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Abstract— As collaborative robots become increasingly
widespread in manufacturing settings, there is a greater need for
tools and interfaces to support operators who integrate, super-
vise, and troubleshoot these systems. In this paper, we present
an application of the Robot Attention Demand (RAD) metric
for use in the design of user interfaces to support operators in
collaborative manufacturing scenarios. Building on prior work
that introduced RAD, we designed and implemented prototype
timeline and countdown-timer interfaces to be used within a
collaborative assembly-inspection task where an operator is also
responsible for a separate sorting task. We performed a user
evaluation to investigate the effects of displaying predictive RAD
information on operator performance and perceptions of the
task. Our results show lower perceived task load and increased
usability scores compared to baseline condition without an
interface. These findings suggest that predictive RAD should be
used by designers and engineers developing operator interfaces
for collaborative robot applications in manufacturing.

I. INTRODUCTION

As industry continues to realize the promise of increased
productivity and decreased human risk by adopting collabo-
rative robots (cobots) into the workplace [3], [30], designers
and engineers will need to continue to develop solutions to
improve collaborative work and to understand the effects
of these solutions on people. For small- and medium-sized
enterprises, cobot applications generally fall under paradigms
of physically-isolated [31], shared-space-start-and-stop [23],
and hand-guided [16] interactions. Engineers must consider
key design decisions for human-robot coordination such
as how work should be shared based on the skillsets of
human and robot workers [30], [37]; how operator intent may
be communicated either with verbal communication [6] or
gesture [26]; and how the operator’s “collaborative capacity”
may be measured and communicated [20], [27].

This paper explores how “collaborative capacity” can be
presented to a cobot operator to improve task performance
and cognitive load. We introduce a predictive signal, pRAD,
adapted from Robot Attention Demand (RAD) [14], [27], as a
means to communicate the operator’s upcoming collaborative
obligations for manufacturing tasks, see Figure 1. We address
several questions regarding pRAD and RAD as applied to
the manufacturing domain: Is RAD a useful metric in the
manufacturing domain to evaluate collaborative tasks? Does
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Fig. 1. Our work aims to support operators on the manufacturing shop-floor
with supervising their collaborative robots. We developed two interfaces
based on an extension of Robot Attention Demand, called pRAD, including
the shown “timeline” interface. As an operator performs both an assembly-
inspection task and a sorting task, the interface suggests when to switch
between neglecting and interacting with the robot.

presenting the pRAD signal affect the operator’s performance?
And, does presenting the pRAD signal affect the operator’s
perceptions of the task? To address these questions, we
designed and prototyped two user interfaces presenting pRAD
based on common metaphors of timeline and countdown-
timer, see Figure 2. Our first interface uses a timeline
metaphor to display the relationship of interaction time and
neglect time for each step of a manufacturing task. The
second interface considers a countdown-timer conveying the
neglect time of the robot and color codes to indicate task
progress. As a baseline, we presented a blank screen, which
displays no pRAD information. We performed a user study in
which a human operator completed two tasks—a collaborative
assembly-inspection task and an individual sorting task—in
a collaborative workspace, using the interfaces to vary the
amount of pRAD information. We tested task performance,
perceived task load, and usability. Through semi-structured
interviews, we examined participants’ interaction strategies,
preferences, and design suggestions.

Our work’s contributions can be summarized as follows:

• Exploration of RAD as both a descriptive and predictive
metric for cobots;

• The design and prototyping of alternative interfaces with
varying information-detail informed by pRAD;

• An empirical evaluation of alternative interfaces on task
and collaboration outcomes;

• An open source implementation of our prototypes using
pRAD and task implementation.1

