The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Minimum Robust Multi-Submodular Cover for Fairness

Lan N. Nguyen

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, Florida 32611

lan.nguyen @ufl.edu

Abstract

In this paper, we study a novel problem, Minimum Robust
Multi-Submodular Cover for Fairness (MINRF), as fol-
lows: given a ground set V'; m monotone submodular func-
tions f1, ..., fm; m thresholds T, ..., T\, and a non-negative
integer r, MINRF asks for the smallest set .S such that for all
i € [m], min|x|<, fi(S\ X) > Ti. We prove that MINRF is
inapproximable within (1 — €) In mn; and no algorithm, taking
fewer than exponential number of queries in term of r, is able
to output a feasible set to MINRF with high certainty. Three
bicriteria approximation algorithms with performance guaran-
tees are proposed: one for 7 = 0, one for r = 1, and one for
general r. We further investigate our algorithms’ performance
in two applications of MINRF, Information Propagation for
Multiple Groups and Movie Recommendation for Multiple
Users. Our algorithms have shown to outperform baseline
heuristics in both solution quality and the number of queries
in most cases.

Introduction

In a minimum submodular cover, given a ground set V, a
monotone submodular set function f : 2V — R and a num-
ber 7', the problem asks for a set S C V' of minimum size
such that f(.S) > T This problem was studied extensively in
the literature because of its wide-range applications, e.g. data
summarization (Mirzasoleiman et al. 2015; Mirzasoleiman,
Zadimoghaddam, and Karbasi 2016), active set selection
(Norouzi-Fard et al. 2016), recommendation systems (Guil-
lory and Bilmes 2011), information propagation in social
networks (Kuhnle et al. 2017), and network resilience assess-
ment (Nguyen and Thai 2019; Dinh and Thai 2014).
However, a single objective function f may not well model
several practical applications where achieving multiple goals
is required, especially when group fairness is considered. Let
us consider the following two representative applications.
Information Propagation in Social Network for Mul-
tiple Groups. Social networks are cost-effective tools for
information spreading by selecting a set of highly influen-
tial people (called seed set) that, through the word-of-mouth
effects, the information will be reached to a large number
of population (Kuhnle et al. 2017; Nguyen, Zhou, and Thai
2019; Zhang et al. 2014; Nguyen, Thai, and Dinh 2016). For

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9109

My T. Thai

mythai @cise.ufl.edu

many applications (e.g. broadening participants in STEM),
it is important to ensure the diversity and fairness among
different ethnics and genders. Therefore, those applications
aim to find a minimum seed set such that the information can
reach to each group in a fair manner.

Items Recommendation for Multiple Users. Recom-
mendation systems aim to make a good recommendation,
e.g. a set of items, which can match users’ preferences. In
many situations, an item can be served for multiple users,
e.g. a family. In this problem, a user’s utility level to a set of
items is modelled under a monotone submodular function.
The objective, therefore, is to find the smallest set of items,
from which we can design a recommendation for all users in
a way that all reach a certain utility level.

Additionally, these problems require robustness in the so-
lution set, in the sense that the solution satisfies all the con-
straints even if some elements were removed. Those removal
can be from various reasons. For instance, in information
propagation, a subset of users may decide not to spread the
information (Bogunovic et al. 2017). Or in recommendation
systems, due to the uncertainty of underlying data, informa-
tion of some items may not be accurate (Orlin, Schulz, and
Udwani 2018).

Achieving a reasonable prior distribution on the removed
elements may not be practical in many situations. Or even
when the distribution is known, it is critical to obtain a robust
solution with a high level of certainty, in a way that all goals
are still achieved under the worst-case removal. Motivated
by that observation, in this work, we study a novel problem,
Minimum Robust Multi-Submodular Cover for Fairness
(MINRF), defined as follows.

Definition 1. (MINRF) Given a finite set V'; m monotone
submodular functions fi,...fm Where f; : 2¥ — RZ;m
non-negative numbers 71, ..., T,,, and a non-negative integer
r, find a set S C V of minimum size such that V i € [m)],
min x|<, fi(S\ X) > T;.

