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ABSTRACT

The task of classifying emotions within a musical track
has received widespread attention within the Music Infor-
mation Retrieval (MIR) community. Music emotion recog-
nition has traditionally relied on the use of acoustic fea-
tures, verbal features, and metadata-based filtering. The
role of musical prosody remains under-explored despite
several studies demonstrating a strong connection between
prosody and emotion. In this study, we restrict the input
of traditional machine learning algorithms to the features
of musical prosody. Furthermore, our proposed approach
builds upon the prior by classifying emotions under an ex-
panded emotional taxonomy, using the Geneva Wheel of
Emotion. We utilize a methodology for individual data col-
lection from vocalists, and personal ground truth labeling
by the artist themselves. We found that traditional machine
learning algorithms when limited to the features of musi-
cal prosody (1) achieve high accuracies for a single singer,
(2) maintain high accuracy when the dataset is expanded
to multiple singers, and (3) achieve high accuracies when
trained on a reduced subset of the total features.

1. INTRODUCTION

The work presented in this paper is situated in the inter-
section between research on emotion for robotics [1] and
emotional classification research in Music Information Re-
trieval [2]. In particular, we focus on the under-explored
domain of emotion-driven prosody for human-robot inter-
action [3]. Verbal prosody is concerned with elements
of speech that are not individual phonetic segments but
rather pertain to linguistic functions such as intonation,
tone, stress, and rhythm. Similarly, musical prosody is de-
fined as the performer’s manipulation of music for certain
expressive and coordinating functions [4]. It has been hy-
pothesized that these expressive functions serve to commu-
nicate emotion [5].

In this paper, we explore the relationship between musi-
cal prosody and emotion through three research questions.
First, are traditional machine learning algorithms able to
accurately classify an individual’s emotions when trained
on only the features of musical prosody? Next, are these
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models able to generalize to a larger group of vocalists?
Finally, which features of musical prosody contribute the
most to the classification of emotion?

The paper is structured as follows, in Section 2, back-
ground and motivation are discussed. Section 3 describes
the dataset collection, training and testing, the taxonomies
used in classification, the feature extraction methodology
and analysis of their relevance to emotion, feature aggre-
gation, feature selection, and model generalization. Sec-
tion 4 presents the experiments: Experiment 1 asks how
well can traditional machine learning models classify emo-
tion when limited to inputs of musical prosody, Experiment
2 explores our approach’s ability to generalize to a larger
population of singers, and Experiment 3 explores the indi-
vidual contribution to accuracy of each feature via training
on reduced subsets of the input vector. Section 5 provides
discussion to these results, with particular attention paid
to the relationships between emotions and potential future
work. Finally, section 6 concludes the paper. A demo via
python notebook with audio samples is available online. 1

2. BACKGROUND

Emotion classification has been a major focus of research
in recent years. Ekman created a discrete categorization
that consists of fundamental basic emotions which are the
root for more complex emotions [6]. Another classifica-
tion model is the Circumplex model proposed by Posner et
al which plots emotions on a continuous, two-dimensional
scale of valence and arousal [7]. In this paper, we clas-
sify emotions using a model similar to the two-dimensional
Circumplex model which is further described in section
3.1.

There has also been much work done in the field of ana-
lyzing emotion from text for tasks such as sentiment anal-
ysis. Research on classification of emotion in audio has
taken many different approaches. Research into classifying
emotions in knocking sounds has found that anger, hap-
piness and sadness could be easily classified from audio
alone [8]. There have been multimodal approaches which
use audio in combination with another feature, namely
visual facial features [9] [10] or text lyrics [11]. Fur-
thermore, researchers have performed emotional classifi-
cation from audio in the context of music by analyzing
which musical features best convey emotions [12]. Panda
et al. have found a relationship between melodic and
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dynamic features to a number of specific emotions [13].
Such features that were used to classify emotion in music,
however, cannot be easily generalized to other domains.
Prosody has been found by linguists to communicate emo-
tion across various cultures, with patterns of pitch and
loudness over time representing different emotions [14],
and has shown the potential to improve human-robot inter-
action [15–17]. Our approach aims to bridge this gap by
analyzing these prosodic features which are fundamental
to everyday speech and explore how they can be used to
classify emotional driven prosody.

