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Abstract

Motivated by applications of bandit algorithms
in education, we consider a stochastic multi-
armed bandit problem with ε-contaminated re-
wards. We allow an adversary to give arbi-
trary unbounded contaminated rewards with
full knowledge of the past and future. We
impose the constraint that for each time t the
proportion of contaminated rewards for any
action is less than or equal to ε. We de-
rive concentration inequalities for two robust
mean estimators for sub-Gaussian distributions
in the ε-contamination context. We define
the ε-contaminated stochastic bandit problem
and use our robust mean estimators to give
two variants of a robust Upper Confidence
Bound (UCB) algorithm, crUCB. Using re-
gret derived from only the underlying stochas-
tic rewards, both variants of crUCB achieve
O(
√
KT log T ) regret for small enough con-

tamination proportions. Our simulations as-
sume small horizons, reflecting the newly ex-
plored setting of bandits in education. We
show that in certain adversarial regimes crUCB
not only outperforms algorithms designed for
stochastic (UCB1) and adversarial (EXP3)
bandits but also those that have “best of both
worlds” guarantees (EXP3++ and TsallisInf)
even when our constraint on the proportion of
contaminated rewards is broken.

1 INTRODUCTION

We first review the problem of stochastic multi-armed
bandits (sMAB) with contaminated rewards, or contam-
inated stochastic bandits (CSB). This scenario assumes
that rewards associated with an action are sampled i.i.d.
from a fixed distribution and that the learner observes the
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reward after an adversary has the opportunity to contam-
inate it. The observed reward can be unrelated to the re-
ward distribution and can be maliciously chosen to fool
the learner. An outline for this setup is presented in Sec-
tion 2.

We are primarily motivated by the use of bandit algo-
rithms in education, where the rewards often come di-
rectly from human opinion. Whether responses come
from undergraduate students, a community sample, or
paid participants on platforms like MTurk, there is al-
ways reason to believe some responses are careless or
inattentive to the question or could be assisted by bots
(Curran, 2016; Necka et al., 2016).

An example in education is a recent paper testing ban-
dit Thompson sampling to identify high quality student
generated solution explanations to math problems us-
ing MTurk participants (Williams et al., 2016). Using
a rating between 1-10 from 150 participants, the results
showed that Thompson sampling identified participant
generated explanations that when viewed by other par-
ticipants significantly improved their chance of solving
future problems compared to no explanation or “bad”
explanations identified by the algorithm. While the
proportion of contaminated responses will always de-
pend on the population, recent work suggests even when
screening out fraudulent participants, between 2 − 30%
of MTurk participants give low-quality samples (Ahler,
Roush, and Sood, 2019; Necka et al., 2016; Ryan, 2018).
This is consistent with measurements of careless and
inattentive responses seen in survey data, which reports
1−30% with an estimated mode of 8−12%, with the con-
clusion that these responses are generally not a random
sample (Curran, 2016). Accounting for these low qual-
ity responses is especially relevant in educational setting
where the number of iterations an algorithm can run is
often significantly smaller than those used by big tech
(e.g. advertising).

Recent work in CSB has various assumptions on the ad-



versary, the contamination, and the reward distributions.
Many papers require the rewards and contamination to
be bounded (Gupta, Koren, and Talwar, 2019; Kapoor,
Patel, and Kar, 2018; Lykouris, Mirrokni, and Leme,
2018). Others do not require boundedness, but do as-
sume that the adversary contaminates uniformly across
rewards (Altschuler, Brunel, and Malek, 2019). All
works make some assumption on the number of rewards
for an action an adversary can contaminate. We discuss
previous work more thoroughly in Section 3.

Our work expands on these papers by allowing for a full
knowledge adaptive adversary that can give unbounded
contamination in any manner. However, there is a trade
off when compared to work assuming bounded rewards
and contamination: we require an estimate of the up-
per bound on the reward variance. This can often allow
for simpler implementation than some algorithms that re-
quire boundedness, as we will discuss in section 4. Our
constraint on the adversary is that for some fixed ε, no
more than ε proportion of rewards for an action are con-
taminated. We provide a ε-contamination robust UCB
algorithm by first proving concentration inequalities for
two robust mean estimators in the ε-contamination con-
text. We are able to show that the regret of our al-
gorithm analyzed on the true reward distributions is
O(
√
KT log T ) provided that the contamination propor-

tion is small enough. Through simulations, we show that
with a Bernoulli adversary, our algorithm outperforms al-
gorithms designed for stochastic (UCB1) and adversarial
(EXP3) bandits as well as those that have “best of both
worlds” guarantees (EXP3++ and TsallisInf) even when
our constraint on the adversary is broken.

Though we are motivated by of bandit algorithms appli-
cations in education and use this context to determine
appropriate parameters in the simulations, we point out
opportunities for CSB modeling to arise in other contexts
as well.

Human feedback: There is always a chance that hu-
man feedback is careless or inattentive, and therefore is
not representative of the underlying truth related to an
action. This may appear in online surveys that are used
for A/B testing, or as is the case above in the explanation
generation example. Adaptive surveys, such as choosing
question ordering to minimize dropout rates, are also an
example where the sample sizes can be small compared
to other bandit deployments.

Click fraud: Internet users who wish to preserve pri-
vacy can intentionally click on ads to obfuscate their
true interests either manually or through browser apps.
Similarly, malware can click on ads from one company
to falsely indicate high interest, which can cause higher

rankings in searches or more frequent use of the ad than
it would otherwise merit (Crussell, Stevens, and Chen,
2014; Pearce et al., 2014).

