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Abstract

States are able to choose whether to expand Medicaid as part of the Affordable Care Act
(ACA); thus it is of interest to understand the impact of this policy choice. In this protocol,
we outline a study on the impact of Medicaid expansion as part of the ACA on mortality
during the COVID-19 pandemic in the United States. County-level matching using full,
optimal matching with a propensity score model is used to estimate causal effects in this
observational study. Due to the provisional nature of mortality data in 2020 as reported
by the CDC, we outline a modified aligned rank test to account for censored data as well
as reporting lags for different states. We aim to make connections between statistical
and ethnographic methodologies by particularly examining adjacent counties and similar
counties that are in the same region of the US and in vastly different regions of the US.
Finally, we aim to add to the growing literature about the effect of ACA Medicaid expansion
on mortality by calculating effects, disaggregating by race.

Keywords: Affordable Care Act, aligned rank test, Covid-19, full matching, Medicaid
expansion, propensity score, optimal matching

1. Introduction

This article outlines a pre-analysis plan for a study on the impact of Medicaid expansion
as part of the Affordable Care Act (ACA) on mortality during the COVID-19 pandemic in
the United States. Originally a required part of the ACA, a supreme court ruling in 2012
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made adoption of Medicaid expansion to cover individuals at 138% of the federal poverty
level optional for states. In states that do not adopt this expansion, eligibility for Medicaid
is based on a variety of factors including age, disability status, and family structure, while
the expansion allows eligibility entirely based on income (KFF). By mid 2014, twenty-five
states in the mainland US adopted the expansion (with the expanded eligibility effective
January 1, 2014 in most of these states). There is a growing literature on the effect of ACA
Medicaid expansion in the US on general health as well as on mortality (see, for example,
Miller et al., 2019; Khatana et al., 2019; Swaminathan et al., 2018; Borgschulte & Vogler,
2020; Black et al., 2019).

While there is strong evidence that Medicaid expansion led to increased insurance cov-
erage, there are inconsistencies and debate in the previous literature about whether ACA
Medicaid expansion has detectable effects on mortality (Guth et al., 2020). Borgschulte &
Vogler (2020) use propensity score pair matching and find that ACA Medicaid expansion
had a significant negative effect on mortality between 2014 and 2017 using an ITOT anal-
ysis. Miller et al. (2019); Khatana et al. (2019); Swaminathan et al. (2018) all similarly
find that ACA Medicaid expansion was associated with decreased mortality among specific
populations. On the other hand, Black et al. (2019) do not find significant associations
between ACA Medicaid expansion and mortality and find that their studies of the effect of
expansion on mortality at the county level are underpowered. These studies have focused
on different populations (in terms of age groups, and comorbidities) and and used distinct
methods.

None of these studies of the effect of Medicaid expansion on mortality have considered
a breakdown of the effect by race and few other studies examining the effect of Medicaid
expansion on healthcare access and general health have added race into the equation (Guth
et al., 2020). This leaves a significant hole in the literature and our understanding of
the impacts of this major policy on people in the US. It is well documented that Black,
Indigenous, and other People of Color (BIPOC) in the US are burdened with worse health
outcomes and higher mortality rates than the white US population (Gee & Ford, 2011).
There is evidence that BIPOC are disproportionally affected by the COVID-19 pandemic
(Cowger et al., 2020). And saliently, as Dr. Jonathan Metzl argues, the “highly unhealthy
American politics of race” (Metzl (2019), p. 137) were a major reason that certain states did
not expand Medicaid as the rhetoric used to argue against expansion was and is racialized.
It is imperative to understand both how this policy has affected different populations in
the US as well as the impact on white Americans who “voiced a willingness to die, literally,
rather than embrace a law that gave minority or immigrant persons more access to care,
even if it helped them as well” (Metzl (2019), p. 124).

In this study, we will estimate the effect of ACA Medicaid expansion on mortality
during the COVID-19 pandemic for non-elderly adults aged 20-64 across all states in the
mainland US, additionally considering the effects on the US populations by race.1 This
complements the findings of Miller et al. (2019) who evaluated the effects on the newly
insured and Borgschulte & Vogler (2020) who evaluated effects for adults in aggregate for
the years following Medicaid expansion. We follow the methods of Sommers et al. (2014);

1. The choice of adults aged 20-64 aligns with previous literature on Medicaid expansion, to focus on
working age adults.
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Borgschulte & Vogler (2020); Black et al. (2019) to match counties in order to evaluate the
effect of this state-level policy.

Our primary aim is to estimate the effect of ACA Medicaid expansion on mortality
during the COVID-19 pandemic. Some states, including Kansas and Georgia, have been
considering expanding Medicaid more recently, but have not yet adopted the expansion.
Through ballot initiatives, Oklahoma and Missouri voted to expand Medicaid on June 30,
2020 and August 4, 2020 respectively but it will not go into effect until July 2021 (KFF).
Thus, it is also relevant to us to answer the following questions:

I. How many lives could have been saved in states that have not expanded Medicaid if they
had expanded Medicaid sometime between 2014 and 2019?

II. How many lives could have been saved in within a year after they may have expanded
Medicaid, in states that have not expanded Medicaid?

Our main analysis, assessing the effect of Medicaid expansion anytime between 2014 and
2019 on mortality in 2020, addresses the first question. To address the second question, we
estimate the effect of Medicaid expansion by 2014 on mortality in 2014, to understand how
expansion could effect mortality within the first year of expansion. We evaluate the effect of
ACA Medicaid expansion on mortality within the first year after expansion in 2014 because
only two states expanded Medicaid in 2019, so we would have little power to understand
the effect on 2020 mortality.

The article is organized as follows: First, we describe the data and variables used,
then we describe the matching methodology, followed by description and diagnostics of the
resulting county-level matches. Finally, we outline the data and methodology we will use
to estimate causal effects of ACA Medicaid expansion on mortality.

2. Baseline Data

We use the report as of August 5, 2020 from the Kaiser Family Foundation (KFF) to
identify which states expanded Medicaid in the first half of 2014 and when other states
expanded between 2014 and June 2020 (KFF). There is some disagreement in previous
studies of which states to include in studies of Medicaid expansion and which to exclude.
Rather than excluding states from our analysis that expanded Medicaid after June of 2014
(like Borgschulte & Vogler (2020) and Black et al. (2019)), for matching purposes we group
these states with those that have yet to expand Medicaid.2 That is, we seek matches
between a treatment group of counties for which Medicaid was expanded by mid-2014
and a control group consisting of counties for which expansion would occur later or never.
This identification of treatment and control groups suits our first analysis, examining 2014
mortality. However, our second outcome of interest is mortality in 2020. For this analysis,
we will treat any state that implemented Medicaid expansion on or before June 30, 2020
as part of the treatment group, with differing “doses” of treatment (explained in detail in

2. This includes nine states (ID, IN, LA, ME, MT, NH, PA, UT, VA). Four of these states adopted the
Medicaid expansion as part of the ACA in 2019 or 2020 (ID, ME, UT, and VA).
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§5.1). States which have implemented Medicaid expansion after June 2020 are considered
as control states in both of our analyses.3

Following Borgschulte & Vogler (2020), we consider Wisconsin to be part of the treat-
ment group (and expanding as of June 2014), although they did not expand Medicaid as
part of the ACA, since Wisconsin covers adults up to 100% of the federal poverty level. We
exclude Alaska and Hawaii from our analysis since we are interested in particular in eval-
uating counties that are close geographically and specifically adjacent. Figure 1 illustrates
how states are classified in terms of expansion and also see Appendix A Table 4 for more
detailed descriptions of when the states expanded or did not expand Medicaid and how they
are treated in our models.

Figure 1: Classification of counties and their inclusion in the outcome analyses. Trimmed
counties refers to counties that are excluded due to extreme propensity scores or
outlying mortality values, which is described in later sections. “Later
expansion” refers to expansion after June 2014.

Mortality counts come from the National Center for Health Statistics (NCHS) restricted
use, detailed mortality data, housed through the Center for Disease Control and Prevention
(CDC, c).4 We use all-cause mortality aggregated across 2009-2013 for adults aged 20-64
for our main matching and analysis. Age-adjusted all-cause mortality is calculated for all
cross-tabs of gender and race along with Hispanic origin using population values included
in the NCHS data (which is from the Census Bureau). We additionally include healthcare
amenable deaths, deaths from pneumonia or influenza (flu mortality) and opioid related
deaths as covariates in matching. We follow the definitions of healthcare amenable deaths

3. These states include Missouri and Oklahoma, which voted for expansion in 2020 but will not implement
eligibility expansion until 2021 as well as Nebraska which voted to expand in 2019 but will not be
implemented until October 2020 (KFF).