Koo et al. have done work in speech emotion recognition
using a combination of MFCC and prosodic features with
a GRU model on the IEMOCAP dataset [18]. We expand
upon their work by performing an in-depth analysis of 11
different audio features and their effect on classifying emo-
tion. We also classify emotion beyond spoken language by
analyzing prosodic features which better generalize to how
humans convey emotion using the new dataset collected, as
described in section 3.2.

3. METHODOLOGY

3.1 Taxonomy

One of the main challenges in emotional classification is
the derivation of a taxonomy that accurately reflects the
problem domain. The two common approaches to ad-
dress this challenge are 1. Discrete emotional categoriza-
tion; and 2. Continuous quantitative metrics of Valence
and Arousal (sometimes called Control). We use both ap-
proaches with a categorical, as opposed to regression, ap-
proach to the latter.

Our models classify emotion under two taxonomies: first
we categorize each data point as belonging to one of the
twenty emotions located around the Geneva Wheel of
Emotion. Then we categorize each data point as belong-
ing to one of the quadrants depicted by the intersection
of valance and control by assigning each emotion from
the Geneva Wheel of Emotion to its respective quadrant.
We abbreviate each of these quadrants as follows: "High
Control Negative Valance": "HCN", "High Control Posi-
tive Valance": "HCP", "Low Control Negative Valance":
"LCN", and "Low Control Positive Valance": "LCP". See
Table 1 and Figure 1 for a visualization of the domain’s
taxonomy.

HCN HCP LCN LCP
Anger Amusement Disappointment Admiration
Contempt Interest Fear Compassion
Disgust Joy Guilt Contentment
Hate Pleasure Sadness Love
Regret Pride Shame Relief

Table 1. Selected emotional taxonomy for training

3.2 Data Collection

Due to a lack of data labeled with the appropriate taxon-
omy, we decided to collect and annotate a new dataset. To

Figure 1. The Geneva Wheel of Emotion

achieve this goal, we asked professional singers to con-
sciously sing each emotion. To generate our dataset, three
professional singers were tasked to improvise as many
phrases as possible for each emotion in the Geneva Wheel
of Emotion. The singers were instructed to sing each
phrase between 1 and 20 seconds, and to spend approx-
imately 15 minutes on each emotion, resulting in 4 to 6
hours of recordings per singer annotated with ground-truth
labels.

Additionally, the singers were given the following in-
structions during their recording session:

1. Do not attempt to control for different intensities for
each emotion

2. Sing anything for each phrase that you believe
matches the emotion except use words.

3. After recording, mark any phrase that you believe
did not capture the intended emotion and it will be
deleted

3.3 Feature Extraction

In the following section, we define the features selected for
extraction from our dataset prior to model training. Fur-
thermore, we discuss each feature’s relevance to emotional
classification through an analysis of prior works.

3.3.1 Zero Crossing Rate

Zero Crossing Rate, the rate of sign-changes across a sig-
nal, is key in classifying percussive sounds. Unvoiced re-
gions of audio are known to have higher Zero Crossing
Rates [19]. One study analyzed ZCR for Anger, Fear, Neu-
tral, and Happy signals and noted that higher peaks were
found for Happy and Anger emotions [20].

3.3.2 Energy

Energy, the area under the squared magnitude of the con-
sidered signal, relates to the amount of spectral informa-
tion in a signal [21] and previous studies have found energy
is essential in distinguishing stressed and neutral speech
[22].



