. While
some such union-free families have been used to estimate the support in 1-bit compressed sensing
before [1], the use of pairwise independent sets to untangle multiple sparse vectors is new and has
almost nothing to do with the recovery of sparse vectors itself.

We leave the problem of designing a query scheme that works for any general ` without any as-
sumptions as an open problem. Lack of Assumption 1 seems to be a fundamental barrier to support
recovery as it ensures that a sparse vector will never be in the span of the others. However, a formal
statement of this effect still eludes us. For large `, finding out the dependence of query complexity
on ` is also a natural question. Overall, this study leads to an interesting set of questions that are
technically demanding as well as quite relevant to practical modeling of heterogeneous data that are
ubiquitous in applications. For instance, in recommendation systems, where the goal is to identify
the factors governing the preferences of individual members of a group via crowdsourcing while
preserving the anonymity of their responses.

Organization. The rest of this paper is organized as follows. In the next section, we formally
define the problem statement followed by a list of our contributions in Section 3. The notations and
the necessary background on various families of sets are presented in Section 4. We prove Theorem 1
in Section 5. The proofs of all the other theorems and the helper lemmas required for the proof of
Theorem 1 are deferred to the supplementary material. Moreover, we demonstrate the capability of
our algorithms to learn movie genre preferences of two unknown users using the MovieLens [18]
dataset. The experimental details are included in Section E of the supplementary material.

2 Problem Statement
Let β1,β2, . . . ,β` ∈ Rn be a set of ` unknown k-sparse vectors. Each βi defines a linear classifier
that assigns a label from {−1, 0, 1} to every vector in v ∈ Rn according to sign(〈v,β〉), where the
sign function sign : R→ {−1, 0, 1} , is defined as,

sign(x) =


+1 if x > 0

−1 if x < 0

0 if x = 0

.

Remark 1. It is also possible to handle binary output from the classifier instead of ternary as has
been studied in this paper. See the full version [16] for more details.

As described above, our work focuses on recovering the unknown classifiers in the query model
that was used in [36, 24] to study the mixtures of sparse linear regressions. In the query model, we
assume the existence of an oracle O which when queried with a vector v ∈ Rn, samples one of
the classifiers β ∈ {β1,β2, . . . ,β`} uniformly at random and returns the label of v assigned by
the sampled classifier β. The goal of approximate recovery is to reconstruct each of the unknown
classifiers using small number of oracle queries. The problem can be formalized as follows:
Problem 1 (ε-recovery). Given ε > 0, and query access to oracle O, find k-sparse vectors
{β̂1, β̂2, . . . , β̂`} such that for some permutation σ : [`]→ [`]∥∥∥∥∥ βi

‖βi‖2
− β̂σ(i)

‖β̂σ(i)‖2

∥∥∥∥∥
2

≤ ε ∀ i ∈ [`].

Since from the classification labels, we lose the magnitude information of the unknown vectors, we
assume each βi and the estimates β̂i to have a unit norm.

Similar to the literature on one-bit compressed sensing, one of our proposed solutions employs a
two-stage algorithm to recover the unknown vectors. In the first stage the algorithm recovers the
support of every vector, and then in the second stage, approximately recovers the vectors using the
support information.

For any vector v ∈ Rn, let supp(v) := {i ∈ [n] | vi 6= 0} denote the support of v. The problem of
support recovery is then defined as follows:
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Problem 2 (Support Recovery). Given query access to oracle O, construct {β̂1, β̂2, . . . , β̂`} such
that for some permutation σ : [`]→ [`]

supp(β̂σ(i)) = supp(βi) ∀ i ∈ [`]

For both these problems, we primarily focus on minimizing the query complexity of the prob-
lem, i.e., minimizing the number of queries that suffice to approximately recover all the sparse
unknown vectors or their supports. However, all the algorithms proposed in this work also run in
time O(poly(q)), where q is the query complexity of the algorithm.

3 Our contributions
In order to present our first set of results, we need certain assumption regarding the separability of
supports of the unknown vectors. In particular, we want each component of the mixture to have a
unique identifying coordinate. More formally, it can be stated as follows:

Assumption 1. For every i ∈ [`], supp(βi) 6⊆
⋃
j:j 6=i supp(βj), i.e. the support of any unknown

vector is not contained in the union of the support of the other unknown vectors.

Two-stage algorithm: First, we propose a two-stage algorithm for ε-recovery of the unknown vec-
tors. In the first stage of the algorithm, we recover the support of the unknown vectors (Theorem 1),
followed by ε-recovery using the deduced supports (Theorem 2) in the second stage. Each stage in
itself is non-adaptive, i.e., the queries do not depend on the responses of previously made queries.

Theorem 1. Let {β1, . . . ,β`} be a set of ` unknown k-sparse vectors in Rn that satisfy Assump-
tion 1. There exists an algorithm to recover the support of every unknown vector {βi}i∈[`] with
probability at least 1−O(1/n2), using O(`6k3 log2 n) non-adaptive queries to oracle O.

Now using this support information, we can approximately recover the unknown vectors using an
additional Õ(`3k) non-adaptive queries.

Theorem 2. Let {β1, . . . ,β`} be a set of ` unknown k-sparse vectors in Rn that satisfy Assumption

1. There exists a two-stage algorithm that usesO
(
`6k3 log2 n+(`3k/ε) log(nk/ε) log(k/ε)

)
oracle

queries for the ε-recovery of all the unknown vectors with probability at least 1−O(1/n).

Remark 2. We note that for the two-stage recovery algorithm to be efficient, we require the mag-
nitude of non-zero entries of the unknown vectors to be non-negligible (at least 1/exp(n)). This
assumption however is not required to bound the query complexity of the algorithm which is the
main focus of this work.

Completely non-adaptive algorithm: Next, we show that the entire ε-recovery algorithm can be
made non-adaptive (single-stage) at the cost of increased query complexity.

Theorem 3. Let {β1, . . . ,β`} be a set of ` unknown k-sparse vectors in Rn that satisfy Assump-

tion 1. There exists an algorithm that uses O
(

(``+3k`+2/ε) log n log(n/ε) log(k/ε)
)

non-adaptive

oracle queries for the ε-recovery of all the unknown vectors with probability at least 1−O(1/n).

Note that even though the one-stage algorithm uses many more queries than the two-stage algorithm,
a completely non-adaptive is highly parallelizable as one can choose all the query vectors in advance.
Also, in the ` = O(1) regime, the query complexity is comparable to its two-stage analogue.

While we mainly focus on minimizing the query complexity, all the algorithms proposed in this
work run in poly(n) time assuming every oracle query takes poly(n) time and ` = o(log n).

Non-adaptive algorithm for ` = 2 without Assumption 1: For ` = 2, we do not need the
separability condition (Assumption 1) required earlier for support recovery. Even for ε-recovery,
instead of Assumption 1, we just need a mild assumption on the precision δ, and the sparsity of the
unknown vectors. In particular, we propose an algorithm for the ε-recovery of the two unknown
vectors using Õ(k3 + k/ε) queries provided the unknown vectors have some finite precision and are
not extremely sparse.

Assumption 2. For β ∈ {β1,β2}, ‖β‖∞ = o(1).
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Assumption 2 ensures that we can safely invoke the result of [2] who use the exact same assumption
in the context of 1-bit compressed sensing using sub-Gaussian queries.
Theorem 4. Let β1,β2 be two k-sparse vectors in Rn that satisfy Assumption 2. Let δ > 0
be the largest real such that β1,β2 ∈ δZn. There exists an algorithm that uses O(k3 log2 n +
(k2/ε4δ2) log2(n/kδ2)) (adaptive) oracle queries for the ε-recovery of β1,β2 with probability at
least 1−O(1/n).

Moreover, if supp(β1) 6= supp(β2), then there exists a two-stage algorithm for the ε-recovery of the
two vectors using only O(k3 log2 n+ (k/ε) log(nk/ε) log(k/ε)) non-adaptive oracle queries.

Also, the ε-recovery algorithm proposed for Theorem 4 runs in time poly(n, 1/δ).

No sparsity constraint: We can infact avoid the sparsity constraint altogether for the case of ` =
2. Since in this setting, we consider the support of both unknown vectors to include all coordinates,
we do not need a support recovery stage. We then get a single stage and therefore completely non-
adaptive algorithm for ε-recovery of the two unknown vectors.
Corollary 1. Let β1,β2 be two unknown vectors in Rn that satisfy Assumption 2. Let δ > 0 be the
largest real such that β1,β2 ∈ δZn. There exists an algorithm that uses O((n2/ε4δ2) log(1/δ))
non-adaptive oracle queries for the ε-recovery of β1,β2 with probability at least 1−O(1/n).

4 Preliminaries
Let [n] to denote the set {1, 2, . . . , n}. For any vector v ∈ Rn, supp(v) denotes the support and
vi denote the ith entry (coordinate) of the vector v. We will use ei to denote a vector which has
1 only in the ith position and is 0 everywhere else. We will use the notation 〈a, b〉 to denote the
inner product between two vectors a and b of the same dimension. For a matrix A ∈ Rm×n, let
Ai ∈ Rn be its ith column and A[j] denote its jth row. and let Ai,j be the (i, j)-th entry of A.
We will denote by Inf a very large positive number. Also, let N (0, 1) denote the standard normal
distribution. We will use Pn to denote a the set of all n× n permutation matrices, i.e., the set of all
n× n binary matrices that are obtained by permuting the rows of an n× n identity matrix (denoted
by In). Let round : R→ Z denote a function that returns the closest integer to a given real input.

