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Abstract

Large capacity machine learning (ML) models are prone
to membership inference attacks (MIAs), which aim to in-
fer whether the target sample is a member of the target
model’s training dataset. The serious privacy concerns due to
the membership inference have motivated multiple defenses
against MIAs, e.g., differential privacy and adversarial regu-
larization. Unfortunately, these defenses produce ML models
with unacceptably low classification performances.
Our work proposes a new defense, called distillation for mem-
bership privacy (DMP), against MIAs that preserves the util-
ity of the resulting models significantly better than prior de-
fenses. DMP leverages knowledge distillation to train ML
models with membership privacy. We provide a novel crite-
rion to tune the data used for knowledge transfer in order to
amplify the membership privacy of DMP.
Our extensive evaluation shows that DMP provides signif-
icantly better tradeoffs between membership privacy and
classification accuracies compared to state-of-the-art MIA
defenses. For instance, DMP achieves ∼100% accuracy
improvement over adversarial regularization for DenseNet
trained on CIFAR100, for similar membership privacy (mea-
sured using MIA risk): when the MIA risk is 53.7%, adver-
sarially regularized DenseNet is 33.6% accurate, while DMP-
trained DenseNet is 65.3% accurate.

1 Introduction
The remarkable performance of machine learning (ML) in
solving many classification tasks has facilitated its adoption
in various domains ranging from recommendation systems
to critical health-care management. Many ML-as-a-Service
platforms (e.g., Google API, Amazon AWS) enable novice
data owners to train ML models and release the models ei-
ther as a blackbox prediction API or as model parameters
that can be accessed in whitebox fashion.

ML models are often trained on data with sensitive user
information such as clinical records and personal photos.
Hence, ML models trained using sensitive data can leak
private information about their data owners. This has been
demonstrated through various inference attacks (Fredrikson,
Jha, and Ristenpart 2015; Hitaj, Ateniese, and Pérez-Cruz
2017; Carlini et al. 2018) , and most notably the member-
ship inference attack (MIA) (Shokri et al. 2017) which is
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the focus of our work. An MIA adversary with a blackbox
or whitebox access to a target model aims to determine if
a given target sample belonged to the private training data
of the target model or not. MIAs are able to distinguish the
members from non-members by learning the behavior of the
target model on member versus non-member inputs. They
use different features of the target model for this classifica-
tion, e.g., model predictions (Shokri et al. 2017), model loss,
and gradients of the model parameters for given input (Nasr,
Shokri, and Houmansadr 2019). MIAs are particularly more
effective against deep neural networks (Shokri et al. 2017;
Salem et al. 2019), because, with their large capacities, such
models can better memorize their training data.

Recent work has investigated several defenses against
membership inference attacks. In order to provide the worst
case privacy guarantees, Differential Privacy (DP) based de-
fenses add very large amounts of noise to the learning ob-
jective or model outputs (Papernot et al. 2017; Chaudhuri,
Monteleoni, and Sarwate 2011) . This results in models with
unacceptable tradeoffs between privacy and utility (Jayara-
man and Evans 2019), therefore questioning their use in
practice. Sablayrolles et al. (Sablayrolles et al. 2019) showed
that membership privacy is a weaker notion of privacy
than DP, which improves with generalization of ML mod-
els. Similarly, Nasr et al. (Nasr, Shokri, and Houmansadr
2018) proposed adversarial regularization targeted to de-
feat MIAs by improving the target model’s generalization.
However, as we demonstrate, the adversarial regulariza-
tion and other state-of-the-art regularizations, including la-
bel smoothing (Szegedy et al. 2016) and dropout (Srivastava
et al. 2014), fail to provide acceptable membership privacy-
utility tradeoffs (simply called ‘tradeoffs’ here onward).
Memguard (Jia et al. 2019), a blackbox defense, improves
model utility, but it cannot protect the model from white-
box MIAs and even the simple threshold based MIAs (Yeom
et al. 2018). In summary, existing defenses against MIAs
offer poor tradeoffs between model utility and membership
privacy.

To this end, our work proposes a defense against MIAs
that significantly improves the tradeoffs compared to prior
defenses. That is, for a given degree of membership pri-
vacy (i.e., MIA resistance), our defense produces models
with significantly higher classification performances com-
pared to prior defenses. Our defense, called Distillation for
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Membership Privacy (DMP), leverages knowledge distilla-
tion (Hinton, Vinyals, and Dean 2014), which transfers the
knowledge of large models to smaller models, and is primar-
ily used for model compression. Intuitively, DMP protects
membership privacy by thwarting the access of the resulting
models to the private training data. The first pre-distillation
phase of DMP trains an unprotected model on the private
training data without any privacy protection. Next, in dis-
tillation phase, DMP selects/generates reference data and
transfers the knowledge of the unprotected model into pre-
dictions of the reference data. In the final post-distillation
phase, DMP trains a protected model on the reference data
labeled in the previous phase. Unlike conventional distilla-
tion, we use the same architectures for the unprotected and
protected models.

Similar to adversarial regularization and PATE, DMP as-
sumes access to a possibly sensitive and “unlabeled” refer-
ence data drawn from the same distribution as the “labeled”
private training data, and uses such reference data to train
its final models; the reference data is not publicly available.
This is a highly realistic assumption as typical model gen-
erating entities (e.g., banks) possess huge amounts of “unla-
beled” data (but limited labeled data due to the expensive la-
beling process). Furthermore, we show that this assumption
can be relaxed by synthesizing reference data using genera-
tor networks (Micaelli and Storkey 2019). While some prior
work (Papernot et al. 2017) combined distillation and DP
to protect data privacy, our work is the first to study the
promise of knowledge distillation as the sole technique to
train membership privacy-preserving models. Our key con-
tributions are summarized below:

- We propose a defense against MIAs, called Distillation
for Membership Privacy (DMP).

- Given an unprotected model trained on a private training
data and a reference sample, we provide a novel result
that the lower the entropy of prediction of the model on
the reference sample, the lower the sensitive membership
information in the prediction. We use this result to selec-
t/generate appropriate reference data so as to improve the
membership privacy due to DMP.

- We perform an extensive evaluation of DMP to show
the state-of-the-art tradeoffs between membership privacy
and model accuracy of DMP. For instance, at a fixed high
degrees of membership privacy, DMP achieves 30% to
140% higher classification accuracies compared to state-
of-the-art defenses across various classification tasks.

2 Related Work
Membership inference attacks. (Shokri et al. 2017) intro-
duced membership inference attacks (MIAs). Given a target
model trained on a private training data and a target sam-
ple, MIA adversary aims to infer whether the target sam-
ple is a member of the private training data. (Shokri et al.
2017) proposed to train a neural network to distinguish the
features of the target model on members and non-members.
They assumed a partial access to the private trainin data.
(Salem et al. 2019) relaxed this assumptions and showed

the transferability of MIAs across datasets. These works re-
lied on the blackbox features of target models, e.g., model
predictions to mount MIAs. (Nasr, Shokri, and Houmansadr
2019) proposed to use whitebox features of target models,
e.g., model gradients, along with the blackbox features, to
further enhance the MIA accuracy. Above works used gen-
eralization gap (i.e., difference in train and test accuracy)
of target models to mount strong MIAs. The more recent
MIA literature focuses on deriving features that can better
distinguish the behavior of target models on members and
non-members (Leino and Fredrikson 2019; Song and Mittal
2020).
Defenses against membership inference attacks. MIAs
exploit differences in behaviors of target models on mem-
bers and non-members. Regularization techniques, includ-
ing dropout and label smoothing, reduce the difference in
terms of accuracies of the target model on members and non-
members, and mitigate MIAs to some extent (Shokri et al.
2017). (Nasr, Shokri, and Houmansadr 2018) proposed ad-
versarial regularization (AdvReg) tailored to defeat MIAs.
AdvReg simultaneously trains the target and attack models
in a game theoretic manner, and regularizes the target model
using the accuracy of the attack model. The final target mod-
els that use above regularization defenses can be deployed
in whitebox manner, i.e., similar to DMP, they are white-
box defenses. Hence, we thoroughly compare our DMP de-
fense with all these regularization techniques. However, as
shown in (Song and Mittal 2020) and seen from the origi-
nal work (Nasr, Shokri, and Houmansadr 2018), AdvReg is
not an effective defense, because it either fails to mitigate
MIA or incurs large drops in model utility (classification ac-
curacy). Jia et al. (2019) proposed MemGuard, a blackbox
defense that adds noise to the output of the target model
such that the noisy output is both accurate and fools the
given MIA attack model. However, MemGuard does not de-
fend against the simplest of threshold based attacks (Yeom
et al. 2018; Sablayrolles et al. 2019). We omit MemGuard
and other blackbox defenses, e.g., top-k predictions (Shokri
et al. 2017), from evaluations.