MINRF’s objective can also be understood as finding S
of minimum size such that for all X C V that | X| < r and
i € [m], fi(S'\ X) > T;. Beside two applications as stated
early, MINRF can also be applied in many other applica-
tions, such as Sensor Placement (Orlin, Schulz, and Udwani
2018; Ohsaka and Yoshida 2015), which guarantees each
measurement (e.g. temperature, humidity) reaches a certain
information gain while being robust against sensors’ failure;

or Feature Selection (Qian et al. 2017; Orlin, Schulz, and
Udwani 2018), which aims for a smallest set of features that
can retain information at a certain level while guaranteeing
the set is not dependent on a few features.

To solve MINRF, one direction is to list all constraints in
aform of f;(.\ X) > T; V|X| = r and i € [m] and find
a smallest set that satisfies all those constraints. However,
with large V/, the amount of set X of size r is ('), making
it impractical to enumerate all possible removed sets. Fur-
thermore, we show that an algorithm, which is able to output
a feasible solution to MINRF in general, is very expensive,
requiring at least exponential number of queries in term of
r. Even when r = 0, there exists no polynomial algorithm
that can approximate MINRF within a factor of (1 — ¢) Inm
unless P = N P. Thus solving MINRF remains open and to
our knowledge, we are the first one studying the problem.

Contribution. Beside introducing MINRF and investigat-
ing the problem’s hardness using complexity theory, we pro-
pose a bicriteria approximation algorithm, namely ALGR,
to solve MINRF. ALGR’s performance guarantee is tight to
MINRF’s inapproximability and required query complexity.
To be specific, ALGR is polynomial with fixed r and obtain S
of size O(ln W) factor to the optimal solution where
a € (0,1]. S guarantees that for all X C V that | X| < r and
1€ [m], fi(S\ X) > (1 — a)T;. In a special case of r = 1,
we propose ALG1 which can run faster than ALGR.

Both ALGR and ALG1 work in a manner that they fre-
quently call an algorithm solving MINRF with » = 0 as a
subroutine. Although MINRF with » = 0 has been studied
in the literature, a new aspect of the problem requires us to
propose new solutions to MINRF where r = 0. In particular,
we propose Random Greedy (RANDGR) and re-investigate
two existing algorithms, GREEDY and THRESGR, whose per-
formance has been analyzed where f;s receive values in Z, in
order to adapt them to R domain. In comparison to GREEDY
and THRESGR, RANDGR does not unite submodular func-
tions into a single function; and introduces randomness to
reduce queries to f;s. RANDGR takes much fewer queries
than GREEDY and THRESGR as shown in our experiments.

Further, we investigate our algorithms’ performance on
two applications of MINRF: Information Propagation for
Multiple Groups and Movie Recommendation for Multiple
Users. The experimental results show our algorithms outper-
formed some intuitive heuristics methods in both quality of
solutions and the number of queries.

Preliminaries
Related Work

To our knowledge, this work provides the first solutions to
MINREF for a general r. In this part, we pay attention to recent
studies on minimum multi-submodular cover (MINRF when
r = 0), and robust submodular optimization.

With minimum submodular cover (m = 1,r = 0), Goyal
et al. (2013) showed that the classical greedy algorithm is
able to obtain a bi-criteria ratio of O(Ina™1). If we run m
instances of greedy, each with a constraint f;(.) > T;, get
m output S; and returns Ujc[,,,)S;, we can get the ratio of

9110

O(mIna~1) for MINRF when r = 0. In this paper, we aim
for algorithms with better ratios.

Krause et al. (2008) was the first one proposing a problem
of minimum multi-submodular cover; and the problem was
then further studied by Mirzasoleiman, Zadimoghaddam, and
Karbasi (2016); Iyer and Bilmes (2013). In general, their
solution made a reduction from multiple submodular objec-
tives to a single instance of a submodular cover problem by
defining F'(.) = 3~ ¢,y min(fi(.), T') (all thresholds are the

same); and find .S of minimum size such that F'(S) = mT.
Two algorithms were proposed, GREEDY (Krause et al. 2008;
Iyer and Bilmes 2013) and THRESGR (Mirzasoleiman, Zadi-
moghaddam, and Karbasi 2016). Their performance analysis
requires { f; };c[m] to receive values in Z to obtain ratio of
O(Inmax.cv F({e})).