Let us further introduce a few definitions that will be used throughout the paper.
Definition 3. For a particular entry i ∈ [n], define S(i) to be the set of all unknown vectors whose
ith entry is non-zero.

S(i) := {βj , j ∈ [`] | βj i 6= 0}
Definition 4. For a particular query vector v, define poscount(v), negcount(v) and nzcount(v) to
be the number of unknown vectors that assign a positive, negative, and non-zero label to v respec-
tively.

poscount(v) := |{βj | sign(〈v,βj〉) = +1, j ∈ [`]}|
negcount(v) := |{βj | sign(〈v,βj〉) = −1, j ∈ [`]}|
nzcount(v) := poscount(v) + negcount(v)

= |{βj | sign(〈v,βj〉) 6= 0, j ∈ [`]}|.
Definition 5 (Gaussian query). A vector v ∈ Rn is called a Gaussian query vector if each entry vi
of v is sampled independently from the standard Normal distribution, N (0, 1).

4.1 Estimating the counts
In this section we show how to accurately estimate each of the counts i.e., poscount(v), negcount(v)
and nzcount(v) with respect to any query vector v, with high probability (see Algorithm 1).

The idea is to simply query the oracle with the same query vector repeatedly and estimate the counts
empirically using the responses of the oracle. Let T denote the number of times a fixed query vector
v is repeatedly queried. We refer to this quantity as the batchsize. We now show that the empirical
estimates of each of the counts equals the real counts with high probability.
Lemma 6. For any query vector v, Algorithm 1 with batchsize T provides the correct estimates of
poscount(v), negcount(v) and nzcount(v) with probability at least 1− 8e−T/2`

2

.
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Algorithm 1 QUERY(v, T )

Require: Query access to oracle O.
1: for i = 1, 2, . . . , T do
2: Query the oracle with vector v and obtain response yi ∈ {−1, 0,+1}.
3: end for
4: Let ˆpos := round

(
`
∑

i 1[y
i=+1]

T

)
5: Let ˆneg := round

(
`
∑

i 1[y
i=−1]

T

)
6: Let n̂z := ˆpos + ˆneg.
7: Return ˆpos, ˆneg, n̂z.

4.2 Family of sets
We now review literature on some important families of sets called union free families [1] and
cover free families [22] that found applications in cryptography, group testing and 1-bit compressed
sensing. These special families of sets are used crucially in this work to design the query vectors for
the support recovery and the ε-recovery algorithms.
Definition 7 (Robust Union Free Family (d, t, α) − RUFF). Let d, t be integers and 0 ≤ α ≤ 1. A
family of sets, F = {H1,H2, . . . ,Hn} where eachHi ⊆ [m] and |H| = d is a (d, t, α)-RUFF if for
any set of t indices T ⊂ [n], |T | = t, and any index j /∈ T ,∣∣∣∣∣Hj \

(⋃
i∈T
Hi

)∣∣∣∣∣ > (1− α)d.

We refer to n as the size of the family of sets, and m to be the alphabet over which the sets are
defined. RUFFs were studied earlier in the context of support recovery of 1bCS [1], and a simple
randomized construction of (d, t, α)-RUFF with m = O(t2 log n) was proposed by De Wolf [10].
Lemma 8. [1, 10] Given n, t and α > 0, there exists an (d, t, α)-RUFF, F with m =
O
(
(t2 log n)/α2) and d = O((t log n)/α).

RUFF is a generalization of the family of sets known as the Union Free Familes (UFF) - which are
essentially (d, t, 1)-RUFF. In this work, we require yet another generalization of UFF known as
Cover Free Families (CFF) that are also sometimes referred to as superimposed codes [13].
Definition 9 (Cover Free Family (r, t)-CFF). A family of sets F = {H1,H2, . . . ,Hn} where each
Hi ⊆ [m] is an (r, t)-CFF if for any pair of disjoint sets of indices T1, T2 ⊂ [n] such that |T1| =
r, |T2| = t, T1 ∩ T2 = ∅, ∣∣∣∣∣ ⋂

i∈T1

Hi \
⋃
i∈T2

Hi

∣∣∣∣∣ > 0.

Several constructions and bounds on existence of CFFs are known in literature. We state the follow-
ing lemma regarding the existence of CFF which can be found in [29, 15]. We also include a proof
in the supplementary material for the sake of completeness.
Lemma 10. For any given integers r, t, there exists an (r, t)-CFF, F of size n with m =
O(tr+1 log n).

Note that (1, t)-CFF is exactly a UFF. The (2, t)-CFF is of particular interest to us and will hence-
forth be referred to as the pairwise union free family (PUFF). From Lemma 10 we know the exis-
tence of PUFF of size n with m = O(t3 log n).
Corollary 2. For any given integer t, there exists a (2, t)-CFF, F of size n with m = O(t3 log n).

5 Support Recovery (Proof of Theorem 1)
In this section, we present an efficient algorithm to recover the support of all the ` unknown vectors
using a small number of oracle queries. The proof of Theorem 1 follows from the guarantees of
Algorithm 2. The proofs of the helper lemmas used in this theorem are deferred to Section B in the
supplementary material.
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Consider the support matrixX ∈ {0, 1}n×` where the i-th column is the indicator of supp(βi). The
goal in Theorem 1 is to recover this unknown matrix X (up to permutations of columns) using a
small number of oracle queries. In Algorithm 2, we recoverX fromXXT , where the latter can be
constructed using only the estimates of nzcount for some specially designed queries. The unknown
matrix X is recovered from the constructed XXT by rank factorization with binary constraints.
The factorization is efficient and also turns out to be unique (up to permutations of columns) because
of the separability assumption (Assumption 1) on the supports of the unknown vectors.

The main challenge lies in constructing the matrix XXT using just the oracle queries. Recall that
for any i ∈ [n], S(i) denotes the set of unknown vectors that have a non-zero entry in the i-th
coordinate. Note that the i-th row of X , for any i ∈ [n], is essentially the indicator of S(i). From
this observation, it follows that the (i, j)-th entry ofXXT is captured by the term |S(i) ∩ S(j)|.
We observe that the quantity |S(i) ∩ S(j)| can be computed from oracle queries in two steps. First,
we use query vectors from an RUFF with appropriate parameters to compute |S(i)| for every i ∈ [n]
(see Algorithm 3). Then, using queries from a PUFF (Algorithm 4) to obtain |S(i)∪S(j)| for every
pair (i, j). To state it formally,

Lemma 11. There exists an algorithm to compute |S(i)| for each i ∈ [n] with probability at least
1−O

(
1/n2

)
using O(`4k2 log(`kn) log n) oracle queries.

Lemma 12. There exists an algorithm to compute |S(i)∪S(j)| for every pair (i, j) with probability
at least 1−O

(
1/n2

)
using O(`6k3 log(`kn) log n) oracle queries.

By combining these two steps, we can obtain the (i, j)-th entry of XXT as |S(i) ∩ S(j)| =
|S(i)|+ |S(j)| − |S(i)∪S(j)|. Equipped with these two Lemmas, we now prove the guarantees of
Algorithm 2 that completes the proof of Theorem 1.

Algorithm 2 RECOVER–SUPPORT

Require: Query access to oracle O.
Require: Assumption 1 to be true.

1: Estimate |S(i)| for every i ∈ [n] using Algorithm 3.
2: Estimate |S(i) ∪ S(j)| for every i, j ∈ [n] using Algorithm 4.
3: for every pair (i, j) ∈ [n]× [n] do
4: Set Zi,j = |S(i)|+ |S(j)| − |S(i) ∪ S(j)|
5: end for
6: Return X̂ ∈ {0, 1}n×` such that X̂X̂

T
= Z.

Proof of Theorem 1. Using Algorithm 3 and Algorithm 4, we compute |S(i) ∩ S(j)| = |S(i)| +
|S(i)|− |S(i)∪S(j)| for every pair (i, j) ∈ [n]× [n], and hence populate the entries of Z = XXT .
To obtain X from Z, we perform a rank factorization of Z with a binary constraint on the factors.
We now show that Assumption 1 ensures that this factorization is unique up to permutations.

Suppose Y 6= X is a binary matrix such that Y Y T = XXT . Therefore, there exists a rotation
matrix R ∈ R`×` such that Y = XR. From Assumption 1 we know that there exists an ` × `
submatrix X̃ ofX that is a permutation matrix. For the corresponding submatrix Ỹ of Y (obtained
by choosing the same subset of rows), it must hold that

Ỹ Ỹ
T

= X̃X̃
T

= I

where I is the `× ` identity matrix. Since Y has binary entries, Ỹ must be a permutation matrix as
well. This implies that R is a permutation matrix and a constrained rank factorization can recover
X up to a permutation of columns. Therefore, Algorithm 2 successfully recovers the support of all
the ` unknown vectors.