Differential privacy based defenses such as DP-
SGD (Abadi et al. 2016) and PATE (Papernot et al. 2017) are
whitebox defenses and provide strong theoretical member-
ship privacy guarantees. However, as (Jayaraman and Evans
2019) show—and we confirm in our work—target models
trained using DP-SGD and PATE have prohibitively low
classification accuracies rendering them unusable.

3 Preliminaries
Knowledge distillation. (Buciluǎ, Caruana, and Niculescu-
Mizil 2006) and (Ba and Caruana 2014) proposed knowl-
edge distillation, which uses the outputs of a large teacher
model to train a smaller student model, in order to compress
large models to smaller models. The outputs used for distil-
lation can vary, e.g., (Hinton, Vinyals, and Dean 2014) use
class probabilities generated by the teacher as the outputs,
while (Romero et al. 2014) use the intermediate activations
along with class probabilities of the teacher. It is well es-
tablished that knowledge distillation produces students with



accuracies similar to their teachers (Crowley, Gray, and
Storkey 2018; Zagoruyko and Komodakis 2016). This also
allows DMP to produce highly accurate target models. Note
that, although we use term “distillation”, DMP uses teacher
and student models of the same sizes, because DMP is not
concerned with the size of the resulting model.

Membership inference attacks. Below we give the threat
model and MIA methodology that we consider in this work.

Threat model. The primary goal of the adversary is to in-
fer the membership of a target sample (x, y) in the private
training data Dtr of a target model θ. Our DMP defense
uses private, unlabeled reference data Xref for knowledge
transfer, which itself could be privacy sensitive, hence, we
consider a secondary goal to infer membership of a target
sample in Xref . Following the previous works, we assume
a strong adversary with the knowledge of: target model pa-
rameters (the strongest whitebox case), half of the members
of Dtr and equal number of non-members. Similarly, to as-
sess the MIA risk to Xref , we assume that the adversary has
half of the members of Xref and the equal number of non-
members. Note that, the assumptions on the partial availabil-
ity of private Dtr and private Xref facilitates the assessment
of defenses under a very strong adversary. The adversary can
compute various whitebox and blackbox features of the tar-
get model and train an attack model. The adversary cannot
poison Xref as it is not publicly available.

Methodology. Consider a target model θ and a sample
(x, y). MIAs exploit the differences in the behavior of θ on
members and non-members of the private Dtr. Therefore,
MIAs train a binary attack model to classify target samples
into members and non-members. Such attack models can be
neural networks (Shokri et al. 2017; Salem et al. 2019) or
simple thresholding functions where threshold is tuned for
maximum attack performance (Yeom et al. 2018; Sablay-
rolles et al. 2019; Song and Mittal 2020). The adversary
computes various features of θ for given (x, y), e.g., predic-
tion θ(x, y), θ’s loss on (x, y), and the gradients of the loss.
The adversary combines these features to form F (x, y, θ).
The attack model h takes F (x, y, θ) as its input and outputs
the probability that (x, y) is a member of Dtr. Let PrDtr and
Pr\Dtr

be the conditional probabilities of the members and
non-members of Dtr, respectively. Hence, the expected gain
of the attack model for the above setting is given by:

Gθ(h) = E
(x,y)
∼PrDtr

[log(h(F ))] + E
(x,y)
∼Pr\Dtr

[log(1− h(F ))] (1)

In practice, the adversary knows only a finite set of the mem-
bers D and non-members D′A required to train h, hence
computes the above gain empirically as:

GθDA,D′A(h) =
∑
(x,y)

∈DA

log(h(F ))

|DA|
+
∑
(x,y)

∈D′A

log(1− h(F ))

|D′A|

(2)

Finally, the adversary solves for h∗ that maximizes (2).

4 Our Proposed Defense: DMP
Now, we present our defense Distillation For Membership
Privacy (DMP), which is motivated by the poor membership
privacy-utility tradeoffs provided by existing MIA defenses
(§ 2). First, we give an intuition behind DMP and detail the
DMP training. Finally, to achieve the desired tradeoffs, we
give a criterion to tune the selection or generation (e.g., using
GANs) of reference data used in DMP.
Notations. Dtr is a private training data. An ML model
trained on Dtr without any privacy protections is called un-
protected model, denoted by θup. An ML model is called
protected model, denoted by θp, if it protectsDtr from MIAs.
For knowledge transfer, DMP uses an unlabeled and possi-
bly private reference dataset which is disjoint from Dtr; as
the reference data is unlabeled, we denote it by Xref . We
denote the soft label of θ on x, i.e., θ(x), by θx.
Main intuition of DMP. (Sablayrolles et al. 2019) show
that θ trained on a sample z (short for (x, y)) provides (ε, δ)
membership privacy to z if the expected loss of the models
not trained on z is ε-close to the loss of θ on z, with proba-
bility at least 1 − δ. They assume a posterior distribution of
the parameters trained on a given data D = {z1, .., zn} to
be:

P(θ|z1, ..., zn) ∝ exp(

n∑
i=1

`(θ, zi)) (3)

Consider a neighboring dataset D′ = {z1, .., z′j , .., zn} of
D, which is obtained by modifying at most one sample of
D (Ding et al. 2018). (Sablayrolles et al. 2019) show that,
to provide membership privacy to zj , the log of the ratio of
probabilities of obtaining the same θ from D and D′ should
be bounded, i.e., (4) should be bounded.

log
∣∣∣ P(θ|D)

P(θ|D′)

∣∣∣ = |`(θ, zj)− `(θ, z′j)| (4)

(4) implies that, if θ was indeed trained on zj , then to
provide membership privacy to zj , the loss of θ on zj should
be same as the loss on any non-member sample z′j .

DMP is a strong meta-regularization technique built on
this intuition. DMP aims to protect its target models against
the membership inference attacks that exploit the gap be-
tween the target model’s losses on the members and non-
members, by reducing the gap.

DMP achieves this via knowledge transfer and restricts
the direct access of θp to the private Dtr, which significantly
reduces the membership information leakage to θp. How-
ever, unlike existing knowledge transfer, DMP proposes an
entropy-based criterion to select/generate Xref . Simply put,
soft labels of the unprotected model θup on Xref should have
low entropy and theXref should be far from decision bound-
aries of θup, i.e., far from Dtr, in the input feature space. In-
tuitively, such samples are easy to classify and none of the
members of Dtr significantly affects their predictions, and
therefore, these predictions do not leak membership infor-
mation of any particular member.
Details of the DMP technique. We now detail the three
phases of our DMP defense depicted in Figure 1. In pre-
distillation phase (step (1) in Figure 1), DMP trains θup on
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Figure 1: Distillation for Membership Privacy (DMP) de-
fense. (1) In pre-distillation phase, DMP trains an unpro-
tected model θup on the private training data without any
privacy protection. (2.1) In distillation phase, DMP uses
θup to select/generate appropriate reference data Xref that
minimizes membership privacy leakage. (2.2) Then, DMP
transfers the knowledge of θup by computing predictions of
θup on Xref , denoted by θXref

up . (3) In post-distillation phase,
DMP trains the final protected model θp on (Xref , θ

Xref
up ).

the private training data, Dtr, using standard SGD optimizer,
e.g., Adam. Such unprotected θup is highly susceptible to
MIA due to large generalization error, i.e., difference be-
tween train and test accuracies (Shokri et al. 2017; Yeom
et al. 2018).