4. A public use version of this data can be accessed through CDC WONDER, although all cells with fewer
than 10 deaths are suppressed.
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in Sommers et al. (2014) to identify healthcare amenable deaths as well as CDC definitions
of ICD-10 codes to identify deaths from pneumonia or influenza and opioid related deaths
(see Appendix A Table 5 for all ICD-10 codes used) as the underlying cause of death. Each
of our analyses adjust for these specific causes of death, i.e. they are included as covariates
in matching as well as in covariance adjustment in our treatment effect estimation. It is
common to examine healthcare amenable deaths in analyses of ACA Medicaid expansion
because healthcare amenable deaths are those one might expect to be impacted by increased
insurance coverage. Additionally, flu is the closest analogue to COVID-19, so it makes sense
to control for historical flu mortality patterns. Opioid-related deaths are included because
they increased greatly during the years before and after ACA Medicaid expansion, driving
marked rises in deaths from poisoning, which by 2018 was the leading cause of preventable
injury-related mortality among adults aged 25-34 and 55-64 (NSC) — the better part of
the population meeting the age requirement to gain insurance under Medicaid expansion.
We also plan to disaggregate outcome mortality by underlying cause of death for a number
of analyses (as described in §5.1).

County-level pre-treatment mortality counts are merged with indicators of the health,
political leaning, and demographics of each county. We use the percent of votes in a county
for Romney, between Romney and Obama, in the 2012 presidential election from the CQ
Press Voting and Elections Collection (CQ Press) to measure county-level partisanship (“%
voting Republican”). Other health, economic, and demographic variables are collected from
the 2019 Area Health Resources Files5 (AHRF) and the Institute for Health Metrics and
Evaluation (IHME, a,b,c,d,e). We additionally include the proportion of households that
could be considered to be multi-generational (contain a grandparent living with a grandchild
younger than 18 years) from the American Community Survey (ACS) (averaged over 2009-
2013), which is of interest when considering COVID-19 mortality. For all pre-treatment
covariates, the year of data closest to 2013, or before, is used, as any time before January
2014 is considered pre-treatment. Table 1 provides a summary of the covariates included.

Finally, we use the National Bureau of Economic Research’s (NBER) list of county
adjacency to indicate which counties are adjacent in our matching procedure.

3. Conceptual Framework

When estimating treatment effects, Rubin and other scholars make the distinction between
the design and analysis stages of an experiment (Rubin, 2007, 2008). In this pre-analysis
plan, we present the matching we have implemented (the design of the experiment), and lay
out a plan for the estimation of causal effects (the analysis stage). To secure the analogy to
the design of an experiment, matching and its antecedent statistical calculations were made
using only data from the pre-intervention period, i.e. after “blinding” ourselves to outcome
variables.

In estimating a causal treatment effect using observational data, researchers are con-
cerned by bias that is introduced through dependence between selection into the treatment
group and any covariates that may be related to the outcome. In a randomized experiment,
one would expect these variables to be independent. Thus, the goal is to design a study

5. The average PM2.5 was missing for a county in our analysis (Broomfield, CO), so we imputed the value
as the mean PM2.5 value from the counties adjacent to Broomfield, CO.

5



Mann, Hansen, Gaydosh, and Lycurgus

Variable Source Years

Population CDC 2009-2013
Age distribution CDC 2009-2013
All mortality crosstabs CDC 2009-2013
Population density AHRF 2010
% Urban AHRF 2010
Veteran Population AHRF 2013
Median household income AHRF 2013
% persons in poverty AHRF 2013
Food stamps / SNAP AHRF 2013
% 18-64 without health insurance AHRF 2013
Unemployment Rate (16+) AHRF 2013
PM2.5 AHRF 2013
Total Smoking IHME 2012
Heavy Drinking prevalence IHME 2012
Diabetes prevalence IHME 2012
Hypertension prevalence IHME 2009
Obesity prevalence IHME 2011
Sufficient physical activity IHME 2011
% Voting Republican CQ Press 2012
% Multigenerational household ACS 2009-2013

Table 1: Covariates used in modeling and matching and their sources as well as years
available. When ranges of years are given, the variable used is the average across
those years.

that manipulates the observational data in a way that a researcher can estimate treatment
effects, pretending that the data arises from a randomized experiment. We approach this
task through propensity score matching. We can asses how “close” to a randomized ex-
periment our analysis, conditional on the matches, is by assessing the balance of observed
covariates, conditional on the matches.

Finally, in the design of this study, we aim to make connections between statistical and
ethnographic methodologies. We plan to do this by not only evaluating the effect of ACA
Medicaid expansion for US states in aggregate, but also to highlight specific pairs or groups
of counties

1. That are physically adjacent to one another,

2. That are well-matched and come from states in the same region of the US or neigh-
boring states, and

3. That are well-matched but come from states that are far apart geographically.

We hope to use these vignettes of counties to facilitate extending the work of Metzl,
described in his book Dying of Whiteness, comparing adjacent Tennessee and Kentucky
counties in public health as well as public opinion about the ACA (Metzl, 2019). In addition
to the analyses described in this protocol, future work may include thick description, or
narrative descriptions of the vignettes of counties (Rosenbaum & Silber, 2001). These pairs
of counties may also assist collaborators in choosing new locations to conduct interview and
focus groups and allow for insight into how the match is performing.
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4. Matching Methodology

In this section we describe methods we use to match counties in states that did or did not
expand Medicaid as part of the ACA by mid-2014: optimal full matching with propensity
scores, propensity score calipers, and penalties on pairings not satisfying any of 1–3 above.
This combination of methods is intended to balance objectives of arranging matches for
as many counties as could justifiably be matched, maximizing the information content or
effective sample size of the matched configuration, securing covariate balance, and presenting
multiple matches satisfying each of 1–3 above.

4.1 Evaluating proximity of matches

One of our goals in matching is to match with attention to satisfying 2–3 above, which
requires a definition of what we deem to be “well-matched.” We use a standard measurement
of distance between members of a matched set — the Mahalanobis distance — to quantify
how “well-matched” a pair of counties is (Rosenbaum, 2010). Specifically, we first calculate
the Mahalanobis distance between all pairs of treatment and control counties in terms of
the variables included in the propensity score model (described in §4.2 below). We then
calculate the distribution of Mahalanobis distances between adjacent counties, using the
lower 20th percentile of this distribution as a cut-off to consider matches to be “close.”
This method of identifying “well-matched” counties is used as a penalty in the matching
procedure described in the following sections.

4.2 Propensity score model

Propensity scores are commonly used in estimation of causal effects and to create matched
sets (see Stuart & Green, 2006, for an in-depth explanation of propensity scores). Table
2 shows the covariates used in the propensity score. The intention behind the variables
included is to balance the treatment and control groups in terms of covariates we would
expect to be associated with a state expanding Medicaid, general mortality, and COVID-
19 mortality (such as PM2.5 and % multi-generational households).6 Before estimating
the propensity score, we first exclude 6 counties with outlying baseline mortalities (either
healthcare amenable, flu, or opioid) as these covariates directly influence our outcomes
of interest. We define outlying counties as those whose baseline value is outside of 1.5
interquartile ranges (IQR) from the median of the distribution and two or more pooled
standard deviations from the nearest county with the opposite treatment status. After
these exclusions, we fit a logistic regression model of Medicaid expansion status on all of
the covariates, weighted by the adult aged 20-64 population size, as our initial propensity
score model. This model is then refitted excluding counties that have extreme propensity
scores, specifically counties whose (initial) propensity scores differ from those of their com-
parison group by more than sp/4, where sp is a weighted, outlier-resistant pooled standard
deviation7 of those scores. Our matching procedures then minimize discrepancies on this

6. Mortality attributed to opioid overdose is included since there is a discussion around whether the effects
of Medicaid expansion in terms of health outcomes have largely been offset due to the opioid epidemic
(Borgschulte & Vogler, 2020).

7. In this dispersion calculation, the treatment and control groups’ standard deviations are replaced with
population-weighted median absolute deviations, rescaled for comparability with the ordinary s.d. The
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updated propensity score, although the original propensity figures in the determination of
an additional matching restriction.

4.3 Full match

We use the optmatch package in R (Hansen & Klopfer, 2006a) to match counties using a
full matching procedure (Hansen, 2004; Rosenbaum, 1991). Thus, we do not restrict our
matching of counties only to pairs, but rather allow for groups of control and treatment
counties to be matched.