The total number of queries needed by Algorithm 2 is the sum total of the queries needed by Algo-
rithm 3 and Algorithm 4 which is O(`6k3 log(`kn) log(n)).

Moreover, since Algorithm 3 and Algorithm 4 each succeed with probability at least 1 − O(1/n2).
By a union bound, it follows that Algorithm 2 succeeds with probability at least 1−O(1/n2).
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6 Conclusion and Open Questions
In this work, we initiated the study of recovering a mixture of ` different sparse linear classifiers
given query access to an oracle. The problem generalizes the well-studied work on 1-bit compressed
sensing (` = 1) and also complements the literature on learning mixtures of sparse linear regression
in a similar query model.

Our results for ` > 2, rely on the assumption that the supports of all the unknown vectors are sep-
arable. This separability assumption translates to each classifier using a unique feature not being
used in others, which happen often in practice. The approximate recovery problem without the sep-
arability assumption is non-trivial even for ` = 2 case, for which we provide guarantees with much
milder assumptions on the precision of the classifiers. We leave the problem of support recovery and
ε-recovery without any assumptions as an open problem.

We primarily focus on providing upper bounds on the query complexity of the support recovery and
approximate recovery of the unknown vectors. However, proving optimality results for any such
recovery is an interesting open direction. It is known that even to recover the support of a single k-
sparse vector in the 1-bit compressed sensing setting, about Ω(k2 log n) queries are required. This
corresponds to ` = 1 case, and the lower bound holds trivially for any general ` as well. However, a
nontrivial lower bound on the query complexity characterizing the asymptotic dependence on `, the
number of components, will be of interest.

Broader Impact
This paper is a theoretical study that brings together two seemingly disjoint but equally impact-
ful fields of sparse recovery and mixture models: the first having numerous applications in signal
processing while the second being the main statistical model for clustering. Given that, this work
belongs to the foundational area of data science and enhances our understanding of some basic the-
oretical questions. We feel the methodology developed in this paper is instructive, and exemplifies
the use of several combinatorial objects and techniques in signal recovery and classification, that are
hitherto underused. Therefore we foresee the technical content of this paper to form good teach-
ing material in foundational data science and signal processing courses. The content of this paper
can raise interest of students or young researchers in discrete mathematics to applications areas and
problems of signal processing and machine learning.

While primarily of theoretical interest, the results of the paper can be immediately applicable to
some real-life scenarios and be useful in recommendation systems, one of the major drivers of data
science research. In particular, if in any case of feedback/rating from users of a service there is
ambiguity about the source of the feedback, our framework can be used. This is also applicable to
crowdsourcing applications.
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Recovery of sparse linear classifiers from mixture of responses
Supplementary Material

A Missing Proofs from Section 4
Proof of Lemma 6. The proof of the lemma follows from a simple application of Chernoff bound.

Let {yi}Ti=1 be the set of responses obtained by querying the oracle repeatedly T times with vector
v. Let Z =

∑
i 1[yi = +1], and therefore EZ = T×poscount

` .

Note that Algorithm 1 makes a mistake in estimating poscount only if

|Z − T × poscount

`
| ≥ T

2`
.

Since the responses in each batch are independent, using Chernoff bound [6], we get an upper bound
on the probability that Algorithm 1 makes a mistake in estimating poscount as

Pr
(
|Z − EZ| ≥ T

2`

)
≤ 2e−

T
2`2 .

The same argument and conclusion holds for observing the negcount of the query vector as well.
Also, since nzcount = T−(poscount+negcount), using union bound, it follows that n̂z 6= nzcount

with probability at most 4e−
T

2`2 .

Proof of Lemma 10. We give a non-constructive proof for the existence of (r, t) − CFF of size n
and alphabet m = O(tr+1 log n). Recall that a family of sets F = {H1,H2, . . . ,Hn} where each
Hi ⊆ [m] is an (r, t)− CFF if the following holds: for all distinct j0, j1, . . . , jt+r−1 ∈ [n], it is the
case that ⋂

p∈{0,1,...,r−1}

Hjp 6⊆
⋃

q∈{r,r+1,...,t+r−1}

Hjq .

Since PUFF is a special case of (r, t)− CFF for r = 2, this result holds for PUFF as well.

Consider a matrix G of size m × n where each entry is generated independently from a
Bernoulli(p) distribution with p as a parameter. Consider a distinct set of t + r indices
j0, j1, . . . , jt+1, . . . , jk+r−1 ∈ [n]. For a particular row of the matrix G, the event that there exists
a 1 in the indices j0, j1, . . . , jr−1 and 0 in the indices jr, jr+1, . . . , jt+r−1 holds with probability
pr(1−p)t. Therefore, for a fixed row, this event does not hold with probability 1−pr(1−p)t and the
probability that for all the rows the event does not hold is (1−pr(1−p)t)m. Notice that the number
of such possible sets of t+ r columns is

(
n
t+r

)(
t+r
r

)
. By taking a union bound, the probability (Pe)

that the event does not hold for all the rows for at least one set of t+ r indices is

Pe ≤
(

n

t+ r

)(
t+ r

r

)(
1− pr(1− p)t

)m
Since we want to minimize the upper bound, we want to maximize pr(1−p)t. Substituting p = 1

t+1 ,
we get that

pr(1− p)t =
( t

t+ 1

)t
· 1

(t+ 1)r
>

1

e(t+ 1)r
.

Further, using the fact that
(
n
t

)
≤
(
en
t

)t
, we obtain

Pe ≤
(en)t+r

(t+ r)t

(
1− 1

e(t+ 1)r

)m
≤ (en)t+r

(t+ r)t
exp

(
− m

e(t+ 1)r

)
< α

for some very small number η. Taking log on both sides and after some rearrangement, we obtain

m > e(t+ 1)r
(

(t+ r) log
en

t+ r
+ r log(t+ r) + log

1

η

)
.

Hence, using m = O(tr+1 log n), the event holds for at least one row for every set of t + r indices
with high probability. Therefore, with high probability, the family of sets F = {H1,H2, . . . ,Hn}
corresponding to the rows ofG is a (r, t)− CFF.
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B Two-stage Approximate Recovery
In this section, we prove the helper Lemmas 11 and 12 to compete the proof of Theorem 1 and
also present the proof of Theorem 2. The two stage approximate recovery algorithm, as the name
suggests, proceeds in two sequential steps. In the first stage, we recover the support of all the `
unknown vectors (presented in Algorithm 2 in Section 5). In the second stage, we use these deduced
supports to approximately recover the unknown vectors (Algorithm 5 described in Section B.2).
B.1 Support recovery (Missing proofs from Section 5)
Compute |S(i)| using Algorithm 3. First, we show how to compute |S(i)| for every index i ∈ [n].
Let F = {H1,H2, . . . ,Hn} be a (d, `k, 0.5)-RUFF of size n over alphabet [m]. Construct the
binary matrix A ∈ {0, 1}m×n from F , as Ai,j = 1 if and only if i ∈ Hj . Each column j ∈ [n] of
A is essentially the indicator vector of the set Hj . We use the rows of matrix A as query vectors to
compute |S(i)| for each i ∈ [n]. For each such query vector v, we compute the nzcount(v) using
Algorithm 1 with batchsize T = O(`2 log `kn). The large value of T ensures that the estimated
nzcount is correct for all the queries with very high probability.

For every h ∈ {0, . . . , `}, let bh ∈ {0, 1}m be the indicator of the queries that have nzcount at least
h. We show in Lemma 11 that the set of columns of A that have large intersection with bh, exactly
correspond to the indices i ∈ [n] that satisfy |S(i)| ≥ h. This allows us to recover |S(i)| exactly for
each i ∈ [n].

Algorithm 3 COMPUTE–|S(i)|
Require: Construct binary matrixA ∈ {0, 1}m×n from (d, `k, 0.5)−RUFF of size n over alphabet

[m], with m = c1`
2k2 log n and d = c2`k log n.

1: Initialize b0, b1, b2, . . . , b` to all zero vectors of dimension m.
2: Let batchsize T = 4`2 logmn.
3: for i = 1, . . . ,m do
4: Set w := nzcount(A[i]) (obtained using Algorithm 1 with batchsize T .)
5: for h = 0, 1, . . . , w do
6: Set bhi = 1.
7: end for
8: end for
9: for h = 0, 1, . . . , ` do

10: Set Ch = {i ∈ [n] | |supp(bh) ∩ supp(Ai)| ≥ 0.5d}.
11: end for
12: for i = 1, 2, . . . , n do
13: Set |S(i)| = h if i ∈ {Ch \ Ch+1} for some h ∈ {0, 1, . . . , `− 1}.
14: Set |S(i)| = ` if i ∈ C`
15: end for

Proof of Lemma 11. Since A has m = O(`2k2 log n) distinct rows, and each row is queried T =
O(`2 log(mn)) times, the total query complexity of Algorithm 3 is O(`4k2 log(`kn) log n).

To prove the correctness, we first see that the nzcount for each query is estimated correctly using
Algorithm 1 with overwhelmingly high probability. From Lemma 6 with T = 4`2 log(mn), it
follows that each nzcount is estimated correctly with probability at least 1 − 1

mn2 . Therefore, by
taking a union bound over all rows of A, we estimate all the counts accurately with probability at
least 1− 1

n2 .