1https://github.com/Wisc-HCI/ITER

https://github.com/Wisc-HCI/ITER


II. BACKGROUND

A. Robot Attention Demand

A solution to expressing “collaborative capacity” is Robot
Attention Demand (RAD), proposed by Goodrich and Olsen
[14], [27]. RAD refers to the extent to which a human
worker contributes to the completion of a specific task with
a particular robot, see Equation 1. Thus, RAD serves as a
measure of the robot’s task autonomy. The metric is composed
of interaction effort (IE; i.e., effort the operator must spend
attending to the robot) and neglect tolerance (NT; i.e., how
well the robot can perform the task without attention or
intervention from the operator). RAD has been used in many
ways, and we are particularly interested in applying it to
human-robot teaming tasks in the manufacturing setting as
a time-domain implementation, similar to typical workcell
measures of makespan and cycle-time. Using Olsen’s [27]
time-domain operationalization, neglect tolerance (neglect
time) is defined as the time that a robot can complete a task
without human intervention; and interaction effort (interaction
time) is defined as the time period that the robot must rely on a
human operator actively interacting with the robot. Interaction
effort also includes the task switch-over delay for the human.
As an example, fully autonomous systems that do not require
operator interaction will have a RAD value of zero. Likewise,
a tele-operated robot that requires operator’s full attention and
engagement for the duration of the task will have a RAD value
of one. In the human-robot collaboration scenarios rapidly
emerging in manufacturing, RAD will invariably fall between
these two extremes.

RAD =
IE

(NT + IE)
(1)

Prior works have explored extensions to RAD across several
domains for both singular robots and multi-robot groups.
Elara et al. [9] presented False Alarm Demand (FAD), a
ratio of false alarm time over the sum of false alarm time
and interaction time, and extended RAD by incorporating
false alarm time. They found that false alarms due to either
undetected or errant interaction have a negative effect on
the autonomy of the controlled robot. Mohan et al. [24]
applied extended neglect time, RAD, and FAD metrics to
scenarios where a soccer-playing robot was managed by a
human in tele-operated and semi-autonomous modes. They
found task complexity to increase with the number of false
alarms and robot performance to increase under tele-operated
control (higher RAD). Elara and Zhou [10] applied FAD to
an assistive walking task for a robot with tele-operation and
semi-autonomous modes showing that accounting for false
alarms improves performance. Many works have utilized fan-
out in robotic systems [7], [38], [39]. Fan-out is defined as
the number of robots an operator is able to attend to without
diminishing performance [14], [27], [28]. For homogeneous
robot groups, fan-out is the reciprocal of RAD. Finally, Glas
et al. [12] evaluated a multi-robot system composed of social
robots that interacted with shoppers. They used RAD to enable
an operator to manage multiple conversations effectively.

Our work applies RAD to a collaborative task within the
manufacturing context as both a metric and as a predictive
signal to be displayed to the human operator acting in a
supervisory role. Specifically, we leverage the time-based
formulation of RAD to produce pRAD for visualization on
an operator interface.

B. Operator Interfaces

An engineer designing an operator interface has to consider
the information objectives of the task (e.g., displaying process,
diagnostic support, tool monitoring, program authoring), the
modalities and technologies available (e.g., augmented reality,
cell-mounted monitor, teach-pendant), and available data and
models (e.g., user, process). For example, Smart Workbench
[19] provides an AR-based interface for real-time feedback,
but it also has several support monitors that provide secondary
process and diagnostic information. Similarly, Multi-modal
Assembly Support System (MASS) [25] provides operators
with assembly process instructions through a cell-mounted
monitor. Our work leverages cell-mounted operator interfaces
to support cobot supervision for pre-existing processes.

When displaying process information, engineers have to
decide on how much and what aspects to present and on
a mechanism with which to synchronize the robot with the
operator. A readily available solution is to use the teach
pendant software provided alongside the cobot. For example,
the Universal Robots Polyscope software,2 which has a
“Run” view that provides high-level program diagnostics,
a “Program” view displaying the program as a hierarchy of
primitives, and several views for detailed setup/diagnostics.
Synchronization is handled through confirmation popups. In
the literature, Tsarouchi et al. [36] presents a ROS-integrated
interface that presents the program hierarchy. They, likewise,
address coordination with a popup prompt. Ahmad et al. [1]
recently proposed a cobot dashboard that aggregates cobots
within a company for easier management and diagnosis,
however the tool is not designed for an operator on the
shop-floor. What is lacking in these systems is an operator-
accessible representation of coordination capacity derived
from task allocation and cycle-times. Our work explores the
deliberate visual expression of collaborative capacity with
pRAD to synchronize the human’s and robot’s work.

