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Abstract

Models for automated scoring of content in educational applications continue to demonstrate
improvements in human-machine agreement, but it remains to be demonstrated that the models
achieve gains for the “right” reasons. For providing reliable scoring and feedback, both high
accuracy and construct coverage are crucial. In this work, we provide an in-depth quantitative
and qualitative analysis of automated scoring models for science explanations of middle school
students in an online learning environment that leverages saliency maps to explore the reasons
for individual model score predictions. Our analysis reveals that top-performing models can
arrive at the same predictions for very different reasons, and that current model architectures
have difficulty detecting ideas in student responses beyond keywords.

1. Introduction

Current machine learning models for automated scoring of content in educational applications
have better human-machine agreement than classical machine learning models. While these
larger and more complex scoring models often achieve high accuracy, to what extent are the
models achieving performance improvements for the right reasons?

Recent work has shown gains in human-machine agreement from neural network models,
particularly recurrent neural networks (RNNs) and pre-trained transformer (PT) models.
However, prior research has neglected investigating the reasons for improvement at the response
level.

In this work, we provide an in-depth quantitative and qualitative analysis of automated scoring
models for science explanations of middle school students in an online learning environment that
leverages saliency maps to explore the reasons for individual model score predictions. Saliency
maps provide a visual representation of the importance of each word in a response. They are
computed from a model’s internal parameters when making score predictions.

Through expert analysis of saliency maps, we focus on the extent to which models attribute
importance to words and phrases in student responses that align with item rubrics. We analyze
these trends for evidence about how state-of-the-art models carry out the content scoring task in
this domain and compare trends by model classes (in particular, RNNs and PT models) to
elucidate the differences in top-performing neural models’ predictions.

2. Data



2.1. Background

This work focuses on constructed response (CR) items in formative assessments that are
embedded in science units for middle school students accessed via an online classroom system
(Gerard & Linn, 2016; Linn et al., 2014). The items were scored with a knowledge integration
(KI) rubric (Liu et al., 2016). KI involves a process of building on and strengthening science
understanding by incorporating new ideas and sorting out alternative perspectives using
evidence. The KI rubric rewards students for linking evidence to claims and for adding multiple
evidence-claim links to their explanations (Linn & Eylon, 2011).

For this study, we focus in detail on two formative assessment items. KI scoring rubrics and
example responses for each item are shown in Table 1.

Musical Instruments and the Physics of sound waves (MI). The Musical Instruments and Physics
of Sound Waves unit focuses on developing student ideas about properties of sound waves
(wavelength, frequency, amplitude, and pitch). The CR item we designed aligns with the NGSS
PE MS-PS4-2 performance expectation and assesses students' understanding of the relationship
of pitch and frequency and the characteristics of a sound wave when transmitted through
different materials. Students are prompted to distinguish how the pitch of the sound made by
tapping a full glass of water compares to the pitch made by tapping an empty glass.

Solar Ovens (SO). The Solar Ovens unit asks students to collect evidence and decide whether to
agree or disagree with a claim made by a fictional peer about the functioning of a solar oven.
Students work with an interactive model where they explore how different variables such as the
size and capacity of a solar oven affect the transformation of energy from the sun. The embedded
CR item assesses how students integrate their ideas about energy transfer and transformation
with their interpretations of data about the impact of the solar oven design.

2.2. Data collection

Students from 11 middle schools participated in either a benchmark assessment containing items
across several science topics at the beginning or end of the school year or took a pre- and post-
test. Across schools, students who received free or reduced-price lunch ranged from 1.6% - 89%,
were 50.8% - 97.3% non-white, and were 2.2% - 38.2% English learners.

3. Methods

3.1. Scoring Procedure

For each item, two researchers carried out an iterative process of scoring 10% of the data
independently, discussing disagreements, and refining the KI rubric until Cohen’s Kappa reached
0.8. Using the final rubric, one researcher re-scored the entire dataset.

3.2. Models

Modern recurrent neural network models in natural language processing follow a recipe of pre-
trained “embeddings” (real-valued vectors from models trained on a different NLP task) to
represent words and a model architecture that processes word tokens one at a time. As part of
this processing, words’ representations are contextualized by the words in close proximity. The



resulting sequence of vectors can be “pooled” into a single vector with an “attention” mechanism
that focuses on parts of each vector in the sequence, or by taking the maximum value in one cell
of the vectors across all the vectors in the input.