We now show, using the properties of RUFF, that |supp(bh) ∩ supp(Ai)| ≥ 0.5d if and only if
|S(i)| ≥ h, for any 0 ≤ h ≤ `.
Let i ∈ [n] be an index such that |S(i)| ≥ h, i.e., there exist at least h unknown vectors that
have a non-zero entry in their ith coordinate. Also, let U := ∪i∈[`]supp(βi) denote the union
of supports of all the unknown vectors. Since each unknown vector is k-sparse, it follows that
|U | ≤ `k. To show that |supp(bh) ∩ supp(Ai)| ≥ 0.5d, consider the set of rows of A indexed
by W := {supp(Ai) \ ∪j∈U\{i}supp(Aj)}. Since A is a (d, `k, 0.5) − RUFF, we know that
|W | ≥ 0.5d. We now show that bht = 1 for every t ∈ W . This follows from the observation that
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for t ∈ W , and each unknown vector β ∈ S(i), the query sign(〈A[t],β〉) = sign(βi) 6= 0. Since
|S(i)| ≥ h, we conclude that nzcount(A[t]) ≥ h, and therefore, bht = 1.

To prove the converse, consider an index i ∈ [n] such that |S(i)| < h. Using a similar argument as
above, we now show that |supp(bh) ∩ supp(Ai)| < 0.5d. Consider the set of rows of A indexed
by W := {supp(Ai) \ ∪j∈U\{i}supp(Aj)}. Now observe that for each t ∈ W , and any unknown
vector β /∈ S(i), the query sign(〈A[t],β〉) = 0. Therefore nzcount(A[t]) ≤ |S(i)| < h, and
bht = 0 for all t ∈W . Since |W | ≥ 0.5d, it follows that |supp(bh) ∩ supp(Ai)| < 0.5d.

For any 0 ≤ h ≤ `, Algorithm 3. therefore correctly identifies the set of indices i ∈ [n] such that
|S(i)| ≥ h. In particular, the set Ch := {i ∈ [n] | |S(i)| ≥ h}. Therefore, the set Ch \ Ch+1 is
exactly the set of indices i ∈ [n] such that |S(i)| = h.

Compute |S(i) ∪ S(j)| using Algorithm 4. In this section we present an algorithm to compute
|S(i) ∪ S(j)|, for every i, j ∈ [n], using |S(i)| computed in the previous step. We will need an
`k−PUFF for this purpose. Let F = {H1,H2, . . . ,Hn} be the required `k−PUFF of size n over
alphabet m′ = O(`3k3 log n).

Construct a set of `+1 matrices B = {B(1), . . . ,B(`+1)}where, eachB(w) ∈ Rm′×n, w ∈ [`+1],
is obtained from the PUFF F in the following way: For every (i, j) ∈ [m′] × [n], set B(w)

i,j to be
a random number sampled uniformly from [0, 1] if i ∈ Hj , and 0 otherwise. We remark that the
choice of uniform distribution in [0, 1] is arbitrary, and any continuous distribution works.

Since every B(w) is generated identically, they have the exact same support, though the non-zero
entries are different. Also, by definition, the support of the columns of every B(w) corresponds to
the sets in F .

Let U := ∪i∈[`]supp(βi) denote the union of supports of all the unknown vectors. Since each
unknown vector is k-sparse, it follows that |U | ≤ `k. From the properties of `k − PUFF, we know
that for any pair of indices (i, j) ∈ U × U , the set (Hi ∩ Hj) \

⋃
q∈U\{i,j}Hq is non-empty. This

implies that for every w ∈ [`+ 1], there exists at least one row of B(w) that has a non-zero entry in
the ith and jth index, and 0 in all other indices p ∈ U \ {i, j}. In Algorithm 4 we use these rows as
queries to estimate their nzcount. In Lemma 12, we show that this quantity is exactly |S(i) ∪ S(j)|
for that particular pair (i, j) ∈ U × U .

Proof of Lemma 12. Computing each count requires O(T`) queries. Therefore, the total number
of oracle queries made by Algorithm 4 is at most O(m′T`) = O(`6k3 log(`kn) log n) for m′ =
O(`3k3 log n) and T = 10`2 log(nm′). Also, observe that each nzcount is estimated correctly with
probability at least 1−O

(
1/`m′n2

)
. Therefore from union bound it follows that all the (`+ 1)m′

estimations of nzcount are correct with probability at least 1−O
(
1/n2

)
.

Recall that the set U denotes the union of supports of all the unknown vectors. This set is equivalent
to {i ∈ [n] | |S(i)| > 0}. First, note that if |S(i)| = 0, there are no unknown vectors supported on
the ith index. Therefore, |S(i)∪S(j)| = |S(j)|. Also, if i = j, then the computation of |S(i)∪S(j)|
is trivial.

We now focus on the only non-trivial case when (i, j) ∈ U × U and i 6= j. Since for every
w ∈ [`+ 1], the support of the columns of B(w) are the indicators of sets in F , the PUFF property
implies that there exists at least one row (say, with index p ∈ [m′]) of every B(w) which has a
non-zero entry in the ith and jth index, and 0 in all other indices q ∈ U \ {i, j}, i.e.,

B
(w)
p,i 6= 0,B

(w)
p,j 6= 0, andB(w)

p,q = 0 for all q ∈ U \ {i, j}.

To prove the correctness of the algorithm, we need to show the following:

|S(i) ∪ S(j)| = max
w∈[`+1]

{nzcount(B(w)[p])}

First observe that using the row B(w)[p] as query will produce non-zero value for only those un-
known vectors β ∈ S(i) ∪ S(j). This establishes the fact that |S(i) ∪ S(j)| ≥ nzcount(B(w)[p]).
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Algorithm 4 RECOVER–|S(i) ∪ S(j)|
Require: |S(i)| for every i ∈ [n].
Require: For every w ∈ [`+ 1], constructB(w) ∈ Rm′×n from `k−PUFF of size n over alphabet

m′ = c3`
3k3 log n.

1: Let U := {i ∈ [n] | |S(i)| > 0}
2: Let batchsize T = 10`2 log(nm′)
3: for every p ∈ [m′] do
4: Let count(p) := maxw∈[`+1]{nzcount(B(w)[p])}

(obtained using Algorithm 1 with batchsize T ).
5: end for
6: for every pair (i, j) ∈ [n]× [n] do
7: if i == j then
8: Set |S(i) ∪ S(j)| = |S(i)|
9: else if i /∈ U then

10: Set |S(i) ∪ S(j)| = |S(j)|
11: else if j /∈ U then
12: Set |S(i) ∪ S(j)| = |S(i)|
13: else
14: Let p ∈ [m′] such thatB(1)

p,i 6= 0,B(1)
p,j 6= 0, andB(1)

p,q = 0 for all q ∈ U \ {i, j}.
15: Set |S(i) ∪ S(j)| = count(p).
16: end if
17: end for

To show the other side of the inequality, consider the set of (` + 1) 2-dimensional vectors obtained
by the restriction of rowsB(w)[p] to the coordinates (i, j),

{(B(w)
p,i ,B

(w)
p,j ) | w ∈ [`+ 1]}.

Since these entries are picked uniformly at random from [0, 1], they are pairwise linearly inde-
pendent. Therefore, each β ∈ S(i) ∪ S(j) can have sign(〈B(w)[p],β〉) = 0 for at most 1 of
the w queries. So by pigeonhole principle, at least one of the query vectors B(w)[p] will have
sign(〈B(w)[p],β〉) 6= 0 for all β ∈ S(i)∪S(j). Hence, |S(i)∪S(j)| ≤ maxw{nzcount(B(w)[p])}.

B.2 Approximate Recovery
Once we have the obtained the support of all unknown vectors, the task of approximate recovery can
be achieved using a set of Gaussian queries. Recall from Definition 5, a Gaussian query refers to
an oracle query with vector v = (v1, . . . ,vn) ∈ Rn where each vi is sampled independently from
the standard Normal distribution, vi ∼ N (0, 1). The use of Gaussian queries in the context of 1-bit
compressed sensing (` = 1) was studied by [20].
Lemma 13 ([20]). For any ε > 0, there exists an ε-recovery algorithm to efficiently recover an
unknown vector in Rn using O

(
n
ε log n

ε

)
Gaussian queries.

In the current query model however, the approximate recovery is a bit intricate since we do not pos-
sess the knowledge of the particular unknown vector that was sampled by the oracle. To circumvent
this problem, we will leverage the special support structure of the unknown vectors. From Assump-
tion 1, we know that every unknown vector βt, t ∈ [`], has at least one coordinate which is not
contained in the support of the other unknown vectors. We will denote the first such coordinate by
rep(βt). Define,

rep(βt) := minp{ p ∈ supp(βt) \
⋃

q∈[`]\{t}

supp(βq)} ∈ [n].

