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Abstract— As robotic arms become prevalent in industry it
is crucial to improve levels of trust from human collaborators.
Low levels of trust in human-robot interaction can reduce
overall performance and prevent full robot utilization. We
investigated the potential benefits of using emotional musical
prosody to allow the robot to respond emotionally to the user’s
actions. We tested participants’ responses to interacting with
a virtual robot arm that acted as a decision agent, helping
participants select the next number in a sequence. We compared
results from three versions of the application in a between-
group experiment, where the robot had different emotional
reactions to the user’s input depending on whether the user
agreed with the robot and whether the user’s choice was correct.
In all versions, the robot reacted with emotional gestures. One
version used prosody-based emotional audio phrases selected
from our dataset of singer improvisations, the second version
used audio consisting of a single pitch randomly assigned to
each emotion, and the final version used no audio, only gestures.
Our results showed no significant difference for the percentage
of times users from each group agreed with the robot, and
no difference between user’s agreement with the robot after it
made a mistake. However, participants also took a trust survey
following the interaction, and we found that the reported trust
ratings of the musical prosody group were significantly higher
than both the single-pitch and no audio groups.

I. INTRODUCTION

Robotic arms are showing a continual expansion in use,
with expected growth continuing into the foreseeable future
[1]. While the use of robotic arms continues to grow, they do
not have a standard form of communication [2], and current
methods are costly to implement from both a technical
and financial perspective. These systems generally focus on
communicating intent, or describing what the arm will be
about to perform, while less research has been done on
the application of social and emotional communication. For
collaborative processes, displaying emotion has repeatedly
been shown to increase key collaboration metrics in robotics,
such as likelihood of humans to follow social norms in
robotic interactions[3], better engagement with disability [4]
and treating robots like an equal human collaborator [5]. It is
even argued that no real collaboration can take place without
social and emotional display [6].

We believe musical prosody, that uses non-linguistic audio
phrases based on musical melodies, can be used for effective
interaction with human collaborators without requiring a
change in core functionality. The ability for sound to display
information for robotic platforms beyond trivial indicators
is often underutilized, despite the use of intentional sound
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to deliver information in almost every device we encounter
day to day [7]. It has also been shown that displaying
emotion is key for creating believable agents that people
enjoy collaborating with [8], and prosody is effective in
displaying emotions for humans and robots [9]. While af-
fective nonverbal behavior has been shown to affect HRI
metrics like humans’ emotional state, self-disclosure, and
perceived animacy of the robot [10], gestures are often
studied [11], but non-linguistic forms of audio feedback
are under-explored [12]. Prosody has the potential to allow
the robot to communicate in a manner relatable to that of
humans, but still different enough from human speech to
avoid the uncanny valley [12]. Emotional musical prosody is
therefore uniquely positioned to enable better robotic com-
munication and collaboration, capturing the advantages of
sonic interaction, emotion conveyance and avoiding uncanny
valley.

In this paper we describe our approach to musical prosody
using a custom dataset of musical phrases for robotic arm
interaction. We evaluate these interactions firstly to confirm
that there is no impact through potential distraction in
collaboration with a robotic arm. We then measure how
musical prosody compares to single-pitch audio and no audio
systems for trust, trust recovery, likeability and the perception
of intelligence and safety.

II. BACKGROUND

A. Robotic Arm Forms of Communication
Amongst research into methods for robotic arms to com-

municate and signal their intent, there is no standardized set
of approaches [13]. In social robotics communication is often
derived from human behaviour - such as gestures and gaze -
these are not however readily available to robotic arms [14].
Additionally when these forms of communication are added
to arms they require significant expense, such as extra visual
displays like a face[15], or in the case of added gestures risk
challenging and reducing the core functionality of the arm.
In robotic research, forms of non-verbal communication can
generally be split into four categories; kinesics, proxemics,
haptics and chronemics, none of which are easily applied to
an existing robotic system [2]. While varying movement to
show intent has shown successful results [16], changes to
path planning and movement dynamics is often not feasible.
Another effective method for arms to display their intent
is through vision of a robot’s future trajectory, such as by
a human worn head mounted display [17], however this
requires a significant investment and potential distraction
to the user. Emotion has been more commonly used as an



input to robotic arms, such as facial emotion recognition
to control and change the behaviour of robotic arms [18].
Likewise, Galvanic Skin Response emotional evaluation on
humans has been used to impact a robot’s control pattern
[19]. Nevertheless, robotic arm displays of emotion in work
and collaboration, or interaction beyond showing intent are
widely overlooked in robotics literature.