Next, in distillation phase (step (2.1) in Figure 1), DMP
obtains Xref required to transfer the knowledge of θup in
θp. Note that, Xref is unlabeled and cannot be used directly
for any learning. Then, we compute soft labels of Xref, i.e.,
θXref
up = θup(Xref) (step (2.2) in Figure 1). There are two key

factors of the distillation phase that allow us to tune DMP
and achieve the desired privacy-utility tradeoffs. First, the
lower the entropy of predictions θXref

up , the lower the mem-
bership leakage through Xref and vice-versa. Such low en-
tropy predictions are characteristics of the members of Dtr,
however, non-members with low entropy can be obtained (or
generated using GANs (Micaelli and Storkey 2019)) due to
large input feature space. Second, using higher softmax tem-
peratures to compute θXref

up reduces membership leakage, but
may reduce accuracy of the final model, and vice-versa.

Finally, in Post-distillation phase (step (3) in Figure 1),
DMP trains a protected model θp on (Xref, θ

Xref
up ) using

Kullback-Leibler divergence loss defined in (5). In (5), y is
the target soft label. The final θp is obtained by solving (6).

LKL(x,y) =

c−1∑
i=0

yi log
( yi
θp(x)i

)
(5)

θp = argmin
θ

1

|Xref|
∑

(x,y)∈(Xref ,θ
Xref
up )

LKL(x,y) (6)

Due to KL-divergence loss in (6), the resulting model,
θp, perfectly learns the behavior of θup on the Xref . Further-
more, Xref being a representative non-member data, i.e.,
test data, we expect that the test accuracies of θp and θup
are close, and that the final DMP models will not suffer
significant accuracy reductions (Ba and Caruana 2014;

Romero et al. 2014).

Fine-tuning the DMP defense. As mentioned before, the
appropriate choice of reference data Xref is important to
achieve the desired privacy-utility tradeoffs in DMP. In this
section, we show that Xref with low entropy predictions of
unprotected model θup strengthens membership privacy and
derive an entropy-based criterion to select/generate Xref .

Proposition 1. Consider θup trained on a private Dtr.
Then, the membership leakage about Dtr through predic-
tions θup(Xref) can be reduced by selecting/generating Xref

that are far from Dtr in input feature space with respect to
some Lp distance and whose predictions, θup(Xref), have
low entropies.

Sketch of proof of Proposition 1. Due to space limitations,
we defer the detailed proof to Appendix and provide its
sketch here. Consider two training datasets Dtr and D′tr such
that D′tr ← Dtr − z, and Xref. Then, the log of the ratio of
the posterior probabilities of learning the exact same param-
eters θp using DMP is given by (11). Observe that, R is an
extension of (4) to the setting of DMP, where θp is trained
via the knowledge transferred using (Xref, θ

Xref
up ), instead of

directly training on Dtr. (Sablayrolles et al. 2019) argue to
reduce this ratio to improve membership privacy. Hence, we
want to obtain Xref which reduces R when Dtr, D′tr, and θp
are kept constant. We note that, although similar in appear-
ance to differential privacy, R is defined only for the given
private dataset, Dtr.

R =
∣∣∣log

(
Pr(θp|Dtr, Xref)/Pr(θp|D′tr, Xref)

)∣∣∣ (7)

Next, we modifyR as:

R =
∣∣∣− 1

T

∑
x∈Xref

LKL((x, θ
x
up); θp)− LKL((x, θ

′x
up); θp)

∣∣∣
(8)

≤ 1

T

∑
x∈Xref

∣∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣∣ (9)

where θup and θ′up are trained on Dtr and D′tr, respectively.
Note that, (12) holds due to the assumption in (3) and the
KL-divergence loss used to train θp in DMP. (13) follows
from (12) because |a+ b| ≤ |a|+ |b|. Therefore, minimizing
(13) implies minimizing (11). Thus, to improve membership
privacy due to θp, Xref is obtained by solving (14).

X∗ref = argmin
Xref∈X

( 1

T

∑
x∈Xref

∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣)
(10)

The objective of (14) is minimized when θxup = θ′xup ∀x ∈
Xref and is very intuitive: It implies that, z (i.e., Dtr −D′tr)
enjoys stronger membership privacy when the reference
data, Xref , are such that the distributions of outputs of θup
and θ′up on Xref are not affected by the presence of z in Dtr.

Next, we simplify (14) by replacing LKL with closely
related cross-entropy loss LCE. This simplification can be
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Figure 2: The lower the entropy of predictions of unpro-
tected model on Xref , the higher the membership privacy.

easily validated using Xref whose ground truth labels are
known. Specifically, we randomly sampleDtr andXref from
Purchase100 dataset, and compute θup and θp using DMP.
Next, for some z ∈ Dtr, we train θ′up on D′tr. Then, for each
x ∈ Xref , we compute ∆LKL as in (14) and use the available
ground truth label of x to compute ∆LCE. Finally, we show
that ∆LKL and ∆LCE are strongly correlated for all z ∈ Dtr.

Next, we use the linear approximation given by (Koh and
Liang 2017) for the difference in LCE of a pair of models
trained with and without a sample to simplify (14). Then the
result of Proposition 1 follows after a few simple mathemat-
ical manipulations.
Empirical verification of Proposition 1. We randomly pick
Dtr of size 10k from Purhcase100 data and train θup. Then,
we sort the rest of Purhcase100 data based on entropy of the
predictions of θup on the data. We form first Xref using the
first 10k data with the lowest entropies, second Xref using
the following 10k data, and so on. Finally we train multiple
protected models, θp’s, using each of the Xref ’s. Figure 2
(left) shows the increase in the MIA risk and Figure 2 (right)
shows the increase in the classification performance of θp
with the increase in average entropy of the Xref used. This
tradeoff is because, although the higher entropy predictions
contain more useful information (Nayak et al. 2019; Hinton,
Vinyals, and Dean 2014) and lead to high accuracy of θp,
they also contain higher membership information about Dtr

and lead to higher MIA risk.

5 Experimental Setup
5.1 Datasets and target model architectures
We use four datasets and corresponding model architectures
that are consistent with the previous works (Shokri et al.
2017; Nasr, Shokri, and Houmansadr 2019, 2018; Salem
et al. 2019).
Purchase (Purchase 2017) is a 100 class classification task
with 197,324 binary feature vectors of length 600; each di-
mension corresponds to a product and its value states if cor-
responding customer purchased the product; the correspond-
ing label represents the shopping habit of the customer.
Texas (Texas 2017) is dataset of patient records. It is a 100
class classification task with 67,300 binary feature vectors of
length 6,170 each; each dimension corresponds to symptoms
and its value states if corresponding patient has the symptom
or not; the label represents the treatment given to the pa-

tient. For Purchase and Texas we use fully connected (FC)
networks.

CIFAR10 and CIFAR100 (Krizhevsky and Hinton 2009)
are popular image classification datasets, each has size 50k
and 32 × 32 color images. We use Alexnet, DenseNet-12
(with 0.77M parameters), and DenseNet-19 (with 25.6M pa-
rameters) models for CIFAR100, and Alexnet for CIFAR10.
Following previous works, we measure the test accuracy of
the target models as their utility.

Sizes of dataset splits. The dataset splits are given in Ta-
ble 1. For Purchase and Texas tasks, we use Dref of size 10k
and selectXref of size 10k from the remaining data using our
entropy-based criterion. For CIFAR datasets, we use Dref of
size 25k and due to small sizes of these datasets, use the
entire remaining 25k data as Xref . The ‘Attack training’ (de-
scribed shortly) column shows the MIA adversary’s knowl-
edge of members and non-members ofDtr. Following all the
previous works, we assume that the adversary knows 50% of
Dtr. Further experimental details are provided in Appendix.