Measurement errors: If rewards are gathered through
some process that may occasionally fail or be inaccurate,
then the rewards may be contaminated. For example, in
health apps that use activity monitors, vigorous move-
ment of the arms may be perceived as running in place
(Bai et al., 2018; Feehan et al., 2018).

2 PROBLEM SETTING

Here we specify our notation and present the ε-
contaminated stochastic bandit problem. We then argue
for a specific notion of regret for CSB. We compare our
setting to others current in the field in section 3.

Notation We use [K] to represent {1, ...,K} for K ∈
R to represent the number of actions and the indica-
tor function I{·} to be 1 if true and 0 otherwise. Let
Na(t) be the number of times action a has been cho-
sen at time t and xa(t) = {xa(1), ..., xa(Na(t))} to be
the vector of all observed rewards for action a at time t.
The suboptimality gap for action a is ∆a and we define
∆min = mina∈[K] ∆a.

2.1 ε-CONTAMINATED STOCHASTIC
BANDITS

A basic parameter in our framework is ε, the fraction
of rewards for an action that the adversary is allowed to
contaminate. Before play, the environment picks a true
reward ra(t) ∼ Da from fixed distribution Da for all
a ∈ [K] and t ∈ [T ]. The adversary observes these
rewards and then play begins. At time t = 1, 2, ..., T the
learner chooses an action At ∈ [K] . The adversary sees
At then chooses an observed reward xAt(t) and then the
learner observes only xAt(t).

We present the contaminated stochastic bandits game in
algorithm 1.

Algorithm 1: Contaminated Stochastic Bandits
input: Number of actions K, time horizon T .
fix : ra(t) ∀a ∈ [K], t ∈ [T ].
Adversary observes fixed rewards.
for t = 1, ..., T do

Learner picks action At ∈ [K].
Adversary observes At and chooses xAt(t).
Learner observes xAt(t).

end



We allow the adversary to corrupt in any fashion as long
as for every time t there is no more than an ε-fraction of
contaminated rewards for any action. That is, we con-
strain the adversary such that,

∀a ∈ [K], ∀t ∈ [T ],

Na(t)∑
i=1

I{ra(i) 6= xa(i)} ≤ ε ·Na(t).

We allow the adversary to give unbounded contamination
that can be chosen with full knowledge of the learner’s
history as well as current and future rewards. This set-
ting allows the adversary to act differently across actions
and places no constraints on the contamination itself, but
rather the rate of contamination.

2.2 NOTION OF REGRET

A traditional goal in bandit learning is to minimize the
observed cumulative regret gained over the total number
of plays T . Because the adversary in this model can af-
fect the observed cumulative regret, we argue to instead
use a notion of regret that considers only the underly-
ing true rewards. We call this uncontaminated regret and
give the definition below for any time T and policy π in
terms of the true rewards r,

R̄T (π) = max
a∈[K]

E
[ T∑
t=1

ra(t)−
T∑
t=1

rAt(t)

]
. (2.1)

This definition eq. (2.1) is first mentioned in Kapoor, Pa-
tel, and Kar (2018) along with another notion of regret
that compares the sum of the observed (possibly contam-
inated) rewards to the sum of optimal, uncontaminated
rewards,

R̄T (π) = max
a∈[K]

E
[ T∑
t=1

ra(t)−
T∑
t=1

xAt(t)

]
. (2.2)

We argue that eq. (2.2) gives little information about the
performance of an algorithm. This notion of regret can
be negative, and with no bounds on the contamination it
can be arbitrarily small and potentially meaningless. We
believe that any regret that compares a true component to
an observed (possibly contaminated) component is not a
useful measure of performance in CSB as it is unclear
what regret an optimal strategy should produce.

3 RELATED WORK

We start by briefly addressing why adversarial and “best
of both world” algorithms are not optimized for CSB. We
then cover relevant work in robust statistics, followed by
current work in robust bandits and how our model differs
and relates.

3.1 ADVERSARIAL BANDITS

Adversarial bandits with an oblivious environment al-
lows the adversary to first look at the learners policy and
then choose all rewards before the game begins. If the
learner chooses a deterministic policy, the adversary can
choose rewards such that the learner cannot achieve sub-
linear worst-case regret (Lattimore, 2020). Algorithms
such as EXP3 (Auer, Nicolò Cesa-Bianchi, et al., 2002)
are thus randomized, but their regret is analysed with re-
spect to the best fixed action where “best” is defined us-
ing the observed rewards. There are no theoretical guar-
antees with respect to the uncontaminated regret, so it is
not immediately clear how they will perform in a CSB
problem. We remark that adversarial analysis assumes
uniformly bounded observed rewards whereas we allow
observed rewards to be unbounded. Additionally, the
general adversarial framework does not take advantage
of the structure present in CSB, namely that the adver-
sary can only corrupt a small fraction of rewards, so it is
likely that performance improvements can be made.

3.2 BEST OF BOTH WORLDS

A developing line of work is algorithms that enjoy “best
of both worlds” guarantees. That is, they perform well
in both stochastic and adversarial environments without
knowing a priori which environment they will face. Early
work in this area (Auer and Chiang, 2016; Bubeck and
Slivkins, 2012) started by assuming a stochastic environ-
ment and implementing some method to detect a failure
of the i.i.d. assumption on rewards, at which point the al-
gorithm switches to an algorithm for the adversarial en-
vironment for the remainder of iterations. Further work
implements algorithms that can handle an environment
that is some mixture of stochastic and adversarial, as in
EXP3++ and TsallisInf (Seldin and Slivkins, 2014; Zim-
mert and Seldin, 2019).

