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Abstract— Research in human-robot interaction has focused
on the relationship between a single robot and a single human
participant. Only limited research has addressed the contrasting
dynamic when humans interact with a group of robots. This dy-
namic adds additional human-robot interaction considerations,
such as the level of entitativity, which is the identification of a
group as a single entity as opposed to a collection of individuals.
This paper proposes that emotional music prosody can play
a key role in improving the interaction between humans and
groups of robots by modifying the level of entitativity. Musical
prosody refers to the use of pitch, rhythm and timbre features
derived from language, but used without semantic meaning.

We conducted a between-group experiment, presenting to
subjects a group of industrial robotic arms performing a task
either without sound, with the same emotional musical prosody
voice for each robot, or with contrasting voices for different
robots. We were able to show with significant results that the
use of musical prosody improved likeability and trust over
soundless gestures for groups of robots. We also demonstrate
that, through subtle variations, prosody is able to alter the
level of entitativity perceived by external observers. Finally, our
results indicate a complex relationship between entitativity and
common HRI metrics with higher levels of entitativity leading
to improved performance, contradicting past literature.

I. INTRODUCTION

The vast majority of research in Human-Robot Interaction
(HRI), focuses on interactions between a single human and
single robot participant. Studies that have been conducted
on group interaction show differences in the perception of
a robot in a group, compared to individually. These include
willingness to interact as well as levels of fear [1]. These
issues are often exaggerated for non-anthropomorphic robots
in groups, with results indicating that such robots are more
threatening and less likely to encourage human engagement
[2].

A key issue with groups of robots is the amount of
entitativity perceived by human collaborators. Entitativity
refers to the level in which a group is seen as a single
entity, such as multiple arms being viewed as a single robot,
compared to individual agents. Understanding entitativity
in human interaction is considered crucial for developing
fundamental understandings of human group dynamics [3]. It
has been demonstrated that the perception of higher levels of
entitativity will create a negative image of the group with less
chance of external interaction [4]. For robots, entitativity has
only recently entered consideration, with some findings link-
ing higher entitativity to a reduced perception of friendliness
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Fig. 1. uFactory’s xArm: a 7 degree of freedom industrial arm dropping
rings in a box

and comfort while increasing ratings for “unnervingness” and
“creepiness” [5].

In this work, we show that emotional musical prosody
can serve multiple purposes in group robot interaction. Emo-
tional musical prosody involves leveraging the non-linguistic
features of speech, such as pitch, rhythm and timbre as a
form of communication. We contend that emotional musical
prosody is effective because the portrayal of an emotional
agent is crucial for collaboration and creating a believable
computer agent [6]. Emotional prosody can also help bypass
the uncanny valley - where a robot becomes unappealing due
to attempting to appear human-like [7] - by communicating
in a mechanomorphic manner rather than trying to replicate
human speech. Musical prosody has been shown to be
effective in single robot interaction over gesture and text-
to-speech, by increasing the trust for social robots [8] and
likeability for industrial arms [9].

We believe these benefits can be extended from individ-
ual robots to groups of robots, improving key metrics for
industrial arms. We also contend that as emotional musical
prosody can be easily modified with timbre shifts, it can
support reducing entitativity. Such changes to the sound of
the prosody can imply variation between robots in a group
setting, allowing an easy format to reduce entitativity.

We conducted a between-groups experiment, comparing
three industrial arms performing a collaborative task with
a human participant. Participants were shown either the
arms without prosody, each arm performing with the same
prosody, or the arms performing with variations of the
same prosody. We found significant improvements for trust



and likeability for the prosody robots, with no variation
for participants willingness to interact, confidence with the
system or perceived intelligence. Arms performance with
different versions of prosody had the lowest rating for
entitativity, while using the same prosody achieved higher
ratings for entitativity. We also examined the relationship
between entitativity ratings and each HRI metric such as trust
and likeability, and found that higher levels of entitativity
lead to increased ratings across all metrics, contradicting past
findings [2].

II. BACKGROUND

Robotic pose, gestures, and facial expressions have been
used to communicate mood [10], [11], emotional state[12],
and intent [13]. Ende et al. studied the recognition of typical
human gestures performed by robots. Communicative ges-
tures such as “stop” and “move over here” were studied and
compared between an industrial arm and a humanoid robot.
Humans found it more difficult to recognize the nonverbal
cues of industrialized arms over humanoid structures [13].
Researchers have also used gestures to improve likeability
[14], perception of animacy [15], and trust between humans
and robots [16].