Dataset DMP training Attack training
|Dtr| |Xref| |D| |D′|

Purchase (P) 10000 10000 5000 5000
Texas (T) 10000 10000 5000 5000

CIFAR100 (C100) 25000 25000 12500 8000
CIFAR10 (C10) 25000 25000 12500 8000

Table 1: All the dataset splits are disjoint. D, D′ data are the
members and non-members ofDtr known to MIA adversary.

5.2 Membership inference attacks

We briefly review the four MIAs we use for evaluations. Fol-
lowing previous works, we use the accuracy of MIAs on tar-
get models as a measure of their membership privacy.

Bounded loss (BL) attack (Yeom et al. 2018) decides
membership using a threshold on the target model’s loss on
the target sample. When 0-1 loss is used, the attack accu-
racy is simply the difference in training and test accuracy of
target model. We denote BL attack accuracy by Abl.

NN attack (Salem et al. 2019) uses a shadow dataset ds
drawn from the same distribution as Dtr. The attacker splits
ds in d′s and d′′s , trains a shadow model θs on d′s, computes
predictions of θs on d′s and d′′s , labels the predictions of d′s
as members and that of d′′s as non-members, and trains bi-
nary attack model on the predictions. We denote NN attack
accuracy by Ann. Due to their small sizes, DMP cannot be
evaluated with CIFAR datasets, hence we omit NN attack
evaluation for CIFAR datasets.

NSH attacks (Nasr, Shokri, and Houmansadr 2019) are
similar to NN attacks. They concatenate various whitebox
(e.g., model gradients) and/or blackbox (e.g., model loss,
predictions) features of target model, while NN attack uses
only the target model predictions. We denote whitebox and
blackbox NSH attack accuracies by Awb and Abb, respec-
tively. For NN and NSH attacks, we use the same attack
models as the original works.



Dataset No defenseand
model Egen Atest Awb Abb Abl Ann
P-FC 24.0 76.0 77.1 76.8 63.1 60.5
T-FC 51.3 48.7 84.0 82.2 76.1 71.9

C100-A 63.2 36.8 90.3 91.3 81.8 N/A
C100-D12 33.8 65.2 72.2 71.8 67.5 N/A
C100-D19 34.4 65.5 82.3 81.6 68.1 N/A

C10-A 32.5 67.5 77.9 77.5 66.4 N/A

Table 2: Models trained without any defenses have high test
accuracies, Atest, but their high generalization errors, Egen

(i.e., Atrain − Atest) facilitate strong MIAs (§ 5.2). “N/A”
means the attack is not evaluated due to lack of data.

6 Experiments
6.1 Comparison with regularization techniques
Regularization improves the generalization of ML models,
and hence, reduce the MIA risk (Shokri et al. 2017). Hence,
we compare DMP with five regularization defeses, includ-
ing state-of-the-art MIA defense—adeversarial regulariza-
tion (Nasr, Shokri, and Houmansadr 2018). In all tables,
Egen is generalization error, i.e., (Atrain−Atest), whereAtrain
and Atest are train and test accuracies of the target model,
respectively. A+

test gives the % increase in Atest due to DMP
over the other regularizers. Awb, Abb, Abl, Ann are accura-
cies of various attacks discussed in the previous section.

Table 2 shows accuracies of models trained without any
defense; CIFAR models have lower than state-of-the-art ac-
curacies due to smaller training datasets.

Comparison with adversarial regularization (AdvReg).
Table 3 compares Atest of DMP and AdvReg models, for
similar MIA accuracies (i.e., membership privacy). As ex-
pected, these models also have similar Egen’s. However,
Atest of DMP models is significantly higher than AdvReg
models; A+

test column shows the % increase in Atest due to
DMP over AdvReg: Accuracy improvements due to DMP
over AdvReg are close to 100% for CIFAR-100, and 20%
to 45% for other datasets. AdvReg uses accuracy of an
MIA model to regularize and train its target models to fool
the MIA model. However, AdvReg allows its target models
to directly access Dtr. Hence, to effectively fool the MIA
model, it puts relatively large weight on the regularization-
loss term. This reduces the impact of the loss on main task
and reduces the accuracy of AdvReg models. DMP uses ap-
propriate reference data to transfer the knowledge of Dtr

to its target models without allowing them direct access.
Hence, DMP significantly outperforms AdvReg in terms of
privacy-utility tradeoffs.

Comparison with other regularizers. Next, we compare
DMP with four state-of-the-art regularizers: weight decay
(WD), dropout (Srivastava et al. 2014) (DR), label smooth-
ing (Szegedy et al. 2016) (LS), and confidence penalty
(Pereyra et al. 2017) (CP). Due to the poor MIA resistance
of CP, we defer its results to Appendix.

Table 4 shows the results, when MIA risks of regularized
models is close that of DMP models (Table 3). We note that,
in all the cases, Atest of DMP are significantly higher (up
to 385% increase as A+

test column specifies) than Atest of

other regularizers. This is because, these regularizers aim to
improve the test accuracies of target models, but are not de-
signed to reduce MIA risk. Thus, to reduce MIA risk, these
regularization techniques add large, suboptimal noises dur-
ing training, and hurt the utility of resulting models.

6.2 Comparison with differentially private
defenses

Comparison with DP-SGD. Following the methodology
of (Jayaraman and Evans 2019), we compare DMP and DP-
SGD (Abadi et al. 2016) using the empirically observed
tradeoffs between membership privacy (MIA resistance) and
Atest of models. We use only CIFAR10 for these experi-
ments, as the DP-SGD achieves prohibitively low accuracies
on difficult tasks such as Texas and CIFAR100. We evaluate
MIA risk using the whitebox NSH attack. Table 5 shows
the results of Alexnet trained on CIFAR10 using DMP and
DP-SGD with different privacy budgets ε’s; -veEgen implies
Atrain is lower than Atest. DP-SGD incurs significant (35%)
loss in Atest at lower ε (12.5) to provide strong member-
ship privacy. At higher ε, Atest of DP-SGD increases, but
at the cost of very high generalization error, which facili-
tates stronger MIAs. Note that, further increase in privacy
budget, ε, does not improve tradeoff of DP-SGD. More im-
portantly, for low MIA risk of ∼ 51.3%, DMP models have
12.8% higherAtest (i.e., 24.5% improvement) than DP-SGD
models, which shows the superior tradeoffs due to DMP.

Comparison with PATE. PATE (Papernot et al. 2017),
a semi-supervized learning technique, requires a compati-
ble pair of generator and disciminator to achieve acceptable
performances. Hence, we use CIFAR10 dataset and, instead
of Alexnet, use the generator-discriminator pair from (Sali-
mans et al. 2016), which has state-of-the-art performances.
PATE trains a set of teachers, computes hard labels of each
teacher on some Xref , aggregates the labels for each x ∈
Xref using majority voting, adds DP noise to the aggregate,
and finally trains its target model on the noisy aggregate.

We train ensembles of 5, 10, and 25 teachers using Dtr of
sise 25k. We use the optimized confident-GNMax (GNMax)
aggregation scheme of (Papernot et al. 2018) to label Xref

We present a subset of results in Table 6 and defer compre-
hensive comparison to Appendix. At low ε’s (<10), GNMax
hardly produces any labels, hence, the final target model has
very lowAtest, but at higher ε’s (>1000), PATE target model
has acceptable Atest. However, PATE cannot achieve perfor-
mances close to DMP, as it divides Dtr among its teachers.
Such teachers have significantly lower accuracies and their
ensemble cannot achieve the accuracy close to that of the
unprotected model of DMP, which is trained on the entire
Dtr. Hence, the quality of knowledge transferred in DMP is
always higher than that in PATE.