Interfaces that augment operator decision making and
control with RAD have been explored in non-manufacturing
contexts by Cummings and Mitchell [8]. They evaluated
mechanisms to assist in decision support and task management
for unmanned aerial vehicle (UAV) control demonstrating
that an interface using fan-out helps to support operators
by providing a more accurate estimate of capacity. More
generally, Chen et al. [5] reviewed key human performance
issues in monitoring multi-robot systems and concluded with
research themes of operator multitasking, trust, situational
awareness, operator workload, and interface design.

2https://www.universal-robots.com/
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Fig. 2. We evaluated two pRAD interfaces: timeline and timer. As the task progresses through neglect into interaction phases, both interfaces presents a
visual warning based on the traffic-light metaphor. Timeline automatically adjusts during interaction phases if user takes longer than prescribed.

III. DESIGN

Our approach considers RAD both as a task-level metric and
a step-wise subtask metric. RAD as a task metric considers
interaction time and neglect time for the entire duration of the
task. Alternatively as a step-wise subtask, we break the task
into a series of neglect-interaction pairs and then compute
RAD on each pair individually. To produce a predictive signal
from RAD (pRAD), we empirically measure the timing for
neglect-interaction pairs and assume that future interaction
would produce similar values. Refer to Figure 3 as an example
of this breakdown for our evaluation task.

We expect this approach to be an acceptable representation
of real manufacturing processes where allocation of work is
fixed and is well-specified by engineers. Specifically, in our
evaluation, we assumed that neglect time was measured on
a static order of deterministic actions that a robot has taken.
Likewise, interaction time is an averaged estimate of the time
an operator takes at a particular step. More sophisticated
methods of generating timing using a planning environment
(e.g., Authr [34]) could be substituted with minimal effort to
produce neglect-interaction pairs. We address such limitations
and extensions in the Discussion section.

To effectively display pRAD information to the operator, we
consider two common user-interface metaphors—countdown-
timer and timeline—as illustrated in Figure 2. A key assump-
tion of our design is that presenting the step-wise pRAD
value directly (e.g., printed numerically) would be ineffective
as a signal to the operator due to collapsing the temporal
relationship between the neglect and interaction components.
Instead, we think of pRAD as the conceptual relationship
between components being displayed in the interface.

In the countdown-timer interface, we display the remaining
predicted neglect time, in minutes and seconds, before the next
interaction step. We warn the user of impending interaction
with a traffic-light metaphor, where the background of the
timer switches from green to yellow at five seconds as a
warning and from yellow to red at zero seconds for interaction.
The color stays red and reports zero seconds until the user

finishes the interaction step. Notably, predicted interaction
time is not displayed, instead deferring to the user to decide
on how long an interaction should last.

The timeline interface provides a view of the entire task,
where blue tiles represent the predicted neglect time and
purple tiles represent predicted interaction time, as shown
in Figure 2. Instead of presenting pRAD numerically, this
interface aims to illustrate the signal as the relationship of
neglect and interaction steps, giving operators an approximate
sense of impending demand. Additionally, presenting multiple
neglect and interaction steps within the timeline aids the oper-
ator in planning their work further into the future. Applying
this simplification of actions in the timeline to neglect and
interaction steps differs from an implementation-level timeline
of task primitives (e.g., grasp or move) for humans and robots,
as proposed by Pearce et al.[30]. Designing around a metaphor
of a video editing timeline, the location of the playhead on the
timeline shows the relative time both for the step and the task
as a whole. Exact timing is found via the track underneath
the task breakdown, although it requires closer inspection
to access the precise timing. If during an interaction step
the participant finishes early or takes longer than initially
presented, the timeline will adjust the tile size accordingly.
The playhead icon performs the same signaling role as the
timer interface (i.e., traffic-light warning) with the notable
change that, instead of displaying remaining neglect time,
it indicates state through three icons: check mark (neglect),
exclamation point (warning), and collaborate (interact).