While these algorithms are aimed well for a stochas-
tic environment with some adversarial rewards, they dif-
fer from contamination robust algorithms in that all ob-
served rewards are thought to be informative. Their un-
contaminated regret has not been analysed and therefore
there are no guarantees in the CSB setting.

3.3 CONTAMINATION ROBUST STATISTICS

The ε-contamination model we consider is closely re-
lated to the one introduced by Huber in 1964 (Huber,
1964). Their goal was to estimate the mean of a Gaus-
sian mixture model where ε fraction of the sample was
not sampled from the main Gaussian component. There
has been a recent increase of work using this model, es-
pecially in extensions to the high-dimensional case (Di-



akonikolas et al., 2019, Kothari, Steinhardt, and Steurer,
2018, Lai, Rao, and Vempala, 2016, L. Liu, Li, and Cara-
manis, 2019). These works often keep the assumption of
a Gaussian mixture component, though there has been
expanding work with non-Gaussian models as well.

3.4 CONTAMINATION ROBUST BANDITS

Some of the first work in CSB started by assuming both
rewards and contamination were bounded (Gupta, Koren,
and Talwar, 2019; Lykouris, Mirrokni, and Leme, 2018).
These works assume an adversary that can contaminate
at any time step, but that is constrained in the cumulative
contamination. They bound the cumulative max (over
actions) absolute difference of the contaminated reward,
x, to the true reward, r,

∑
t maxa |ra(t) − xa(t)| ≤ C.

Lykouris, Mirrokni, and Leme (2018) provides a layered
UCB-type active arm elimination algorithm. Gupta, Ko-
ren, and Talwar (2019) expands on this work to provide
an algorithm similar to active arm elimination in spirit,
but which never completely eliminates an action, and
which has better regret guarantees.

Recent work in implementing a robust UCB replaces the
empirical mean with the empirical median, and gives
guarantees for the uncontaminated regret with Gaussian
rewards (Kapoor, Patel, and Kar, 2018). They consider
an adaptive adversary but require the contamination to
be bounded, though the bound need not be known. They
cite work that can expand their robust UCB to distribu-
tions with bounded fourth moments by using the agnostic
mean (Lai, Rao, and Vempala, 2016), though give no un-
contaminated regret guarantees. In one dimension, the
agnostic mean takes the mean of the smallest interval
containing (1 − α) fraction of points. This estimator is
also known as the α-shorth mean. Our work expands on
this model by allowing for unbounded contamination and
analysing the uncontaminated regret for sub-Gaussian re-
wards when implementing a UCB algorithm with the α-
shorth mean.

CSB has also been analysed in the best arm identifica-
tion problem (Altschuler, Brunel, and Malek, 2019). Us-
ing a Bernoulli adversary that contaminates any reward
with probability ε, Altschuler, Brunel, and Malek (2019)
consider three adversaries of increasing power, from the
oblivious adversary, which does not know the player’s
history nor the current action or reward, to a malicious
adversary, which can contaminate knowing the player’s
history and the current action and reward. They give
analysis of the probability of best arm selection and sam-
ple complexity of an active arm elimination algorithm.
While their performance measure is different than ours,
we generalize their context to allow an adversary to con-
taminate in any fashion.

There is also work that explores the impact of an adap-
tive adversarial contamination on ε-greedy and UCB al-
gorithms (Jun et al., 2018). They give a thorough anal-
ysis with both theoretical guarantees and simulations of
the effects an adversary can have on these two algorithms
when the adversary does not know the optimal action but
is otherwise fully adaptive. They show these standard al-
gorithms are susceptible to contamination. Similar work
looks at contamination in contextual bandits with a non-
adaptive adversary (Ma et al., 2019).

4 MAIN RESULTS

We present concentration bounds for both the α-shorth
and α-trimmed mean estimators in the ε-contamination
context for sub-Gaussian random variables.

Our contribution to the CSB problem is in providing a
contamination robust UCB algorithm that is simple to
implement and has theoretical regret guarantees close to
those of UCB algorithms in the uncontaminated setting.

4.1 CONTAMINATION ROBUST MEAN
ESTIMATORS

The estimators we analyse have been in use for many
decades as robust statistics. Our contribution is to ana-
lyze them within our ε-contamination model with sub-
Gaussian samples and provide simple finite-sample con-
centration inequalities for ease of use in UCB-type algo-
rithms.

4.1.1 Trimmed Mean

Our first estimator suggested for use in the contaminated
model is the α-trimmed mean (L. Liu, Li, and Carama-
nis, 2019).

α-trimmed mean Trim the smallest and largest α-
fraction of points from the sample and calculate the mean
of the remaining points. This estimator uses 1− 2α frac-
tion of sample points.

Algorithm 2: α-Trimmed Mean
input : Xn = (x1, ..., xn), α
output: α-trimmed mean
(x(1), ..., x(n)) = sorted Xn s.t. x(i) ≤ x(i+1)

cut = dα ∗ ne
return mean(x(cut), ..., x(n-cut))

The intuition being if the contamination is large, then it
will be removed from the sample. If it is small, it should
have little affect on the mean estimate. Next we provide
the concentration inequality for the α-trimmed mean.



