
Accelerating Spectral Normalization for Enhancing
Robustness of Deep Neural Networks

Zhixin Pan and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Deep neural networks (DNNs) play an important
role in machine learning due to its outstanding performance
compared to other alternatives. However, DNNs are usually not
suitable for safety-critical applications since DNNs can be easily
fooled by well-crafted adversarial examples. To address this issue,
spectral normalization (SN) technique was proposed to counter
adversarial attacks, which ensures that the trained model has
low sensitivity towards the disturbance of input samples. Unfortu-
nately, this strategy requires exact computation of spectral norm,
which is computation intensive and impractical for large-scale
networks. In this paper, we introduce an acceleration technique
for spectral normalization based on Fourier transform and layer
separation. The proposed method provides DNNs with promising
security protection while maintaining minimized time cost, which
turns SN from a theoretically feasible approach to a practically
useful framework. Experimental evaluation using autonomous
systems demonstrates that our acceleration method is able to
significantly improve both time efficiency (up to 60%) and model
robustness (61% on average) compared with the state-of-the-art
spectral normalization in real-world applications.

Index Terms—Deep learning, adversarial attack, acceleration

I. INTRODUCTION

Deep neural networks (DNNs) are widely used in machine
learning field. Due to its outstanding performance in both
supervised and unsupervised learning, DNNs can express or
simulate a wide variety of intrinsic functionalities includ-
ing classification, regression, Trojan detection [1], etc. The
flexibility of DNNs also enables their different variations
to be successfully employed in diverse applications [2]–[7].
However, the adversarial attack observed by Szegedy et al.
[8] revealed the vulnerability of most existing neural networks
against adversarial examples. The difference between adversar-
ial samples and the original sample can hardly be distinguished
by naked eyes, but will lead the model to make an incorrect
prediction with high confidence. As shown in Figure 1, a
human-invisible noise was added to input traffic sign image.
While a pre-trained network can successfully recognize the
original input as a stop sign, the same network will incorrectly
classify it as a yield sign if the input is perturbed with well-
crafted noise. In order to design robust DNNs, it is critical
defend against adversarial attacks.

While there are many promising defense strategies, most
of them are designed for specific attack algorithms, which
severely restricts their applicability. Spectral normalization

This work was partially supported by the NSF grant CCF-1908131.

Figure 1: Example adversarial attack on autonomous driving:
a stop sign miss-classified as a yield sign due to noise.

[9] has gained significant attention because it is algorithm-
agnostic and can reduce DNNs’ sensitivity to input perturba-
tion. A major challenge with this method is that it provides a
trade-off between computation time and numerical accuracy
for computing the spectral norm of DNNs’ weight matrix.
Specifically, it applies one iteration of power method for
each individual layer, which achieves poor accuracy in most
cases. Moreover, it introduces high computation overhead
when dealing with large convolution kernels. In reality, power
iteration may not numerically converge to the desired result in
specific scenarios, which limits its applicability.

In this paper, we address this problem and propose a fast and
dependable acceleration approach for spectral normalization.
We have evaluated the effectiveness of our proposed approach
using several DNN benchmarks. Specifically, this paper makes
the following three important contributions.

1) Our work is the first attempt in utilizing spatial separation
of convolution layers for regularized training.

2) We develop a fast approximate spectral norm computing
scheme for convolution layers, which is based on Fourier
transform and can be easily extended to other layers.

3) Experimental results using real-world dataset demonstrate
our method improves networks’ robustness against adver-
sarial attack through extremely low attack success rate for
bounded attack and high distortion for unbounded attack.

The remainder of this paper is organized as follows. We
provide background on adversarial attack and spectral norm
regularization in Section II. Section III describes our proposed
method in detail. Section IV presents the experimental results.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

While DNNs are widely used in many applications, they
are vulnerable to adversarial attacks. In order make DNNs
robust against adversarial attacks, we need to understand the
stability of neural networks. First, we briefly introduce the
transformation of three types of layers in a DNN into matrix
format. Next, we define a given model’s stability using linear
algebra concepts. Finally, we discuss related efforts to motivate
the need for our proposed approach.

A. Three Types of Layers in DNNs

DNN consists of the following three types of layers: fully
connected layer, convolution layer and activation functions.

Linear Layer: In this layer, each output node is nothing but a
weighted sum of inputs as shown in Figure 2. If we consider all
equations and view it as a linear system, it can be represented
in the form of matrix multiplication.