For ε-recovery of a fixed unknown vector βt, we will use the set of representative coordinates
{rep(βt

′
)}t′ 6=t, to correctly identify its responses with respect to a set of Gaussian queries. In order

to achieve this, we first have to recover the sign of βtrep(βt) for every t ∈ [`], using an RUFF, which
is described in Algorithm 6.
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Lemma 14. Algorithm 6 recovers sign(βtrep(βt)) for all t ∈ [`].

With the knowledge of all the supports, and the sign of every representative coordinate, we are now
ready to prove Theorem 2. The details are presented in the Algorithm 5.

Algorithm 5 ε-RECOVERY, TWO STAGE

Require: Query access to oracle O.
Require: Assumption 1 to be true.

1: Estimate supp(βt) for all t ∈ [`] using Algorithm 2.
2: Estimate sign(βtrep(βt)) for all t ∈ [`] using Algorithm 6.
3: Let Inf be a large positive number.
4: Let batchsize T = 4`2 log(nk/ε).
5: for t = 1, . . . , ` do
6: for i = 1, . . . , Õ(k/ε) do

7: Define vtj :=

{
Inf if j = rep(βt

′
), for some t′ 6= t

N (0, 1) otherwise
8: Obtain poscount(vt) using Algorithm 1 with batchsize T .
9: Let pt := |{t′ 6= t | sign(βt′

rep(βt′ )
) = +1}|

10: if poscount(vt) 6= pt then
11: Set yti = +1.
12: else
13: Set yti = −1.
14: end if
15: end for
16: From {yt1, yt2, . . . , ytÕ(k/ε)

}, and supp(βt) recover β̂t by using Lemma 13.
17: end for
18: Return {β̂t, t ∈ [`]}.

Proof of Theorem 2. For the ε-recovery of a fixed unknown vector βt, t ∈ [`], we will generate its
correct response with respect to a set of Õ(k/ε) Gaussian queries using modified Gaussian queries.
A modified Gaussian query vt for the t-th unknown vector, is a Gaussian query with a large positive
entry in the coordinates indexed by rep(βt

′
), for every t′ 6= t.

Consider a fixed unknown vector βt. Let v ∈ Rn be a Gaussian query, i.e., every entry of v is
sampled independently fromN (0, 1). Algorithm 5 constructs a modified Gaussian query vt from v
as follows:

vtj =

{
Inf if j = rep(βt

′
) for some t′ 6= t

vj otherwise
.

From construction, we know that vtj = vj for all j ∈ supp(βt). Therefore,

〈vt,βt〉 = 〈v,βt〉 and therefore sign(〈vt,βt〉) = sign(〈v,βt〉).
On the other hand, if Inf is chosen to be large enough,

sign(〈vt,βt
′
〉) = sign(βt

′

rep(βt′ )
) ∀t′ 6= t,

since Inf · βt
′

rep(βt′ )
dominates the sign of the inner product. Note that in order to obtain an upper

bound on the value of Inf, we have to assume that the non-zero entries of every unknown vector have
some non-negligible magnitude (at least 1/poly(n)).

Note that the sign(βt
′

rep(βt′ )
) was already computed using Algorithm 6, and therefore, the response of

the modified Gaussian query with each βt
′
, t′ 6= t is known. Now if poscount(vt) is different from

the number of positive instances of sign(βt
′

rep(βt′ )
), t′ 6= t, then it follows that sign(〈vt,βt〉) = +1.

From this we can successfully obtain the response of βt corresponding to a Gaussian query v.
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Algorithm 5 simulates O(k/ε · log(k/ε)) Gaussian queries for every βt, t ∈ [`] using the modified
Gaussian queries vt. Approximate recovery is then possible using Lemma 13 (restricted to the k-non
zero coordinates in the supp(βt)).

We now argue about the query complexity and the success probability of Algorithm 5.

For every unknown vector βt, t ∈ [`], we simulate O(k/ε · log(k/ε)) Gaussian queries. Simulating
each Gaussian query involves T = O(`2 log(nk/ε)) oracle queries to estimate the poscount. Note
that Algorithm 6 can be run simultaneously with Algorithm 3 since they use the same set of queries.
The sign recovery algorithm, therefore, does not increase the query complexity of approximate
recovery. The total query complexity of Algorithm 5 after the support recovery procedure is at most
O
(
(`3k/ε) log(nk/ε) log(k/ε)

)
.

From Lemma 6, each poscount is correct with probability at least 1 − O(ε/(n2k2)) and therefore
by a union bound over all the O(`k/ε · log(k/ε)) poscount estimates, the algorithm succeeds with
probability at least 1−O(1/n).

Proof of Lemma 14. Consider the (d, `k, 0.5) − RUFF, F = {H1,H2, . . . ,Hn}, of size n over
alphabet m = O(`2k2 log n) used in Algorithm 3. Let A ∈ {0, 1}m×n be the binary matrix con-
structed from the RUFF in a similar manner, i.e.,Ai,j = 1 if and only if i ∈ Hj . From the properties
of RUFF, we know that for every t ∈ [`], there exists a row (indexed by i ∈ [m]) of A such that
Ai,u(βt) 6= 0, and Ai,j = 0 for all j ∈ U \ {u(βt)}, where, U = ∪i∈[`]supp(βi). Therefore, the
query withA[i] yields non-zero sign with only βt. Since,

sign(〈A[i],βt〉) = sign(〈eu(βt),β
t〉) = sign(βtu(βt))

sign(βtu(βt)) can be deduced.

Algorithm 6 COMPUTE–sign(βtrep(βt))

Require: Binary matrix A ∈ {0, 1}m×n from (d, `k, 0.5) − RUFF of size n over alphabet [m],
with m = O(`2k2 log n) and d = O(`k log n).

Require: rep(βt) ∈ [n] for all t ∈ [`].
1: Let batchsize T = 4`2 logmn.
2: Let U := ∪i∈[`]supp(βi).
3: for t = 1, . . . , ` do
4: Let i ∈ {supp(Arep(βt)) \ ∪j∈U\{rep(βt)}supp(Aj)}
5: if poscount(A[i]) > 0 (obtained using Algorithm 1 with batchsize T .) then
6: sign(βtrep(βt)) = +1.
7: else
8: sign(βtrep(βt)) = −1.
9: end if

10: end for

C Single stage process for ε-recovery
The approximate recovery procedure (Algorithm 5), described in Section B.2, crucially utilizes the
support information of every unknown vector to design its queries. This requirement forces the
algorithm to proceed in two sequential stages.

In particular, Algorithm 5, with the knowledge of the support and the representative coordinates
of all the unknown vectors, designed modified Gaussian queries that in turn simulated Gaussian
queries for a fixed unknown vector. In this section, we achieve this by using the rows of a matrix
obtained from an (`, `k) − CFF. The property of the CFF allows us to simulate enough Gaussian
queries for every unknown vector without the knowledge of their supports. This observation gives
us a completely non-adaptive algorithm for approximate recovery of all the unknown vectors.
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Consider a matrixA of dimensionm×n constructed from an (`, `k)−CFF,F = {H1,H2, . . . ,Hn}
of size n over alphabet m, as follows:

Ai,j =

{
Inf if i ∈ Hj
v ∼ N (0, 1) otherwise

.

In Lemma 15, we show that for every unknown vector βt, there exists a row of A that simulates
the Gaussian query for it. Therefore, using Õ(k/ε) independent blocks of such queries will ensure
sufficient Gaussian queries for every unknown vector which then allows us to approximately recover
these vectors.

Recall the definition of a representative coordinate of an unknown vector βt,

rep(βt) := minp{ p ∈ supp(βt) \
⋃

q∈[`]\{t}

supp(βq)} ∈ [n].

Lemma 15. For every t ∈ [`], there exists at least one row vt inA that simulates a Gaussian query
for βt, and sign(〈vt,βt

′
〉) = sign(βt

′

rep(βt′ )
) for all t′ 6= t.

Proof of Lemma 15. For any fixed t ∈ [`], consider the set of indices

X = {rep(βt
′
) | t′ ∈ [`] \ {t}}.

Recall that from the property of (`, `k)− CFF, we must have⋂
j∈X

supp(Aj) 6⊆
⋃

j∈∪q∈[`]supp(β
q)\X

supp(Aj).

Therefore, there must exist at least one row vt in A which has a large positive entry, Inf, in all the
coordinates indexed by X . Moreover, vt has a random Gaussian entry in all the other coordinates
indexed by the union of support of all unknown vectors. Since βt is 0 for all coordinates in X , the
query sign(〈vt,βt〉) simulates a Gaussian query. Also,

sign(〈v,βt
′
〉) = sign(rep(βt

′
)) ∀t′ 6= t

since Inf × βt
′

rep(βt′ )
dominates the inner product.

We are now ready to present the completely non-adaptive algorithm for the approximate recovery of
all the unknown vectors.

Proof of Theorem 3. The proof of Theorem 3 follows from the guarantees of Algorithm 7. The
query vectors of Algorithm 7 can be represented by the rows of the following matrix:

R =


A

Ã+B(1)

Ã+B(2)

...
Ã+B(D)


where, D = O(k/ε · log k/ε) and A is the matrix obtained from the (d, `k, 0.5) − RUFF re-
quired by Algorithm 2 and Algorithm 6. The matrix Ã is obtained from an (`, `k) − CFF,
F = {H1,H2, . . . ,Hn} by setting Ãi,j = Inf if i ∈ Hj and 0 otherwise, and each matrix B(w)

for w ∈ [D] is a Gaussian matrix with every entry B(w)
i,j drawn uniformly at random from standard

Normal distribution.