Based on our designs, we propose the following hypotheses:
H1—Using timeline and timer interfaces, users will per-

form more efficiently, such that the interaction time will be
lower, relative to the baseline blank condition.

H2—Timeline and timer interfaces will decrease task load
relative to the baseline blank condition.

H3—Users will perceive the timeline user interface as
being more usable than timer and baseline blank conditions.

H4—The timeline user interface will have a lower interac-
tion time and lower perceived task load relative to timer.



Fig. 3. Task and step-wise RAD breakdown for the assembly-inspection task and sorting task. RAD can be used both as a descriptive metric of task
interaction between operator and cobot or presented to the operator as a predictive signal to guide future interaction.

IV. EVALUATION

A. Participants

A total of 34 participants (26 male, 7 female, 1 other) with
an average age of 20.9 years old (SD = 2.54) were recruited
from the University of Wisconsin–Madison campus. All
participants had prior manufacturing or mechanical/industrial
engineering experience.

B. Study Design & Procedure

Our evaluation followed a three-by-one (interface: timeline
vs. timer vs. blank) within-subjects design, and all conditions
were presented to participants in a counterbalanced order. The
study was conducted as the first session of a larger protocol
(see Zhao et al. [40] for the second session), taking 45–
60 minutes per participant. Participants were shown a short
instructional video describing the two experimental tasks,
assembly-inspection and sorting, along with a brief description
of the two user interface conditions and the baseline condition.
Participants were instructed that a trial ended when both
tasks were completed and asked to work as if they were at a
manufacturing facility. Participants then had one short training
session to showcase the robot’s abilities followed by three
trials each with a different interface condition. At the end of

Fig. 4. Four zones of the workspace: sorting, operator, assembly, and
storage. Participants perform the sorting task while supervising the robot in
the sorting-zone and enter the operator-zone to interact with the robot. The
robot makes use of the assembly-zone and the storage-zone to construct a
small toy house object.

each trial, participants received a post-trial questionnaire and
a semi-structured interview.

Participants acted as a supervisor and split their attention
between the two tasks. This additional role reflects realistic
cobot scenarios where productivity expectations for the
operator is higher, as they can make use of otherwise wasted
idle time waiting on the robot.

Assembly-Inspection Task–Participants were asked to in-
spect the robot’s assembly of a small toy house composed of
magnetic wooden blocks. Participants inspected the structure
at each phase of assembly. After each phase, participants
pressed the “interaction button” to tell the robot to continue
its assembly. The robot was programmed to use a fixed set of
blocks within its workspace for construction. Slight variations
in initial placement of the blocks during trial setup introduced
small alignment errors in the construction (e.g.,minor distor-
tions in the toy house) requiring the participant to inspect
the final product and make necessary corrections.

Participants were provided a reference diagram that dis-
played the correct configuration of blocks for each phase.
They were instructed not to touch the toy house until the
robot had stopped moving for their own safety, though they
were allowed to visually inspect it whenever they desired.
After the robot completed a neglect phase, it moved near the
first block of the next phase and waited for the participant to
press the “interaction button.” Upon completion of the toy
house, the robot returned to its initial home position.

Sorting Task–Participants were asked to sort several materi-
als (i.e., cardboard, wood blocks, wood cylinders, plastic pipes,
and plastic bags) in separate labeled bins from a common
unsorted bin. They were instructed not to lift the bins. Sorted
bin order was randomized per trial.