While gestural methods of communication have been
successful at reducing stress and improving perceptions
of robots, they cannot support subtle and non distracting
communications [17]. Using gestures is the most common
nonverbal communication method for humans [18], however
gesture use in industrial arms can overlap with their primary
functions and safety tasks [19]. In addition, these modes of
interaction have been difficult to upscale to larger groups of
robots, partly because as robots increase in quantity, humans
become more intimidated and have a negative response
towards the robots [20].

One approach to provide non distracting communication
for robots is using sound [14], [21]. More specifically,
it has been shown that non vocal prosody [22] can help
communicate important background information to humans.
In our work, we developed a novel music-based approach for
robotic prosody [8], [9] which has improved the perception
of animacy, trust, and likeability and changed the overall
ratings for key robotic tasks [23], [24]. As industrial arms are
integrated more into society, the quantity of arms in groups
will increase [25], introducing a novel research domain of
robotic entitativity.

Entitativity measures how a group is perceived as a coher-
ent unit rather than separate individuals [26]. In psychology,
it is used as an important measurement for group dynamics
and effectiveness. Castano theorizes that four main factors
impact a group entitativity: common fate, similarity, salience,
and boundedness [27]. In human groups, people can relate
more to high entitativity groups than low entitativity groups
[28], [4]. Hamilton suggests that outsiders are more likely
to engage in integrative processing of groups with high
entitativity [29]. Increased entitativity will also increase the
perceived unification of the group. In human groups, high

entitativity requires increased coordination and focus on
unification to accomplish a task [29].

While human entitativity has been widely researched, there
have been limited studies on the perception of entitativity
in robotic groups. Fraune found that increasing the quantity
of robots would create more negative emotions towards the
robots. A higher quantity would increase anxiety and fear
levels of humans [30], [2]. Abrams showed synchronicity
in robot movements can vary entitativity and appear scary
to an observer. However, robots that appear unique would
leave a warmer impression, and increase the desire to work
with humans [20]. Saunderson found that a large amount of
robots in groups can negatively impact a human’s impression
and trust [10]. We believe that the work described in this
paper on integrating music driven emotional prosody into
robotic groups can address and mitigate this negative effect
of robotic entitativity.

III. METHOD

We investigate three research questions to study the inter-
section of robots in groups, entitativity and musical prosody:

RQ 1 Can emotional musical prosody improve Likeability,
Perceived Intelligence, Trust, Confidence and Willing-
ness to Interact, for a group of robots?

RQ 2 Can variations in emotional musical prosody lower the
level of entitativity for a group of robots?

RQ 3 How does the level of entitativity correlate with Like-
ability, Perceived Intelligence, Trust, Confidence and
Willingness to interact?

Research question 1 focuses on understanding the rela-
tionship between common HRI metrics and groups of robots.
For this question, we are only interested in comparing the
same prosodic voice for each robot against gestures, with the
goal of replicating improvements shown in past studies with
individual robots. The metrics were chosen due to past use in
both group studies [2], [1] and studies with individual robots
and prosody [8], [9]. Our hypothesis is that each metric will
be improved by prosody with a significant result, replicating
the results that have occurred for individual robots.

Research question 2 aims to compare the level of enti-
tativity between three groups, one with gestures alone, one
with a single voice and one with variations on prosody. Our
hypothesis is that the single voice and gesture will perform
similarly, while the multiple voices will achieve a lower level
of entitativity, implying the appearance of multiple agents in
the group.

Research question 3 is an exploratory question, designed
to identify the relationship between entitativity and each
metrics. We believe that higher levels of entitativity will
correlate with reduced metrics as supported by research in
human psychology and past research in HRI.

A. Measures
For each metric we used either an established measure or

a combination of existing measures. To measure likeability
and perceived intelligence we used a subset of the widely
used Godspeed survey [31]. Participants were asked to rate



Fig. 2. Three xArms used for the stimuli. Each xArm was tasked to
transport a ring to a box behind them

their impression of likeability and perceived intelligence for
five questions on a scale of 1-5. We measured willingness to
interact and confidence to interact each with three questions
on a Likert scale, combined from past surveys [32], [30],
[2]. To measure trust we used Schaefer’s 14-point scale with
participants rating each question from 0-100% to give a total
trust percentage. To the common survey answers we added a
“Not Applicable” option, as suggested by Chita-Tegmark et
al. [33] to allow participants to avoid responding to aspects
of trust they feel are not applicable to the industrial arms.
We collected participant’s age, identified gender and country
of origin.