Figure 2: Fully connected layer in DNNs

Convolution Layer: Convolution layers are widely applied in
computer vision tasks, where a convolution kernel K will slide
along the surface of input feature map, and each weighted
sum is stored into an entry of the output feature map. We
can represent it as matrix multiplication between the input
vector and a doubly block circulant matrix (which is called the
convolution matrix of K). Figure 3 shows a trivial example to
illustrate this idea.

Figure 3: Convolution layer in DNNs

Activation Functions: Activation functions are inserted be-
tween consecutive network layers to induce nonlinearity to
allow DNNs complete nontrivial tasks. They are usually se-
lected as piecewise linear functions, such as ReLU, maxout,
and maxpooling.

B. Stability of DNNs

Since we have already shown the close relationship between
DNNs’ layer and matrix multiplication, we can interpret
adversarial attacks into the language of linear algebra. Assume
that our model’s interpreted matrix (we will call this weight
matrix in the rest of this paper) is W ∈ Rm×n, and there is a
well-crafted noise ξ ∈ Rn added to our input vector x ∈ Rn,

then we measure change of output by the following relative
error ε ∈ R:

ε =
||W · (x+ ξ)−W · x||2

||ξ||2
=
||W · ξ||2
||ξ||2

Notice the spectral norm σ(W) of matrix W is defined as:

σ(W) , max
ξ 6=0

||W · ξ||2
||ξ||2

Therefore, spectral norm of matrix W gives a tight upperbound
of given layer’s stability, and a small value of σ(W) indicates
this model’s insensitivity to the perturbation of input x.

C. Related Work

Based on matrix representation of DNN’ forward pass, re-
cent research efforts have developed several countermeasures,
but many of them failed to protect against strong attacks [10]–
[14]. Spectral Normalization (SN) [9] is one of the most
promising defense strategies because it is algorithm-agnostic
approach and is able to enhance DNNs’ robustness against
adversarial attacks. During model training, the key idea of
spectral normalization is to append the spectral norm of each
layer to loss function as penalty term, so that it can reduce
DNNs’ sensitivity to input perturbation by minimizing every
layer’s spectral norm. The loss function is:

J =
1

N

N∑
i=1

L(f(xi), yi) +
λ

2

K∑
k=1

σ(W k)2

Here, xi is a training sample, the label of xi is denoted as
yi, the total number of training samples in a batch is denoted
as N , L is the dissimilarity measurement and is frequently
selected to be cross entropy or squared l2 distance, σ(W k)
is the spectral norm of k-th layer, K is the total number of
layers, and λ ∈ R+ is a regularization factor.

The state-of-the-art method in [9] applied power iteration to
approximate σ(W k), then perform stochastic gradient descent
(SGD) to train the DNN, as shown in Algorithm 1.

Algorithm 1 State-of-the-art: Spectral Normalization (SN)

1: for each iteration of SGD do
2: for k = 1 to K do
3: for a sufficient number of iterations do
4: Apply power iteration to compute σ(W k)
5: Add σ(W k) to loss function
6: end for
7: end for
8: Compute gradient of modified loss function
9: Update parameters by back propagation

10: end for

This spectral normalization (SN) algorithm suffers from
high computation complexity. Consider a convolution layer
with a input channels, b output channels, and a convolution
kernel in a size of w×h. The corresponding weight matrix will
be at least in a size of b× awh. The exact computation of its
spectral norm requires SVD decomposition, whose complexity

is O(min(m2n, n2m)) for a m×n matrix, Therefore the time
complexity in our task is O(min(a2bw2h2, ab2wh)), which is
infeasible to apply during network training. In order to make
it run in a reasonable time, the authors in [9] use only a
few iterations of power iteration method to approximate the
spectral norms which leads to very coarse approximation. As
a result, it significantly compromises its robustness goal. Our
proposed method provides a fast approximation algorithm for
spectral normalization through synergistic integration of layer
separation and Fourier transformation as described in the next
section.

III. FAST APPROXIMATE SPECTRAL NORMALIZATION

Figure 4 shows an overview of our proposed framework
for fast spectral normalization (FSN). The major steps of our
framework is outlined in Algorithm 3. Our proposed frame-
work consists of two strategies to accelerate training process:
layer separation and Fourier transform. The remainder of this
section describes these strategies in detail.

Figure 4: Comparison of our proposed framework with the
state-of-the-art. We utilize layer separation to decompose large
and multi-dimension layers into 1-D layers, then apply Fourier
transform on each of the kernels.