Within calipers of width one-quarter (Rosenbaum & Rubin, 1985) of sp (as defined
above) in the initial propensity score, counties are matched on the updated propensity
score (Rubin, 2001), with additional penalties added to the propensity-score discrepancies
used in matching if the potential pairing does not satisfy any of 1–3.8 We additionally add
a stability increment to the matched distance in order to incentivize pair matches (Hansen
& Klopfer, 2006b).

106 counties are trimmed from our analysis due to the propensity score caliper, as shown
in Figure 1. Based on our full matching structure and after trimming the 6 counties due
to outlying baseline mortalities and 106 counties from the propensity score caliper, our
effective sample size is 828.1. Table 2 shows the weighted average values of each variable
for the treatment and control groups as well as the absolute difference9 before and after
matching (weighted by the adult aged 20-64 population) along with two measures of variable
dispersion. The first (“Overall”) dispersion variable is the pooled standard deviation of
county-level measurements of a variable, calculated with weighting for county working age
population. The “Adjacent” dispersion variable is the root mean squared of the distances
in covariates between adjacent counties, divided by

√
2 for comparability to the pooled

standard deviation.10 Therefore, one can compare the absolute differences to the variability
of the covariate across all counties or across only adjacent counties. A permutation test
(Hansen & Bowers, 2008) of the combined balance across all covariates indicates overall
balance commensurate with what random assignment within matched group would have
produced (p = .55), so we deem this matching structure satisfactory.

The larger differences of some covariates as compared to the pooled standard deviation
observed in Table 2 aligns with our understanding of the characteristics of states that

rescaling multiplies them by 1/Φ̃−1(0.5) = 1.4826, where Φ̃(·) is the cumulative distribution function of
|Z|, Z ∼ N (0, 1), ensuring close proximity to the ordinary s.d. in the special case of large samples from
N (µ, σ2) populations.

8. Specifically, we penalize county pairs that are not adjacent, nor have a Mahalanobis distance greater than
the bottom 20th percentile of the Mahalanobis distances between adjacent counties the most and penalize
counties that are not adjacent but have a Mahalanobis distance within the bottom 20th percentile of the
Mahalanobis distances between adjacent counties with half of that penalty. Adjacent counties have no
penalty.

9. Unadjusted and post-matching averages of the treatment group are weighted means over all Medicaid-
expanding counties or all expansion counties that were placed into a matched set, respectively, with
weights proportional to the size of the county’s working-age adult population. Unmatched averages over
the control group are calculated similarly, whereas post-matching control group averages are means over
the subset of control counties that were matched, each weighted by the product of the ratio of treatment
to control counties within its matched set and the size of its working-age adult population.

10. Unlike the pooled standard deviation calculation, however, this calculation is not weighted by the adult
aged 20-64 population.
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have and have not expanded Medicaid. For instance, percent Hispanic is higher in the
treatment group somewhat due to large counties in California and cannot be balanced
through matching without excluding large counties in the U.S. such as Los Angeles. Because
the distributions of these variables in the expansion and non-expansion counties overlap, we
can account imperfect balance for in the outcome analysis through covariance adjustment
(See Figure 3 in Appendix A).

We again assessed remaining outliers by looking at overlap for the full distribution of
counties across each variable on which we match, flagging outlying counties for each variable
based on the same criteria described above. We do not remove any counties beyond the
6 excluded as a result of outlying baseline mortalities. Instead, most discrepancies are
easily explained after closer inspection. For instance, two counties, Crowley, Colorado and
Pulaski, Georgia are outliers with respect to percent Male. Crowley, a small county of 5000
that is 75% male, has a men’s correctional facility housing roughly 1500 inmates. Pulaski,
the outlier in the other direction with a population that is only 41% male, has a women’s
correctional facility. Rather than excluding these counties to achieve better balance on %
Male, we allow covariance adjustment to correct for outliers.

In addition to achieving reasonable balance, this matching structure addresses our at-
tention to satisfying 1–3 of §3. The matching structure includes over 48 matches that are
considered close in terms of the Mahalanobis distance and, as Figure 2 shows, there are
additionally 18 1:1 matches of adjacent counties.

4.4 Re-evaluating matching structure for later expanded states

The matching structure described above uses treatment defined by states who adopted
ACA Medicaid expansion by June 2014. This places in the control group nine states which
expanded Medicaid between mid-2014 and 2020 (see Figure 1 and Appendix A). This is not
a problem for our analysis of the effect of Medicaid expansion on 2014 mortality. By 2020,
however, nine more states expanded Medicaid, increasing the size of the treatment group
while reducing that of the control group. We therefore separately evaluated the extent
which our match mitigates differences in potentially confounding baseline (2013 and prior)
variables between 2020 treatment and control groups.11 We were satisfied with the balance
using re-defined test and control groups, so chose to use the same matching structure for
both analyses. See the Appendix A Table 6 for detailed summaries of balance.

11. We additionally considered adding an additional propensity score caliper using a propensity score model
with this new treatment assignment vector as the outcome, but did not find that this assisted with
balance, so chose to only use the original propensity score model for clarity and simplicity.
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No Adjustment After Matching Dispersion
Control Treat. Dif. Control Treat. Dif. Overall Adjacent

% White 80.0 80.8 0.8 84.2 80.8 -3.4 14.1 8.3
% Black 15.9 10.5 -5.4 10.3 10.8 0.5 12.4 6.4
% Hispanic 12.9 15.9 2.9 8.5 15.3 6.8 15.3 5.2
% Male 48.4 48.5 0.2 48.3 48.5 0.2 1.6 2.4
% 20-34 28.2 28.1 -0.1 26.1 28.1 2.0 5.4 5.1
% 35-44 17.9 18.0 0.0 17.4 17.9 0.5 2.2 1.7
% 45-54 19.3 19.6 0.3 19.9 19.6 -0.3 1.8 1.5
% 55-64 16.3 16.4 0.1 17.1 16.4 -0.7 1.9 1.9
All Mortality 373.6 314.5 -59.1 354.8 316.5 -38.3 101.5 90.0
20-34 Mortality 111.5 91.0 -20.5 107.3 91.5 -15.8 35.3 52.1
35-44 Mortality 194.3 159.9 -34.5 180.5 161.0 -19.5 61.9 80.7
45-54 Mortality 452.5 377.4 -75.1 410.0 379.7 -30.2 122.7 119.5
55-64 Mortality 923.2 791.7 -131.5 842.9 795.4 -47.5 204.4 181.5
White Male Mortality 398.8 345.3 -53.5 373.7 346.1 -27.6 95.4 86.1
White Female Mortality 232.0 198.3 -33.7 218.2 198.7 -19.5 59.8 57.8
Black Male Mortality 517.4 467.0 -50.4 472.6 469.6 -2.9 224.8 550.8
Black Female Mortality 322.2 296.0 -26.2 316.8 297.3 -19.5 229.5 740.4
Other Race Male Mortality 182.2 194.0 11.9 216.7 194.0 -22.8 186.8 562.7
Other Race Female Mortality 111.7 115.6 3.9 108.8 115.2 6.3 114.5 294.2
Healcare Amenable (non-flu) Mortality 195.6 165.0 -30.6 176.9 166.2 -10.7 49.3 49.1
Opioid Mortality 21.8 20.7 -1.1 24.7 20.8 -3.9 10.7 20.1
Flu Mortality 4.7 3.9 -0.8 4.4 3.9 -0.4 3.2 10.3
Population Density 926.6 3267.6 2341.0 1184.3 3430.6 2246.4 6867.4 1085.2
% Urban 76.4 85.2 8.8 77.3 85.1 7.7 23.9 25.6
% Veteran 7.7 6.2 -1.5 7.6 6.2 -1.3 2.5 1.7
Median Income 50579.9 58156.3 7576.4 57560.7 57676.6 115.9 13998.3 7251.3
% Poverty 16.7 15.3 -1.4 14.1 15.3 1.1 5.4 4.3
% SNAP 15.7 14.1 -1.6 13.8 14.2 0.3 6.5 5.0
% No Health Insurance 23.1 18.3 -4.9 17.1 18.4 1.2 6.7 3.3
Unemployment Rate 6.9 7.9 1.0 7.2 7.8 0.7 2.0 1.5
PM2.5 0.1 0.1 -0.0 0.1 0.1 -0.0 1.7 0.2
Smoking 21.3 19.0 -2.2 21.4 19.2 -2.2 4.3 2.4
Heavy Drinking 7.6 8.7 1.0 8.0 8.6 0.7 1.8 1.3
Diabetes 15.0 13.8 -1.2 13.7 13.8 0.2 2.1 1.3
Male Hypertension 37.5 35.8 -1.7 36.3 35.9 -0.5 3.2 1.9
Female Hypertension 40.0 38.3 -1.8 38.6 38.4 -0.2 3.4 2.0
Male Obesity 35.4 32.5 -2.9 34.5 32.6 -1.9 4.3 2.2
Female Obesity 37.8 34.6 -3.2 36.0 34.7 -1.3 5.1 3.3
Male Physical Activity 54.2 57.9 3.7 56.3 57.8 1.5 5.2 3.7
Female Physical Activity 49.8 55.0 5.2 52.3 54.7 2.3 6.0 3.4
% Republican 54.3 42.1 -12.2 48.6 42.3 -6.2 14.8 9.1
% Multigenerational Households 0.0 0.0 -0.0 0.0 0.0 -0.0 0.0 0.1
Population 5.2 5.5 0.4 5.2 5.5 0.3 0.6 0.4