There is no standard accepted measure of entitativity,
with HRI studies commonly combining multiple metrics
from social studies, psychology and other HRI papers [34],
[30]. Common questions range from defining entitativity for
the participants and then asking directly for a rating [35],
to attempts to combine other metrics such as friendliness,
creepiness, comfort and unnerving into a rating [5]. We
chose to measure entitativity using the survey proposed and
validated by Blanchard et al. [3] which was shown to be
effective for online and in person analysis. This measure
consisted of three questions on a 7-point Likert scale.

B. Stimuli

We used a two minute video as our stimuli, overdubbed
with different audio for each group. The video showed three
robotic arms (shown in Figure 2) interacting with a human
user. The human user placed a ring on each arm, which the
robot then placed in a box behind itself. Each robot used the
same gestures to place the rings in the box. The robot used
in the study was an xArm, a 7 degree of freedom industrial
arm made by uFactory.

We created three versions of the video with different audio,
starting with a gesture only version which did not have
any added audio. To add audio for other two videos we
used prosody phrases from an existing dataset [36]. From
the dataset we chose the emotions tagged as admiration,
contentment, and compassion, each low arousal high valence
emotions. We chose these emotions as we believed they best

matched the interaction environment in the study, and using
low valence emotions, such as sadness or anger would not
be appropriate for this particular interaction.

The second version of the video used a matching voice
(referred henceforth as single voice) for each robot. For
each interaction the single voice used a different prosodic
phrase, but had matching timbre, essentially sounding like
the same voice singing a different phrase each time. For the
third version of the video we used three different versions of
the voice from the dataset. We also added variations to each
voice through pitch shifting, a formant filter and modulation.
This had the effect of sounding like three different voices,
one for each robot. All three versions maintained the room
sound and sounds of the robots movements. All stimuli can
be viewed online. 1

C. Participants

We recruited 60 participants on Prolific and 108 partici-
pants on Amazon Mechanical Turk (MTurk) to complete the
study. Each participant was paid $2.00. We selected only
MTurk Masters to participate and had no restrictions on
prolific. We used multiple attention checks to verify each
participant, and disqualified any data that failed any check.
Our first attention check consisted of a spoken phrase at the
end of the video requesting participants to type a random
word on the next screen. We also had a question in the trust
survey requiring participants to choose 10%. In addition to
direct questions, we tracked the time spent on each question
and the video, with any participant who did not watch the
entire video removed. Finally, we removed two participants
who completed the survey a second time, we assume after
realizing they missed the audio from the attention check and
restarting. From Prolific 6 participants failed an attention
check, while 9 on MTurk failed an attention check, leaving
us with a total of 153 participants.

In total we had 49 participants in the gesture only group,
48 in single prosody and 56 in the multiple audio. Partici-
pants place of origin was spread across 22 countries, with
the majority from United States of America (n=71), India
(n=22), Poland (n=14), Portugal (n=11), Mexico (n=8) with
the remaining countries each have 5 or less participants.
We found no significant variation in responses from each
country, with the countries with less than 5 each fitting within
the range of majority of responses. We had 62 participants
identify as female and 90 as male, also with no significant
variation between groups. The mean age of participants was
37 with a standard deviation of 12 and ranging from 18 to
75.

D. Protocol

The survey was conducted online using Qualtrics. Par-
ticipants first completed a consent form and entered their
MTurk or Prolific ID to indicate consent. They were then
given instructions to watch the stimuli video with headphones
connected. Participants were randomly assigned to one of the

1www.richardsavery.com/prosodyentatitivitystudy



Fig. 3. Box Plot of Likeability, Intelligence, Willingness and Confidence

three groups of the study. Following the video participants
first entered the text for the attention check and then com-
pleted the previously described measures. The measures were
randomly ordered for each participant, with the sub-questions
(such as each component of the trust survey) also randomly
ordered for each participants. After completing each measure
participants entered their demographic details and had a open
text field with a prompt asking for any feedback on the robot
system or experiment in general.

IV. RESULTS

A. RQ 1: HRI Metrics
1) Likeability and Perceived Intelligence: The Cronbach’s

Alpha results for Likeability and Perceived Intelligence were
0.869 and 0.866 respectively, indicating high internal reliabil-
ity for both measures. Perceived Intelligence had the results
for single voice (mean = 3.324, std = 0.716, effect size =
0.050), multiple voices (mean = 3.271, std = 0.880, effect
size = 0.230) and the gestures alone (mean = 3.527, std =
0.764, effect size = 0.240), with effect size calculated using
Cohen’s D. We ran a one-way ANOVA with the result p
> 0.05, indicating the result was not significant. Perceived
intelligence did not have a significant different between
groups with each category having similar means and standard
deviations, which did not support our hypothesis.