Theorem 1 (Trimmed mean concentration). LetG be the
set of points x1, ...xn ∈ R that are drawn from a σ-sub-
Gaussian distribution with mean µ. Let Sn be a sample
where an ε-fraction of these points are contaminated by
an adversary. For ε ≤ α < 1/2, t ≥ n we have,

|trMeanα(Sn)− µ| ≤

σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
with probability at least 1− 4

t2 .

Proof follows from L. Liu, Li, and Caramanis (2019) and
can be found in the appendix.

4.1.2 Shorth Mean

The agnostic mean from Lai, Rao, and Vempala (2016),
which we use the more common term α-shorth mean for,
can be considered a variation of the trimmed mean.

α-shorth mean Take the mean of the shortest interval
that removes the smallest δ1 and largest δ2 fraction of
points such that δ1 + δ2 = α, where δ1, δ2 are chosen to
minimize the interval length of remaining points. Uses
1− α fraction of sample points.

The α-shorth mean is less computationally efficient than
the trimmed mean, but may be a better mean estimator
when the contaminated points are not large outliers and
are skewed in one direction. Intuitively this is because
the α-shorth mean can trim off contamination that would
require removing most of the sample with the trimmed
mean. Next we provide the concentration inequality for
the α-shorth mean.

Algorithm 3: α-Shorth Mean
input : Xn = (x1, ..., xn), α
output: A mean estimate for the distribution of X
(x(1), ..., x(n)) = sorted Xn s.t. x(i) ≤ x(i+1)

nα = b(1− α) ∗ nc
I ∈ argmink{x(k+nα) − x(k)}
Choose uniformly at random from set I if there is
more than one starting index with the smallest
interval length

return sMean(X)← mean(x(I), ..., x(I+nα))

Theorem 2 (α-shorth mean concentration). Let Gn be
the set of points x1, ...xn ∈ R that are drawn from a
σ-sub-Gaussian distribution with mean µ. Let Sn be a
sample where an ε-fraction of these points are contam-
inated by an adversary. For ε ≤ α < 1/3, t ≥ n, we

have,

|sMeanα(Sn)− µ| ≤

σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

with probability at least 1− 4
t2 .

Proof sketch. Without loss of generality assume µ = 0
for the underlying true distribution. Let G̃ ⊂ Gn repre-
sent the points which are not contaminated and C ⊂ Gn
represent the contaminated points. Then our sample can
be represented by the union Sn = G̃ ∪ C

Let J be the interval that contains the shortest 1 − α
fraction of Sn, I be the interval that contains G̃ (i.e.
the remaining good points after contamination), and T
be the interval that contains the points of Sn after trim-
ming the α largest and smallest fraction of points. Use
|I| to denote the length of interval I . It must be that
I ∩ J 6= ∅ because otherwise the points in I ∪ J would
contain 2 − 2α > 1 fraction of Sn. Let c be a point in
I ∩ J and x be a point in J . Recall that trMeanα(Sn) is
the trimmed mean of the contaminated sample Sn. Then
we have,

|x| ≤ |x− c|+ |c− trMeanα(Sn)|+ |trMeanα(Sn)|
≤ |J |+ |I|+ |trMeanα(Sn)|
≤ 2|I|+ |trMeanα(Sn)|

The second step comes from x and c both being in J and
because I ⊇ T . The third step comes from |J | ≤ |I|.

To bound the length of I we have,

|I| ≤ 2 max
x∈Gn

|x| w.p. at least 1− δ2.

Finally, since

|trMeanα(Sn)| ≤ 1

(1− 2α)
(|x̄Gn |+ 4α max

x∈Gn
|x|)

with probability at least 1−δ1−δ2, we get that for x ∈ J ,

|x| ≤ 4 max
i∈[n]
|xi|+

1

(1− 2α)
(|x̄Gn |+ 4α max

x∈Gn
|x|)

=
|x̄Gn |

1− 2α
+
(

4 +
4α

1− 2α

)
max
x∈Gn

|x|.

Now that we have a bound on the contaminated points in
J , our analysis follows similarly as the trimmed mean by
bounding A1, A2, A3 as defined below.

|sMeanα(Sn)|

≤ 1

(1− α)n

(∣∣∣∣∑
x∈G̃

x

︸ ︷︷ ︸
A1

∣∣∣∣+

∣∣∣∣ ∑
x∈G̃∩¬J

x

︸ ︷︷ ︸
A2

∣∣∣∣+

∣∣∣∣ ∑
x∈C∩J

x︸ ︷︷ ︸
A3

∣∣∣∣)



The full proof is contained in the appendix and follows a
similar approach as for the trimmed mean.

Our methods ensured that the first term in each con-
centration bound is the same, giving them similar regret
guarantees when implemented in a UCB algorithm. We
emphasize that the α-shorth mean uses 1− α fraction of
a sample while the α-trimmed mean uses 1−2α fraction
of a sample. We remark that if there is no contamination
and α = 0 then our inequalities reduce to the standard
concentration inequality for the empirical mean of sam-
ples drawn from a sub-Gaussian distribution.

4.2 CONTAMINATION ROBUST UCB

We present the contamination robust-UCB (crUCB) al-
gorithm for ε-CSB with sub-Gaussian rewards.