A. Layer Separation

The reason for computing spectral norm being so expensive
is the size of weight matrix. Here we apply layer separation
to reduce the time complexity for this task. First, a 2-D filter
kernel K is said to be separable if it can be expressed as the
outer product of one row vector r and one column vector c.
But vectors are special cases of matrix, and their outer product
is equivalent to their convolution. Then due to the associativity
of convolution:

K = r × c = r ∗ c
⇒ A ∗K = A ∗ (r ∗ c) = (A ∗ r) ∗ c

A famous example will be the Sobel kernel, which is widely
used to approximate the gradient value of image brightness
function: −1 0 1

−2 0 2
−1 0 1

 =

12
1

× [−1 0 1
]

Once the given convolution layer is separable (rank(W) =
1), we can always decompose it into 2 1-D layers but achieve
the same effect. This time we have 2 consecutive convolution
layers, and their kernel size will be w × 1 and 1 × h. We
can compute each layer’s spectral norm separately and then
append them to the loss function together.

What about inseparable layers? In this case, our method
utilize the SVD decomposition of kernel filter to transfer it
into its low-rank approximation. Here, we are performing SVD
decomposition on kernel matrix instead of the doubly block
circulant matrix. Kernel matrix encountered in modern CNNs
are usually in the form of 3 × 3 or 5 × 5, time cost for
SVD decomposition on these tiny matrices is trivial. Also,
applying low-rank approximation of kernel filter is reason-
able when it comes to real situations. In CNN applications,
especially in computer vision areas, many frequently used
feature extraction kernels like edge detection filters are trained
to have limited number of dominant eigen directions, where
the largest singular value is far larger than the inferior ones,
one extreme example is the Sobel kernel mentioned above.
Under this circumstance, the deviation induced by low-rank
approximation can be neglected.

B. Fourier Transform
It is a well known fact that the spectral norm of a 2D

convolution kernel K is exactly the largest eigenvalue of A>A,
where A is the corresponding convolution matrix of K. In the
baseline method illustrated in Algorithm 1, power iteration
method was applied. But power method, as a fundamental
numerical method for computing eigenvalues, usually takes too
many iterations until acceptable accuracy is obtained. Also, it
assumes the weight matrix has an eigenvalue that is strictly
greater in magnitude than the others, and the initial random
vector should contain an nonzero component in the direction
of a dominant eigenvector. If the above assumptions fails,
the power method may not converge! Instead, we apply the
following theorem [15] to calculate the spectral norm of a
convolution kernel fast.

Theorem 1: For any convolution matrix formed by kernel
K, the eigenvalues of the convolution matrix are the entries of
2D Fourier transform of K, and its singular values are their
magnitudes.

Proof: Assume K be a kernel matrix, and A is the convo-
lution matrix of K (as described in Figure 3). Now the task
is to determine the singular values of a doubly block circulant
matrix A. First, we define

Q ,
1

n
(F ⊗ F)

where F is the Fourier matrix. To complete the proof, we use
the following lemma.

Lemma 1: For any doubly block circulant matrix A, the
eigenvectors of A are the columns of Q, and Q is unitary.
(J.Toriwaki(1989) in [16])

Based on the above lemma, we know A can always be
decomposed into its eigenvalue decomposition A = Q ∗DQ
where D is a diagonal matrix. Now we show that A is normal:

AA> = AA∗ = Q∗DQQD∗Q

=Q∗DD∗Q = Q∗D∗DQ = Q∗D∗QQ∗DQ

=A∗A = A>A

Since the singular values of any normal matrix are the
magnitudes of its eigenvalues (Johnson (2012), page 158 [17])

and we have shown that A is normal, by applying the Lemma 1
we complete the proof. �

Therefore, we can calculate the spectral norm of target
convolution kernel by Fourier transform, and this approach
is depicted in Algorithm 2.

Algorithm 2 Algorithm for computing spectral norms
Input: convolution kernel K
Output: σ, the spectral norm respected to K.
1: k ← 2D Fourier transform of K
2: k′ ← set all the entries of k to zero except the one with

maximum absolute value
3: K ′ ← 2D inverse Fourier transform of k′

4: σ ← largest entry inside K ′.

C. Activation Functions

By exploiting layer separation and Fourier transform, the
computation of spectral norm for linear and convolution layers
can be solved efficiently as shown in Algorithm 2. When it
comes to activation layers, there is no inherent way to repre-
sent activation layers in matrix format. Activation functions are
deployed in neural networks to induce nonlinearity, therefore
it is impossible to view an activation function as a linear
transformation.