3.3.3 Entropy of Energy

Entropy of Energy, the average level of "information" or
"uncertainty" inherent within a signal’s energy, has been
shown in one study to have similar values for disgust and
boredom [23]. To accurately measure the entropy of the
different emotions, we must make sure we are not includ-
ing parts of the signal where the individual is not speaking.

3.3.4 Spectral Centroid

Spectral Centroid, the power spectrum’s center of mass,
perceptually has a connection with a sound’s brightness. It
follows, that this parameter serves as an indicator of musi-
cal timbre [24]. Previous studies have shown spectral cen-
troid is a significant component in music emotion [25].

3.3.5 Spectral Spread

Spectral Spread, the second central moment of the power
spectrum, has shown to help the listener to differentiate
noise-like and tone-like portions of a signal [26].

3.3.6 Spectral Entropy

Spectral Entropy, the entropy of the power spectrum, when
used with MFCC features has shown an improvement in
speech recognition accuracy [27]. Another study found
spectral entropy to have the highest correlation to emo-
tional valence of all features tested [28].

3.3.7 Spectral Flux

Spectral Flux, a measure of the rate of change of the power
spectrum calculated as the Euclidean distance between se-
quential frames, relates to how fast the pitch changes in
time and has been shown to be dominant in cross-domain
emotion recognition from speech and sound and from
sound and music [29].

3.3.8 Spectral Rolloff

Spectral Rolloff, the frequency under which some percent-
age of the total energy of the spectrum is contained, helps
differentiate between harmonic content, characterized be-
low the roll-off, and noisy sounds, characterized above
the roll-off. Spectral rolloff has been shown to be one of
the most important prosodic features in classifying emo-
tion [28].

3.3.9 MFCCs

Mel-Frequency Cepstral Coefficients (MFCCs), a repre-
sentation of the short-term power spectrum based on a lin-
ear cosine transform of a log power spectrum on a nonlin-
ear mel scale of frequency, are used in speech recognition
with their ability to represent the speech amplitude spec-
trum in a compact form [30]. Many studies have linked the
importance of MFCC analysis to emotion recognition [20]
[31] [32] .

3.3.10 Chroma Vector and Deviation

Chroma Vector, an approximation of the pitch class pro-
files present within a given frame and often used as the
twelve tones, allows for the capture of harmonic and
melodic characteristics while remaining robust toward

Parameter Value
Mid-term Window Step 1.0 seconds
Mid-term Window Size 1.0 seconds

Short-term Window Step 0.05 seconds
Short-term Window Size 0.05 seconds

Table 2. Feature Aggregation Parameters

changes in timbre and instrumentation. Previous studies
have shown increases in emotional classification accuracy
with chroma vector and its standard deviation [33, 34].

3.4 Feature Aggregation

Figure 2. Model of Feature Aggregation

In this section, we define the aggregation pipeline from
feature extraction to feature vector for each audio file. Fig-
ure 2 provides a visual modeling of our feature aggregation
pipeline. Table 2 delineates the feature aggregation hyper
parameters used in this study.

3.4.1 Short-term Aggregation

The short-term aggregation of a 5-second clip, using a
Short-term Window Step of .05 seconds and a Short-term
Window Size of .05 seconds is defined as follows: Each
of the 34 features discussed above are extracted for every
50ms, resulting in 100 feature vectors of size 34x1, rep-
resented as a 34x100 matrix. Next, the deltas between
each time step are calculated according to the equation
delta = feature_vector � feature_vector_prev. The
first time stamp has all deltas set to 0. Each delta vector
is concatenated onto its respective feature vector resulting
in a size of 68x1, represented as a 68x100 matrix for the
entire 5 second audio clip.