Algorithm 4: crUCB
input: number of actions K, time horizon T , upper

bound on fraction contamination α, upper
bound on sub-Gaussian constant σ0, mean
estimate function (α trimmed or shorth
mean) f .

for t ≤ K do
Pick action a when t = a.

end
for t > K do

for a ∈ [K] compute do
f(xa(t))← mean estimate of rewards.
Na(t)← number of times action has been
played.

end
Pick action At =

argmaxa∈[K]f(xa(t)) + σ0

(1−2α)

(√
4 log(t)
Na(t)

)
.

Observe reward xAt(t).
end

We provide uncontaminated regret guarantees for crUCB
below for both the α-trimmed and the α-shorth mean.

Theorem 3 (α-trimmed mean crUCB uncontaminated
regret). Let K > 1 and T ≥ K − 1. Then with al-
gorithm 4 with the α-trimmed mean, σ-sub-Gaussian re-
ward distributions with σa ≤ σ0, and contamination rate
ε ≤ α ≤ ∆min

4(∆min+4σ0

√
6 log T )

, we have the uncontami-
nated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

Corollary 1 (α-trimmed mean crUCB uncontaminated
regret bounded rewards). If the rewards are bounded by

b, and have contamination rate ε ≤ α ≤ ∆min

4(∆min+4b) ,
then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Theorem 4 (α-shorth mean crUCB uncontaminated re-
gret). Let K > 1 and T ≥ K − 1. Then with algo-
rithm 4 with the α-shorth mean, sub-Gaussian reward
distributions with σa ≤ σ0, and contamination rate
ε ≤ α ≤ ∆min

4(∆min+9σ0

√
6 log T )

, we have the uncontam-
inated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

Corollary 2 (α-shorth mean crUCB uncontaminated re-
gret bounded rewards). If the rewards are bounded by b,
and have contamination rate ε ≤ α ≤ ∆min

4(∆min+9b) , then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proofs for theorem 3 and 4 and their corollaries follow
standard analysis and are provided in the appendix.

From theorem 3 and 4 we get that crUCB has the same
order of regret in the CSB setting as UCB1 has in the
standard sMAB setting. The constraint on the magnitude
of ε is quite strong, but we show in section 5 that they can
be broken and still obtain good empirical performance.

Remark Our bounds above do not allow ε to be too big
relative to the minimum suboptimality gap ∆min. This is
natural: if ε > ∆min then no algorithm can get sublinear
regret since distinguishing between the top two actions
is statistically impossible even with infinite samples. We
give a simple example in Appendix B. Furthermore, it
is possible to derive a regret bound1 of Õ(σ0

√
KT +

ασ0

1−4αT ) for any choice of α such that ε ≤ α < 1/4.
The linear term in regret (which is unavoidable for large
ε) may be acceptable if the corruption proportion is not
very large.

5 SIMULATIONS

We compare our crUCB algorithms using the trimmed
mean (tUCB) and shorth mean (sUCB) against a stan-
dard stochastic algorithm (UCB1, Auer and Nicolo Cesa-
Bianchi, 2002), a standard adversarial algorithm (EXP3,
Auer, Nicolò Cesa-Bianchi, et al., 2002), two “best of
both worlds” algorithms (EXP3++, Seldin and Lugosi,
2017, 0.5-TsallisInf, Zimmert and Seldin, 2019), and

1The Õ(·) notation hides constants and logarithmic terms.
See Appendix B for details.



another contamination robust algorithm (RUCB-MAB,
Kapoor, Patel, and Kar, 2018). Each trial has five ac-
tions (K = 5), is run for 1000 iterations (T = 1000), for
ε ∈ {0.05, 0.1}. For sUCB and tUCB, we set α = ε and
σ0 = σ. The plots are average results over 10 trials with
error bars showing the standard deviation.

Our choice of T comes from our motivation to apply con-
taminated bandits in education, where the sample sizes
are often much smaller than for example in advertising.
While T = 1000 would be considered a large university
class, it still allows one to visually see regret for smaller
iterations and see how performance stabilizes. We sim-
ilarly chose number K of arms and proportion contami-
nation ε to be in a realistic range for the application we
have in mind. All algorithms use recommended parame-
ter settings given within their respective papers.

Rewards and gaps We chose the reward distribution
to be binomial(n=10) to simulate likert scale and because
this distribution has bounded rewards and is not symmet-
ric for large p. For the optimal action, p = .9 and for
suboptimal actions p = .8, thus the suboptimality gap
is ∆ = 1. All non-optimal actions have the same true
distribution.

Adversaries We focus on a Bernoulli adversary which
gives a contaminated reward at every time step with
probability ε. We also implement a cluster adversary
which contaminates at the beginning of play to show the
weakness of algorithms to this type of attack.

Contamination We use a random malicious contam-
ination scheme which chooses a contaminated reward
uniformly from ranges that increase suboptimal action
means and decrease the optimal action’s mean.

Performance measurement We plot the average re-
gret over 10 trials for 1000 iterations.

We recommend to view the plots on a color screen.

In Figure 1a we see that the adversarial and best of both
worlds algorithms, EXP3, EXP3++, and TsallisInf, per-
form poorly in the purely stochastic setting compared
to the UCB type algorithms. In Figure 1, we see the
best of these, TsallisInf, starts to degrade as the propor-
tion of contamination increases while the robust UCB al-
gorithms are only slightly affected. These simulations
show a clear performance benefit to using algorithms that
specifically account for contaminated rewards.