To perform our method with activation functions, instead of
parsing it into matrix and compute spectral norm, we take their
Lipschitz constants into consideration. A function f defined on
X is said to be K−Lipschitz if

∀x1, x2 ∈ X, |f(x1)− f(x2)| ≤ K|x1 − x2|

The smallest possible constant K for f is also called Lip-
schitz norm, which reflects how expansive function f is.
The Lipschitz norm upper bounds the relationship between
input perturbation and output variation for a given distance.
Notice the similarity between the definition of spectral norm
and Lipschitz norm. Actually, spectral norm of matrix W is
essentially the Lipschitz norm of function f if f(x) =Wx.

It has been proven that most activation functions such as
ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid, ArcTan or
Softsign, as well as max-pooling, are short maps [18], i.e, they
have a Lipschitz constant equal to 1. We refer the reader to
[19] for detailed proof on this subject. As a result, the output
variation induced by activation layers is already restricted by
a constant number. Therefore, there is no need to spare extra
effort to append regularization terms for activation functions
to loss function, since it will not get changed during training.
Moreover, the constant number is 1, which means activation
functions will neither expand or contract the variation of layer
outputs. In other words, we can omit activation layers when
evaluating the stability of DNNs.

D. Complexity Analysis

The complete framework for approximate spectral normal-
ization is depicted in Algorithm 3. For our target problem,
based on the discussion in Section II-C, we decompose

the b × awh weight matrix into 2 matrices, b × aw and
b × ah for each. Then we apply Fourier transform on each
separated matrix. In our experiment fast Fourier transform
(FFT) is applied with O(mnlog(mn)) time complexity for
m × n matrix. So the proposed method’s complexity is
O(abw log(abw) + abh log(abh))).

Algorithm 3 Proposed: Fast Spectral Normalization (FSN)

1: for each iteration of SGD do
2: Compute the gradient of general loss function as usual
3: for k = 1 to K do
4: if Convolution Layer then
5: Perform layer separation
6: Form the corresponding convolution matrix
7: end if
8: if Linear Layer then
9: Form the corresponding weight matrix

10: end if
11: Perform Algorithm2 to compute σ(W k)
12: Add σ(W k) to loss function
13: end for
14: Update parameters using modified gradient
15: end for

IV. EXPERIMENTS

We evaluated the effectiveness of our optimized spectral
norm regularization framework to confirm its time-efficiency
and ability of enhancing DNNs’ robustness.

A. Experiment setup

Experiments were conducted on a host machine with Intel
i7 3.70GHz CPU, 32 GB RAM and RTX 2080 256-bit GPU.
We developed code using Python for model training. We
used PyTorch as the learning library. For adversarial attack
algorithms, we utilized the Adversarial Robustness 360 Tool-
box (ART) [20]. For experimental evaluation, we considered
the following two DNN configurations applied in real-world
autonomous driving systems as experiment subjects:

1) A VGG16 classifier for German Traffic Sign Benchmark
(GTSB) dataset [21].

2) A Lenet-5 network for Udacity Self-Driving (USD)
dataset [22].

For each setting we compare the following three approaches:
1) Normal: Ordinary training without regularization, which

is considered as control group.
2) SN: State-of-the-art approach (Algorithm 1) with spectral

normalization [9].
3) FSN: Our proposed approach (Algorithm 2) with fast and

robust spectral normalization.
As for result evaluation, we first evaluated the functionality

of them by reporting their accuracy and training time. Next,
both bounded and unbounded adversarial attacks were de-
ployed to test their robustness. Finally, we tuned the regularizer
factor λ for FSN to demonstrate its stability across a wide
variety of different λ values.

Figure 5: Accuracy curve of VGG16 on GTSB

B. Case Study: German Traffic Sign Benchmark (GTSB)

We train VGG16 on GTSB dataset. GTSB is a large and
reliable benchmark which contains more than 50000 traffic
sign image samples over 43 classes. VGG16 [23] contains 16
hidden layers (13 convolution layers and 3 fully connected
layers). One advantage of VGG16 is the replacement of larger
convolution kernels (11×11, 7×7, 5×5) with consecutive 3×3
convolution kernels, which makes it coincidentally suitable for
our framework since small size of convolution kernel implies
less time cost for low-rank approximation. We choose a mini-
batch size of 64. For each setting, we train the network with
200 epochs. For every 10 epochs, we randomly shuffle and
split 80% as training set and 20% as test set, and then report
the training time along with test performance.