3.4.2 Mid-term Aggregation

Next, mid-term aggregation occurs with a Mid-term Win-
dow Size of 1.0 seconds and Mid-term Window Step of
1.0 seconds. The 68x100 matrix of Short-term features
is split according to the ratio between the Mid-term and
Short-term window size and step, resulting in 5 matrices
of size 68x20. For each matrix, we calculate and flatten
the mean and standard deviation for each row, resulting in
5 136x1 mid-term feature vectors, represented as a 136x5
matrix. Finally, we take the mean across the first axis re-
sulting in a 136x1 feature vector representing our 5 second
audio clip.



3.5 Classification

Prior work focused on musical classification has primarily
found success in the implementation of k-nearest neigh-
bor (K-NN) and support vector machines (SVM), finding
the highest accuracies using SVMs [35]. In exploration
of the relationship between musical prosody and emotion,
we will implement a variety of machine learning models,
namely we will train and evaluate KNNs, Linear SVMs,
Random Forests, Extra Trees, Gradient Boosting, and Feed
Forward Neural Networks (FFNN). FFNNs are used in ex-
periment 3 only.

Experiment 1: we explore the base line accuracies, F-
scores, and confusion matrices achieved by training each
model with identical training, validation, and testing data
from a single singer.

Experiment 2: we explore our model architecture’s abil-
ity to generalize by expanding the dataset to include all 3
singers from data collection.

Experiment 3: we explore model performance on a re-
duced subset of the training feature, utilizing additive fea-
ture selection to compile a ranking of features.

4. RESULTS

4.1 Experiment 1

In experiment 1, we analyze the baseline accuracies, F-
scores, and confusion matrices achieve by training KNNs,
linear SVMs, Random Forests, Extra Trees, Gradient
Boosting models on a single singer utilizing only the
prosodic features outlined in the previous section. All
models were trained with features extracted according to
the parameters outlined in Table 2. Additionally, each
model is optimized with respect to its associated hyper pa-
rameter. We optimize KNN for the number nearest neigh-
bors, SVM for the soft margin, random forest for num-
ber of trees, gradient boosting for the number of boosting
stages, and extra trees for the number of trees. 2

Table 3 provides the best accuracy, F1-score, and selected
hyper-parameter for each of our models trained on a Big
4 taxonomy for a single singer. All models perform bet-
ter than twice the accuracy of random guessing, with the
linear SVM and Gradient Boosting models achieving the
highest accuracies. Further analysis of the confusion ma-
trix of the Gradient Boosting model, shown in Figure 4,
provides information about the classes that are most often
confused for one another. The model struggles in distin-
guishing between Low Control Positive Valance and High
Control Positive Valance. This is to say the model can tell
that an individual is in a positive mood, but has difficulties
distinguishing the Control or Arousal of the emotion.

Next, we examine classification under a single emotion
taxonomy for a single singer. Table 4 shows the best ac-
curacy, F1-score, and selected hyper-parameter for each of
our models. Each model significantly outperforms random
guessing. Even the worst model, the KNN, performs 6.5
times better than random chance (20 possible categories =
5% chance random guessing). Our best model, the linear

2 https://scikit-learn.org/

Model Accuracy F1 Hyperparam
KNN 56.1 56.2 C=11
SVM 66.5 65.3 C=1.0

Extra Trees 64.6 64.3 C=100
Gradient Boosting 67.0 66.7 C=500

Random Forest 63.5 63.2 C=200

Table 3. Big 4 Taxonomy, 1 Singer Classification Results

Model Accuracy F1 Hyperparam
KNN 33.8 32.1 C=15
SVM 49.1 48.1 C=5.0

Extra Trees 44.3 42.8 C=500
Gradient Boosting 47.2 46.6 C=200

Random Forest 43.8 42.3 C=200

Table 4. Single Taxonomy, 1 Singer Classification Results

SVM, performs approximately 10 times better than ran-
dom guessing with an accuracy of 49.1%. The confusion
matrix for the single emotion taxonomy has been included
in Figure 3. Analysis of this confusion matrix yields a few
observations: Disgust is rarely confused with other emo-
tions, having the highest individual accuracy of 81.4%.
Fear and Guilt are the two most common pair of emotions
to be confused for one another. Pleasure is the most diffi-
cult emotion for the model to classify correctly, having the
lowest individual accuracy of 18.6%.