Workspace–The workspace was separated into four zones:
an assembly-zone where a Universal Robots UR3e cobot
constructs the toy house; a storage-zone where the robot’s
blocks were stored; an operator-zone where the participant
had access to several blocks and instructions; and a sorting-
zone for the sorting task. Figure 4 illustrates the setup. Just
outside the assembly-zone, we placed the “interaction button.”
In the sorting-zone, there was one bin of unsorted materials
placed furthest away from the robot and five individually
labeled bins to store the sorted materials. A tablet computer
mounted behind the sorting-zone displayed the interfaces.



Fig. 5. Interaction time, task time, RAD, task load, usability, and direction of attention by three user interface conditions: Timeline, Timer, and Blank.
Error bars denote standard error. Descriptive statistics shown as Mean (SD) in each bar. Representative a priori contrast analysis results are shown within
figure. Significance level: · p < .1, ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.

C. Measures and Analysis

The pre-study questionnaire included the Multimedia
Multitasking Index (MMI) [29] to measure participants’
perceptions of their own multitasking behavior. Participants
were given as much time as needed to complete both the
assembly-inspection task and the sorting task, and total time to
complete the task was recorded. The post-trial questionnaire
included the NASA Task Load Index (TLX) [18], System
Usability Scale (SUS) [2], [4], NASA Situational Awareness
Rating Technique (SART) [35], and the two-item scale of
direction of attention adapted from Rae et al. [32]. Direction
of attention scale asks participants to rate their ability to
keep track of the environment and whether direction of
attention impacted the task. The semi-structured interview
included questions about strategies for managing the robot,
awareness of the robot’s state, perceptions of and opinions
on the interface and task, challenges with the task, and any
suggestions for design or alternate interface modalities.

We tested gender, age, and ethnicity as potential covariates
and found none to have a significant effect at an α level
of 0.05 (p > 0.05). A linear mixed-effects regression model
was constructed with interface condition as the input variable,
MMI as a covariate, and usability, taskload, and direction
of attention as response variables. We found that MMI was
not a significant covariate in these models. Additionally, we
constructed a linear mixed-effects regression model with
interface condition and centered MMI as input variables
and total task time, total RAD, and total interaction time
as response variables, respectively. We conducted a priori
contrast analyses to make comparisons indicated by our
hypothesis. Situation awareness was not analyzable due to
insufficient responses from the participants. In calculating
MMI, we omitted the other-computer-applications primary
matrix (a usage subscale) due to technical issues with
the questionnaire. We also included condition as a by-
item random-effects factor in all models. All analyses were
conducted in R.

Semi-structured interviews were transcribed by four trained
experimenters. All analyses of qualitative data were conducted
following a Ground Theory Approach [17].

V. RESULTS

A. Quantitative Results

We provide a textual description of the results below and
main-effects-test details in Table I. Figure 5 shows descriptive
statistics and results from a priori contrast analyses.

H1—Our data did not provide support for H1. We found
no main effect of user interface condition on total interaction
time, total task time, or task RAD. However, our analysis
found a marginal main effect of MMI on total interaction and
a significant Pearson’s product-moment correlation of 0.24
between centered MMI and total interaction time, t(88) = 2.37,
p = .02 < 0.05. There was no main effect of centered MMI on
task RAD. We found a significant Pearson’s product-moment
correlation of 0.24 between task RAD and centered MMI,
t(88) = 2.31, p = .02 < 0.05.

H2—Our analysis offered partial support for H2. We
found a significant main effect of user interface condition on
perceived task load. Participants rated task load significantly
lower in the timeline condition than in the blank condition.

H3—There was also partial support for H3. We found a
significant main effect of user interface condition on usability.
Participants rated usability to be significantly higher in the
timeline and timer conditions compared to the blank condition.
There was a significant main effect of user interface condition
on direction of attention. Participants rated direction of
attention to be significantly higher in the timeline and the
timer conditions than the blank condition.

TABLE I
MAIN EFFECTS FROM EACH LINEAR MIXED REGRESSION MODEL.
SIGNIFICANCE LEVEL: · p < .1, ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001.