However, requiring { f; }ic[m) to receive values in Z is not
practical in many applications. In our work, we re-investigate
GREEDY and THRESGR’s performance without such require-
ment. Also, our RANDGR algorithm differs from such meth-
ods in which RANDGR does not unite objectives into a single
function. Furthermore, RANDGR adds randomness to reduce
the query complexity while still obtaining an asymptotically
equal performance guarantee to that of GREEDY.

With robust submodular optimization, the concept of find-
ing set that is robust to the removal of r elements was
first proposed by Orlin, Schulz, and Udwani (2018). How-
ever, their problem is a maximization, namely Robust Sub-
modular Maximization (RSM), defined as follows: Given
a ground set V', a monotone submodular function f, non-
negative integers k and r, find S s.t |S| < k that maximizes
mingc 4, z|<r f(A\ Z). This problem was later studied fur-
ther by Bogunovic et al. (2017); Mitrovic et al. (2017); Staib,
Wilder, and Jegelka (2019); Anari et al. (2019). RSM and
MINRF both focus on the worst-case scenario, where the
removal of r elements has the greatest impact on the returned
solution. Other than that, the two problems are basically dif-
ferent and we are unable to adapt existing algorithms for
RSM to solve MINRF with performance guarantees. The key
bottleneck preventing us to adapt those algorithms is how
to guarantee that a returned solution is robust and satisfied
submodular constraints.

Definitions & Complexity

In this part, we present definitions and theories that would be
used frequently in our analysis; and analyze complexity of
solving MINRF. Due to page limit, detailed proofs of lemmas
and theorems of this part are provided in Appendix.

Definition 2. Given an instance of MINRF, including
V. {fitiepm) {Ti }icm)» a set A C V' is (t, «)-robust iff for
all 4 € [m], min|x|<; fi(A\ X) > (1 — a)T;.

Speaking in another way, MINRF asks us to find a mini-
mum (7, 0)-robust set.

Without loss of generality, in our algorithm, we change
fi(.) == min(f;(.)/T;, 1). It is trivial that f; is still monotone
submodular; and MINRF’s objective now is to find S that

If there exists a (r, 0)-robust set, denote S* as an optimal
solution; and OPT(U,t) as a size of the minimum (¢, 0)-

robust set that is a subset of U if there is any. So |S*| =
OPT(V,r). We have the following key lemma:

Lemma 1. For all X7, X5 C V that | X;| = rq, | Xa| = 7o
and 1+ 1o S T

OPT(V,r) > OPT(V\ X1,r —11)
> OPT(V\ (X1 UXa),r — 11 —12)
> OPT(V,0)

Lemma 1 is very critical and will be used frequently to
obtain performance guarantees of our algorithms.

Given a MINRF instance and o € [0, 1], we aims to devise
algorithms that guarantee:

* If there exists (7, «)-robust sets in the MINRF instance, the

returned solution is (r, «)-robust with size at most some
factor to OPT(V,r).

¢ Otherwise, the algorithms notify no (r, 0)-robust set exists.

We first study the hardness of devising such an algorithm
to solve MINRF. First, we show that: even the sub-task of
outputting a (r, 0)-robust set if there is any, is already very
expensive. That is stated in the following theorem.

Theorem 1. There exists no algorithm, taking fewer than
exponential number of queries in term of r, is able to verify
existence of a (r, 0)-robust set to MINRF.

Theorem 1 is proven by taking one instance of MINRF,
in which the removal of any subset X C V of a same size
shows a similar behavior on the submodular objectives except
for only one unique subset R of size r. The thresholds {7} };
are set so that: if there exists a (r, 0)-robust set then V' is the
only (r,0)-robust set and R is the only set that would make
V' \ R violate the constraints. Thus any algorithm, taking
fewer than O((“:')) queries is unable to verify whether V' is
(r,0)-robust. The full description of the MINRF instance is
provided in Appendix.

Furthermore, even there exists (r, 0)-robust sets, devising
approximation algorithms for MINRF is NP-hard. We have
the following theorem.

Theorem 2. There exists no polynomial algorithm that can
approximate MINRF, even with » = 0, within a factor of
(1 —¢€)Inm given € > O unless P = N P.

Algorithms When r = (

We first study MINRF with r = 0 since complexity and
solution quality of algorithms for MINRF with » = 0 play
critical roles on the performance of ALG1 and ALGR. Al-
though MINRF with r = 0 has been studied in the literature,
these results cannot applied directly. The key barrier is that
the initial solution set may not be empty.