Table 2: Differences between control and treatment (ACA Medicaid expansion by June
2014) counties before and after matching along with the pooled, weighted
standard deviation of the covariates between treatment and control counties
(“Overall”) and the root mean squared of the distances in covariates between
adjacent counties, divided by

√
2 for comparability (“Adjacent”). The test of

overall balance results in a p-value of .55 which is insignificant, indicating good
balance.
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Figure 2: One-to-one matches with two counties that are adjacent to a county of the other
treatment condition (filled in green colors).

5. Treatment Effect Estimation

As discussed above, with the same matched sets, we plan to do two separate estimates
of two treatment effects: (I) The effect of Medicaid expansion by June 2020 on mortality
during the COVID-19 pandemic (hereafter the “2020 analysis”); and (II) The effect of
Medicaid expansion by June 2014 on mortality in 2014 (hereafter the “2014 analysis”). In
this section, we describe our pre-analysis plan for treatment effect estimation of these two
treatment effects.

5.1 Mortality data

5.1.1 2020 Mortality data

For the 2020 analysis, we will use cumulative 2020 mortality from January through Decem-
ber 2020. As of March 19, 2021 the NCHS is reporting cumulative COVID-19 attributed
mortality at the county level for counties that have reported 10 or more deaths to the
CDC (CDC, b). This publicly available data from the CDC is updated weekly and the
cumulative counts begin the first week of January, 2020. The data additionally contains
provisional overall cumulative death counts for these same counties, and we will use these
provisional all-cause death counts as our primary outcome, with the deaths attributed to
COVID-19 as a secondary outcome.12 Through March 3, 2021, the 2020 all cause mortality

12. We chose to use overall deaths rather than deaths attributed to COVID-19 because different counties
and states can use varying requirements for reporting a death as relating to COVID-19 (ranging from
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output was censored, where mortality is suppressed for counties that have fewer than 10
deaths officially attributed to COVID-19. We note that starting on March 10, 2021, the
CDC began reporting the provisional all-cause mortality for all counties with at least one
death attributed to any cause since January 1, 2020 (CDC, b). However, since we will be
considering deaths between January and December of 2020, we will still be reliant on the
data that was censored. As of January 6, 2021 (the dataset which includes the entirety
of deaths in 2020) this dataset included 1,810 (uncensored) counties (out of around 3,100
counties in the mainland US). These uncensored counties account for around 94% of the
total adult population in the data and as expected, under-represents primarily rural coun-
ties. The average value of the “% Urban” variable across all counties is 41.5% while the
average value of “% Urban” for the currently uncensored counties is 55%. Because the data
was only reported for around two thirds of counties through the end of 2020, we will need
to consider how to analyze considerably censored data in the outcome analysis.

Additionally, the CDC notes that different states report deaths within different time
periods, which complicates any between-state comparisons. We plan to address this com-
plication in the outcome analysis using data from the FluView Surveillance System main-
tained by the CDC, which provides weekly state-level pneumonia, influenza, and all-cause
mortality counts and is updated weekly (NCHS).13 Because the data is updated weekly, and
counts from previous weeks are updated as reporting continues over time, we can use the
data to estimate the number of weeks that mortality counts tend to lag in a state. We plan
to use the all-cause mortality counts in the FluView data as our best approximation for the
lags in the county level COVID-19 and all-cause mortality counts, so we are assuming that
these lags are similar. Our proposed approach is described in Appendix B. We will also
determine states that have outlying lag times if our calculated average lag is greater than
10 weeks or is highly irregular, and counties from these states will not be compared to other
counties in our test statistic (described in detail in Section 5.2.5). We plan to do a final
pull the provisional COVID-19 mortality data on March 17th, 2021. This date will allow
us to have 10 weeks of data past the end of 2020, so that we can implement either of the
approaches to adjust for the lag in data reporting as described below to analyze mortality
over the entire year of 2020.

We are considering two possible approaches to adjust for the determined reporting lag:
(A) in our outcome analysis, using a method that only compares mortality between states
that have similar lag times in mortality reporting or (B) using our understanding of the lag
patterns to estimate mortality counts that are comparable across states. Approach (A) is
described in detail in §5.2.5 as well as how we will chose between these two approaches. If
approach (B) is chosen, and only then, we will utilize the FluView data to estimate mortality

including deaths with strong physical suspicion of COVID-19 to only including deaths with the ICD-10
code) and we also expect that there is variation between hospitals and mortuaries about the human
tendency to over or under count deaths as relating to COVID-19. Therefore, we find that evaluating
all mortality in 2020 is likely a more reliable measure. In addition to not involving the same level of
possible measurement error, early research has found excess deaths from certain conditions that are not
COVID-19 as a “symptom” of the pandemic (Woolf et al., 2020).

13. The CDC actually recommends referring to the FluView Surveillance System as a a potential way to
evaluate the reporting lag.
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counts that are approximately comparable between states rather than just to calculate a
reporting lag.14 Otherwise, we will use the provisional 2020 mortality counts as is.

The same provisional all-cause mortality data at the county-level is available by race, for
counties with more than 100 COVID-19 deaths, and suppressing any cells that are under 10
deaths (CDC, a). We therefore plan to use the same outcome analysis method described in
the following sections using this data, for subgroup analyses by race as secondary analyses.
We are additionally interested in evaluating the treatment effect in US counties and coun-
ties with “supermajority white” population.15 We specify the test statistic used in these
subgroup analyses in §5.2.7. Finalized 2020 county-level mortality data from the CDC will
likely not be released until December 2021, so we will rely on provisional counts and plan
to revisit the analysis with finalized data when it is available.

5.1.2 2014 Mortality data

For the 2014 analysis, we plan to use the restricted use, detailed mortality files from the
NCHS (the same county-level morality data as used in matching), which will not be cen-
sored. This data also has information on all of the multiple causes of deaths that are listed
on an individuals death certificate, in addition to the primary cause of death. We will have
access to mortality counts by race and ethnicity in the 2014 mortality data, so will estimate
treatment effects for subgroups within these categories. As in the 2020 analyses, all-cause
mortality is a primary endpoint. In the 2014 analysis, we also consider two additional
primary endpoints within the broad category of healthcare amenable deaths: healthcare
amenable deaths attributed to flu; and all other healthcare amenable deaths. We plan to
do this because healthcare amenable deaths are those one might expect to be impacted by
increased insurance coverage and influenza and pneumonia mortality is the closest catego-
rization in the ICD-10 codes in 2014 to COVID-19. As with the 2009-2013 data, we use
Sommers et al’s (2014) definition of healthcare amenable deaths, as well as the common
definition of flu mortality as deaths with a pneumonia or influenza ICD-10 code listed as
primary cause of death, to identify healthcare amenable deaths and those attributed to flu.
Finally, we will consider deaths attributed to opioids as a secondary outcome because they
increased during the years before and after ACA Medicaid expansion.16

14. Specifically, to do this, we plan to utilize the fact that the FluView data reports mortality data for
each week of the year, that is updated as the data is updated weekly. Therefore, in a dataset that
is of cumulative deaths, of the total cumulative deaths that are added every week, we expect that a
proportion of them are actually attributed to the preceding weeks mortality. Thus, we plan to estimate
an adjustment factor that we interpret as the average percent of the additional mortality reported in
each week (t) that should be attributed to previous weeks (t−1, t−2, t−3, ...). We would then estimate
cumulative mortality for week T − x (where T is the week we pull the data and x is determined as
the longest lag time in the states, excluding outlier lag times), by using these percentages to subtract
mortality that would be attributed to weeks T −x+ 1,...s in the cumulative mortality counts in the data
pulled at each week s (T − x+ 1 ≤ s ≤ T ).