B. Communication for Trust and Trust Recovery

For collaboration with robotic arms trust is required,
without which they can be underutilized [20]. Trust is largely
developed in the first phase of a relationship both between
humans and robots [21], meaning first impressions are crucial
for trust. First impressions from audio and visual stimulus
can also damage the ability to develop trust later on [22].
In this work we focus on affective trust, which is devel-
oped through emotional bonds and personal relationship,
not competence [23]. Affective trust makes relationships
more resilient to mistakes by either party [24]. The display
of emotion is critical for affective trust and increases the
willingness of collaboration [25].

Music and prosody has been shown as a powerful medium
to convey emotions [26]. In music and robotics emotion can
be categorized in many ways, such as a discrete categorical
manner (happiness, sadness, fear, etc.) [27], and through con-
tinuous dimensions such as valence and arousal [28]. Most
recent efforts to generate and manipulate robotic emotions
through prosody focused on linguistic robotic communica-
tion [9].

III. METHOD

A. Research Questions and Hypotheses

Our first research question focuses on understanding the
role of musical prosody and trust for a robotic arm.

RQ1 How does emotional musical prosody alter trust and
trust recovery from mistakes, compared to no audio and
single-pitch audio?

For this question our hypothesis is that the overall trust
at the end of the interaction will be significantly higher for
musical prosody over single-pitch and higher for single-pitch
audio over no audio. Our next research question compares
common HRI metrics between each system; the perceived
intelligence, perceived safety and likeability of the robotic
system.

RQ2 How does emotional musical prosody alter perceived
safety, perceived intelligence and likeability?

Our second research question explores the relation be-
tween users’ self-reported metrics, gathered through highly
cited surveys and their actual responses collected through
a performance based task. We are interested in comparing
whether the system that is trusted more through self-reports
is actually then utilized more in performance based tasks.

RQ3 When a user indirectly self-reports higher levels of trust
in a robot, does this in turn lead to higher utilization
and trust in a robotic arm’s suggestions?

We hypothesize that users’ self-reported trust ratings will
correspond to their actual use and trust levels implied by
choice to follow the decisions of the robotic system. We also
hypothesize that by using musical prosody after mistakes,
human collaborators will be more likely to trust the robotic
arm’s suggestions directly after a mistake. For the first
two research questions, we believe that participants will
develop an internal model of the robot as an interactive
emotional collaborator for the prosody model. This will lead
to higher levels of trust and improved perception of safety
and intelligence.

B. Experimental Design
Our experiment requires participants to perform a pattern

learning and prediction task collaboratively with a robot.
This is followed by two commonly used surveys; Schaefer’s
survey for robotic trust [29], and the Godspeed measurement
for Anthropomorphism, Animacy, Likeability, Perceived In-
telligence, and the Perceived Safety of Robots[30].

The study process followed 5 steps for each participant:
1) Consent form and introduction to online form
2) Description of the pattern recognition task
3) 20 Trial Pattern Recognition Tasks
4) 80 Pattern Recognition Tasks, recorded for data
5) Godspeed and Schaefer Trust Survey (order random-

ized per participant)
The pattern learning method was originally created by

Dongen et al. to understand the reliance on decisions and
develop a framework for testing different agents[31]. Since
then it has been re-purposed many times, including for
comparing the dichotomy of human-human and human-
automation trust [32], as well as the use of audio by cognitive
agents[33].