Algorithm 7 decides all its query vectors at the start and hence is completely non-adaptive. It first
invokes Algorithm 2 and Algorithm 6 to recover the support and the sign of the representative
coordinate of every unknown vector βt. Now using the queries from the rows of the matrix R,
the algorithm generates at least D = Õ(k/ε) Gaussian queries for each unknown vector.
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Algorithm 7 ε-RECOVERY, SINGLE STAGE

Require: Assumption 1 to be true.
Require: Binary matrix Ã ∈ {0, 1}m×n from (`, `k) − CFF of size n over alphabet m =

O((`k)`+1 log n).
1: Estimate supp(βt) and sign(βtrep(βt)) for all t ∈ [`] using Algorithm 2 and Algorithm 6 respec-

tively.
2: Set Inf to be a large positive number.
3: Set D = O(k/ε · log(k/ε)).
4: Set batchsize T = 4`2 log(mnk/ε).
5: for i = 1, . . . ,m do
6: for w = 1, 2, . . . ,D do

7: Construct query vector v, where vj =

{
Inf if Ãi,j = 1

N (0, 1) otherwise
.

8: Query
(
v, T

)
and set P i,w = poscount(v).

9: end for
10: end for
11: for t = 1, . . . , ` do
12: Let X := {rep(βt

′
) | t′ ∈ [`] \ t} and U := ∪qsupp(βq)

13: Let i ∈ {∩j∈X supp(Ãj) \
⋃
j∈U\X supp(Ãj)} ⊂ [m].

14: Let p := |{t′ 6= t | sign(βtrep(βt)) = +1}|
15: for w = 1, . . . ,D do
16: if P i,w 6= p then
17: Set ytw = +1
18: else
19: Set ytw = −1
20: end if
21: end for
22: From {ytw | w ∈ [D]} and supp(βt) recover β̂

t
by using Lemma 13.

23: end for
24: Return {β̂

t
| t ∈ [`]}.

It follows from Lemma 15 that each matrix Ã+B(w), for w ∈ [D], contains at least one Gaussian
query for every unknown vector. Therefore, in total, R contains at least D = O(k/ε · log k/ε)
Gaussian queries for every unknown vector βt. Using the responses of these Gaussian queries, we
can then approximately recover every βt using Lemma 13.

The total query complexity is therefore the sum of query complexities of support recovery process
(which from Theorem 1 we know to be at most O(`6k3 log(n) log(`kn))), and the total number of
queries needed to generate O(k/ε · log(k/ε)) Gaussian queries (which is mTD) for each unknown
vector. Therefore the net query complexity is O

(
(``+3k`+2/ε) log n log(k/ε) log(n/ε))

)
. Each

Algorithm 2, 6 and the Gaussian query generation succeed with probability at least 1 − O(1/n),
therefore from union bound, Algorithm 7 succeeds with probability at least 1−O(1/n).

D Relaxing Assumption 1 for ` = 2

In this section, we will circumvent the necessity for Assumption 1 when there are only two unknown
vectors - {β1,β2}. We present a two-stage algorithm to approximately recover both the unknown
vectors. In the first stage, the algorithm recovers the support of both the vectors, and then using the
support information it approximately recovers the two vectors.

We would like to mention that if supp(β1) 6= supp(β2), we do not need any further assumptions
on the unknown vectors for their approximate recovery. However, if the two vectors have the exact
same support, then we need to impose some mild assumptions in order to approximately recover the
vectors.
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D.1 Support Recovery
In this section, we show that supports of both the unknown vectors can be inferred directly from
{|S(i)|}i∈[n] and {|S(i) ∩ S(j)|}i,j∈[n]. These quantities were computed using Algorithm 3 and
using Algorithm 4 respectively. Moreover, the guarantees of both these algorithms (shown in
Lemma 11, and Lemma 12) do not require the unknown vectors to satisfy any special assumption.
Lemma 16. There exists an algorithm to recover the support of any two k-sparse unknown vectors
using O(k3 log2 n) oracle queries with probability at least 1−O(1/n2).

Proof of Lemma 16. Consider Algorithm 8. The query complexity and success guarantees both
follow from Lemma 11 and Lemma 12. We now prove the correctness of Algorithm 8.

Algorithm 8 RECOVER–SUPPORT ` = 2

Require: Access to oracle O
1: Estimate |S(i)| for every i ∈ [n] using Algorithm 3.
2: Estimate |S(i) ∩ S(j)| for every i, j ∈ [n] using Algorithm 4.
3: if |S(i)| ∈ {0, 2} for all i ∈ [n] then
4: supp(β1) = supp(β2) = {i ∈ [n]||S(i)| 6= 0}.
5: else
6: Let i0 = min{i||S(i)| = 1}, and let i0 ∈ supp(β1)
7: for j ∈ [n] \ {i0} do
8: if |S(j)| = 2 then
9: Add j to supp(β1), and supp(β2).

10: else if |S(j)| = 1 and |S(i0) ∩ S(j)| = 0 then
11: Add j to supp(β2).
12: else if |S(j)| = 1 and |S(i0) ∩ S(j)| = 1 then
13: Add j to supp(β1).
14: end if
15: end for
16: end if

Case 1: (supp(β1) 6= supp(β2)). First note that the set of coordinates, i ∈ [n] with |S(i)| =
2 belong to the support of both the unknown vectors. For the remaining indices in T := {i ∈
[n]||S(i)| = 1}, we use the following approach to decide the unknown vector whose support they
belongs to.

If |T | = 1, then without loss of generality we can assume i ∈ supp(β1). Else if |T | > 1, we set the
smallest index i0 ∈ T to be in supp(β1). We then use this index as a pivot to figure out all the other
indices j ∈ T ∩ supp(β1). If both i0, and j lie in supp(β1), then |S(i0) ∩ S(j)| = 1, otherwise
|S(i0) ∩ S(j)| = 0. So, using Algorithm 8, we can identify the supports of both the unknown
vectors.

Case 2: (supp(β1) = supp(β2)). In this case, we observe that |S(i)| ∈ {2, 0} for all i ∈ [n].
Therefore, both the unknown vectors have the exact same support, and nothing further needs to be
done since supp(β1) = supp(β2) = {i ∈ [n]||S(i)| 6= 0}.

D.2 Approximate Recovery
In this section, we present the approximate recovery algorithm. The queries are designed based on
the supports of the two vectors.

We split the analysis in two parts. First, we consider the case when the two vectors have different
supports, i.e. supp(β1) 6= supp(β2). In this case, we use Lemma 17 to approximately recover the
two vectors.
Lemma 17. If supp(β1) 6= supp(β2), then there exists an algorithm for ε-approximate recovery of

any two k-sparse unknown vectors using O
(
k
ε · log(nkε )

)
oracle queries with probability at least

1−O(1/n).
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When the two vectors have the exact same support, we use a set of sub-Gaussian queries to recover
the two vectors. This is slightly tricky, and our algorithms succeeds under some mild assumption on
the two unknown vectors (Assumption 2).

Lemma 18. If supp(β1) = supp(β2), then there exists an algorithm for ε-approximate recovery of
any two k-sparse unknown vectors using O( k2

ε4δ2 log2(nkδ )) oracle queries with probability at least
1−O(1/n).

Algorithm 9 ε-APPROXIMATE-RECOVERY

1: Estimate supp(β1), supp(β2) using Algorithm 8.
2: if supp(β1) 6= supp(β2) then
3: Return β̂1, β̂2 using Algorithm 10.
4: else
5: Return β̂1, β̂2 using Algorithm 11.
6: end if

Proof of Theorem 4. The guarantees of Algorithm 9 prove Theorem 4. The total query complexity
after support recovery is the maximum of the query complexities of Algorithm 10 and Algorithm 11,
which is O( k

2

εδ2 log2(nkδ )).

Moreover from Lemma 17 and Lemma 18, we know that both these algorithms succeed with a
probability at least 1−O(1/n), therefore, Algorithm 9 is also guaranteed to succeed with probability
at least 1−O(1/n).

We now prove Lemma 17 and Lemma 18.

D.2.1 Case 1: supp(β1) 6= supp(β2).

Proof of Lemma 17. Consider a coordinate p ∈ supp(β1) ∆ supp(β2), where ∆ denotes the sym-
metric difference of the two support sets. Without loss of generality we can assume p ∈ supp(β1).
We first identify the sign(β1

p) simply using the query vector ep. For the sake of simplicity let us
assume sign(β1

p) = +1.

We use two types of queries to recover the two unknown vectors. The Type 1 queries are modified
Gaussian queries, of the form v + Inf · ep, where v is a Gaussian query vector. Type 2 query is the
plain Gaussian query v.

Since p ∈ supp(β1) \ supp(β2), the Type 1 queries will always have a positive response with the
unknown vector β1. Moreover, they will simulate a Gaussian query with β2. Therefore from the
responses of the oracle, we can correctly identify the response of β2 with a set of O(k/ε · log(k/ε))
Gaussian queries. Now, using Lemma 13, we can approximately recover it.