15. Specifically, we consider a county to be “supermajority white” if the proportion of the population that
is white (aggregated across 2009-2013) is in the top 97.5th percentile of all counties (weighted by county
population size), which is greater than 98.43% white.

16. We considered removing opioid related deaths from the other causes of death because the opioid epidemic
has overlapped with the period post-Medicaid expansion (Borgschulte & Vogler, 2020). However, exclud-
ing opioid related mortality ultimately only excluded .3% of deaths attributed to influenza or pneumonia
and .4% of other healthcare amenable deaths in 2013; so we elected to avoid this complication.
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5.2 Estimation

To address the issue of estimation using censored data as well as to include covariate adjust-
ment, we rely on two separate methods described by Rosenbaum — randomization inference
for covariance adjustment and for partially ordered outcomes (Rosenbaum, 2002a,b). The
same method will be used in both the 2014 and 2020 analyses, with differences noted as
appropriate in the sections following.

5.2.1 Notation and mode of inference

To establish notation and an overview of these methods, we first discuss the binary treat-
ment case, applicable to analyses with 2014 mortality as the outcome. For analyses with
2020 mortality as the outcome, where there is variation by state in the duration of time
since Medicaid expansion, we adapt these methods to accommodate nonbinary treatments
occurring in integer doses. These adaptations will be described in §5.2.6.

Assume we have K matched sets with nk ≥ 2 counties in each matched set, so that∑K
k=1 nk = N , the total number of counties. In the potential outcomes tradition of causal

analysis, we assume that for the N counties, each county, indexed by the matched set
k ∈ {1, . . . ,K} it is a member of, and the index within that matched set, i = 1, . . . , nk,
has two potential outcomes, ytki and ycki, which would be observed if the county was in
the treatment group or the control group, respectively. We only observe one of these
outcomes, depending on the actual treatment assignment. For analyses with 2014 mortality
as outcome, let Z = (Z11, ...ZKnK

)T be the vector of (binary) treatment assignments where
Zki is an indicator of whether county i in matched set k was “assigned to treatment,” i.e.
fell within a state that had expanded Medicaid by mid-June 2014. Then, the observed
outcome for county i in matched set k, a mortality count, is defined as Yki = Zkiy

t
ki + (1−

Zki)y
c
ki. For analyses with 2020 mortality as outcome, treatment assignment is an integer

random variable Dki ∈ {0, 1, . . . , 7} recording the number of years since the state’s Medicaid

expansion as of July 1, 2020 and Yki =
∑7

d=0 I [Dki = d] y
(d)
ki , where y

(d)
ki is the potential

outcome under dose d).
Tests and confidence intervals will follow the Fisher randomization inference paradigm,

with hypotheses other than the strict null formulated in §5.2.2. We assume a constant,
multiplicative treatment effect for all analysis. Therefore, for the analyses of 2014 mortality
with a binary treatment effect, we assume that there is a constant δ such that for all
k = 1, ...,K and i = 1, ..., nk, ytki = δycki. For the analyses using the 2020 mortality
outcome, with treatment assignment as the random integer variable Dki, we assume a
constant treatment effect across doses (there is a constant δ such that for all k = 1, ...,K
and i = 1, ..., nk, ydki = δy0ki, when d > 0). Therefore, for example, the strict null for the
primary 2014 analysis hypothesis is:

H0 : ytki = ycki, k = 1, ...,K, i = 1, ..., nk

Where ytki is the potential 2014 all cause mortality outcome if county i in matched set
k is in a state that expanded Medicaid by June 2014, with the matched structure defined
in §4.3.

All inferences will condition on treatment assignment margins within matched sets. For
analyses with binary treatment assignment Z, this means conditioning on {

∑nk
i=1 Zki : k =
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1, . . . ,K}; for analyses with integer treatment assignments D, it means conditioning on

{
nk∑
i=1

I [Dki ≥ d] : d = 1, . . . , 7; k = 1, . . . ,K}.

For primary analyses assuming hidden biases to be absent, this means we will make statisti-
cal inferences against permutation distributions, with the random permutations of treatment
assignment labels occurring within matched sets, and independently across matched sets.

5.2.2 Adjusted Outcomes

Following Rosenbaum (2002a), under the assumption that there is a constant, multiplicative
treatment effect, i.e. that there is a constant δ such that for all k = 1, ...,K and i = 1, ..., nk,
ytki = δycki, a test statistic for testing the null hypothesis H0 : δ = δ0 can be calculated by

adjusting the observed outcome. Specifically, first, adjusted outcomes Ỹki = Ykiδ
−Zki
0 are

calculated (Rosenbaum, 2002a).

With the constant treatment effect assumption as described in the previous section
§5.2.1, in the analyses with the 2020 mortality outcome, the adjusted outcomes for testing

the null hypothesis H0 : δ = δ0 are calculated as Ỹki = Ykiδ
−I(Dki>0)
0 (where I is the

indicator function).

The outcomes are adjusted in the sense of dividing the null hypothesized treatment
effect from them. The residuals from a regression of the adjusted outcomes on covariates
are then calculated. We will adapt this approach to our specific data setting, as described
in the following section.

5.2.3 Covariance Adjustment Modeling

With our covariance adjustment, we are in a bit of a bind to control for mortality in the
years prior to the outcome mortality, while also not biasing the estimation by adjustment
that uses mortality counts after the treatment in 2014. In order to address this issue, we
will consider two modeling options, which only differ by which years of data are used as the
outcome in the model fit, as described below.

First, instead of fitting a model on 2014 or 2020 mortality, we will instead fit a model
on 2013 mortality. The 2013 morality does not need to be adjusted by the hypothesized
treatment effect because it is pre-treatment. To facilitate subgroup analyses (§5.2.7), we
will fit a model where the observation is at the county, race, and age group level. We will
fit a LASSO-regularized quasi-Poisson GLM, using cross-validation to select the penalty
parameter.17 This model will include all covariates included in Table 1 with all mortality
variable averaged over the 5 years prior to the year of the dependent variable (2008-2012
in the 2013 model) in addition to the group (county/race/age group) specific all-cause and
health amenable mortality (with no opioid-related multiple causes of death) for each of the
2 years prior (2011 and 2012 for the 2013 model) and the interaction between age group
and all of these variables. Then, once a subset of covariates is determined by the LASSO,
we will fit a negative binomial model on the 2013 mortality with the subset of covariates
and interactions.

17. We plan to use the glmnet function from the glmnet package in R.
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We will then re-fit this model four times, twice with mortality outcomes from 2014 and
again twice more with the outcome variable taken from 2020. Each of these fits use the
same pre-2014 covariates and excludes intervention group counties. That is, the model is
fit to those counties that had not expanded Medicaid as of June 30, 2014 or June 30, 2020,
respectively. The covariates will be those previously selected with the help of the LASSO,
but with baseline mortality variables from Table 1 averaged over 2009-2013 and the two
years of mortality data at the group level being for years 2012 and 2013.18 The model will
be fit constraining the coefficients on each variable to remain the same as the model fit on
2013 mortality, but allowing the intercept to vary. Then, the model will be fit again without
this constraint. We will finally conduct a likelihood ratio test at the .1 level, comparing the
versions of the model with and without predetermined slopes, to test the null hypothesis
that the model fit on 2013 mortality is as good a fit as the model fit on 2014 or 2020
mortality, respectively.

Should this null hypothesis be sustained, we will use covariate slopes as estimated with
2013 mortality outcomes to predict mortality in 2014 or 2020. (The decision is made
separately for analyses of 2014 and 2020 outcome data, in either case decided by the corre-
sponding likelihood ratio test.) In this case, the same mortality count predictions {Ŷki : k, i}
contribute to the calculation of residuals (cf. (1) in §5.2.4 below), regardless of the value of
δ0 for which H0 : δ = δ0 is under test (cf. §5.2.2). Should the likelihood ratio test reject
the slopes fitted with 2013 mortality outcomes, we will be forced to instead re-fit a separate
version of the outcome model for each value of δ0 and corresponding hypothesis H0 : δ = δ0.
These fits involve outcomes of form {Ỹki : k, i}, as described in §5.2.2. Let Ŷki denote the
fitted model prediction for a county, aggregated as appropriate to the county or subgroup
county population level, depending on the analysis, and Ŷ denote the vector of fitted values.