Finally, our models perform extremely well when tasked
with categorizing between two emotions, achieving accu-
racies as high as 98.9% with a f1 of 98.9 in the distinction
between Love and Disgust using a SVM. This reinforces
the intuition that by reducing the number of emotional cat-
egories we can achieve higher accuracies for identification.

4.2 Experiment 2

Within machine learning, model generalization poses
many challenges as models tend to memorize data and per-
form worse when exposed to new datasets. In experiment
2, we generalized our model by training on 3 different
singers as opposed to training on one singer. Tables 5 and
6 compare the accuracies achieved by the various model
architectures for 3 singers vs 1 singer.

With the exception of linear SVM, all model architectures
maintain similar accuracies when trained on the 3 singer
datasets. This maintenance of accuracy demonstrates the
ability for traditional machine learning models to general-
ize well to a larger population when trained on only the
features of musical prosody. We are unsure of why linear
SVMs perform worse during generalization as compared to
other models, seeing a drop of 6% in Big 4 taxonomy and a
drop of 13% in single emotion taxonomy. This drop could
potentially be a limitation in our methodology of only ap-
plying a linear kernel to SVM training, as perhaps an RBF
or polynomial kernel would be better able to generalize to
a larger population.

The results of this experiment are encouraging to the de-
velopment of a general model of emotional classification
based on musical prosody as accuracy is maintained when

https://scikit-learn.org/


Figure 3. SVM, Individual Taxonomy, 1 Singers Confusion Matrix

Figure 4. Gradient Boosting, Big 4 Taxonomy, 1 Singer
Confusion Matrix

Model 1-S Accuracy 3-S Accuracy
KNN 56.1 57.9
SVM 66.5 60.6

Extra Trees 64.6 63.5
Gradient Boosting 67.0 68.8

Random Forest 63.5 65.1

Table 5. Big 4 Taxonomy, 1 Singer vs 3 Singer Accuracy

the dataset is expanded to a larger portion of the overall
population.

4.3 Experiment 3

Experiment 3 analyzes model performance on a reduced
subset of the feature vector for our single emotion taxon-
omy. Our implementation of Feature Selection follows an
additive approach. We start with an empty permanent fea-
ture set and each feature is trained on its own. The feature
with the highest f1 score is selected and added to our per-
manent feature set. This process is repeated until all fea-

Model 1-S Accuracy 3-S Accuracy
KNN 33.8 32.5
SVM 49.1 36.9

Extra Trees 44.3 42.7
Gradient Boosting 47.2 43.8

Random Forest 43.8 43.8

Table 6. Single Emotion Taxonomy, 1 Singer vs 3 Singer
Accuracy

tures have been added to the permanent feature set. Finally,
we plot the f1 score vs features used in model training.

For 136 features, an additive feature selection training
loop requires the training and f1 validation of 9316 models.
Our initial training and validation was based on implemen-
tations using the python library sklearn. Unfortunately,
sklearn does not provide native GPU training support and
thus performing an additive feature selection using sklearn
is not feasible with respect to training time. Our solution
is to continue to use the feature selection and aggregation
outlined above, and to replace the sklearn models with a
Tensorflow feed forward neural net. All of these mod-
els look for statistical correlations between our features
and the emotional classification. Thus the particular model
should have minimal affect on the analysis of feature im-
portance performed by additive feature selection. Training
was done sequentially on a RTX 3090 using CUDA v11
and took just under 24 hours to train and validate all 9316
models.

Our feed forward neural net contained the input layer,
two dense layers of 136 nodes with relu activation func-
tions, and a dense 20 node output layer. We trained using a
Sparse Categorical Cross entropy loss function optimized
using an Adam optimizer with 5 epochs per model.