In our version of the pattern recognition task, participants
attempted to correctly predict the next number in a sequence.
Participants were told beforehand that humans and the pat-
tern recognition software being tested in the experiment tend
to be about 70% accurate on average, which has been shown
to cause humans to alternate between relying on themselves
and a decision agent. No further information was provided to
the participants about the sequence’s structure. The sequence
was made up of a repeated sub-sequence that was 5 numbers
long, containing only 1, 2, or 3 (such as 3, 1, 1, 2, 3). To
prevent the ability for participants to quickly identify the
pattern, 10% of the numbers in the sequence were randomly
altered. Participants first completed a training exercise to
learn the interface, in which a sub-sequence was repeated
4 times (20 total numbers). Then participants were informed
a new sequence had been generated for the final task. This
was generated in the same way, using a new sub-sequence
with 16 repetitions (80 total numbers). Before the user chose
which number they believed came next in the sequence, the
robot would suggest an answer, with the robot being correct
70% of the time (see Figure 1). This process mirrors the
process from the original paper [31].

The previous timestep’s correct answer was displayed for
the user at decision time to help them better keep track of



Fig. 1. Robot Arm Emotional Response

the pattern throughout the time the robot takes to perform its
movements. We required participants to submit their answer
after the robot finished pointing to its prediction, which took
between 2.5 and 4.5 seconds. This also forced participants
to spend time considering their decision given the robot’s
recommendation. The robot would respond to the user’s
choice depending on the outcome and the version of the
experiment, described in the following section.

C. Experimental Groups and Robot Reactions
Our study was designed as a between-group experiment,

where participants were randomly allocated to one of three
groups. These groups were a prosody audio group (prosody),
a single-pitch audio group (notes), and a control with no
audio (gesture). The robot always responded to a user’s
action with the emotion determined by the process shown in
Figure 1. In all three versions of the experiment, the robot
responded with the emotional gestures described in Section
III-G.

In the prosody group, the robot additionally responded
with prosody-based audio sample, randomly selected each
time from the five phrases matching the response emo-
tion. These phrases which were obtained using the process
described in Section III-E. In the notes group, the robot
additionally responded instead with an audio file playing
one note. Each emotion was randomly assigned one pitch
from the midi pitches 62, 65, 69, and 72. This assignment
remained consistent throughout the experiment to maintain
a relation between the sounds and the outcome. For each
pitch, five different audio files were available to be selected,
each with a different instrument timbre and length (varying
from 2-5 seconds), to provide variety similar to that of the
five different prosody phrases available for each emotion.
Finally, in the gesture group, the gesture was performed in
silence.

D. Participants
We recruited 46 participants through the online survey

platform Prolific1. The participants ages ranged from 19 to
49, while the mean age was 25, with a standard deviation
of 7. Participants were randomly sorted into one of the
three categories, audio with emotional musical prosody (15
participants), single-pitch audio (16 participants), and no
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Fig. 2. Geneva Emotion Wheel

audio (15 participants). Each experiment took approximately
30 minutes to complete. Participants were paid $4.75USD.

E. Dataset
In past work we created a deep learning generation system

for musical prosody [34], [35]. For this paper and experi-
ment, we chose to use our recently created dataset of a human
singing emotional phrases, to avoid any potential noise added
by a generative system. The recorded dataset contains 4.22
hours of musical material recorded by Mary Carter2, divided
into 1-15 second phrases each corresponding to one of the
20 different emotions in the Geneva Emotion Wheel [36]
shown in Figure 2.

As part of our evaluation of the dataset, we manually
selected 5 phrases for each emotion that we felt best rep-
resented the emotion, and had participants select an emo-
tion and intensity when listening to each provided phrase.
Participants recruited from Prolific and MTurk were used.
For quality assurance, participants were randomly given test
questions throughout the experiment telling them to select a
certain answer. Each participant was given 6.5 on average,
and responses which had more than one incorrect attention
question were ignored, leaving a total of 45 participants for
data analysis. In order to prevent the survey from being
overly long, questions were randomly allocated, with 12
participants on average evaluating each individual phrase.
Answers of None or Other were ignored in the analysis,
resulting in an average of 11.3 valid evaluations for each
phrase.