Table I: Training time and test accuracy of VGG16

Methods Time(s/epoch) Best Test Accuracy(%)

Normal 14.5053 83.45
SN 29.1126 91.72

FSN 18.1345 95.46

Table I indicates the basic functionality performance of three
training methods. We also plot the training curve for accuracy
updates in Figure 5. In general, all three methods possess good
training accuracy. The Normal approach achieved the fastest
speed but when it comes to test accuracy, it lagged behind the
other two due to spectral normalization’s ability to enhance
model’s generalizability [9]. SN improves the test accuracy by
8.27% but leads to highest time cost. FSN further improves the
test accuracy by 3.66% while drastically reduces the average
training time by 60.5% compared to SN.

Table II: Bounded Attack on GTSB

Methods N/A FGSM
(ε = .1)

CW-L2

(c = .01)
JSMA
(θ, γ = .1, 1)

DeepFool
ε = 1e− 6

Normal 83.45 61.04 45.62 77.58 40.06
SN 91.72 88.25 76.31 88.23 69.30

FSN 95.46 92.92 87.05 91.57 88.94

Table II shows the performance of three models against
bounded attacks. We choose four different attack algorithms:
FGSM [13], CW-L2 [24], JSMA [25] and DeepFool [11].
For consistency λ = 0.01 for both SN and FSN here. The
hyperparameters for attacks are provided in the table.

(a) Performance of three models to-
wards unbounded FGSM attack

(b) FSN’s performance with different
λ and attack algorithm

Figure 6: Performance with varying hyperparameter (GTSB)

As we can see, our proposed method (FSN) provides
the best robustness. The Normal and SN method appeared
fragile in the face of powerful attacks like CW-L2 and
DeepFool, while FSN still retained an acceptable accuracy.
For lightweight attacks, especially gradient-based ones (like
FGSM), FSN is almost unaffected. For unbounded attack,
we applied unbounded incremental ε value in FGSM from
0 to 1. It starts to break detection (accuracy < 50%) as
presented in Figure 6(a), but the bisection parameter value
of FSN(ε = .64) has to be nearly three times large of that
for Normal method(ε = .21). Finally, FSN’s broad robust
performance across a wide range of hyperparameter λ is
demonstrated in Figure 6(b) where we plot accuracy under
all attacks with λ varying from 0.01 to 0.1. The average
accuracy here is 91.46% with standard deviation of 0.0729.
In the worst case, model trained with FSN still performed
well with accuracy above 85%.

C. Case Study: Udacity Self-Driving (USD)

We trained Lenet-5 on USD’s steering angle image dataset
which has more than 5000 autonomous vehicle’s real-time
screenshot along with labels indicating the corresponding
“Left”, “Right” or “Center” prediction for next wheel steering
operation. Compared with VGG16, Lenet-5 is a lightweight
network with only five convolution layers and one fully con-
nected layer. The training process consists of 500 epochs with
a mini-batch size of 128. For every 50 epochs, we randomly
shuffle sample and split 80% as training set and 20% as test.

Table III: Training time and test accuracy of Lenet-5
Methods Time(s/epoch) Best Test Accuracy(%)

Normal 0.13369 99.71
SN 0.25870 98.57

FSN 0.18284 99.43

Table III and Figure 7 present performance results. Again,
Normal method provides the fastest training speed, while FSN
is nearly 41.4% faster than SN. Note that the improvement of
speed here is not as high as we got from GTSB case, and we
consider this difference of acceleration amplitude is caused
by more convolution layers involved in VGG16 than Lenet-5.
For accuracy, due to Lenet-5’s excellent capability in image
recognition, all three models achieved high level of accuracy.

Figure 7: Accuracy curve of Lenet-5 on USD

The robustness is evaluated against four attack algorithms as
shown in IV. As expected, Normal method behaved extremely
vulnerable. Even in ε = 0.1 case, a 8.3% accuracy against
FGSM attack was obtained. FSN refined it to 71.4% which
gives an 61.1% average improvement on accuracy. When it
comes to unbounded attack as depicted in Figure 8(a), the
Normal method’s outcome immediately drops below 50%
when ε = 0.1, while SN and FSN extended it to 0.4 and 0.5,
respectively. Figure 8(b) shows the accuracy after applying
various regularization factor of λ. The average accuracy is
62.63% with standard deviation of 0.2252. If we consider
only CW-L2 and DeepFool, the average drops to 41.99% with
standard deviation of 0.0713.