Measure b se df F p d
Interface Condition

Interaction Time 10.04 6.65 (1, 29) 2.28 .14 0.17
Task Time –537 10.81 (1, 29) 0.25 .62 –0.04
Task RAD 0.028 0.02 (1, 29) 1.99 .17 0.14
Task Load 1.35 0.65 (1, 33) 4.30 .046∗ 0.14
Usability –10.10 2.47 (1, 32.69) 16.67 < .001∗∗∗ –0.36

Direction of Attention –1.53 0.32 (1, 33) 22.15 < .001∗∗∗ –0.37
MMI

Interaction Time 4.41 2.38 (1, 28) 3.20 .085· 0.19
Task Time 4.46 6.81 (1, 28) 0.40 .53 0.09
Task RAD 0.015 0.0091 (1, 28) 2.70 .11 0.20



H4—We found no support for H4. No main effect of user
interface condition found for total interaction time. There
was no significant difference between participants in timeline
and timer conditions in task load.

B. Qualitative Results

Four themes—strategies, influences, performance, and
preferences—emerged from the semi-structured interviews.
Response totals are summarized in Table II.

Strategies—Participants used sound, visual cues, and the
interface in their strategies to monitor the robot while also
performing their own task. Participants (23 Blank, seven
Timeline, seven Timer) reported that they were “listening for
noise” (P03) from the robot. Alternatively, seven participants
stated that they did not listen to the robot or stopped listening,
e.g., “I think I kind of used sound less” (P22), throughout the
session. Participants (15 Blank, 10 Timeline, three Timer) also
mentioned that they “glance[d] over” (P12) toward the robot
to check its status. Notably, P05 and P08 expressed that the
robot “always stop[ped] in kind of a position” (P08) when it
was done. Six participants mentioned that they “didn’t even
bother looking at that <gestures at robot>” (P09) robot or
looked “a little bit but not as much as the first time” (P29).

Influences–Participant’s strategies were influenced by their
previous experiences, demand on their attention, and trust
toward the robot. Participants appeared to learn the workflow
and develop a sense of process duration from their previous
trials. P08 stated, “I was a little more familiar with how I was
supposed to work” and “how much time I actually had to sort.”
Three participants also reported having borrowed from their
experience in manufacturing. Seven felt that the interfaces
added to the demand for their attention. For instance, three
participants had to prioritize the robot’s task to “make sure
that [they] didn’t keep the robot waiting” (P26).

Participants also stated that their strategies were influenced
by their level of trust toward the robot, the interface, or
the interaction button. Five participants explicitly mentioned
trusting the robot, e.g., “[they] knew the robot would always
work” (P16) (one Blank, two Timeline, three Timer), while
others were “waiting for it to make a mistake” (P31).
Likewise, some participants (five Timeline, three Timer)
trusted the interface. For instance, P11 “never really doubted
what the screen was telling” them even though “it could
have been doing something completely wrong.” As for the
interaction button, four participants discussed the lack of
immediate feedback, “it took a little bit to react” (P03). Two

TABLE II
UNIQUE PARTICIPANT RESPONSE COUNTS FOR MAJOR THEMES.

Strategies Influences Performance Preferences
Timeline 33 24 5 10 + 3*

Timer 32 19 17 18 + 3†

Blank 26 23 12 1 + 2‡

Screen Sonification Performance Attention Button
Suggestions 9 9 7 6 2

* Or Timer (two); Or Blank (one).
† Or Timeline (two); Or Blank (one).
‡ Or Timeline (one); Or Timer (one).

participants stated that they “glanced over a couple times”
(P12), as they did not know “if [they] actually pressed it”
(P12). P15 and P30 recommended that “when [they] pressed
the button, something on the screen should appear” (P30).
Only P35 indicated trusting the button, they “knew eventually
it would work,” as “the timer would start again.”