In this part, we propose RANDGR, a randomized algo-
rithm with bicriteria approximation ratio of O(In *). Also,
we re-investigate performance guarantees of GREEDY and
THRESGR, extending from their performance when f;s re-
ceive values in Z.

With RANDGR, checking if there exists feasible solutions
with 7 = 0 is quite trivial. RANDGR simply verifies whether

9111

Algorithm 1 RANDGR

Input V, Sy, {fi}ie[m]

if There exists ¢ € [m] s.t. f;(V) < 1 — « then
Return no feasible solution

ct=0;Fo = {fi}ticim

while F; # 0 do
F =randomly select [|F;|/2] constraints from JF;
ey = argmax .y g, Zf,ieF Acfi(Sy)
St+1 :StU{et};]:t+1 :ft,t:t+1
Remove all f; € F; that f;(S;) > 1 — « out of F;

XL RE R

Return S;

fi(V) > 1 —aforall i € [m]. If no, the algorithm notifies
no feasible set exists and terminates.

If there exists feasible solutions, RANDGR works in rounds
in order to find a (0, v)-robust solution. For each round, a
new random process is introduced as follows: the algorithm
randomly selects half of functions f;s, each of which is still
less than 1 — «; and greedily chooses an element that max-
imizes the sum of marginal gains of the selected functions.
This random process helps RANDGR (1) reduce the number
of queries to f;s by half at each round; and (2) establish a re-
cursive relationship of obtained solutions at different rounds,
which is critical for RANDGR to obtain its performance guar-
antee with high probability (w.h.p).

RANDGR’s pseudocode is presented by Alg. 1. In Alg. 1,
S represents an obtained solution at round ¢ and F; is a set
of f;sthat f;(S;) > 1—aV f; € F;. Note that RANDGR
starts with Sy as an input; and as can be seen later, RANDGR
is used as a subroutine function in case » > 0, in which
Sp may not be empty. Therefore, analyzing performance of
RANDGR with Sy # () is necessary and challenging.

To obtain RANDGR’s performance guarantee, we have the
following lemma.

Lemma 2. At round ¢: E{Zhe;t+1 (1- fi(StH))} <
(1) OP;(V,D)) Zfieft (1 - fi(St))

Lemma 2 establishes a recursive relationship between
F; and S; at different rounds. This is a key to obtain
RANDGR’s approximation ratio. Assuming RANDGR stops
after L rounds, L = |Sy, \ Sp|. By using Markov inequality,
we can bound L w.h.p to obtain RANDGR’s performance
guarantee as Theorem 3. Full proofs of Lemma 2 and Theo-
rem 3 are presented in Appendix.

Theorem 3. Given an instance of MINRF with input
K{fi}ie[m],SO such that Zie[m] fl(So) > (1 — n)m,
and r = 0. If S is an output of RANDGR then w.h.p
IS\ So| < OPT(V,0)O(In ") and each f; is queried at
most O(|V|OPT(V,0) In %) times.

We now investigate the performance of GREEDY and
THRESGR. Their performance guarantees are stated by Theo-
rem 4 (GREEDY) and 5 (THRESGR). Due to page limit, their
detailed description and proofs are presented in Appendix.

Theorem 4. Given an instance of MINRF with input
V,{fi}ie[m)> So such that Zie[m] fi(So) > (1 — n)m, and
r = 0. If GREEDY terminates with a (0, «)-robust solution .S,
then |S'\ So| < OPT(V,0)O(In “21) and each f; is queried
at most O(|V|OPT(V,0) In 21) times.

Theorem 5. Given an instance of MINRF with input
V., {fitietm), So such that 3, ., fi(So) = (1 —n)m, and
r = 0. If THRESGR terminates with a (0, «)-robust solu-
tion S, then [S'\ So| < OPT(V,0)0(1%5 In “3%) where
v € (0, 1) is the algorithm’s parameter; and each f; is queried
at most O(In “2*) times.

With Sy = 0, RANDGR, GREEDY and THRESGR (7 is
close to 0) can obtain a ratio of O(In), which is tight to
the inapproximability of MINRF when r = 0 (Theorem 2).