Table IV: Bounded Attack on USD

Methods N/A FGSM
(ε = .1)

CW-L2

(c = .01)
JSMA
(θ, γ = .1, 1)

DeepFool
ε = 1e− 6

Normal 99.71 8.3 5.62 17.58 4.06
SN 98.57 69.9 34.34 78.23 29.30

FSN 99.43 71.4 40.05 82.34 34.94

(a) Performance of three models un-
der unbounded FGSM attack

(b) FSN’s performance with different
λ and attack algorithm

Figure 8: Performance with varying hyperparameters (USD)

V. CONCLUSION

Adversarial attacks are vital threats preventing DNNs’
adoption in safety-critical applications. In this paper, we
investigated DNN layers’ properties and proposed FSN as an
acceleration algorithm for achieving spectral normalization.
Such a regularization DNN training technique made three
important contributions. (1) FSN utilized the spatial separation

of convolution layers as well as Fourier transform to drastically
(up to 60%) reduce training time compared with traditional
spectral normalization. (2) FSN is algorithm-agnostic, easy to
implement, and applicable across a wide variety of networks.
(3) Experimental evaluation demonstrated that models trained
with FSN provide significant improvement in robustness for
bounded, unbounded as well as transferred threats, which can
protect applications from various adversarial attacks. Com-
pared with the state-of-the-art, our approach ensures that the
model works correctly unless the adversarial samples are
drastically different from the original samples. Our proposed
acceleration turns SN from a theoretical idea into an practical
training approach, which is expected to play a crucial role in
improving the robustness of DNNs against adversarial attacks.

REFERENCES

[1] Z. Pan and P. Mishra, “Automated test generation for hardware trojan
detection using reinforcement learning,” in ASPDAC, 2021, pp. 408–413.

[2] Z. Pan, J. Sheldon, and P. Mishra, “Hardware-assisted malware detection
using explainable machine learning,” in ICCD, 2020, pp. 663–666.

[3] Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, “Hardware-
assisted malware detection using machine learning,” in DATE, 2021.

[4] S. Charles, A. Ahmed, U. Y. Ogras, and P. Mishra, “Efficient cache
reconfiguration using machine learning in noc-based many-core cmps,”
ACM TODAES, vol. 24, no. 6, pp. 1–23, 2019.

[5] A. Ahmed, Y. Huang, and P. Mishra, “Cache reconfiguration using
machine learning for vulnerability-aware energy optimization,” ACM
Trans. on Embedded Computing Systems, vol. 18, no. 2, pp. 1–24, 2019.

[6] K. Rahmani and P. Mishra, “Feature-based signal selection for post-
silicon debug using machine learning,” IEEE TETC, 2017.

[7] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selection
using machine learning techniques,” TVLSI, 25(2), pp. 570–580, 2016.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 12 2013.

[9] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving
the generalizability of deep learning,” 05 2017.

[10] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” CoRR, vol. abs/1608.04644, 2016.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” CVPR, 11 2016.

[12] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using adversar-
ial samples,” CoRR, vol. abs/1605.07277, 2016.

[13] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 01 2015, pp. 1–10.

[14] A. Kurakin et al., “Adversarial examples in the physical world,” in 5th
International Conference on Learning Representations, 2017.

[15] H. Sedghi, V. Gupta, and P. M. Long, “The singular values of convolu-
tional layers,” 2018.

[16] J. Toriwaki and H. Yoshida, Fundamentals of Three-dimensional Digital
Image Processing. Springer, 2009.

[17] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd Ed. Cambridge
University Press, 2012.

[18] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: analysis and efficient estimation,” in NIPS, 2018.

[19] Y. LeCun, et al., “Deep learning,” Nature, vol. 521, no. 7553, 2015.
[20] M.-I. Nicolae et al., “Adversarial robustness toolbox v1.0.1,” CoRR, vol.

1807.01069, 2018. [Online]. Available: https://arxiv.org/pdf/1807.01069
[21] J. Stallkamp et al., “The German Traffic Sign Recognition Benchmark:

A multi-class classification competition,” in IJCNN, 2011.
[22] “The udacity open source self-driving car project.” [Online]. Available:

https://github.com/udacity/self-driving-car
[23] A. Pedraza, J. Gallego, S. Lopez, L. Gonzalez, A. Laurinavicius,

and G. Bueno, “Glomerulus classification with convolutional neural
networks,” in Medical Image Understanding and Analysis, 2017.

[24] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in WAIS, 2017, pp. 3–14.

[25] R. Wiyatno and A. Xu, “Maximal jacobian-based saliency map attack,”
CoRR, vol. abs/1808.07945, 2018.