Figure 7 shows the F1 score achieved vs the Feature in-
cluded in the model pipeline. All feature on and to the right
of any point in the x axis are included in training. An F1 of
45 is achieved within the first 25 features. Furthermore, the
addition of the remaining 111 features only increases our
F1 score to 52. This graph emphasizes the importance of
spectral roll-off and MFCC 7 in the classification of emo-
tion, as aggregations of these two features allow for an F1
score just below 20 with 4 total features.

5. DISCUSSION

5.1 Analysis

We demonstrate that prosodic features can be used to clas-
sify human emotions, achieving high accuracies on classi-
fying emotions for a single singer dataset as seen in tables
3 and 4. Furthermore, we obtained encouraging results



Figure 5. Gradient Boosting, Individual Taxonomy, 3 Singers Confusion Matrix

Figure 6. Gradient Boosting, Big 4 Taxonomy, 3 Singer
Confusion Matrix

regarding the model’s generalization between singers as
demonstrated by tables 5 and 6. However, given our lim-
ited dataset, more research is needed to study how the mod-
els generalize for additional singers with different voices.

Our feature selection aligns with prior research indicat-
ing that energy and MFCC were the most useful features
for classifying emotion [9]. However, we have been able
to show that the results holds true not just for phonolog-
ical speech, but in the more specific domain of musical
prosody.

5.2 Relationships between Emotions

The classification results give us new insights into the
uniqueness and relationships between emotions. Looking
at the individual classification data between all the singers
in Figure 3, we can see how the model was best able to
classify fear, joy and relief. This is in contrast to emo-
tions such pleasure or admiration which showed the low-
est classification accuracy. These results demonstrate the
manner in which different humans convey emotions, and
what emotions are similarly expressed by different individ-
uals. When conveying relief, all three singers expressed a
diminuendo and exhale. Similarly, when conveying fear
all three singers expressed a crescendo and more accented
tones. On the other hand, there was a high level of vari-
ation when conveying pleasure, with many different tone
ranges, mouth shapes, etc. being present in the data.

Furthermore, from the confusion matrix in Figure 5, we
can see that the emotion pairs of Hate and Disgust as well
as Pleasure and Contentment are the most common emo-

tions to be misclassified as one another. We suggest that
this is due to these emotions representing similar mean-
ings, thus they would be conveyed using similar features.
For instance, Hate and Disgust both tend to consist of
lower tones while Pleasure and Contentment have higher
tones.

5.3 Future Work

One of the major challenges we faced was the limited
amount of data that was collected. We plan on expand-
ing this dataset to a larger variety of singers and other in-
strumentalists so that we can better understand how the
models can generalize to different sounds. Additional fu-
ture work includes developing a more sophisticated deep-
learning based model on the raw audio data for classify-
ing emotion using the expanded dataset we will collect.
This will allow the model to make predictions beyond what
could be possible using the features we chose in our feature
selection. It would open up the potential to achieve much
higher accuracy and better model generalization.

6. CONCLUSIONS

Our novel dataset using an expanded emotion taxonomy
provides opportunity for the development of a more ar-
ticulate understanding of emotions. Previous attempts to
correlate emotion to audio or music are based on fewer
emotions, and often rely on lyrics or song metadata for
classification. Our algorithms demonstrate a high level of
accuracy on a 20 category taxonomy for emotions, utiliz-
ing only prosodic features. By restricting the type of in-
put data to prosodic features and expanding the number
of classified emotions, our models can be used for a wide
range of research challenges within the domain of emo-
tional classification. Furthermore, we have demonstrated
that our approach is able to generalize to a larger subset
of the overall population. Finally, the restriction of our
feature vector via additive feature selection demonstrates
the ability for prosodic features to achieve a high-level ac-
curacy for emotional classification for a relatively small
number of features.



Figure 7. F1 score vs Features included in model pipeline
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