6.3 Discussions
Below, we provide further key insights in to DMP defense
and defer their detailed discussion to Appendix.

Hyperparameter selection in DMP. Increasing the tem-
perature of softmax layer of the unprotected model, θup,



Dataset Adversarial regularization (AdvReg) DMP
and

Egen Atest
Attack accuracy

Egen Atest A+
test

Attack accuracy
model Awb Abb Abl Ann Awb Abb Abl Ann

Purchase + FC 9.7 56.5 55.8 55.4 54.9 50.1 10.1 74.1 +31.2% 55.3 55.1 55.2 50.2
Texas + FC 6.1 33.5 58.2 57.9 54.1 50.8 7.1 48.6 +45.1% 55.3 55.4 53.6 50.0

CIFAR100 + Alexnet 6.9 19.7 54.3 54.0 53.5 N/A 6.5 35.7 +81.2% 55.7 55.6 53.3 N/A
CIFAR100 + DenseNet-12 5.5 26.5 51.4 51.3 52.8 N/A 3.6 63.1 +138.1% 53.7 53.0 51.8 N/A
CIFAR100 + DenseNet-19 7.2 33.9 54.2 53.4 53.6 N/A 7.3 65.3 +92.6% 54.7 54.4 53.7 N/A

CIFAR10 + Alexnet 4.2 53.4 51.9 51.2 52.1 N/A 3.1 65.0 +21.7% 51.3 50.6 51.6 N/A

Table 3: Comparing test accuracy (Atest) and generalization error (Egen) of DMP and Adversarial Regularization, for near-equal,
low MIA risks (high membership privacy). A+

test shows the % increase in Atest of DMP over Adversarial Regularization.

Purchase + FC (DMP’s Atest = 74.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 10.3 42.5 +74.4% 54.9 55.4 55.2

WD + DR 9.1 42.1 +76.0% 56.4 56.8 54.6
WD + LS 12.3 42.0 +76.4% 57.2 57.0 56.2

Texas + FC (DMP’s Atest = 48.6)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 5.0 22.5 +116% 58.3 57.7 52.5

WD + DR 6.1 14.2 +242% 63.1 62.6 53.1
WD + LS 8.3 37.3 +30% 61.7 61.0 54.2

CIFAR100 + DenseNet-12 (DMP’s Atest = 63.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.0 26.3 +140% 49.9 49.7 52.0

WD + DR 3.7 32.3 +95.4% 51.2 51.0 51.9
WD + LS 2.7 13.0 +385% 51.0 51.4 51.4

CIFAR10 + Alexnet (DMP’s Atest = 65.0)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.1 45.9 +41.6% 52.4 52.5 52.1

WD + DR 3.2 44.7 +45.4% 51.9 51.7 51.6
WD + LS 4.8 53.2 +22.2% 53.8 53.0 52.4

Table 4: Evaluating three state-of-the-art regularizers, with
similar, low MIA risks (high membership privacy) as DMP.
A+

test shows the % increase in Atest due to DMP over the
corresponding regularizers.

used to transfer the knowledge of θup, can further reduce
the membership leakage of Dtr. This is because, at higher
softmax temperatures, predictions of θup have uniform dis-
tribution over all classes and contain no useful information
for MIAs. Similarly, reducing the size of Xref reduces MIA
risk due to DMP, but comes at the cost of reduction in Atest.

Privacy risk to reference data (Xref ). We evaluate the
privacy risk to Xref , as it can be of sensitive nature, e.g.,
in case of Texas medical records dataset. Our results in ap-
pendix show that given the final DMP model, θp, and a tar-
get sample, MIA adversary (who mounts BL, NN, or NSH
attacks) cannot decide if the sample belonged to Xref with
sufficient confidence. This is expected, because DMP trains
its θp on noisy, soft-labels of Xref , which do not contain any
sensitive information about Xref and its ground-truth labels,
which is necessary for MIAs to succeed (Yeom et al. 2018).
We provide detailed results in Appendix.

DMP with synthetic reference data (Xref ). Following
previous works (Papernot et al. 2018, 2017), including the
state-of-the-art MIA defense AdvReg (Nasr, Shokri, and
Houmansadr 2018), we assume availability of Xref . How-

Defense Privacy
Egen Atest Awbbudget (ε)

No defense – 32.5 67.5 77.9
DMP – 3.10 65.0 51.3

DP-SGD

198.5 3.60 52.2 51.7
50.2 1.30 36.9 50.2
12.5 0.30 31.7 50.0
6.8 -1.60 29.4 49.9

Table 5: DP-SGD versus DMP for CIFAR10 and Alexnet.
For low MIA risk of ∼ 51.3%, DMP achieves 24.5% higher
Atest than of DP-SGD (12.8% absolute increase in Atest).

# of Queries Privacy Target model
AwbTeachers answered budget (ε) Egen Atest

5 49 195.9 31.4 33.9 49.1
1163 11684 65.4 68.1 49.0

10 23 42.9 39.1 38.3 50.1
1527 6535 63.9 65.2 49.8

25 108 183.5 53.8 55.7 49.0
4933 1794.1 57.8 60.3 48.6

Table 6: Comparing PATE with DMP. DMP has Egen, Atest,
and Awb of 1.19%, 76.79%, and 50.8%, respectively. PATE
has low accuracy even at high privacy budgets, as it divides
data among teachers and produces low accuracy ensembles.

ever, in privacy sensitive domains such as patient medical
records, Xref may not be available. Hence, we show that the
assumption can be relaxed by using Xref synthesized from
private Dtr to train DMP models. For CIFAR10, we use
DC-GAN to generate synthetic Xref of sizes 12.5k, 25k, and
37.5k fromDtr of size 25k. We then train three DMP models
and evaluate their MIA risk using whitebox NSH attack. We
note that for 12.5k, 25k, and 37.5k synthetic Xref samples,
(Egen, Atest, Awb) of DMP are (2.1, 53.0, 50.3), (3.5, 56.8,
51.3), and (5.0, 57.5, 52.1), respectively. Note that, DMP
outperforms existing defenses even with synthetic Xref (Ta-
bles 3, 4).

Adaptive attack on DMP. In DMP, the reference data,
Xref , is selected such that the predictions of DMP’s unpro-
tected model θup on Xref have low entropies. Due to mem-
orization, predictions of θup on Dtr also have low entropies.
Hence, an adaptive adversary may exploit this peculiar Xref

selection in DMP. Based on this intuition, we investigate the
possibility of an adaptive MIA, which labels a target sam-
ple as a member if the sample is close to some Xref datum
in feature space. However, such attack has accuracy close to
random guess. This is because, we observe that the proxim-
ity of two samples in feature space has no correlation with
the entropy of predictions of given θup on those samples,



which is the selection criterion of DMP. We leave further
investigation of adaptive attacks on DMP to future work.

7 Conclusions
We proposed Distillation for Membership Privacy (DMP),
a knowledge distillation based defense against membership
inference attacks that significantly improves the member-
ship privacy-model utility tradeoffs compared to state-of-
the-art defenses. We provided a novel criterion to generate/s-
elect reference data in DMP and achieve the desired trade-
offs. Our extensive evaluation demonstrated the state-of-the-
art privacy-utility tradeoffs of DMP.
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A Fine tuning the DMP defense
(Missing details)

We propose a fine tuning technique to select/generate appro-
priate reference data, Xref , and achieve the desired privacy-
utility tradeoffs using our distillation for membership pri-
vacy (DMP) defense. The technique depends on the result
given in Proposition 1; we provide a detailed proof of the
results below.
Detailed proof of Proposition 1.

Deriving the objective for desired Xref. Consider two train-
ing datasets Dtr and D′tr such that D′tr ← Dtr − z, and Xref.
Then, the log of the ratio of the posterior probabilities of
learning the exact same parameters θp using DMP is given
by (11). Observe that, R is an extension of (4) to the set-
ting of DMP, where θp is trained via the knowledge trans-
ferred using (Xref, θ

Xref
up ), instead of directly training on Dtr.