5.2.4 Alignment within matched sets

In each test of a hypothesized value for δ0, residuals of the covariance adjustment procedure
will be aligned 19 in the sense of subtracting the mean residual from within each matched
set. The residuals we plan to calculate are on the scale of the linear predictors (i.e. the log
of the outcome). For purposes of this alignment (only), counties for which the outcome is
censored (so that a residual is unavailable) are treated as having 0 residuals. These aligned
residuals eki will be used to calculate the test statistic. To make concrete in our notation:

eki = log(max(min(Ŷ), Ỹki))− log(Ŷki)−
1

nk

nk∑
j=1

[
log(max(min(Ŷ), Ỹki))− log(Ŷkj)

]
(1)

Note that as described above, if the outcome mortality for county ki is censored, we
define log(max(min(Ŷ), Ỹki))− log(Ŷki) ≡ 0.

18. We use the same years of data for both 2014 and 2020 because any mortality post 2014 could be affected
by treatment.

19. In the special case of pair matching without censoring, tests using as a test statistic the treatment-group
sum of ranks of aligned residuals, calculating ranks without reference to matched sets, are equivalent to
signed-rank tests. In this sense alignment within matched sets enables generalization of signed-rank and
similar nonparametric tests from pair to full matching.
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5.2.5 Partially ordered outcomes

With censored data, it is useful to consider the censored outcomes as a partially ordered set.
Therefore, to accommodate the issue of censored data in the 2020 analysis, we will define a
partial ordering to apply to our definition of a test statistic, noting that for the uncensored
2014 data, while we will apply the same methods, this will be a total order rather than a
partial order.

Let the outcome be r = (c, e), with c an indicator of whether the county in question
had fewer than 10 COVID-19 deaths recorded by the CDC and e the aligned residual
of a mortality count (in the 2014 analysis, c = 0 for all counties). In order to account
for the lag in reporting mortality across states, as mentioned in §5.1, we are considering
either adjusting the test statistic, through our definition of the partial ordering, or through
interpolation. We therefore define two possible partial orderings here (A) accounts for lag in
the partial ordering and (B) relies on interpolation of the data. Therefore, in the case of the
2020 outcome data, the residual value differs between (A) and (B) (with ẽki in (B) below
representing the residual estimated using the interpolated 2020 mortality data), but in the
2014 analysis, the residuals are the same value in the two partial orderings (ẽki = eki) since
there will be no interpolation of the 2014 outcome data regardless of the choice of partial
ordering.

(A) Define as follows the partial ordering (.) on outcomes {rki: counties i within
matched sets k} where ski is defined as the lag in weeks for the state that county i within
matched set k resides:

1. rki . r`j if cki = 1 and c`j = 0

2. rki . r`j if cki = c`j = 0 and both of the following hold:

(a) eki ≤ e`j
(b) ski ≤ s`j

(B) Define as follows the partial ordering (.) on outcomes {rki: counties i within
matched sets k}:

1. rki . r`j if cki = 1 and c`j = 0

2. rki . r`j if cki = c`j = 0 and ẽki ≤ ẽ`j .

In other words, a censored outcome is always considered to be lower in the ordering than
a non-censored outcome. In (A) we are adding the additional stipulation that a county will
only be considered to have higher mortality than another county if the population adjusted
residual is greater and the reporting lag is no less than the other county.

We will chose between these two partial orderings in our outcome analysis by implement-
ing both in our 2014 analysis and comparing the relative widths of the confidence intervals
that result from each method. If the width of the confidence intervals using partial ordering
(A) are no more than 10% wider than the intervals using partial ordering (B), then we will
calculate our test statistics using partial ordering (A). This would avoid doing any data
imputation, as we will only impute the 2020 mortality data if partial ordering (B) is used.
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We are additionally introducing weighting by a specialized adjustment of county popu-
lation size (mki) of a county to the aligned rank test in order to account for the fact that
we are using aggregated, rather than individual data. These adjusted population sizes take
the age distribution of a county into account. Specifically we will multiply the (normalized)
2018 nationwide age specific mortality rates with the age group population in that county
and sum these values across age groups.

Let Iki be an indicator that takes a value of 1 if county i within matched set k is in a
state that is considered to have outlier lag in mortality reporting and define

uki`j =


mkim`j if r`j . rki and I`j = Iki = 0

−mkim`j if rki . r`j and I`j = Iki = 0

0 otherwise

and

qki =

K∑
`=1

n∑̀
j=1

uki`j .

This adapts Rosenbaum (2002b, §2.8.4) to entertain comparison across as well as within
matched sets. By the argument of Mantel (1967) reviewed there, for binary random variables
(Zki : k; 1 ≤ i ≤ nk),

K∑
k,l=1

nk∑
i=1

n∑̀
j=1

Zki(1− Z`j)uki`j =

K∑
k=1

nk∑
i=1

Zkiqki.

At this point, we have defined a test statistic for a weighted aligned rank test with a
binary treatment variable.

5.2.6 Incorporating “doses”

For purposes of the 2020 analysis, counties are considered to have had a “dose” of the
Medicaid expansion treatment equal to approximately the number of years since expansion,
with expansion between July 1, 2019 and June 30, 2020 considered a dose of 1 year, between
July 1, 2018 and June 30, 2019 considered dose of 2 years, etc. Thus doses dki range from
0 to 7 (see Appendix A Table 4 for the dose assignments for each state).

Building upon the previous section, to incorporate treatment “dose”, our tests will use
the statistic:

W =
K∑

k,`=1

nk∑
i=1

n∑̀
j=1

(Dki −D`j)+uki`j =
7∑

d=0

K∑
k,`=1

nk∑
i=1

n∑̀
j=1

I [Dki > d] I [D`j ≤ d]uki`j

=

7∑
d=0

K∑
k,`=1

nk∑
i=1

I [Dki > d]

n∑̀
j=1

uki`j

=

K∑
k=1

nk∑
i=1

Dkiqki,

where “(x)+” denotes x’s positive part max(x, 0).20

20. The same Mantel (1967) argument justifies progression from the first to the second line.
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We will reject the null hypothesis when the realized value of the test statistic (W )
falls in either the upper or lower tail of the distribution arising by, independently, for
each i, permuting realized values of (Di1, . . . , Dink

). Note that this adapts the methods of
Rosenbaum (1997) and Rosenbaum (2002b, sec. 2.8) to full matching and treatments with
doses.

For the 2014 analysis, we define Dki = Zki ∈ (0, 1), and therefore W is equivalent to the
statistic outlined in §5.2.5, without incorporating doses. In this way, we use the same test
statistic in both analyses.

5.2.7 Subgroup analyses

In addition to analyses for 2020 and 2014 which use mortality disaggregated by race as the
outcome, we are interested in evaluating the effect of Medicaid expansion on primarily white
communities. We therefore take an approach to define counties as “supermajority white”
as described in §5.1 and will compare outcomes in these counties to the counties that they
were matched with. In other words, we plan to compare the outcomes in these subgroups
to similar counties, as defined by our matching structure.

Define the indicator ski to be equal to 1 if county ki is ‘supermajority white” and 0
otherwise. Then, define K = {k :

∑nk
i=1 ski > 0} (in other words, K is the set of matched

sets for which there is at least one county that is “supermajority white”). Then, we redefine
qki as

qki = I [ski = 1]
∑
`∈K

n∑̀
j=1

uki`j .

And make a slight adjustment to the test statistic W , so it is only defined over K:

∑
k∈K

nk∑
i=1

Dkiqki

Using this adjusted test statistic, we will still reject the test using the same method as
described in the previous section.

5.2.8 Treatment effect estimation

We will calculate a confidence set for the multiplicative treatment effect δ by inverting the
test as described in §5.2.6. We will then calculate a Hodges-Lehmann estimate. This esti-
mation allows for an evaluation of treatment effect and accounts for covariate adjustment,
censoring and considering treatment in doses. Table 3 reports whether we designate each
outcome as a primary or secondary outcome, for each outcome by cause of death and pop-
ulation. We will use a max-t correction (Hothorn et al., 2008) to control for multiplicity
in the treatment effect estimation for every outcome that we designate as a secondary out-
come. Thus, for each cause of mortality, we will implement a max-t correction to account
for multiplicity when conducting multiple tests on that outcome for different populations
(e.g. all adults, Black adults, and white adults).
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2014 Outcome Status 2020 Outcome Status
Cause of Death Cause of Death

Subgroup
All Cause

Healthcare
Amenable

Flu Opioid All Cause COVID-19

All Primary Primary Primary Secondary Primary Primary
American Indian /
Alaskan Native

Secondary Secondary Secondary Secondary Secondary Secondary

Asian Secondary Secondary Secondary Secondary Secondary Secondary
Black Secondary Secondary Secondary Secondary Secondary Secondary
Hispanic Secondary Secondary Secondary Secondary Secondary Secondary
White Secondary Secondary Secondary Secondary Secondary Secondary
Supermajority white Primary Primary Primary Secondary Primary Primary

Table 3: Designation of primary or secondary outcome for the mortality outcomes for the
2014 and 2020 analyses. “Supermajority white” refers to the subgroup analysis
described in § 5.2.7. Boxes illustrate the manner in which multiplicity correction
will be implemented, controlling for multiplicity for secondary outcomes within
each cause of death.