Our analysis of the phrases used the metrics defined by
Coyne et al[37]. We calculated the rated emotion’s mean and
variance in units of emotion (converted from degrees on the
wheel), weighted by user-rated intensity.

For the experiment, we used phrases for the four emo-
tions joy, shame, sadness, and anger. These emotions were
chosen as both being the emotions that best matched the
outcomes in 1 and had gesture descriptions specified in
[38]. 5 phrases for each emotion were chosen to add variety
to the robot’s response to not tire the user with the same
sounds, while still allowing for only high-quality phrases to
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be included. In selecting the phrases for each of the four
emotions, phrases from the closest two other emotions on
the wheel within the same quadrant were also considered
for selection. The sets were therefore {joy, pride, pleasure},
{shame, disappointment, regret}, {sadness, guilt, regret}, and
{anger, hate, contempt}. We selected 5 of the 15 potential
phrases for each by limiting length to be between 4 and 10
seconds, restricting the variance to be less than 2, requiring
the weighted mean emotion rating to fall within the correct
quadrant of the wheel, and finally selecting the phrases with
the smallest difference between the actual emotion and mean
rated emotion.

F. Interaction

Participants interacted with a virtual 3-D model of the
robot in an application designed in Unity. Each time a
participant was asked to answer a question, the robot acted as
a decision agent, pointing to an answer that may be correct
or incorrect. The user would then type their answer using
their computer keyboard. There were three versions of the
interaction application, varying the way the robot reacted to
the user’s answer, that are described in Section III-C. An
example image of the interface is shown in Figure 3.

Fig. 3. Example image from the robot interaction application

G. Gestures

We created a gesture for each of the emotions joy,
shame, sadness, and anger, as one way the robot reacted
to user input. We designed the gestures by utilizing the table
of emotion-specific nonverbal behaviors provided in [38],
which is based on work by Darwin, as well as their post-
hoc overview of discriminative body movements and poses.
These ideas have been used before in designing emotional
robot gestures [39]. Our joy gesture has the robot lift its arm
up high, making three quick upwards movements alternating
which side it faces. The shame gesture has the robot slowly
bend down and away from the camera to one side. The
sadness gesture has the robot slowly bend down while still
centered with respect to the camera. The anger gesture has
the robot first lean downwards and make two fast lateral
movements, and then lean upwards to make two more fast
lateral movements. Examples of poses encountered during
each gesture are shown in Figure 4.

Fig. 4. Example poses passed through during emotional gestures

Fig. 5. Box plot of trust scores

IV. RESULTS

A. RQ1: Trust Recovery
We first calculated Cronbach’s alpha for each metric in

the trust survey, which gave a high reliability of 0.92. We
then calculated the overall trust score by inverting categories
when appropriate and then generating the mean for each
individual. The mean trust of each group was prosody 0.71,
notes 0.57 and gesture 0.62 (see Figure 5). After running a
one-way ANOVA the p-value was significant, p=0.041. Pair-
wise t-tests between groups’ trust rating gave the results:
notes-gestures p= 0.46, notes-prosody p=0.025, and gesture-
prosody p=0.025. This supports our hypothesis that trust
would be higher from the arm using prosody.

We also evaluated trust based on participants’ actual use
of the system. The percentage of answers for which users
agreed with the robot for each group are plotted in Figure 6.
We performed a one-way ANOVA test to test whether there
was a significant difference in this metric between groups,
p=0.68, which was not significant.

To compare trust recovery after mistakes between groups,
we analyzed the percentage of times each user agreed with
the robot immediately after an instance of following the
robot’s incorrect suggestion. The results are plotted in Figure
6. The one-way ANOVA test yielded p=0.87, which was not



Fig. 6. Box plot showing percentage of answers agreeing with the robot
overall and after the robot made a mistake (means indicated by white
squares)

Fig. 7. Box plot of HRI metrics

significant.

B. RQ2: Safety, Intelligence and Likeability
Cronbach’s alpha for Anthropomorphism (0.85), Intelli-

gence (0.89) and Likeability (0.92) all showed high reliability
values above 0.85. Safety’s coefficient was slightly lower at
0.75. Across each category results showed a higher median
for each metric for the system using emotional prosody (see
Figure 7), while gestures consistently outperformed notes.
We performed a one-way ANOVA on each category, and
only Anthropomorphism was significant, p=0.006.