Now since the response of β2 with the Type 1 query v+ Inf ·ep and the corresponding Type 2 query
v, remains the same, we can also obtain correct responses of β1 with a set of O(k/ε · log(k/ε))
Gaussian queries. By invoking Lemma 13 again, we can approximately recover β1.

The total query complexity of the algorithm is O(kT/ε · log(k/ε)) = O(k/ε · log(nk/ε) · log(k/ε)).
Also, from Lemma 6, it follows that each oracle query succeeds with probability at least 1 −
O(1/mn). Therefore by union bound over all 2m queries, the algorithm succeeds with probability
at least 1−O(1/n).

D.2.2 Case 2: supp(β1) = supp(β2).

We now propose an algorithm for approximate recovery of the two unknown vectors when their
supports are exactly the same. Until now for ε-recovery, we were using a representative coordinate
to generate enough responses to Gaussian queries. However, when the supports are exactly the same,
the same trick does not work.
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Algorithm 10 ε-APPROXIMATE-RECOVERY: CASE 1

Require: supp(β1) 6= supp(β2)
1: Set m = O(k/ε · log(k/ε))
2: Set batchsize T = 10 logmn.
3: Let Inf be a large positive number.
4: Let p ∈ supp(β1) \ supp(β2), and s := sign(β1

p).
5: for i = 1, . . . ,m do
6: Construct query vector v, where vj = N (0, 1) for all j ∈ [n].
7: Construct query vector ṽ := v + s · Inf · ep
8: Query

(
v, T

)
, and Query

(
ṽ, T

)
.

9: Set yi =


+1 if poscount(ṽ) == 2

−1 if negcount(ṽ) == 1

0 otherwise

10: Set zi =



+1 if yi = +1 and poscount(v) == 2

−1 if yi = +1 and negcount(v) == 1

+1 if yi = −1 and poscount(v) == 1

−1 if yi = −1 and negcount(v) == 2

+1 if yi = 0 and poscount(v) == 1

−1 if yi = 0 and negcount(v) == 1

0 otherwise
11: end for
12: From {yi | i ∈ [m]} and supp(β2) recover β̂

2
by using Lemma 13.

13: From {zi | i ∈ [m]} and supp(β1) recover β̂
1

by using Lemma 13.

For the approximate recovery in this case, we use sub-Gaussian queries instead of Gaussian queries.
In particular, we consider queries whose entries are sampled uniformly from {−1, 1}. The equiva-
lent of Lemma 13 proved by [2] for sub-Gaussian queries enables us to achieve similar bounds.

Lemma 19 (Corollary of Theorem 1.1 of [2]). Let x ∈ Sn−1 be a k-sparse unknown vector of
unit norm. Let v1, . . . ,vm be independent random vectors in Rn whose coordinates are drawn
uniformly from {−1, 1}. There exists an algorithm that recovers x̂ ∈ Sn−1 using the 1-bit sign
measurements {sign(〈vi,x〉)}i∈[m], such that with probability at least 1 − 4e−α

2

(for any α > 0),
it satisfies

‖x− x̂‖22 ≤ O
(
‖x‖

1
2∞ +

1

2
√
m

(
√
k log(2n/k) + α)

)
.

In particular, for m = O( kε4 log n), we get O(ε + ‖x‖
1
2∞) - approximate recovery with probability

at least 1 − O(1/n). Therefore, if the unknown vectors are not extremely sparse (Assumption 2),
we can get good guarantees on their approximate recovery with sufficient number of sub-Gaussian
queries.

The central idea of ε-recovery algorithm (Algorithm 11) is therefore to identify the responses of a
particular unknown vector β with respect to a set of sub-Gaussian queries v ∼ {−1, 1}n. Then
using Lemma 19, we can approximately reconstruct β.

Let us denote by response(v), the set of distinct responses of the oracle with a query vector v.
Since there are only two unknown vectors, |response(v)| ≤ 2. If both unknown vectors have the
same response with respect to a given query vector v, i.e., |response(v)| = 1 then we can trivially
identify the correct responses with respect both the unknown vectors by setting sign(〈v,β2〉) =
sign(〈v,β2〉) = response(v).

However if |response(v)| = 2, we need to identify the correct response with respect to a fixed
unknown vector. This alignment constitutes the main technical challenge in approximate recovery.
To achieve this, Algorithm 11 fixes a pivot query say v0 with |response(v0)| = 2, and aligns all the
other queries with respect to it by making some additional oracle queries.
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Let W denote the set of queries such that |response(v)| = 2. Also, for any pair of query vectors,
v1,v2 ∈ W , we denote by alignβ(v1,v2) to be an ordered tuple of responses with respect to the
unknown vector β.

alignβ(v1,v2) = (sign(〈v1,β〉), sign(〈v2,β〉)).

We fix a pivot query v0 ∈ W to be one that satisfies response(v0) = {−1, 1}. We can assume
without loss of generality that there always exists one such query, otherwise all queries v ∈W have
0 ∈ response(v), and Proposition 20 aligns all such responses using O(log n) additional oracle
queries.
Proposition 20. Suppose for all queries v ∈ W , 0 ∈ response(v). There exists an algorithm that
estimates alignβ1(v0,v) and alignβ2(v0,v) for any v,v0 ∈ W using O(log n) oracle queries with
probability at least 1−O(1/n).

For a fixed pivot query v0 ∈ W such that response(v0) = {−1, 1}, Proposition 21 and Propo-
sition 22 compute alignβ(v0,v) for all queries v ∈ W such that 0 ∈ response(v) and 0 /∈
response(v) respectively.
Proposition 21. Let v0 ∈W such that response(v0) = {−1, 1}. For any query vector v ∈W such
that 0 ∈ response(v), there exists an algorithm that computes alignβ1(v0,v) and alignβ2(v0,v)
using O(log n) oracle queries with probability at least 1−O(1/n).

Proposition 22. Let δ > 0, be the largest real number such that β1,β2 ∈ δZn. Let v0 ∈ W such
that response(v0) = {−1, 1}. For any query vector v ∈W such that response(v) = {−1, 1}, there
exists an algorithm that computes alignβ1(v0,v) and alignβ2(v0,v) using O( kδ2 log(nkδ )) oracle
queries with probability at least 1−O(1/n).

Using the alignment process and Lemma 19, we can now approximately recover both the unknown
vectors.

Proof of Lemma 18. Consider Algorithm 11, which basically collects enough responses of an un-
known vector for a set of sub-Gaussian queries by aligning all responses.

Without loss of generality, we fix v0 such that response(v0) = {+1,−1}, and also enforce that
sign(v0,β

1) = +1. Now, we align all other responses with respect to v0. The proof of Lemma 18
then follows from the guarantees of Lemma 19. For m = O( kε4 log n), along with the assumptions
that ‖β1‖∞, ‖β2‖∞ = o(1), the algorithm approximately recovers β1,β2.

The number of queries made by Algorithm 11 is at most mT to generate responses and
O(m k

δ2 log(nkδ )) to align all the m responses with respect to a fixed pivot query v0. Therefore
the total query complexity of Algorithm 11 is O( k2

ε4δ2 log2(nkδ )).

All parts of the algorithm succeed with probability at least 1−O(1/n), and therefore the algorithm
succeeds with probability at least 1−O(1/n).

Finally, we prove Proposition 20, Proposition 21 and Proposition 22.

Proof of Proposition 20. For the proof of Proposition 20, we simply use the query vector v0 + v to
reveal whether the 0’s in the two response sets correspond to the same unknown vector or different
ones. The correctness of Algorithm 12 follows from the fact that there will be a 0 in the response
set of v0 + v if and only if both the 0’s correspond to the same unknown vector.

To obtain the complete response set for the query v0 + v with probability at least 1 − 1/n, Algo-
rithm 12 makes at most O(log n) queries.

Proof of Proposition 21. In this case, we observe that the response set corresponding to the query
Inf · v + v0 can reveal the correct alignment. To see this, let the response of v0 and v be {+1,−1}
and {s, 0} respectively for some s ∈ {±1}. The response set corresponding to Inf · v + v0 will be
the set (or multi-set) of the form {s, t}. Since we know s = response(v) \ {0}, we can deduce t
from the poscount(Inf · v + v0), and negcount(Inf · v + v0).
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Algorithm 11 ε-APPROXIMATE RECOVERY: CASE 2

Require: supp(β1) = supp(β2), Assumption 2.
1: Set m = O( kε4 log(n))
2: Set batchsize T = O(logmn)
3: for i = 1, . . . ,m do

4: Sample query vector v as: vj =

{
+1 w.p. 1/2

−1 w.p. 1/2
5: Query(v, T ), and store response(v).
6: if |response(v)| == 1 then
7: Set yv = response(v).
8: Set zv = response(v).
9: else

10: Add v to W .
11: end if
12: Let v0 be an arbitrary v ∈W .
13: for every v ∈W do
14: Set (yv0 , yv) = alignβ1(v0,v).
15: Set (zv0 , zv) = alignβ2(v0,v).
16: end for
17: end for
18: Using {yv}v , estimate β̂1.