Likeability had the results for single voice (mean = 3.931,
std = 0.600, effect size = 0.246), multiple voices (mean =
3.975, std = 0.800, effect size = 0.285) and the gestures alone
(mean = 3.553, std = 0.736, effect size = 0.545), with effect
size calculated using Cohen’s D. We ran a one-way ANOVA
with the result p = 0.007, indicating the result was significant.
Likeability was improved significantly for both versions of
prosody over the gestures alone, supporting our hypothesis.
Figure 3 shows a box plot of the results for likeability and
perceived intelligence. Perceived intelligence did not have
a significant different between groups with each category
having similar means and standard deviations, which did not
support our hypothesis.

2) Confidence and Willingness: Confidence had the re-
sults for single voice (mean = 4.142, std = 1.607, effect
size = 0.128), multiple voices (mean = 4.285, std = 1.637,

effect size = 0.003) and the gestures alone (mean = 4.42,
std = 1.363, effect size = 0.151), with effect size calculated
using Cohen’s D. We ran a one-way ANOVA with the
result p > 0.05, indicating the result was not significant.
Willingness had the results for single voice (mean = 5.183,
std = 1.409, effect size = 0.158), multiple voices (mean =
4.875, std = 1.663, effect size = 0.150) and the gestures
alone (mean = 5.064, std = 1.699, effect size = 0.026), with
effect size calculated using Cohen’s D. We ran a one-way
ANOVA with the result p > 0.05, indicating the result was
not significant. Neither confidence or willingness showed a
significant result, indicating that prosody did not improve
either of these metrics. Figure 3 shows a box plot of these
results.

Fig. 4. Box Plot of Trust Ratings

3) Trust: To analyze our trust results we first calculated
Cronbach’s alpha which gave the result of 0.859, indicating
high internal reliability. For single voice the results were
(mean = 0.734, std = 0.146, effect size = 0.376), multiple
voices (mean = 0.710, std = 0.166, effect size = 0.125) and
the gestures alone (mean = 0.642, std = 0.710, effect size
= 0.592), with effect size calculated using Cohen’s D. We
ran a one-way ANOVA with the result p = 0.009, indicating
the result was significant. This supported our hypothesis that
prosody would increase trust over gesture. Figure 4 shows
the results as a box plot.

B. RQ 2: Entitativity and Prosody

For the three entitativity questions we first calculated
Cronbach’s Alpha, which gave a result of 0.88, indicating
high internal reliability across the questions. For gestures
alone the results were (mean = 4.241, std = 1.699), the single
voice (mean = 4.490, std = 1.667) and multiple robots (mean
= 3.601, std = 1.706). A one-way ANOVA gave a p-value of
0.022 indicating the results was significant. Additionally the
multiple voices had an effect size calculated with Cohen’s D
of 0.45, indicating a medium effect size. This supported our
hypothesis that subtle variations in voice would increase the
entitativity of the group. Figure 5 shows a box plot of the
results.



Fig. 5. Box Plot of Entitativity Ratings

C. RQ 3: Entitativity and HRI Metrics
For research question 3 we fit a linear regression model

for each metric with entitativity. Table I shows the slope, in-
tercept, r, p and error for each metric. Each metric tested had
a positive slope, with higher levels of entitativity correlating
with higher ratings. This did not support our hypothesis, as
we had expected the opposite to occur across every metric.

Slope Intercept r p Error
Willingness 0.294 3.64 0.286 p <.001 0.081
Intelligence 0.138 2.79 0.29 p <.001 0.037

Trust 0.025 0.567 0.31 p <.001 0.006
Likeability 0.075 3.313 0.162 0.046 0.037
Confidence 0.308 2.888 0.327 p <.001 0.073

TABLE I
LINEAR REGRESSION STATISTICS

V. DISCUSSION

A. RQ 1: HRI Metrics
We found that embedding prosodic sound to accompany

co-bot arms gestures improved human’s trust and likeability
for these robots with significant results. Since in previous
work, prosody improved trust and likeability in individual
robots, it was expected that the improvements would carry
across to groups. These metrics supports one of the core
principles behind the use of emotional prosody in robots,
namely that by increasing a robot’s presence as an engaging
emotional agent, human’s will trust it and like to interact
with it more. Since these results occurred for both versions of
prosody, we propose that these metrics are relatively robust
to variations in timbre and prosody.