C. RQ3: Trust Survey and Participant Choices
We calculated the Pearson correlation coefficient between

the final trust scores, and the percentage of answers users
agreed with the robot. The result was r=0.12, which indicates
a weak correlation between the two metrics.

D. User Comments
The comments provided by participants indicate that it was

possible, in all groups, to perceive the emotions the robot was
trying to convey. In the prosody group, one user said, ‘The
arm seems quite emotional! When it’s right it is quite happy,
but when it is wrong it gets particularly sad.’ In the notes
group, a user said ‘When we got the right answer the robot
seemed cheerful, as opposed to when we selected the wrong
answer (based on the robot’s recommendation) it seemed as

if he was sorry for giving wrong suggestions. If I chose an
option different than the robot’s suggestion and its answer
was correct, it seemed as if he gave the look of I told you the
right answer!’ And in the gesture group, one comment was
‘the emotions were very easily perceivable.’ Two participants
in the notes group had negative comments on the audio
response, describing it as ‘horrible’ and ‘annoying’, while
one participant in the prosody group said the ‘humming
was annoying.’ Several participants mentioned that the robot
moved too slowly. Some comments mentioned having a hard
time detecting any pattern in the sequence, while in others
users discussed their strategies.

V. DISCUSSION AND CONCLUSION

This study was performed using virtual interactions with
a robot, and 46 participants. It would be useful to investigate
this further with a larger sample size, and to have participants
interact with a physical robot for comparison. Additionally,
more variations of robot responses could be compared and
analyzed beyond the three that we investigated. For example,
prosodic audio of a human voice could be compared with
that of musical instruments. Our results support that when
the robot responded with musical prosody (alongside the
gestures present for all groups), users reported higher trust
metrics than when the robot responded with single-pitched
notes or no audio. This supports that musical prosody has
a positive effect on humans’ trust of a robot. Comparing
the Godspeed metrics, it was unsurprising to find that the
addition of human vocalizations increased the Anthropo-
morphism of the system. We had expected likeability to be
higher, and while it was not a significant result, it would still
be worth investigating further with more subjects. The most
surprising result was that the notes audio fell well below
the median of gestures-only in every category. We believe
this shows that while prosody can have positive outcomes,
audio when implemented ineffectively has the capability to
drastically reduce HRI metrics. The reason for this is likely
due to the fact that the notes audio was not related to the
emotion being displayed by the gesture beyond remaining
consistent throughout the experiment. However, it would be
interesting to further explore more types of audio responses.

Users’ ratings of trust in the survey did not strongly
correlate with their actual behavior during the task, in terms
of how often they agreed with the robot’s suggestions. This is
consistent with the fact that while users reported significantly
higher trust for audio with musical prosody, no significant
differences were found in their actual choices during the
interactions. A similar conflict between these types of metrics
was found in the original decision framework paper [31],
where higher reported trust in the decision aid did not
always result in higher percent agreement with the aid. Some
potential explanations include cognitive biases and reliance
heuristic.
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emotional) actors,” Techné: Research in Philosophy and Technology,
vol. 23, no. 3, pp. 270–289, 2019.

[7] B. N. Walker and G. Kramer, “Human factors and the acoustic
ecology: Considerations for multimedia audio design,” in Audio Engi-
neering Society Convention 101. Audio Engineering Society, 1996.

[8] M. Mateas, “Artificial intelligence today,” M. J. Wooldridge
and M. Veloso, Eds. Berlin, Heidelberg: Springer-Verlag,
1999, ch. An Oz-centric Review of Interactive Drama
and Believable Agents, pp. 297–328. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1805750.1805762

[9] J. Crumpton and C. L. Bethel, “A survey of using vocal prosody
to convey emotion in robot speech,” International Journal of Social
Robotics, vol. 8, no. 2, pp. 271–285, 2016.
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