6. Discussion

Randomized experiments are not feasible to evaluate the impact of nationwide policy
changes and therefore we must use statistical techniques to estimate causal treatment ef-
fects from observational data as if the data actually arose from a randomized experiment.
In studies of the effect of ACA Medicaid expansion, we find county-level matching to be a
persuasive method for estimating causal effects and reducing bias. There are limitations to
propensity score matching, namely that reduction of bias depends on which covariates are
observed and assumes that any covariates that are dependent on the treatment assignment
have been observed. Now with only 12 states remaining who have not expanded Medicaid,
it is critical to understand how expansion could have effected outcomes during the Covid-19
pandemic and whether expansion could save lives in the future. Particularly, we aim to un-
derstand how racialized political rhetoric has impacted health outcomes for different racial
groups in the US in addition to primarily white communities, which is not yet addressed in
the studies of Medicaid expansion.
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Appendix A. Supplemental Tables and Figures

Date Treatment Group
State Implemented 2014 2020

Alabama C C [0]
Alaska 9/1/2015 C T [5]
Arizona 1/1/2014 T T [7]
Arkansas 1/1/2014 T T [7]
California 1/1/2014 T T [7]
Colorado 1/1/2014 T T [7]
Connecticut 1/1/2014 T T [7]
Delaware 1/1/2014 T T [7]
District of Columbia 1/1/2014 T T [7]
Florida C C [0]
Georgia C C [0]
Hawaii 1/1/2014 T T [7]
Idaho 1/1/2020 C T [1]
Illinois 1/1/2014 T T [7]
Indiana 2/1/2015 C T [6]
Iowa 1/1/2014 T T [7]
Kansas C C [0]
Kentucky 1/1/2014 T T [7]
Louisiana 7/1/2016 C T [4]
Maine 1/10/2019 C T [2]
Maryland 1/1/2014 T T [7]
Massachusetts 1/1/2014 T T [7]
Michigan 4/1/2014 T T [7]
Minnesota 1/1/2014 T T [7]
Mississippi C C [0]
Missouri C C [0]
Montana 1/1/2016 C T [5]
Nebraska C C [0]
Nevada 1/1/2014 T T [7]
New Hampshire 8/15/2014 C T [6]
New Jersey 1/1/2014 T T [7]
New Mexico 1/1/2014 T T [7]
New York 1/1/2014 T T [7]
North Carolina C C [0]
North Dakota 1/1/2014 T T [7]
Ohio 1/1/2014 T T [7]
Oklahoma C C [0]
Oregon 1/1/2014 T T [7]
Pennsylvania 1/1/2015 C T [6]
Rhode Island 1/1/2014 T T [7]
South Carolina C C [0]
South Dakota C C [0]
Tennessee C C [0]
Texas C C [0]
Utah 1/1/2020 C T [1]
Vermont 1/1/2014 T T [7]
Virginia 1/1/2019 C T [2]
Washington 1/1/2014 T T [7]
West Virginia 1/1/2014 T T [7]
Wisconsin * T T [7]
Wyoming C C [0]
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Table 4: Date of ACA medicaid expansion implementation by state and classification as
treatment or control group for the 2014 and 2020 analysis. Letters in brackets
indicate the 2020 treatment “dose” value, d. The 2014 classifications are used in
the matching procedure.

Condition(s) ICD-10 Codes

Influenza and pneumonia J09-J18
All opioid poisoning X40-X44, X60-64, X85, Y10-Y14
Healthcare amenable

Tuberculosis A16-19, B90
Other infections A35-A37, A40-41, A80, B05
Malignant neoplasm of colon and rectum C18-C21
Malignant neoplasm of skin C44
Malignant neoplasm of breast C50
Malignant neoplasm of cervix or uterus C53-C55
Malignant neoplasm of testis C62
Hodgkin’s disease C81
Leukemia C91-C95
Disorders of thyroid gland E00-E07
Diabetes Mellitus E10-E14
Epilepsy G40-G41
Chronic rheumatic heart diseases I05-I09
Hypertensive diseases I10-I13, I15
Ischemic heart diseases I20-I25
Cerebrovascular diseases I60-I69
All respiratory diseases J00-J98
Gastric and duodenal ulcers K25-K27
Diseases of appendix K35-K38
Hernia K40-K46
Diseases of gallbladder and biliary tract K80-K83
Glomerular diseases N00-N07
Renal failure N17-N19
Pregnancy, childbirth and the puerperium O00-O99
Misadventures to patients during surgical and medical care Y60-Y69, Y83-Y84

Table 5: ICD-10 codes used in defining influenza and pneumonia, opioid, and healthcare
amenable mortality.

22



ACA Medicaid Expansion and Mortality

Figure 3: Distributions of variables with larger standardized mean differences, omitting
unmatched counties: (A) % Hispanic, (B) % 20-34, (C) Working Age Adult
Mortality, (D) 20-34 Mortality, (E) % Republican, (F)% Veteran, (G) Smoking,
(H) Heavy Drinking (I) Male Obesity, (J) Female Physical Activity. On the
horizontal axis, 1 indicates the treatment group (Medicaid expansion by June
2014). Unmatched counties are those separated from their comparison group by:
more than 2 s.d.’s of flu and pnemonia, health-care amenable exclusive of flu or
opioid-related mortality; or more than 1/4 s.d. of the propensity score.
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No Adjustment After Matching Dispersion
Control Treat. Dif. Control Treat. Dif. Overall Adjacent

% White 78.6 81.2 2.6 80.6 81.3 0.8 14.1 8.3
% Black 17.2 10.9 -6.3 14.8 11.2 -3.6 12.3 6.4
% Hispanic 15.9 13.9 -2.0 15.6 13.4 -2.2 15.4 5.2
% Male 48.3 48.5 0.2 48.4 48.5 0.0 1.6 2.4
% 20-34 28.4 28.0 -0.4 28.0 28.0 0.0 5.3 5.1
% 35-44 18.2 17.9 -0.3 18.0 17.8 -0.2 2.2 1.7
% 45-54 19.2 19.6 0.4 19.2 19.6 0.4 1.7 1.5
% 55-64 16.1 16.5 0.4 16.3 16.5 0.2 1.9 1.9
All Mortality 381.3 322.0 -59.2 394.0 324.1 -69.9 102.0 90.0
20-34 Mortality 112.8 94.2 -18.6 118.1 94.8 -23.2 35.7 52.1
35-44 Mortality 198.0 164.6 -33.4 207.1 165.8 -41.2 62.4 80.7
45-54 Mortality 465.6 385.5 -80.1 477.8 387.8 -90.0 122.7 119.5
55-64 Mortality 948.6 804.6 -144.0 962.9 808.3 -154.5 203.9 181.5
White Male Mortality 408.3 350.9 -57.4 418.7 351.9 -66.8 95.3 86.1
White Female Mortality 237.7 202.0 -35.7 247.1 202.5 -44.6 59.8 57.8
Black Male Mortality 531.0 470.2 -60.9 513.6 472.5 -41.1 224.4 550.8
Black Female Mortality 327.6 298.5 -29.2 351.8 299.6 -52.1 229.4 740.4
Other Race Male Mortality 182.9 191.5 8.6 216.6 191.3 -25.3 186.8 562.7
Other Race Female Mortality 111.1 115.2 4.0 125.5 114.8 -10.8 114.5 294.2
Healcare Amenable (non-flu) Mortality 201.5 168.0 -33.5 205.7 169.1 -36.6 49.2 49.1
Opioid Mortality 20.9 21.3 0.4 22.6 21.5 -1.1 10.7 20.1
Flu Mortality 4.9 4.0 -0.9 5.6 4.0 -1.6 3.2 10.3
Population Density 785.5 2892.3 2106.8 676.9 3002.1 2325.2 6886.8 1085.2
% Urban 77.0 83.3 6.3 72.5 83.1 10.6 24.1 25.6
% Veteran 7.5 6.5 -1.0 7.7 6.6 -1.2 2.5 1.7
Median Income 48682.9 57608.9 8926.0 48247.0 57196.2 8949.2 13882.6 7251.3
% Poverty 17.6 15.1 -2.5 17.9 15.1 -2.8 5.4 4.3
% SNAP 16.5 14.0 -2.6 16.9 14.0 -2.9 6.4 5.0
% No Health Insurance 25.3 18.2 -7.2 24.3 18.2 -6.0 6.2 3.3
Unemployment Rate 7.1 7.7 0.6 7.3 7.6 0.3 2.0 1.5
PM2.5 0.1 0.1 0.0 0.1 0.1 0.0 1.7 0.2
Smoking 21.2 19.5 -1.8 21.9 19.6 -2.3 4.4 2.4
Heavy Drinking 7.5 8.5 1.0 7.6 8.5 0.9 1.8 1.3
Diabetes 15.5 13.8 -1.7 15.5 13.8 -1.7 2.0 1.3
Male Hypertension 37.7 36.0 -1.6 37.7 36.1 -1.6 3.2 1.9
Female Hypertension 40.3 38.5 -1.8 40.4 38.6 -1.8 3.4 2.0
Male Obesity 35.5 33.0 -2.6 36.0 33.0 -3.0 4.3 2.2
Female Obesity 38.1 35.1 -3.0 38.5 35.1 -3.3 5.2 3.3
Male Physical Activity 53.6 57.5 3.9 53.4 57.4 4.0 5.2 3.7
Female Physical Activity 49.1 54.4 5.3 49.2 54.1 4.9 6.1 3.4
% Republican 55.1 44.1 -11.0 55.5 44.4 -11.2 15.1 9.1
% Multigenerational Households 0.0 0.0 -0.0 0.0 0.0 -0.0 0.0 0.1
Population 5.2 5.4 0.2 5.1 5.4 0.3 0.6 0.4