Algorithms When » > 0

In this section, we propose two algorithms to solve MINRF
when r > 0: ALG1 for a special case of » = 1 and ALGR
for general r. Both algorithms frequently call an algorithm to
MINRF when » = 0 as a subroutine, which could be either
RANDGR, GREEDY or THRESGR as discussed earlier. In
short, we use ALGO to refer to any of these three.

For simplicity, we ignore the step of notifying if there ex-
ists no (r, &) robust set in ALG1 and ALGR’s description
since it can trivially inferred from the outputs of ALG0. With-
out loss of generality, in our analysis, we assume there exists
(r,0)-robust sets.

Algorithm When » = 1 (ALG1)

In general, ALG1 is an iterative algorithm, which iteratively
checks if there exists an element whose removal causes an
obtained solution S to violate at least one constraint. If such
an element (let’s call it e) exists, ALG1 gathers all violated
constraints to form a new MINRF instance with » = 0,
V \ {e} as an input ground set and S \ {e} as an initial
set. This is a key of ALG1 because by solving that new
MINREF instance using ALGO, ALG1 guarantees the obtained
solution is robust against e’s removal; and the algorithm can
significantly tighten an upper bound on the number of newly-
added elements in order to obtain a tight approximation ratio.

ALG1’s pseudocode is presented by Alg. 2. In Alg. 2,
Sy is a (0, «)-robust set, found by using ALGO with the
original MINRF’s input (line 1). .S, returned by ALG1, is
(1, a)-robust because:

* For any e € S; that violates the condition of while loop
(line 2), ALG1 guarantees f;(S \ {e}) > 1 — « (output of
ALGO, line 4).

» Forany e ¢ Sq,as S1 C S\ {e}, we have f;(S\ {e}) >
fi(S1) > 1 — « (output of ALGO, line 1).

Denote E as a set of e € S; that violate the condition

of while loop (line 2). For each e € FE, denote S¢ as S

right before e is considered by the while loop of line 2. Let

pe = Acfi(S°\{e})/m. To obtain ALG1’s performance
guarantee, we have the following lemma.

Lemma3. > _.p. <1

Algorithm 2 Algorithm when » = 1 (ALG1)

Input V, { fi}ic(m]

1: $ =5, =ALc0 (V,0, {fitiemm)
2: while 3e € Sy that 3¢ € [m], f;(S\ {e}) <1—ado
3: F' =setofall f; that f;(S\ {e}) <1—«

4: S’ =ALGO (V \ {e}, S\ {e}, F)
5 S=S5Suys
Return S

Proof. Let’s sort elements in S; = {uy, ug,...} in the or-
der of being added into S; by ALG1 (line 1). Let S{ =
{ui,...,uc—1}. Due to submodularity, > . A.f;(S{) >
> Acfi(S\ {e}) = pem. Then:

Dopem <Y D AF(SH) < DD ASi(ST) <m

eckE ecE 1 ecSy 1
which means) . po < 1 and the proof is completed. [

We then obtain ALG1’s performance guarantee as stated
in Theorem 6.

Theorem 6. Given an instance of MINRF with input
V. {fi}iem) and r = 1. If S is an output of ALG1 and S is
a (0, av)-robust set outputted by ALGO(V, 0, {f; }ic[m)) then
S| < OPT(V,1)O(|Si|Inm + 1/«).

Proof. From aratio of ALGO and lemma 1, we have | S| <

O(In %)OPT(V7 0) < O(In %)OPT(V, 1).
For each e € E and S° as defined before, we have:

Zfz-(Se \{e}) = Z_fw)

The last inequality comes from the fact that S; C S¢ and
Sy is (0, «)-robust. Then, with " = ALGO (V' \ {e}, 5S¢\
{e}, F') in line 4, denote §5¢ = S’ \ S°. From the ratio of
ALGO and lemma 1, we have:

(@ + pe)m
o

—pem > m(l—a—p.)