(Sablayrolles et al. 2019) argue to reduce this ratio to im-
prove membership privacy. Hence, we want to obtain Xref

which reduces the ratio R when Dtr, D′tr, and θp are kept
constant. We note that, although similar in appearance to
differential privacy, R is defined only for the given private
dataset, Dtr.

R =
∣∣∣log

Pr(θp|Dtr, Xref)

Pr(θp|D′tr, Xref)

∣∣∣ (11)

Next, we modifyR as:

R =
∣∣∣− 1

T

∑
x∈Xref

LKL((x, θ
x
up); θp)− LKL((x, θ

′x
up); θp)

∣∣∣
(12)

≤ 1

T

∑
x∈Xref

∣∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣∣ (13)

where θup and θ′up are trained on Dtr and D′tr, respectively.
Note that, (12) holds due to the assumption in (3) and the
KL-divergence loss used to train θp in DMP. (13) follows
from (12) because |a+ b| ≤ |a|+ |b|. Therefore, minimizing
(13) implies minimizing (11). Thus, to improve membership
privacy due to θp, Xref is obtained by solving (14).

X∗ref = argmin
Xref∈X

( 1

T

∑
x∈Xref

∣∣LKL(θ
x
up‖θxp )− LKL(θ

′x
up‖θxp )

∣∣)
(14)

The objective of (14) is minimized when θxup = θ′xup ∀x ∈
Xref and is very intuitive: It implies that, z (i.e., Dtr −D′tr)
enjoys stronger membership privacy when the reference
data, Xref , are such that the distributions of outputs of θup
and θ′up on Xref are not affected by the presence of z in Dtr.

Simplifying the objective. Next, we simplify (14) by re-
placing LKL with closely related cross-entropy loss LCE. The
simplified objective is given by (15).

X∗ref = argmin
Xref∈X

∑
z′=(x,y)
∈(Xref,Yref)

1

T

∣∣LCE(z′; θ′up)− LCE(z′; θup)
∣∣

(15)

where LCE is cross-entropy loss and z′ is not the same as
z ← Dtr−D′tr. For clarity of presentation, here onward, we
denote LCE by L.

Next, we assume that ground truth labels Yref of Xref are
available. Note that Xref is unlabeled dataset, but only to
empirically demonstrate the validity of the simplification of
(14) to (15), we assume that ground truth labels of Xref are
available. We validate the simplification in Figure 3: for any

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm


given reference sample, the lower the difference between
cross-entropy losses, ∆L, the lower the corresponding
difference between KL-divergence losses; and vice-versa.
Note that, to select/generate a reference sample, we do
not need the exact difference between cross-entropy or
KL-divergence losses for the sample, but only the difference
for the sample relative to the other samples. Hence, although
the difference between cross-entropy losses is not exactly
the same as difference between KL-divergence losses,
their strong positive correlation is sufficient to make the
reduction (14)→ (15) useful in our task.

Deriving the final objective to select/generate Xref . Next,
to avoid repetitive training, we simplify the term for each
sample in (15) using the results of (Koh and Liang 2017).
More specifically, they propose a linear approximation to the
difference in cross-entropy losses of a pair of models trained
with and without a specific sample in their training data. We
note that this is the exact setting of our problem. If θ and θ−z
are two models trained with and without a member z, then
the difference in cross-entropy losses of the two models on
some test sample ztest = (xtest, ytest) is approximated as:

|L(ztest, θ−z)−L(ztest, θ)| ' |∇θL(ztest, θ)H
−1
θ ∇θL(z, θ)|

(16)
where Hθ is the Hessian matrix that is defined as Hθ =
1
n

∑
z∈Dtr

∇2
θ(z, θ). Substituting (16) in (15) simplifies the

objective in (14) to:

X∗ref = argmin
Xref∈X

∑
z′=(x,y)
∈(Xref,Yref)

1

T
|∇θL(z′, θup)H−1θ ∇θL(z′, θup)|

(17)

Note that, for a given member z, H−1θ ∇θL(z′, θ) in (17)
remains constant and the minimization reduces to minimiz-
ing the gradient∇θL(zp, θup). The lower the loss L(z′, θup),
the smaller the gradient ∇θL(z′, θup). Therefore objective
(17) further simplifies as:

X∗ref = argmin
Xref∈X

1

T

∑
z′=(x′,y)
∈(Xref,Yref)

LCE(z′, θup) (18)

Note that, in practice, it is not possible to solve the ob-
jective in (18) as it is. Because, we cannot compute the loss
without the ground truth labels of Xref; recall that Xref is
unlabeled. However, as the loss involved here is the cross-
entropy loss, minimizing the loss is equivalent to minimiz-
ing the entropy of prediction θup(x′). This gives us the final
objective as:

X∗ref = argmin
Xref∈X

1

T

∑
x′∈Xref

H(θup(x′)) (19)

where, H(v) ,
∑
i−vilog(vi) is the entropy of v. This

provides the result of Proposition 1.
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Figure 3: Empirical validation of simplification of (14) to
(15): Increase in ∆LCE increases ∆LKL, and that of (14) to
(19): Increase inH(θup(z)) increases ∆LKL.

Proposition 1 states that, using the reference data with low
entropy predictions of θup strengthens the membership re-
sistance of θp, and vice versa. In Figure 3, we empirically
validate the reductions (14)→ (18)→ (19). Specifically, we
show that, for a given θup, the lower the cross-entropy loss
of reference data sample, the lower the entropy of prediction
of θup on the sample, i.e., (18)→ (19). Then, we show that,
the difference between cross-entropy losses of two models
θup and θ′up, trained on neighboring datasets, on a sample in-
creases with the increase in cross-entropy loss of their pre-
diction on the sample, i.e., (15)→ (18). This, in combination
with the reduction (14) → (15) demonstrated in Figure 3,
completes the validation of (14)→ (18). Figure 2 validates
our hypothesis.

B Missing Details of Experimental Setup
B.1 Computing environment
We will make our code and all the relevant datasets (all the
datasets used are already available online) publicly available
upon acceptance of the submission. We perform all of our
experiments using PyTorch 1.2 framework on TitanX GPU
of 12GB memory. All the experimental results in the paper
are average of three runs of the corresponding experimental
setting.

B.2 Target model architectures
Unlike conventional distillation (Hinton, Vinyals, and Dean
2014), DMP uses same architectures for unprotected and
protected models. Needless to say, using a lower-capacity
architecture for the protected model will further improve pri-
vacy protection at the cost of reducing utility (prediction ac-
curacy). The details of the architectures for all the datasets
is given in Table 9. For Purchase-100 and Texas-100, the
fully connected network has hidden layers of sizes {1024,



512, 256, 128}. For CIFAR-100, we choose two DenseNet
models to assess the efficacy of DMP for two models with
equivalent performance, but significantly different capaci-
ties. In Table 9, DenseNet12 corresponds to DenseNet-BC
(L=100, k=12) and DenseNet19 corresponds to DenseNet-
BC (L=190, k=40). For the comparison with PATE using
CIFAR-10, we use the generator and discriminator architec-
tures used in (Salimans et al. 2016).

C Detailed comparison with PATE
In this section, we detail the experimental comparison be-
tween PATE (Papernot et al. 2018, 2017) and our DMP de-
fense for CIFAR10 classification task. The motivation of this
comparison is to show that the DMP-trained models achieve
significantly better tradeoffs between membership privacy
(i.e., resistance to membership inference attacks) and classi-
fication accuracy than the PATE-trained models.