Performance—Participants indicated that their performance
was affected by their strategy during the task. Some partici-
pants (three Blank, one Timeline, one Timer) mentioned errors
during the task, e.g., “put wrong pieces in the wrong bucket”
(P09), while others (four Blank, three Timer) expressed
uncertainty. For instance, P28 did not “quite know how many
more of [steps] there [we]re.” Several participants (five Blank,
two Timeline, six Timer) stated that they felt that a specific
trial was “efficient” (P25) or “faster” (P23). Six participants
mentioned trials in the blank or the timer condition were

“stressful” (P26). Seven participants suggested improvements
by making changes to the workspace layout, e.g., “rotate the
robot” (P27) and “do the job remotely” (P30). In all trials,
the robot successfully constructed the house regardless of
whether the participant adjusted it during assembly.

Preferences–We asked participants for their interface prefer-
ence during the interview. One participant preferred the blank
condition; 10 preferred the timeline; and 18 preferred the
timer. Four participants expressed that their preferences varied
based on context. For instance, P07 preferred the timeline

“in an industrial setting” and timer “if you really wanted to
crank out parts,” whereas P22 was split between timer for a

“long period of time” as it is “less like strenuous, like more
straightforward” and blank condition as it “felt like I could
focus more on sorting than looking at the screen.”

For the timeline condition, a few participants favored it
because it provided “a big picture overview” (P15); and
it was “easy to interpret” (P28) and quick to learn (P26).
However, nine participants disliked the interface because
it was “distracting“ (P08) or “complicated” (P27). Six
participants expressed that it was “unnecessary to have the
whole process [presented].” Four participants suggested that
if the task “was more complicated or if it was longer, then,
this one [the timeline] might have been okay” (P33).

Sixteen participants described the timer interface as being
“extremely helpful” (P02), “the easiest” (P08), or “simpler”
(P13), as it made them aware of the time (P05). However,
five participants did not “really think [that the interface was]
needed because [they could] always hear the sound” (P27)
or were “not sure if that information [wa]s necessary” (P21).

Participants found the traffic-light metaphor useful (eight
Timeline, 11 Timer), especially “in a factory environment”
(P35). With the color-coding warnings, eleven participants
reported using peripheral vision—“corner of [their] eye”
(P19)—to look at the display in the timer condition, whereas
they had to be “looking directly at the screen” (P22) to see
the warning for the timeline. P22 stated “coloring on the
screen was probably the most helpful.”

Finally, participants made several suggestions for improving
user experience. P02, P10, and P29 suggested “a combination”
(P10) of the timer and timeline interfaces. P05 and P31 wanted



more robot-specific information, e.g., “a 2D representation
of this robot” (P31). P09 and P34 wanted more dynamic
human-centered information, e.g., “to track personal progress”
(P09). Another frequent requested change (nine participants)
was to consider sonification instead of, or in addition to, the
visualization, such as “beep” (P34) for an audio notification.

VI. DISCUSSION

This paper presented pRAD for cobot operators. Our evalu-
ation found that participants incorporated auditory, visual, and
interface feedback into their monitoring strategies according
to their modality preferences, trust, and experience. These
findings align with those from prior ethnographic work that
reported similar listening and visual-inspection behaviors [33].
Our study also found that participants rated both interfaces
as being significantly more usable than the baseline (Blank)
condition. However, pRAD interfaces did not affect interaction
time or task time. While performance was consistent across
conditions, the reported task load was significantly lower
for the timeline condition relative to baseline. This finding
suggests that the additional overview information provided
by the timeline helps participants form a better mental model
of the task, resulting in reduced cognitive load. However, our
qualitative data also suggests that some participants felt that
both interfaces were confusing or distracting. Further work to
explore user experience when incorporating such interfaces
into a larger system is still needed.

Future work should explore pRAD interfaces to support the
operation of multiple cobots, specifically to help operators
manage increased task load and account for errors when
they misinterpret robots’ needs. Saturation of the operator’s
workload can result in a queue of robots will be waiting for
interaction, as was found by Glas et al. [12]. In our study,
MMI was found to be significantly correlated with interaction
time suggesting that media-multitasking skills are applicable
to monitoring the robot’s state. Selecting the number of robots
that an operator is assigned to monitor could be informed by
their reported MMI.