19: Using {zv}v , estimate β̂2.

Algorithm 12 ALIGN QUERIES, CASE 1

Require: v0,v ∈ {−1, 1}n, 0 ∈ response(v0) ∩ response(v).
1: Set batchsize T = O(log n).
2: Query(v0 + v, T ).
3: if 0 ∈ response(v0 + v) then
4: alignβ1(v0,v) = (0, 0)
5: alignβ2(v0,v) = (response(v0) \ {0}, response(v) \ {0})
6: else
7: alignβ1(v0,v) = (0, response(v) \ {0})
8: alignβ2(v0,v) = (response(v0) \ {0}, 0)
9: end if

Now, if t = +1, then (+1, 0) are aligned together (response of the same unknown vector) and
(s,−1) are aligned together. Similarly, if t = −1, then (−1, 0) and (+1, s) are aligned together
respectively.

The alignment algorithm is presented in Algorithm 13. It makesO(log n) queries and succeeds with
probability at least 1− 1/n.

Algorithm 13 ALIGN QUERIES, CASE 2

Require: v0,v ∈ {−1, 1}n, 0 ∈ response(v), response(v0) = {±1}.
1: Set batchsize T = O(log n).
2: Set Inf to be a large positive number.
3: Query(v0 + Inf · v, T ).
4: if response(v0 + Inf · v) = {response(v) \ {0},+1} then
5: alignβ1(v0,v) = (+1, 0)
6: alignβ2(v0,v) = (−1, response(v) \ {0})
7: else
8: alignβ1(v0,v) = (+1, response(v) \ {0})
9: alignβ2(v0,v) = (−1, 0)

10: end if
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Proof of Proposition 22. The objective of Proposition 22 is to align the responses of queries v0 and
v by identifying which among the following two hypotheses is true:

• H1 : The response of the unknown vectors with both the query vectors v0 and v is same.
Since we fixed the sign(〈v0,β1〉) = 1, this corresponds to the case when alignβ1(v0,v) =
(+1,+1) and alignβ1(v0,v) = (−1,−1).

In this case, we observe that for any query of the form ηv0+ζv with η, ζ > 0, the response
set will remain {+1,−1}.

• H2 : The response of each unknown vector with both the query vectors v0 and v is different,
i.e., alignβ1(v0,v) = (+1,−1) and alignβ1(v0,v) = (−1,+1).

In this case, we note that the response for the queries of the form ηv0 + ζv changes from
{−1, 1} to either {+1}, {−1}, or {0} for an appropriate choice of η, ζ > 0. In particular,
the cardinality of the response set for queries of the form ηv0 + ζv changes from 2 to 1 if
η
ζ ∈

[
− 〈β

1,v〉
〈β1,v0〉 ,−

〈β2,v〉
〈β2,v0〉

]
∪
[
− 〈β

2,v〉
〈β2,v0〉 ,−

〈β1,v〉
〈β1,v0〉

]
.

Algorithm 14 ALIGN QUERIES, CASE 3

Require: v0,v ∈ {0,−1, 1}n, response(v) = response(v0) = {±1}.
1: Set batchsize T = O(log nk/δ).
2: for η ∈ { cd | c, d ∈ Z \ {0}, |c|, |d| ≤

√
k
δ } do

3: Query(ηv0 + v, T ).
4: if |response(ηv0 + v)| == 1 then
5: Return alignβ1(v0,v) = (+1,−1), alignβ2(v0,v) = (−1,+1)
6: end if
7: end for
8: Return alignβ1(v0,v) = (+1,+1), alignβ2(v0,v) = (−1,−1)

In order to distinguish between these two hypotheses, Algorithm 14 makes sufficient queries of the
form ηv0 + ζv for varying values of η, ζ > 0. If for some η, ζ the cardinality of the response set
changes from 2 to 1, then we claim that H2 holds, otherwise H1 is true. Algorithm 14 then returns
the appropriate alignment.

Note that for any query vector v ∈ {−1, 1}n, and any k-sparse unknown vector β ∈ Sn−1 the inner
product 〈β,v〉 ∈ [−

√
k,
√
k]. Moreover, if we assume that the unknown vectors have precision δ,

the ratio 〈β2,v〉
〈β2,v0〉 can assume at most 4k/δ2 distinct values. Algorithm 14 therefore iterates through

all such possible values of η/ζ in order to decide which among the two hypothesis is true.

The total number of queries made by Algorithm 14 is therefore 4kT/δ2 = O( kδ2 log(nkδ )). From
Lemma 6, all the responses are recovered correctly with probability 1−O(1/n).

E Experiments
Similar to the mixed regression model, the problem of learning mixed linear classifiers can be used
to model heterogenous data with categorical labels. We provide some simulation results to show the
efficacy of our proposed algorithms to reconstruct the component classifiers in the mixture.

Moreover, the algorithm suggested in this work can be used to learn the set of discriminative fea-
tures of a group of people in a crowd sourcing model using simple queries with binary responses.
Each person’s preferences represents a sparse linear classifier, and the oracle queries here corre-
spond to the crowdsourcing model. To exemplify this, we provide experimental results using the
MovieLens [18] dataset to recover the movie genre preferences of two different users (that may use
the same account, thus generating mixed responses) using small number of queries.
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E.1 Simulations
We perform simulations that recover the support of ` = 2, k-sparse vectors in Rn using Algorithm 8.
We use random sparse matrices with sufficient number of rows to construct an RUFF. Error is
measured in terms of relative hamming distance between the actual and the reconstructed support
vectors.

The simulations show an improvement in the accuracy with increasing number of rows allocated to
construct the RUFF for different values of n = 1000, 2000, 3000 with fixed k = 5. This is evident
since the increasing number of rows improve the probability of getting an RUFF.

Figure 2: Support Recovery for ` = 2, k = 5 and n = 1000, 2000, 3000.

E.2 Movie Lens
The MovieLens [18] database contains the user ratings for movies across various genres. Our goal
in this set of experiments is to learn the movie genre preferences of two (` = 2) unknown users
using a small set of commonly rated movies.

We first preprocess the set of all movies from the dataset to obtain a subset that have an average
rating between 2.5 to 3.5. This is done to avoid biased data points that correspond to movies that
are liked (or not liked at all) by almost everyone. For the rest of the experiment, we work with this
pre-processed set of movies.

We consider n = 20 movie genres in some arbitrary, but predetermined order. The genre preference
of each user i is depicted as an (unknown) indicator vector βi ∈ {0, 1}n, i.e., βij = 1 if and only if
user i likes the movies in genre j. We assume that a user likes a particular movie if they rate it 3 or
above. Also, we assume that the user likes a genre if they like at least half the movies they rated in
a particular genre.

We consider two users, say U1, U2 who have commonly rated at least 500 movies. The preference
vectors for both the users is obtained using Algorithm 8. We query the oracle with a movie, and
obtain its rating from one of the two users at random. For the algorithm, we consider each query to
correspond to the indicator of genres that the queried movie belongs to. Using small number of such
randomly chosen movie queries, we show that Algorithm 8 approximately recovers the movie genre
preference of both the users.

First, we pick a random subset of m movies that were rated by both the users, and partition them
into two subsets of size m1, and m2 respectively. The first set of m1 movies are used to partition
the list of genres into three classes - genres liked by exactly one of the users, genres liked by both
the users, and the genres liked by neither user. These set of m1 randomly chosen movies essentially
correspond to the rows of a RUFF used in Algorithm 8.

We then align the genres liked by exactly one of the users, we use the other set of m2 randomly
chosen movies and obtain two genre preference vectors s1, s2. Since we do not know whether s1
corresponds the preference vector of U1 or U2, we validate it against both, i.e., we validate s1 with
U1, s2 with U2 and vice versa and select the permutation with higher average accuracy.

Validation: In order to validate our results, we use our recovered preference vectors to predict the
movies that U1 and U2 will like. For each user Ui, we select the set of movies that were rated by Ui,
but were not selected in the set of m movies used to recover their preference vector. The accuracy
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of our recovered preference vectors are measured by correctly predicting whether a user will like a
particular movie from the test set.

Results: We obtain the accuracy, precision and recall for three random user pairs who have to-
gether rated at least 500 movies. The results show that our algorithm predicts the movie genre pref-
erences of the user pair with high accuracy even with small m. Each of the quantities are obtained
by averaging over 100 runs.

id: (U1, U2) m1 m2 A(U1) P(U1) R(U1) A(U2) P(U2) R(U2)

0 0 0.300 0.000 0.000 0.435 0.000 0.000
(68, 448) 10 20 0.670 0.704 0.916 0.528 0.550 0.706

30 60 0.678 0.700 0.944 0.533 0.548 0.791

0 0 0.269 0.000 0.000 0.107 0.000 0.000
(274, 380) 10 20 0.686 0.733 0.902 0.851 0.893 0.946

30 60 0.729 0.737 0.982 0.872 0.891 0.976

0 0 0.250 0.000 0.000 0.197 0.000 0.000
(474, 606) 10 20 0.665 0.752 0.827 0.762 0.804 0.930

30 60 0.703 0.750 0.910 0.787 0.806 0.970
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