Pre-trained transformer models leverage word representations that are learned from language
models trained on very large corpora. A language model learns to predict words in the input
corpus that are “masked out” during training. This “self-training” of predicting words in the
input, when coupled with the “transformer” neural network architecture, yields word
representations that are useful across many NLP tasks. Unlike RNNs, transformer networks only
use a form of attention — self-attention -- between word-like representations.

For this investigation, as a recurrent neural network, we employ a single-layer recurrent neural
network model with “maximum pooling” for word vector aggregation. As a pre-trained
transformer model, we use a model based on the Bidirectional Encoder Representations from
Transformers (BERT) model (Devlin, Chang, Lee, & Toutanova, 2018). Both models have
achieved state-of-the-art performance on the ASAP Short Answer Grading dataset (Riordan,
Flor, & Pugh, 2019; Steimel & Riordan, 2020). See the Appendix for details about model
architecture and training.

The models were trained to predict an ordinal score from each response's text. Since knowledge
integration is concerned with the content of the response, the models did not consider
grammatical or usage errors in scoring.

3.3. Evaluation

Human-machine agreement. To evaluate the agreement of human scores and machine scores, we
report Pearson’s correlation, quadratic weighted kappa (QWK), and mean squared error (MSE).
QWK is a measure of agreement that ranges between 0 and 1 and is motivated by accounting for
chance agreement (Fleiss & Cohen, 1973).

Saliency. Our main evaluation focuses on methods for estimating the importance of a word token
for a model’s score prediction. This “saliency” estimation procedure produces a (normalized)
scalar value for each token. Since neural network models are trained by Stochastic Gradient
Descent (SGD), we employ gradient-based saliency estimation methods, in which gradient of the
model’s loss from the error in its score prediction is backpropagated to the model’s input level
(i.e., the word tokens represented as “embeddings”) and aggregated per word token.

We visualize the saliency of each token in each response with “saliency maps” (e.g., Figure 2).
For each dataset, we sampled 100 responses and generated saliency maps for each. We used the
simple gradient method (Simonyan, Vedaldi, & Zisserman (2014) via AllenNLP (Wallace et al.,
2019). The item developers manually analyzed the generated saliency maps for each response
and model.

To explore trends in saliency according to each type of model, we sampled 25 responses from
each of four outcome conditions: both models were correct, one model was correct and the other
incorrect (and vice versa), and both models were incorrect (Table 2). Since PT models often
perform better than RNN models, we are interested in explaining performance gains with trends
from the RNN-,PT+ condition. At the same time, trends in model saliency scores may prove to
derive from model behavior that is shared across all outcome conditions.



To analyze responses from each outcome condition with a common framework, each sampled
response was labeled by an item developer with one or more categories that represented
hypotheses about what tokens the model used to make a prediction, as evidenced by the saliency
scores (Table 3). The set of categories was designed to be general enough to apply to any item’s
data.

4. Results

4.1. Human-machine agreement

The human-machine agreement for each item is displayed in Table 4. The PT model performs
slightly better than the RNN model on both items.

4.2. Distribution of outcome conditions

Table 5 and Table 6 show the number and percentage of cases for each outcome condition for
each item. First, the percentage of cases of RNN+,PT- and RNN-,PT+ are very similar within
each item’s results, underlining the competitive performance of the model types. Second, the
percentage of RNN-,PT- is more than double the cases where one model was incorrect (i.e.,
RNN+,PT- and RNN-,PT+), and this percentage was similar across items. Figure 1 presents
these trends visually. These results indicate a moderate level of similarity of patterns of
predictions: the model types share many more cases where they both make incorrect predictions
than cases where individual model types are incorrect.

4.3. Saliency

Comparing the RNN and PT models by saliency label across all outcome conditions (Table 7),
some trends emerged on the MI item: the RNN missed links between keywords somewhat more
than the PT model (35 vs. 28), and the RNN had slightly higher numbers of cases of non-
keyword is salient and did not consider the context of keywords. On the SO item, the differences
between model types across the saliency labels was smaller and hence the trends more uncertain.