Figure 3 and Figure 4 shows that for both sUCB and
tUCB, the choice of α is much less sensitive than choice
of σ. Over estimating or slightly underestimating α does
not degrade performance significantly. Underestimating

(a) ε = 0

(b) ε = 0.05

(c) ε = 0.1

Figure 1: Binomial Rewards With Varying Proportion Of
Contamination

σ can give a significant boost to performance while over
estimating can degrade it. This is consistent with the per-
formance of UCB algorithms in practice, which often
scale the exploration term to improve empirical perfor-
mance (Y.-E. Liu et al., 2014).

To look at the impact of using a contamination robust al-
gorithm when there is no contamination, we plotted var-
ious α values when ε = 0, shown in Figure 2. Assuming
small amounts of contamination when there is none only



(a) α = 0

(b) α = 0.05

(c) α = 0.1

Figure 2: Misspecified α For ε = 0.

has a small impact on performance, suggesting it is per-
missible to use contamination robust methods when there
is uncertainty of contamination. Similarly, small K and
large ∆ can render bounded contamination impotent and
would not require algorithms that account for it.

We have included RUCB-MAB in our simulations be-
cause it is simple to implement and can perform similarly
well to our algorithms. We note it currently has guaran-
tees only for Gaussian rewards (Kapoor, Patel, and Kar,
2018).

(a) sUCB

(b) tUCB

Figure 3: Regret Sensitivity For Various α.

Figure 5 shows the poor performance of all algorithms
when the first ε rewards are contaminated. TsallisInf and
EXP3++ show some recovery, but it is clear this type of
adversary is harmful. This remains an open problem for
scenarios with small T .

We also considered including the BARBAR algorithm
(Gupta, Koren, and Talwar, 2019) whose epoch scheme
is the only algorithm we know that accounts for the front
cluster attack. We chose against this as for our setting of
T = 1000 the BARBAR algorithm only has one epoch,
and thus does not make any updates to the estimated
gaps, resulting in pure random exploration.

6 DISCUSSION

We have presented two variants of an ε-contamination
robust UCB algorithm to handle uninformative or ma-
licious rewards in the stochastic bandit setting. As the
main contribution, we proved concentration inequali-
ties for the α-trimmed and α-shorth mean in the ε-
contamination setting with sub-Gaussian samples and
guarantees on the uncontaminated regret of the crUCB
algorithms. The regret guarantees are similar to those in



(a) sUCB

(b) tUCB

Figure 4: Regret Sensitivity For Various σ.

the uncontaminated sMAB setting.

We have shown through simulation that these algorithms
can outperform “best of both worlds” algorithms and
those for stochastic or adversarial environments when us-
ing a small number of iterations and ε chosen to be rea-
sonable when implementing bandits in education.

We highlight that our algorithms are simple to imple-
ment. In practice, it is often easy to find upper bounds
on the parameters which are robust to underestimation.
Our algorithms are numerically stable and have clear in-
tuition to their actions.

A weak point of these algorithms is they require knowl-
edge of α before hand. Choices of α may come from do-
main knowledge, but could also require a separate study.

In this work we assumed a fully adaptive adversarial con-
tamination, constrained only by the total fraction of con-
tamination at any time step. By making more assump-
tions about the adversary, it is likely possible to improve
uncontaminated regret bounds.

Limitations The adversary used in the simulation is
quite simple and does not take full advantage of the

(a) ε = .1

Figure 5: Front Cluster Attack

power we allow in our model. We designed it as a first
test of our algorithms and associated theory. In the fu-
ture, we would like to design simulated adversaries that
are modeled on real world contamination. It will also be
important to deploy contamination robust algorithms in
the real world. This will require thought on how to select
various tuning parameters ahead of the deployment.

There remain many open questions in this area. In par-
ticular, we think this work could be improved along the
following directions.

Randomized algorithms UCB-type algorithms are of-
ten outperformed in applications by the randomized
Thompson sampling algorithm. Creating a randomized
algorithm that accounts for the contamination model
would increase the practicality of this line of work.

Contamination correlated with true rewards One
possibility is that the contaminated rewards contain in-
formation of the true rewards. For example if contami-
nation can be missing data, we know dropout can be cor-
related with the treatment condition.
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A Proofs

A.1 Theorem 1

Theorem 1 (Trimmed mean concentration). Let G be the set of points x1, ...xn ∈ R that are drawn from a σ-sub-
Gaussian distribution with mean µ. Let Sn be a sample where an ε-fraction of these points are contaminated by an
adversary. For ε ≤ α < 1/2, t ≥ n we have,

|trMeanα(Sn)− µ| ≤

σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
with probability at least 1− 4

t2 .

Proof of theorem 1. Without loss of generality assume µ = 0 for the underlying true distribution. For X ∼ σ-sub-
Gaussian, by definition, we have:

P

(
|X| ≥ µ+ η

)
≤ 2 exp(− η2

2σ2
)

P

(
|x̄n − µ| ≥ σ

√
2

n
log

2

δ1

)
≤ δ1

and

P

(
max
i∈[n]
|Xi| ≥ t

)
≤ 2n exp

(
− t2

2σ2

)
P

(
max
i∈[n]
|Xi| ≥ σ

√
2 log

2n

δ2

)
≤ δ2.