PATE relies on semi-supervised learning that uses a large
unlabeled dataset. PATE computes the labels of a subset of
the unlabeled data using an ensemble of teachers. Each of
the teachers is trained on a disjoint set of the private training
dataset; all sets have the same size. Semi-supervised learn-
ing involves an unstable game between a generator G and
a discriminator D. Hence, the architectures of G and D
should be compatible for effective learning. Therefore, in-
stead of AlexNet, which we use in the rest of our CIFAR10
experiments, we use the the pair of discriminator and gener-
ator architectures proposed in (Salimans et al. 2016) due to
its state-of-the-art classification performance. Finally, PATE
uses its discriminator as the classification model. For both
PATE and DMP, we use the same 25,000 data of CIFAR10 as
the private training and the rest of 25,000 data the unlabeled
reference data. The accuracy of the discriminator trained on
the entire private training data is 97.65% and 79.6% on train-
ing and test data, respectively.

We use the 25,000 training data to train three ensem-
bles of sizes 5, 10 and 25 teachers. Each of the teachers
in all the ensembles have disjoint and equal-sized training
data. The accuracy, without adding any noise to labels, of
the corresponding ensembles on the 25000 reference sam-
ples is 64.92%, 60.1% and 54.52%, respectively. We use
the confident-GNMax (GNMax) aggregation scheme to add
DP noise to the aggregate of the votes (i.e., hard labels) of
the teachers on the unlabeled reference data. GNMax labels
samples based on remaining privacy budget, hence, it may
not label all the reference data samples. GNMax aggrega-
tion scheme is similar to the sparse vector technique (Dwork,
Roth et al. 2014) and outputs a label only if the noisy ver-
sion of the votes count of the label crosses a noisy version
of a fixed threshold. Table 7 details the accuracy of the GN-
Max aggregation for different number of teachers and pri-
vacy levels (ε, δ). We use δ of 10−4 as the order of the size
of the reference data is 104 (Papernot et al. 2018).

Note that, the DMP-trained discriminator has training,
test, and attack accuracies of 77.98%, 76.79%, and 50.8%,
respectively. Table 7 shows results for PATE with teacher
ensembles of different sizes: At low ε values, GNMax can-
not provide many labels, and therefore, PATE suffers signifi-
cant accuracy degradations. While at high ε values (>1000),

GNMax performs better, but does not outperform DMP. The
reason for this is as follows: At very high ε’s, PATE is just
a knowledge transfer based semi-supervised learning, while
DMP is knowledge transfer based supervised learning. DMP
does not divide its training data among teacher, and there-
fore, the predictions of the unprotected model used in DMP
to train the protected model are more useful in terms of both
the quality and quantity. Therefore, DMP-trained models
have significantly higher accuracy than PATE-trained model,
for similar membership inference risk, i.e., DMP achieves
significantly better membership privacy-model utility trade-
offs.

D Missing Discussion Details
In the last section of main paper, we provide various insights
in to our DMP defense based on our extensive evaluation.
We provide the missing details of the discussions below.

D.1 Hyperparameter selection in DMP
The temperature of the softmax layer. The softmax tem-
perature, T , of the unprotected model, θup, plays an im-
portant role in the amount of knowledge transferred from
the unprotected to protected model in DMP. Our results
in Table 8 confirm our analytical understanding of the use
of the softmax temperature: increasing the temperature for
AlexNet trained on CIFAR100 dataset reduces the classi-
fication accuracy of the final protected model, θp, but also
strengthens the its membership inference resistance. There-
fore, the softmax temperature T should be chosen depend-
ing on the desired privacy-utility tradeoff. Table 9 shows the
temperatures used in our experiments.

The size of reference data. In DMP, the more the refer-
ence data, the looser the bound on R in (11), and therefore,
weaker the membership resistance of the corresponding θp.
To validate this, we quantify the classification accuracy and
the membership inference risk of θp with increasing the
amount of Xref. We use Purchase-100 data and vary |Xref|
as shown in Figure 4; we fix the softmax T of θup at 1.0. θup
used here has train accuracy, test accuracy, and membership
inference risk of 99.9%, 77.0% and 77.1%, respectively. Ini-
tially, the test accuracy of θp increases with |Xref| due to the
useful knowledge transferred. But, beyond the test accuracy
of θup, its predictions essentially insert noise in the training
data of θp, therefore the gain from increasing the size of ref-
erence data slows down. Although this noise marginalizes
the increase in the test performance of θp, it also prevents θp
from learning more about Dtr and prevents further inference
risk. This is shown by the train accuracy and membership in-
ference risk curves in Figure 4. Therefore, size of reference
data should be selected based on the desired tradeoffs of the
final model.

D.2 Privacy risk to reference data (Xref)
The reference data used in DMP can be of sensitive nature.
For instance, for Texas-100, the reference data used are unla-
beled, sensitive patients’ records, and therefore, at the risk of
privacy breach. However, we quantitatively show that DMP
does not pose membership inference risk to its reference



5 Teachers 10 Teachers 25 Teachers
Queries Privacy GNMax Student Queries Privacy GNMax Student Queries Privacy GNMax Student

answered bound ε accuracy accuracy answered bound ε accuracy accuracy answered bound ε accuracy accuracy
0 4.6 – – 0 9 – – 0 8.43 – –
49 195.9 79.6 33.93 23 42.87 56.5 38.28 108 183.5 95.4 55.7
127 281.6 69.3 49.89 358 409.5 67.0 57.59 357 231.3 83.9 56.14
679 1283.7 70.3 58.04 1128 1092.5 66.13 60.94 1130 508.9 83.8 58.26
1163 11684 91.1 68.08 1527 6535 93.1 65.18 4933 1794.1 74.0 60.27

Table 7: Evaluation of PATE using the discriminator architecture in (Salimans et al. 2016) trained on CIFAR10. The correspond-
ing DMP-trained model has 77.98% and 76.79% accuracies on the training and test data, and 50.8% membership inference
accuracy. Comparison of results clearly show the superior membership privacy-model utility tradeoffs of DMP over PATE.

Defense Softmax Training Test Attack
T Accuracy Accuracy Accuracy

No defense n/a 100 36.8 91.3

DMP

2 46.6 37.3 57.4
4 42.2 35.7 55.6
6 36.4 32.8 52.5
8 12.1 12.3 51.7

Table 8: Effect of the softmax temperature on DMP: For a
fixed Xref, increasing the temperature of softmax layer of
θup reduces R in (11), which strengthens the membership
privacy.

Combination Dataset Architecture |θ| Tacronym
P-FC Purchase Fully Connected 1.32M 1.0
T-FC Texas Fully Connected 1.32M 1.0

C100-A
CIFAR100

AlexNet 2.47M 4.0
C100-D12 DenseNet12 0.77M 4.0
C100-D19 DenseNet19 25.6M 1.0

C10-A CIFAR10 AlexNet 2.47M 1.0

Table 9: Temperature of the softmax layers for the differ-
ent combinations of dataset and network architecture used
to produce the results in Table 3 of the main paper.

data. The results are given in Table 10. We note that, for any
combination of model and dataset, the membership infer-
ence risk to the reference data due to DMP is close to 50%,
which is a random guess. The intuition here is as follows.
θp is trained on noisy soft-labels of θup on Xref , and there-
fore, compared to an arbitrary test data, the influence ofXref

on θp is not unique, which membership inference attacks ex-
ploit (Long et al. 2018; Shokri et al. 2017; Salem et al. 2019;
Nasr, Shokri, and Houmansadr 2019). For Purchase-100 and

Dataset Test Reference data
Awb Abb& model acc. (Atest) acc. (Aref)

P-FC 74.1 80.8 53.1 52.6
T-FC 48.6 52.0 52.2 52.0

C100-A 35.7 35.9 50.9 50.5
C100-D12 63.1 65.1 53.0 52.2

C10-A 65.0 66.7 53.9 52.7

Table 10: DMP does not pose membership inference risk to
the possibly sensitive reference data. Aref and Atest are ac-
curacies of protected model, θp, on Xref and Dtest, respec-
tively.
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Figure 4: Increasing reference data size, |Xref|, increases ac-
curacy of θp, but also increases R in (11), which increases
the membership inference risk due to θp.