Table 6: Differences between control and treatment (ACA Medicaid expansion by
June2020) counties before and after matching along with the pooled, weighted
standard deviation of the covariates between treatment and control counties
(“Overall”) and the root mean squared of the distances in covariates between
adjacent counties, divided by

√
2 for comparability (“Adjacent”).
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Appendix B. State Mortality Reporting Lag

In this appendix we will describe and give examples for our proposed method to calculate
the average lag seen in all-cause mortality reporting by state using the FluView data. At the
time that the protocol is being written, we have data through the week ending September
12, 2020. For simplicity in the discussion here, we will refer to weeks as they are numbered
in the data, with week 1 indicating the first week in January 2020 and week 37 indicating
the week ending September 12. We will refer to the week when the dataset was pulled as the
“reporting week” and the week in the data that mortality is assigned to as simply “week”
in the figures and tables.

The weekly mortality data from each state is updated weekly. Therefore, the mortality
counts attributed to a specific week of the year, can change week to week as the dataset is
updated. We are interested in understanding how quickly the mortality counts attributed
to a certain week in a state seem to level-off to a constant number, as the data from each
state is updated weekly. The CDC suggested using the FluView calculated values of the
proportion of deaths that have been reported, out of the number of deaths that are expected
for a certain state and week, according to modeling from historical data. We decide, instead
to do a direct calculation ourselves using the reported all-cause mortality counts because
this calculated percent from the FluView system is capped at 100% of expected, which is
reached even as the mortality counts increase, since mortality is at a historically high point
due to the pandemic.

Figures 4 and 5 visualize our conceptualization of the data lag for a subset of example
states. These figures show the proportion of the maximum mortality count that we observe
in the data for a specific week, over all reporting weeks we have available. Since the
maximum mortality count reported for a specific week tends to be for the latest reporting
week (week 37), we only show these values for weeks 31-36.21

Figure 4 illustrates what the reporting lag looks like for most states, which have a
more or less consistent pattern in the lag, with mortality counts filled in at similar rates
for previous weeks as the reporting week increases. We pulled these states specifically to
also show how the lag differs between states, with Maine reporting a large portion of the
deaths attributed to a week during the same reporting week, while in Ohio, mortality counts
attributed to a week are not filled in until later reporting weeks. It is also important to
note, as in the case with Indiana, that the pattern is not necessarily totally consistent over
time.

Figure 5 illustrates what the reporting lag looks like for a handful of states for which
the rate at which deaths counts are filled in over time is highly irregular. However, for these
states, the mortality counts for earlier weeks in the year do seem to level out. Therefore,
our calculation needs to consider these unstable patterns. Additionally, for this reason, we
do not present a final calculation of lag times for each state for this protocol, but rather
will wait until we can gather more weeks of data and include this calculation in our final
manuscript.

We chose to calculate the reporting lag by evaluating at which week the mortality
counts appear to have stabilized (in other words, that the mortality count doesn’t change
much between reporting weeks), for each reporting week. To do this, we calculate the

21. Reporting week 32 is missing because we did not get a data pull for that reporting week)
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Figure 4: Percent of maximum mortality reported for a given week in the data, by the
reporting week (i.e. week of the data pull). The color of the line represents the
reporting week, while the x-axis is the week of the year for which the mortality
count is attributed. For example, a value of 80% indicates that only a subset of
the deaths for that weeks that are reported at some point by the CDC are
reported in that reporting week.

percent change in mortality count for a given week between the previous reporting week
and the current reporting week. We consider the counts to have stabilized in a given week
if the change is less than 1%. We then determine the maximum week (weekmax) that is
considered stabilized and the minimum week (weekmin) that is considered not stabilized.
In a perfect world, the pattern of filling in mortality counts would be constant (and thus
weekmax < weekmin), so we could just use the maximum stabilized week to determine the
lag. However, since this is not always the case, if weekmax < weekmin, then weekmin − 1
will be considered the first stabilized week. Table 7 shows this calculation for a state that
has a consistent reporting lag (Arizona), while Table 8 shows this calculation for a state
that has an inconsistent reporting lag (Connecticut).

As shown in Table 7 and Table 8 as well, we plan to calculate the lag in weeks by
subtracting the first stabilized week from the reporting week. Finally, since we understand
that the lag is not consistent across all reporting weeks, we will take the average lag across
all reporting weeks.
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(a)

Week Deaths % Change % Maximum

25 1525 0.00 99.9
26 1583 0.00 99.9
27 1753 0.00 99.6
28 1912 0.00 99.8
29 1931 0.00 99.6
30 1800 0.00 99.6
31 1730 0.01 99.3
32 1525 0.01 99.2
33 1456 0.04 98.4
34 1357 0.14 95.8
35 1118 0.81 82.1
36 413 41.1

(b)

Reporting Week Weeks Mean
Week Stable Lag Lag

33 26 7
34 29 5
35 31 4

36 32 4

37 32 5 5.00

Table 7: Example calculation of reporting lag for Arizona. Table (a) illustrates how to
determine the week when the mortality counts are considered to have stabilized,
for reporting week 36. % Change indicates the percent change in mortality count
between reporting week 35 and reporting week 36 for the given week. %
Maximum represents the percent of the maximum mortality observed over all
reporting weeks. Here weekmax = 32 < weekmin = 33 so the week stable is 32.
Table (b) illustrates how the weeks lag can differ for different reporting weeks
and how the mean lag would be calculated.

(a)

Week Deaths % Change % Maximum

21 806 0.00 99.6
22 748 0.00 99.7
23 642 0.03 98.6
24 569 0.01 93.4
25 529 0.01 93.6
26 575 0.01 97.1
27 521 0.06 99.0
28 570 0.11 97.1
29 532 0.18 7.4
30 526 0.28 96.5
31 440 0.48 93.8
32 216 Inf 87.8
33 144 Inf 85.2
34 0
35 0

(b)

Reporting Week Weeks Mean
Week Stable Lag Lag

33 20 13
34 25 9

35 24 11

36 22 14
37 22 15 12.40

Table 8: Example calculation of reporting lag for Connecticut. Table (a) illustrates how to
determine the week when the mortality counts are considered to have stabilized,
for reporting week 35. % Change indicates the percent change in mortality count
between reporting week 34 and reporting week 35 for the given week. %
Maximum represents the percent of the maximum mortality observed over all
reporting weeks. In this example, weekmax = 26 > weekmin = 25 so the week
stable is 25-1 = 24. Table (b) illustrates how the mean lag would be calculated.
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Figure 5: Percent of maximum mortality reported for a given week in the data, by the
reporting week (i.e. week of the data pull).
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