Let G̃ ⊂ Gn represent the points which are not contaminated and C ⊂ Gn represent the contaminated points. Then
our sample can be represented by the union Sn = G̃ ∪ C. Let R represent the points that remain after trimming α
fraction of the largest and smallest points, and T be the set of points that were trimmed. Then we have that.

|trMeanα(Sn)| =
∣∣∣∣ 1

(1− 2α)n

∑
x∈R

x

∣∣∣∣
=

1

(1− 2α)n

∣∣∣∣ ∑
x∈G̃∩R

x+
∑

x∈C∩R
x

∣∣∣∣
≤ 1

(1− 2α)n

∣∣∣∣∑
x∈G̃

x

︸ ︷︷ ︸
A1

−
∑

x∈G̃∩T

x

︸ ︷︷ ︸
A2

+
∑

x∈C∩R
x︸ ︷︷ ︸

A3

∣∣∣∣
≤ 1

(1− 2α)n

(∣∣∣∣∑
x∈G̃

x

︸ ︷︷ ︸
A1

∣∣∣∣+

∣∣∣∣ ∑
x∈G̃∩T

x

︸ ︷︷ ︸
A2

∣∣∣∣+

∣∣∣∣ ∑
x∈C∩R

x︸ ︷︷ ︸
A3

∣∣∣∣)

with

A1 =

∣∣∣∣ ∑
x∈Gn

x−
∑

x∈Gn\G̃

x

∣∣∣∣ ≤ ∣∣∣∣ ∑
x∈Gn

x

∣∣∣∣+

∣∣∣∣ ∑
x∈Gn\G̃

x

∣∣∣∣ ≤ n|x̄Gn |+ εn max
x∈Gn

|x| w.p. at least 1− δ1 − δ2,

A2 ≤ 2αn max
x∈Gn

|x| w.p. at least 1− δ2,

A3 ≤ εn max
x∈Gn

|x| w.p. at least 1− δ2.



Combining we get,

|trMeanα(Sn)− µ| ≤ 1

(1− 2α)

(
|x̄Gn |+ max

x∈Gn
|x|(2ε+ 2α)

)
≤ 1

(1− 2α)

(
|x̄Gn |+ max

x∈Gn
|x|(4α)

)
≤ σ

(1− 2α)
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n
log
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δ1
+ 4α

√
2 log

2t
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)

with probability at least 1− δ1 − δ2. Letting δ1 = 2
t2 and δ2 = 2

t2 , and assuming α ≥ ε, we have,

|trMeanα(Sn)− µ| ≤ σ

(1− 2α)

(√
4

n
log(t) + 4α

√
6 log(t)

)
with probability at least 1− 4

t2 .

A.2 Theorem 2

Theorem 2 (α-shorth mean concentration). Let Gn be the set of points x1, ...xn ∈ R that are drawn from a σ-sub-
Gaussian distribution with mean µ. Let Sn be a sample where an ε-fraction of these points are contaminated by an
adversary. For ε ≤ α < 1/3, t ≥ n, we have,

|sMeanα(Sn)− µ| ≤

σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

with probability at least 1− 4
t2 .

Proof of theorem 2. Without loss of generality assume µ = 0 for the underlying true distribution. Let X ∼ σ-sub-
Gaussian.

We want to bound the impact of the contaminated points in our interval. Once we have this bound, the proof follows
just as in the trimmed mean.

Assume α < 1/3 and ε ≤ α. Let J be the interval that contains the shortest 1−α fraction of Sn, I be the interval that
contains G̃ (i.e. the remaining good points after contamination), and T be the interval that contains the points of Sn
after trimming the α largest and smallest fraction of points. Use |I| to denote the length of interval I . It must be that
I ∩J 6= ∅ because otherwise the points in I ∪J would contain 2−2α > 1 fraction of Sn. Let c be a point in I ∩J and
x be a point in J . Recall that trMeanα(Sn) is the trimmed mean of the contaminated sample Sn from above. Then we
have,

|x| ≤ |x− c|+ |c− trMeanα(Sn)|+ |trMeanα(Sn)|
≤ |J |+ |I|+ |trMeanα(Sn)|
≤ 2|I|+ |trMeanα(Sn)|

The second step comes from x and c both being in J and because I ⊇ T . The third step comes from |J | ≤ |I|.

To bound the length of I we have,

|I| ≤ 2 max
x∈Gn

|x| w.p. at least 1− δ2.

Finally, since

|trMeanα(Sn)| ≤ 1

(1− 2α)
(|x̄Gn |+ 4α max

x∈Gn
|x|)



with probability at least 1− δ1 − δ2, we get that for x ∈ J ,

|x| ≤ 4 max
x∈Gn

|x|+ 1
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|x|.

Now that we have a bound on the contaminated points in J , our analysis follows as before,
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where
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Combining we get,
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With probability at least 1− δ1 − δ2. Letting δ1 = 2
t2 and δ2 = 2

t2 , and assuming α ≥ ε, we have,

|sMeanα(Sn)− µ|

≤ σ

1− 2α

√
4

n
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

With probability at least 1− 4
t2 .

A.3 Theorem 3

Theorem 3 (α-trimmed mean crUCB uncontaminated regret). Let K > 1 and T ≥ K − 1. Then with algorithm
4 with the α-trimmed mean, σ-sub-Gaussian reward distributions with σa ≤ σ0, and contamination rate ε ≤ α ≤

∆min

4(∆min+4σ0

√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.



Proof of theorem 3. First will show that E[Na(t)] <∞ for non-optimal actions. Assume Na(t) ≥ 64σ2
0 log(T )
∆2
a

.