Texas-100, the accuracy of θp on Xref is much higher than
on Dtest, because for these datasets, Xref contains easy-to-
classify samples.

E Statistical Indistinguishability due to DMP
In this section, we show the indistinguishability of the statis-
tics of different features of the target models trained with
and without defenses, on the members and non-members of
their training data. Such indistinguishability is necenssary to
hinder membership inference attacks (MIAs) (Shokri et al.
2017).
Effect of softmax temperature. Figure 5 shows the ef-
fect of softmax temperature, T , of unprotected model, θup,
on the training and test accuracies of the protected mode,
θp. As expected, we observe in Figure 5 that with the in-
crease in the softmax temperature of θup, the generalization
error of θp decreases. From left to right, the generalization
errors of θp when the softmax temperatures of θup are set
at 2, 4, and 6 are 4.7% (66.3, 61.6), 3.6% (66.7, 63.1), and
0.8% (55.7, 54.9), respectively; parentheses show the corre-
sponding training and test accuracies, respectively. We keep
the temperature of softmax layer in θp constant at 4.0. This
reduction in generalization error improves membership pri-
vacy.
Indistinguishability of gradient norms. To assess the ef-
ficacy of DMP against the stronger whitebox MIAs (Nasr et
al. (2019)), we study the gradients of loss of the predictions
of unprotected and protected models on members and non-
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Figure 5: Impact of softmax temperature on training of θp: Increase in the temperature of softmax layer of θup reduces ∆LKL in
(13), and hence, the ratioR in (11). This improves the membership privacy and generalization of θp.
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Figure 6: Distributions of gradient norms of members and non-members of private training data. (Upper row): Unlike the
distribution of non-members, that of the members of the unprotected model, θup, is skewed towards 0 as θup memorizes the
members. (Lower row): The distributions of gradient norms for members and non-members for the protected model, θp, of
DMP are almost indistinguishable.
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Figure 7: The empirical CDF of the generalization error of models trained with DMP, adversarial regularization (AdvReg),
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generalization error reduction due to DMP is much larger (10× for CIFAR100 and 2× for Purchase) than due to AdvReg. The
low generalization error improves membership privacy due to DMP.



Experimental setup Near-equal Atest as DMP
Dataset Model Regularization Egen Atest Awb Abb Abl Ann

Purchase FC

WD 21.7 78.1 69.7 70.1 60.9 55.6
WD + DR 22.1 77.4 77.1 76.8 61.5 60.0
WD + LS 21.1 78.4 76.5 76.8 60.6 56.4
WD + CP 22.9 76.9 70.1 70.5 61.5 58.5

Texas FC

WD 49.0 50.4 84.1 82.1 74.5 56.2
WD + DR 41.1 52.1 82.1 81.2 70.6 60.2
WD + LS 50.9 49.1 86.0 85.7 75.5 56.9
WD + CP 45.5 54.2 90.4 90.2 72.8 65.6

CIFAR100 DenseNet12

WD 31.0 67.8 72.9 72.9 65.5 N/A
WD + DR 31.0 68.2 73.7 73.6 65.5 N/A
WD + LS 31.6 68.0 70.3 70.1 65.8 N/A
WD + CP 31.1 67.5 74.3 74.7 65.6 N/A

CIFAR10 AlexNet

WD 31.0 68.9 73.2 73.3 65.5 N/A
WD + DR 30.6 69.4 73.8 73.4 65.3 N/A
WD + LS 29.9 69.9 74.8 75.0 65.5 N/A
WD + CP 29.9 70.0 70.6 71.1 65.5 N/A

Table 11: Generalization error (Egen), test accuracy (Atest), and various MIA risks (evaluated using MIAs from Section 5.2) of
models trained using state-of-the-art regularization techniques. Here we provide MIA risks for regularized models whose accu-
racy is close to that of DMP-trained models. We note that, for the same test accuracy, DMP-trained models provide significantly
higher resistance to MIAs.

members of the private traininig data, Dtr. Figure 6 shows
the fraction of members and non-members given on y-axes
that fall in a particular range of gradient norm values given
on x-axes. Gradients are computed with respect to the pa-
rameters of the given model. We note that the distribution
of the norms of unprotected model (upper figures) is heavily
skewed to the left for the members, i.e., towards lower gra-
dient norm values, unlike that for the non-members. This is
because, θup memorizes Dtr and its loss and the gradient of
the loss on the members is very small compared to the non-
members. However, for the protected model both members
and non-members are evenly distributed across a large range
of gradient norm values. This implies that DMP significantly
reduces the unintended memorization ofDtr in the model pa-
rameters. Hence, DMP significant reduces (by 27.6%) the
MIA risk to the large capacity Dense19.
Indistinguishability of train and test accuracies. In Fig-
ure 7, we show the cumulative fraction of classes on y-
axis for which the generalization error of the target mod-
els is lesser than the corresponding value on the x-axis; the
closer the line to the line x = 0, the lower the general-
ization error. Figure 7 implies that, the models trained us-
ing DMP have significantly lower generalization error than
those trained using adversarially regularization or without
defense. We observe that, with the no defense case as the
baseline, the generalization error reduction using DMP is
more than twice that using adversarial regularization. DMP
reduces the error by half for Purchase and by 10× for CI-
FAR100.

F Missing experimental details
Best tradeoffs due to adversarial regularization Ta-
ble 12 gives the results for best tradeoffs due to adversarial
regularization that we obtain by tuning its λ parameter (Nasr,
Shokri, and Houmansadr 2018).

Dataset Adversarial regularization
& model Egen Atest Awb Abb Abl Ann

P-FC 22.4 68.1 62.3 61.9 61.4 51.4
T-FC 15.5 45.3 66.8 66.3 57.8 51.2

C100-A 50.9 31.6 79.3 78.3 75.5 N/A
C100-D12 19.4 58.4 61.9 61.7 59.7 N/A
C100-D19 30.8 53.7 69.5 68.7 65.4 N/A

C10-A 29.8 62.6 65.2 65.0 64.9 N/A

Table 12: Best tradeoffs between test accuracy (Atest) and
membership inference risks (evaluated using MIAs from
Section 5.2) due to adversarial regularization. DMP signif-
icantly improves the tradeoffs over the adversarial regular-
ization (results for DMP are in Table 3).

Best tradeoffs due to other regularizations We see from
the ‘Equivalent Atest’ column in Table 11 that all regulariza-
tion techniques improve the classification performance over
the corresponding accuracies of baseline models from the
Table 2 of main paper. However, they reduce overfitting neg-
ligibly: the maximum reduction in Egen due to the regular-
izations is 1.8% for Purchase, 10.2% for Texas, 3.8% for CI-
FAR100, and 2.6% for CIFAR10. This is because these tech-
niques aim to produce models that generalize better to test
data, but they do not necessarily reduce the memorization of
the private training data by the models. Consequently, these
techniques fail to reduce the membership inference risk: the
maximum reduction in Awb due to the regularizations is 7%
for Purchase, 1.9% for Texas, 1.9% for CIFAR100, and 6.8%
for CIFAR10. Note that, the confidence penalty and the label
smoothing techniques reduce the inference risk, but not the
generalization error. This is because the corresponding mod-
els have smoother output distributions, which are more in-
distinguishable than the output distributions of models with-
out any privacy.


	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our Proposed Defense: DMP
	5 Experimental Setup
	5.1 Datasets and target model architectures
	5.2 Membership inference attacks

	6 Experiments
	6.1 Comparison with regularization techniques
	6.2 Comparison with differentially private defenses
	6.3 Discussions

	7 Conclusions
	A Fine tuning the DMP defense(Missing details)
	B Missing Details of Experimental Setup
	B.1 Computing environment
	B.2 Target model architectures

	C Detailed comparison with PATE
	D Missing Discussion Details
	D.1 Hyperparameter selection in DMP
	D.2 Privacy risk to reference data (Xref)

	E Statistical Indistinguishability due to DMP
	F Missing experimental details