Table 8 provides the detailed distribution of saliency labels by model and outcome condition. We
highlight several trends. First, the number of examples of Captured the most important keywords
is similar across model types for the MI item. For the SO item, when models were wrong (i.e.
outcome type = RNN+,PT- and model = PT; and outcome type = RNN-,PT+ and model = RNN),
the models were less likely to identify the important keywords (outcome type = RNN+,PT-: PT
17, RNN 24; outcome type = RNN- ,PT+: PT 24, RNN 18). Second, on the MI item, marking
non-keywords as salient was an issue when models were wrong (outcome type = RNN+,PT-: PT
9, RNN 14; outcome type = RNN-,PT+: PT 3, RNN 10). This was not the case on the SO item.
Third, not considering the context of keywords was a particular problem when both models were
wrong (item = MI, outcome type = RNN-,PT-: PT 9, RNN 12; model = SO, outcome type =
RNN- PT-: PT 14, RNN 12). Moreover, on the SO item in particular, when one model was
wrong, it was far more likely to not have considered context (outcome type = RNN+,PT-: PT 12,
RNN 1; outcome type = RNN-,PT+: PT 2, RNN 11).

We carried out a detailed qualitative analysis of model behavior based on the saliency labels.
First, we examined the trends in each model’s errors to discern patterns that might explain the PT
model’s advantage. Next, we broadened our analysis to consider model behavior in all four



outcome conditions (i.e., both when the models were correct as well as incorrect) to look for
differences in saliency that spanned all types of responses. Due to space, we focus on the
Musical Instruments (MI) item.

Figure 2 shows several examples of saliency maps for RNN and PT model errors. One noticeable
trend for RNN errors was attaching saliency to high frequency or function words. On response
230094, the model marked an, would, can, and depending, and on 188198, the tokens and and is
were salient. The trends for PT model errors were more subtle and heterogeneous. The PT model
sometimes registered more general words (non-keywords) as salient, but typically avoided high
frequency function words. The PT model sometimes marked discourse connectives such as
because (response 190674).

Across outcome conditions, the patterns of salience are often substantially different between
RNN models and PT models. These different patterns, however, can still result in the same
model predictions (Figure 3). On one hand, the models can make the same correct predictions
but with different saliency profiles. On response 191704, the RNN and PT models agreed on the
salience of lower, but differed greatly in the importance of the key phrases full glass and more
mass. On response 190386, the models differed even more, with different levels of salience
attached to most words. At the same time, the models can make the same incorrect predictions
with different saliency profiles. Response 148006 is a simple example: the RNN emphasized
lower, while the PT emphasized glass -- but both models made the same significant over-
prediction of the score.

From our analysis, the different patterns in saliency across models do not seem to indicate
greatly differing model capabilities. First, the model errors attributable to a lack of consideration
of word context provide examples of the models identifying the right keywords but the wrong
science, which in turn leads to over-prediction of scores. Response 190019 in Figure 4 is an
example. In this item, the phrase waves flow quicker is correct when referring to the full glass,
but not the empty glass, which this student refers to. Moreover, the response indicates the
inaccurate idea that sound travels from one side of the glass to the other if there is nothing (i.e.,
no water) blocking it. The models seem to accumulate the simple key phrases such as time, filled
glass, empty glass, and waves flow quicker to predict a higher score than the actual ideas in the
response warrant.

Second, the models can identify the right keywords but then not associate those keywords with
the correct score. Figure 5 shows an example of both models under-predicting the score of a
response. In this case, reverberate only appears in the training data once and is associated with a
low score (2) (because that response had other deficiencies). As a result, the models likely
simply associated reverberate with incorrectness and used it as a “short cut” to predicting a
lower score than was actually warranted.

5. Conclusion

This work reports on a quantitative and qualitative investigation of how state-of-the-art short
answer scoring models make predictions by analyzing the saliency that the models attribute to
parts of student responses in the prediction process. Our analysis shows that different classes of
state-of-the-art machine learning models for short answer scoring can produce substantially
different “saliency profiles” while often predicting the same scores for the same student



responses. While there is some indication that PT models are better able to avoid spurious
correlations of high frequency words with scores, overall the models do not seem to differ
greatly in their “basic intelligence” — for example, learning statistical correlations between
individual words and scores, rather than between ideas and scores. These results suggest the need
for strategies to build models with natural language understanding capabilities that better
represent the constructs targeted by short answer science assessment items.
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Appendix