µ̂a +
σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)

≤ µa +
σi + σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)
w.p. at least 1− 4

t2

≤ µ∗ −∆a +
2σ0

(1− 2α)

(√
4

Na(t)
log t+ 4α

√
6 log(t)

)
≤ µ∗ −∆a +

∆a

2(1− 2α)
+

2σ04α

(1− 2α)

√
6 log t Na(t) ≥ 64σ2

0 log(T )

∆2
a

≤ µ∗ α ≤ ∆a

4(∆a + 4σ0

√
6 log(t))

≤ µ̂∗ +
σi∗

(1− 2α)

(√
4

N∗(t)
log t+ 4α

√
6 log(t)

)
w.p. at least 1− 4

t2

≤ µ̂∗ +
σ0

(1− 2α)

(√
4

N∗(t)
log t+ 4α

√
6 log(t)

)
.

Now to find E[Na(T )] for non-optimal actions.
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Finally, we can find the regret following the standard analysis,
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A.4 Corollary 1

Corollary 1 (α-trimmed mean crUCB uncontaminated regret bounded rewards). If the rewards are bounded by b, and
have contamination rate ε ≤ α ≤ ∆min

4(∆min+4b) , then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proof of corollary 1. By replacing the part of the concentration bound for the trimmed mean that is based on the
maximum value in the sample with b, we get that,

|trMeanα(Sn)− µ| ≤ σ

(1− 2α)

√
4

n
log(t) +

4α

1− 2α
b

with probability at least 1− 4
t2 .

First will show that E[Na(t)] <∞ for non-optimal actions. Assume Na(t) ≥ 64σ2
0 log(T )
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.
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Results follow with a similar analysis as above.

A.5 Theorem 4

Theorem 4 (α-shorth mean crUCB uncontaminated regret). Let K > 1 and T ≥ K − 1. Then with algorithm
4 with the α-shorth mean, sub-Gaussian reward distributions with σa ≤ σ0, and contamination rate ε ≤ α ≤

∆min

4(∆min+9σ0

√
6 log T )

, we have the uncontaminated regret bound,

R̄(UCB) ≤ 8σ0

√
KT log T +

∑
15∆a.

Proof of theorem 4. The proof for the contamination robust UCB using the α-shorth mean is similar to that of the
trimmed mean.



µ̂a +
σ0

1− 2α

√
4

Na(t)
log t+

(6α− 8α2)σ

(1− 2α)(1− α)

√
6 log t

≤ µ∗ −∆a +
2σ0

1− 2α

√
4

Na(t)
log t+ 2

(6α− 8α2)σ0

(1− 2α)(1− α)

√
log t w.p.a.l 1− 4

t2

≤ µ∗ −∆a +
∆a

2(1− 2α)
+

18ασ0

(1− 2α)

√
6 log t Na(t) ≥ 64σ2

0 log(t)

∆2
a

, α < 1/3

≤ µ∗ α ≤ ∆a

4(∆a + 9σ0

√
6 log t)

≤ µ̂∗ +
σ0

1− 2α

√
4

N∗(t)
log t+

6α− 8α2σ

(1− 2α)(1− α)

√
6 log t

Using the analysis from the trimmed mean regret, we again get,

E[Na(t)] ≤ 64σ2
0 log T

∆a
+
∑

15∆a

Using this value and standard regret analysis yields

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

A.6 Corollary 2

Corollary 2 (α-shorth mean crUCB uncontaminated regret bounded rewards). If the rewards are bounded by b, and
have contamination rate ε ≤ α ≤ ∆min

4(∆min+9b) , then

R̄T ≤ 8σ0

√
KT log(T ) +

∑
15∆a.

Proof of corollary 2. By replacing the part of the concentration bound for the trimmed mean that is based on the
maximum value in the sample with b, we get that,

|sMeanα(Sn)− µ| ≤ σ

1− 2α

√
4

n
log t+

6α− 8α2

(1− 2α)(1− α)
b

With probability at least 1− 4
t2 .

Follow similar analysis as in section A.4 but setting constraint to be,

ε ≤ α ≤ ∆min

4(∆min + 9b)

B Relationship of ε and ∆min

One quick example showing that ε > ∆min can prohibit sublinear regret is to consider the CSB game with two actions
and Bernoulli rewards. If a1 ∼ B(p) and a2 ∼ B(p − ε) then an adversary can choose all the contaminated rewards
for a2 to be 1 making it appear that a2 ∼ B(p). Thus the actions are indistinguishable to the learner.



However, we can still provide a bound for larger values of ε provided one is willing to tolerate a linear term in the
regret. We outline the argument only for the trimmed mean case since the argument for the shorth mean is very similar.
Note that argument for bounding E[Na(T )] in Theorem 3 works under the condition

α ≤ ∆a

4(∆a + 4σ0

√
6 log(T ))

.

Let S be the set of actions satisfying this condition. The arguments in the proof of Theorem 3 show that∑
a>1,a∈S

∆aE[Na(T )] ≤ 8σ0

√
KT log(T ) +

∑
a>1,a∈S

15∆a.

Therefore the bound of Õ(σ0

√
KT ) holds only for the regret due to actions a ∈ S . For any action a /∈ S , we have

∆a <
16ασ0

√
6 log(T )

1− 4α

assuming α < 0.25. The total regret contribution for a /∈ S is therefore

∑
a>1,a/∈S

∆aE[Na(T )] ≤
16ασ0

√
6 log(T )

1− 4α

∑
a>1,a/∈S

E[Na(T )]

≤
16ασ0

√
6 log(T )

1− 4α
T

So the total regret is Õ(
√
KT + α

1−4αT ).
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