A. Limitations

The work presented here has a number of limitations. First,
we speculate that the lack of support for our hypotheses
regarding change in task time is due to our evaluation protocol
allowing participants to self-pace their work, which may
have resulted in too much variance to observe the effects of
providing pRAD information. Alternative task instructions,
e.g., asking participants to sort as fast as possible or to always
prioritize the robot, may help identify such performance
effects. However, such strategies might also conflict with
participants’ prior experience in industry. Allowing open-
ended strategy exploration, captured through semi-structured
interviews, generated rich insight into their interaction with
the interfaces and the cobot.

Generalizability is also a limitation of this work. We
developed our scenario following empirical findings by
Michaelis et al. [23] where experts utilize cobots to per-
form simple repetitive tasks, e.g., automated assembly, in

lieu of traditional automation. We conducted the study in
a controlled laboratory setting. Real-world manufacturing
environments involve ambient auditory noise, visual clutter,
and interruptions by other workers. Additionally, tasks and
workcell configurations will differ from our specific scenario.
The color palette used in the design of our prototypes did not
account for color-blindness. Our interfaces should adopt a
more accessible color palette. Alternatively, icons (Timeline)
or text (Timer) may be used to convey warnings in situations
where color is ineffective.

We generated the pRAD signal from analysis of the task
performed in a pilot study. As an alternative approach, an
engineer could use a planning tool, e.g., Authr [34] or Tercio
[13], to generate the neglect time and interaction time for a
fully specified plan so long as timing is consistent between
cycles. For tasks where timing is dynamic, more sophisticated
models of human and robot work is necessary, e.g., using
POMDPs [15], [41] to estimate predicated neglect time and
interaction time during task execution.

Finally, we highlight the safety implications of asking
the operator to multitask. Some secondary tasks could be
dangerous if robot prioritization was important, e.g., operator
is performing a separate soldering task. Other complex tasks
could be ineffective as the divided attention diminishes the
performance on the secondary task due to increased cognitive
load. Our interface designs were for short-cycle inspection
tasks with an interruptable, low-cognitive-demand secondary
sorting task. Using a pRAD signal may not generalize to more
complex or safety-critical secondary tasks. Future work should
address real-time monitoring and task modeling to infer when
interruption is appropriate for pRAD-based designs.

B. Design Implications

At a high level, our results suggest that pRAD interfaces
reduce cognitive load. Our study, particularly our analysis of
the participant feedback for future designs, provides additional
design implications, which we discuss below.

Several participants suggested combining the timeline and
timer interfaces to provide the user both an overview of
the task and the precise timer representation. Users should
be able to change the prominence of the timeline and
timer components to customize the interface based on the
current priority, e.g., getting an overview (Timeline-focused),
prioritizing the robot (Timer-focused), or focusing on their
work (Blank). The design should continue to provide the
color-coded traffic-light metaphor with emphasis on being
seen in the user’s peripheral vision. Another opportunity is to
visually augment the interface with notification badges [22].
These badges can indicate a change in predicted timing or
communicate the priority of the robot relative to the current
task when the interface transitions from neglect to interaction.

Participants also suggested sonification, such as a simple
“beep” played at key milestones of the task. In noisy work-
places, operators could be augmented with bone conduction
headphones. Implicit pRAD cues from the robot’s joint
movement noise could be mimicked for sonification [11]
through headphones, e.g., serving as functional noise [21].



VII. CONCLUSION

In this paper, we investigated the applicability of RAD in the
context of collaborative robotics as a predictive signal, called
pRAD, used as a design component in operator interfaces.
We described the process to generate a pRAD signal and
prototyped two user interfaces to display aspects of this
signal. We then conducted a user study to evaluate the effects
of displaying pRAD on task and collaboration outcomes.
Our findings highlight the usability benefits of pRAD in
cobot operator interfaces. Importantly, these interfaces should
explicitly communicate “collaborative capacity” and implicitly
convey it through the robot’s start-and-stop behavior.
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