RNN model. GloVe 100 dimension pre-trained embeddings were used to embed word tokens and
fine-tuned during training. Out-of-vocabulary tokens were mapped to a randomly initialized
UNK embedding. The supervision of the network was response scores scaled to [0, 1] prior to
training. For evaluation, the scaled scores were converted back to their original range. The
recurrent neural network (RNN) models used Gated Recurrent Units in 1 layer with a 250-
dimension hidden state. The training objective was minimization of a mean squared error loss
function. The RNN was optimized with RMSProp with rho of 0.9, learning rate 0.001, batch size
32, and gradient clipping (10.0). An exponential moving average was used to smooth the model's
weights across training epochs (decay rate = 0.999). In the hyperparameter tuning phase, models
were trained for 50 epochs.

PT model. The pre-trained transformer (PT) model used the “bert-base-uncased” pre-trained
instance (Wolf et al., 2019). The model was optimized with Adam, a learning rate tuned from
{2e-5, 3e-5, 5e-5}, batch size 16, and an exponential moving average of the model weights.
Hyperparameters were tuned for 20 epochs.

Model training. Models were trained with 10-fold cross validation with train/validation/test
(80/10/10) splits. Predictions were pooled (concatenated) across folds and used for evaluation.
For hyperparameter tuning, we trained on each train split and evaluated performance on the
validation split, keeping the best predictions across epochs and the epoch on which that
performance was observed. Specifically, predictions were pooled from all folds on the validation
sets, performance was evaluated, and the best-performing configuration of hyperparameters was
selected. For final model training, models were trained on combined train and validation splits
with 10-fold cross-validation to the median best epoch across folds from the hyperparameter
tuning phase. Final performance was evaluated on the pooled predictions from the test splits.
This training and evaluation procedure aims to increase the stability of estimates of performance
during both the tuning and final testing phases and to use more data for training and evaluating
the final models in order to provide better estimates of model performance.



Table 1. Knowledge integration (KI) scoring rubrics and example responses.

Score  Description
Solar Ovens Musical Instruments
| Off-task David's claim is ... because ...idk
it is just how it works
2 On-task but lacks he is correct because when you '
normative ideas look on how fast it heats up mostly It will always stay the same because
all the heat energy was there. the spoon is the same
3 Partial link - normative ~ David's claim is wrong because the o '
ideas without any valid ~ wide short was a bigger target for ~ The pitch is l.owered by the water in
links between the sunrays to hit so more heat got  the glass. This means that the glass
normative ideas into the box. full of water will have a lower pitch
than the glass that is empty.
4 Full link - one valid link David's claim is was completely . .
between normative wrong because the skinny long box They will be different becapse When
ideas opening was too small not allowing you had a more dense medium like
sun hght to go inside. That why its water into a cup instead of less dense
better to use the wide box because ~ air the sound gets caught more
it has more of a bigger window for betweer} the particles resulting in a
the sun light to in. lower pitch.
5 Complex link - multiple  David's claim is incorrect because

valid links between
normative ideas

based on the information I

collected form the computer

model, the short and wide

increased its temperature. The
movement of energy causes one
solar oven to heat up faster than the
other because the wide opening
gap lets the infrared radiation, in

the inside, becomes heat.

I think that the glass full of water
would have a lower pitch because the
cup would have more mass which
would make the cup harder to vibrate
which makes the sound so it would
have a lower pitch. The sound waves
would also have a longer wavelength
and would have a lower frequency.




Table 2: Outcome distribution.

RNN correct | PT correct
RNN+,PT+ + +
RNN+,PT- + -
RNN-,PT+ - +
RNN-,PT- - -

Table 3: Labels for model saliency behavior.

Captured the most important keywords

Key words that indicate correct relationships,
i.e., accurate understanding, are marked as
salient.

Missed link between keywords

The model highlights key words but does not
attach salience some key words that together
with the ones highlighted lead to a score
decision.

Non-keyword is salient

Words that are not indicative for accurate
understanding are salient.

Did not consider context of keywords

Key words that usually indicate accurate
understanding were recognized but the
context (presence of other key words) are
missed. In the context of other key words, the
identified key words do not indicate accurate
understanding.

Table 4. Human-machine agreement.