In our previous work, embedding prosody in robotic
actions has been shown to increase perceived intelligence for
individual robots. However in those studies the interactions
were more social in nature [9], [8]. In our current experiment,
where the robot was expected to perform a task ( moving
rings and placing them in a box) we propose that the
successful performance by the robot was more influential
on users’ perception of its intelligence than external factors
such as prosody.

Our initial hypothesis that willingness and confidence
would be improved with prosody was not supported. In past
work the effect of emotional prosody has not yet been used
on individual robots for these two factors. It is not clear from
this study whether prosody can influence these metrics which
requires future study.

B. RQ 2: Entitativity and Prosody

Our results for research question 2 indicated that multiple
voices did lower entitativity, increasing the perception of
the group of robots as individual agents. This increase was
achieved with only subtle variations, that could be easily
achieved in real-time and scaled to many robots. We did not
predict that having a single voice would increase entitativity
however, as believed the gestures alone would appear as a
group and single prosody would maintain this level. This
reflected our original belief that entitativity would be rela-
tively insusceptible to being increased amongst robots that
already look and move in an identical manner. This finding
has future implications for the possibility of audio design to
not only reduce entitativity as per our original goal, but also
the possibility of raising the level of entitativity.

C. RQ 3: Entitativity and HRI Metrics

A key finding in this study was the relation between
entitativity and common HRI metrics. Our findings differ
from those of related work on robots and groups [2]. This
correlation between higher entitativity and each metric oc-
curred across all groups independently, with gestures, single
voice and multiple voice all showing the same relationship.
We believe extensive future research should be undertaken
to establish more completely the relationship between en-
titativity and groups of robots. We suggest that a possible
explanation may be that with each robot performing the same
task, participants may generally prefer interacting with the
robot when perceived as a single agent, rather than having
to engage with multiple agents. Multiple robots performing
a similar task could give a perception that the robots are
uniting towards a common goal. This would give participants
a more positive impression that the robots are likeable
and cooperative. This explanation would match Hamilton’s
studies on human groups that outsiders are more likely to
engage with groups that have a higher entitativity [29].

D. Sound for Functionality

The majority of subjects text responses ranged from one
to four sentences, and generally did not show much vari-
ation between groups. One stand out comment was that 8
participants from both prosody groups commented that they
were not sure what the purpose of the sounds was. One
participant noted: “I thought the singing was interesting but
I don’t see how that relates to the task success of the robot”.
Despite recognizing that the audio was not functional in
the clip, this participant’s ratings were well above the mean
for each category, and we saw no reduction in ratings for
any participant who noted there was no functional purpose.
Nevertheless, we believe there is significant possibilities in



Fig. 6. Linear Regression comparing entitativity with HRI Metrics

considering the different applications of functional compared
to non-functional or auxiliary sound and understanding how
that impacts individual as well as groups of robots.

E. Limitations
This study was performed online using pre-recorded

videos instead of live interaction or video watching in person.
We believe that for this experiment this was an acceptable
experimental design as ultimately our analysis focused on
external viewing and analyzing a group of robots. Multiple
past papers have shown no significant variation in results
when a participant is watching a robot on video compared
to in person [37], [38]. We also believe the use of MTurk
and Prolific has significant advantages over in person studies,
allowing us a far larger and more diverse participant pool
than possible in person. It has also been shown that compared
to university pools, MTurk participants are more careful [39].
When combined with our multiple point attention check we
are confident that our results would be replicated in person.

We chose to use an industrial arm as they are commonly
used in group manufacturing settings. In future studies we
are interested in researching how the impact of prosody on
robotic groups varies between platforms such as social or
humanoid robots. Likewise, we only compared prosody to
no audio, and in the future expect to compare different audio
conditions.

Like many HRI applications this experiment only occurred
over a small time frame and did not consider long-term impli-
cations of the system [40]. The use of emotional prosody has
not yet been studied in long-term applications, but may have
different use cases and would require additional changes in
the implementation. One participant commented on the time

scale, describing: “I really like it in the short term but I feel
like I’d get tired of it if I had to listen all day long”. In
the future we are interested in applying the system to longer
form interactions in person and considering how prosody can
be adjusted for use not just in a single session.

VI. CONCLUSION

In this paper we have shown with significant results that
embedding emotional driven prosodic sound in robotic group
actions improves likeability of and trust in the robots. We
also showed that variations in prosody can lead to lower lev-
els of entitativity, however a single voice can raise the level
of perceived entitativity. Our results analyzing the correlation
between entitativity and other HRI metrics suggest a number
of directions for future research to understand the wider
impact entitativity has on collaborative robots. More broadly,
we believe this work shows the extensive possibility of audio
in robotic systems to improve human-robot interaction.
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