Item Model Pearson QWK MSE
Musical RNN 0.7989 0.7642 0.3058
Instruments PT 0.8134 0.7733 0.2956
Solar Ovens RNN 0.7612 0.7116 0.2619
PT 0.7691 0.7127 0.2608




Table 5: Musical Instruments outcome distribution.

PT correct PT incorrect
RNN correct 762 (0.583) 138 (0.106)
RNN incorrect 132 (0.101) 274 (0.210)
Table 6: Solar Ovens outcome distribution.
PT correct PT incorrect
RNN correct 1097 (0.630) 135 (0.078)
RNN incorrect 131 (0.075) 377 (0.217)

Figure 1: Outcome distribution excluding both models correct, normalized.

HEE RNN-, PT+
N RNN-, PT-
EmE RNN+, PT-




Table 7: Distribution of labels for saliency behavior by item.

Captured  Missed Did 1.1ot
. Non- consider
Model the most link
Item . keyword  context
type important  between . .
keywords  keywords salient  of
y y keywords
MI PT 73 28 32 16
RNN 73 35 38 21
SO PT 79 10 45 29
RNN 83 8 42 25

Table 8: Distribution of labels for saliency behavior by item, model, and outcome condition.

Captured Missed Non- Did 1.1ot
Item Outc.()fne Model Fhe most link keyword consider
condition type important between is salient context of
keywords  keywords keywords
MI RNN+PT+ PT 19 10 12 2
RNN+PT+ RNN 20 12 4 0
RNN+PT- PT 19 6 4
RNN+PT- RNN 19 9 14 6
RNN-PT+ PT 23 9 3 1
RNN-PT+ RNN 21 9 10 3
RNN-PT- PT 12 3 8 9
RNN-PT- RNN 13 5 10 12
SO RNN+PT+  PT 22 1 5 1
RNN+PT+ RNN 25 0 0 1
RNN+PT- PT 17 3 16 12
RNN+PT- RNN 24 0 14 1
RNN-PT+ PT 24 0 9 2
RNN-PT+ RNN 18 5 11 11
RNN-PT- PT 16 6 15 14
RNN-PT- RNN 16 3 17 12



Figure 2. Examples of errors from attributing saliency to non-keywords for (a) RNN model (b)
PT model.

230094 RNN score=3 prediction=2

An empty glass would make one sound but a full glass can make different
sound depending on how full the glass is like for example the glass can
make different pitches .

188198 RNNN score=3 prediction=2

it ’s different because one is full and the other is empty .

(a)
190674 PT score=2 prediction=1
[CLS] because there is nothing to block the sound wave for the empty
cup of water it i ’ 1l go faster [SEP]
233477 PT score=3 prediction=3
[CLS] i chose this answer because the empty glass will have a higher
pitch sound because the glass is empty . [SEP]

(b)

Figure 3. Different patterns of salience result in the same model predictions.

191704

RNN score=4 prediction=4

If the full glass has more mass in it then the pitch will be lower .

PT score=4 prediction=4

[CLS] if the full glass has more mass in it then the pitch will be lower .
[SEP]

(a)
190386
RNN score=3 prediction=3
It is different because the water will slow down the sounds . The more
full will make the sound lower .
PT score=3 prediction=3
[CLS] it is different because the water will slow down the sounds . the
more full will make the sound lower . [SEP]

(b)
148006
RNN score=1 prediction=3
The glass is lower .
PT score=1 prediction=3
[CLS] the glass is lower . [SEP]

(c)



Figure 4. Both model types showed evidence of a lack of consideration of the context of
keywords and phrases.

190019

RNN score=2 prediction=3

This is because the filled glass will take a longer time to travel to the
other side than the empty glass . This is because waves flow quicker
when there is nothing in their way .

PT score=2 prediction=3

[CLS] this is because the filled glass will take a longer time to travel to
the other side than the empty glass . this is because waves flow quicker
when there is nothing in their way . [SEP]

Figure 5. Both model types can associate correct keywords with an incorrect score. reverberate
is associated with a low score in a single response in the training data, which likely leads the
models to under-predict the score of the response.

254470
RNN score=4 prediction=3
the empty glass is able to reverberate more and make a high pitch noise

PT score=4 prediction=2
[CLS] the empty glass is able to rev ##er ##ber ##tate more and
make a high pitch noise . [SEP]