65¢] < O(In YOPT(V \ {e},0)

< O(In

W)OPT(V, 1)

Therefore, with S is the returned solution, we have:
S| = |S1]+) 65°]

ecE

<o(m2+ Zm%)om’(v@

ecE

m (a+ po)m
2 [T L opr(vn
O(ln™ +1m H L) orT(v.1)

(
< O(ln% > W)E|>OPT(V, 1)
< O(ln% m(1 + ﬁ))wl)OPT(V, 1)

O(|E|Ilnm +)OPT(V 1)

Algorithm 3 Algorithm with general » (ALGR)

Input V, {fi}’ie[m]a T

: Fo = {fi}iepm): So = ALGO (V, 0, Fp);
:fort=1—rdo

F,=0
for each set X C S;_; that | X| =7, X € S;_» do
for eachi € [m] s.t. f;(S;—1\ X) <1—ado
Define f; x(.) = fi(. \ X)
F,=FU{fix
St - ALGO (V, Stfl, Ft)

Return S,

1
2
3
4
5:
6
7
8

which completes the proof. O

ALG] s ratio is tight by considering a special instance of
MINRF, Robust Set Cover with = 1. This tight example is
provided in Appendix.

In term of query complexity, it is trivial that if ALG1 uses
RANDGR or GREEDY as ALGO, each f; would be queried at
most O(nmax(OPT(V,1)(|S1]Inm + 1/a),n)) times. If
THRESGR is used, each constraint of F’ in line 4 is queried
at most O(nInmn) times, thus each f; is queried at most
O(n|S1|Inmn) times in total.

Algorithm For General » (ALGR)

ALGR works in at most r rounds, in which after ¢ rounds,
ALGR guarantees an obtained solution is (¢, «)-robust. De-
note S; as the obtained solution after ¢ rounds. At round ¢,
ALGR introduces a new MINRF instance with a new set of
functions F;. Each function in F; is defined by a function
fiandaset X C S;that f;(S;:\ X) <1—aand |X|=r.
This is a key of ALGR because by solving the new MINRF
instance to obtain S;1, RANDGR guarantees S;1 is (¢, a)-
robust. Also the algorithm is able to bound the number of
newly-added elements in term of |S*| by observing that S*
is also a feasible solution to the new MINRF instance.

ALGR’s pseudocode is presented by Alg. 3. Note that
ALGR guarantees S, is (r, a)-robust without a need of scan-
ning all the removals of its subsets of size r. We prove that
by using contradiction as follows:

Assume S, is not (r, «)-robust, then there exists X C V
and f; such that | X| = r and f;(S, \ X) < 1 — a. Let
Xo=XnNSp,and X; = X N(S;\ Sg—q1) fort =1—r.

If there exists an empty X, let X' = UE;%XZ-. We have
|X'| < rand X’ C S;_1. Due to the output of ALGO in
line 8, f;(S: \ X') > 1 —a.But S; \ X’ C 5.\ X, so
fi(Sr \ X) > 1 — «, which contradicts to our assumption.

Thus, no X; should be empty, which is impossible since
| X| =7 > |U_y X¢|. .., X, are disjoint. Therefore,
S, should be (7, «)-robust.

To obtain ALGR’s performance guarantee, we have the
following lemma.

Lemma4. |S;\S;_1| < O(ln

BDopT(v,r) forallt < r

9113

Proof. Considering a new constraint f; x created in line 6, it
is trivial that the function f; x is monotone submodular.
Also, as S* is (r, 0)-robust, f; x(S*) = fi(S*\ X) > 1.
That means S* is feasible for the MINRF instance in line 6,
with F} as a set of constraint and » = 0. The lemma follows
from the ratio of ALGO. O]

Lemma 4 is critical to obtain ALGR’s ratio, stated in the
following theorem.

Theorem 7. Given an instance of MINRF with input
V,{fi}tieim), 7, if S is an output of ALGR, then:

|S| < OPT(V,r)O(rInm/a +r*Inn)

Proof. Using lemma 1 and ALGO’s ratio, we have: |Sy| <
OPT(V,0)0(lnm/a) < OPT(V,r)O(lnm/«). There-
fore, from lemma 4, we have:

S| = [So| + Z St \ Se—1]

t=1

: F,
< O(ln % + Zln%) OPT(V,7)
t=1

Furthermore, >, _, |F;| < m(‘s’j,i1 I) because: (1) No
subset X € S,._; of size r is considered more than one round
(line 2) as if f;(S: \ X) < 1—athen f;(S;41\X) > 1—«
and (2) each subset X added to F}; at most m new constraints.

Therefore, by using AM-GM inequality, we have:
[T, o] < (=45 < (2 ()

Thus, |S,| < O(rIn 2 4+ r?Inn) OPT(V,r). O

Query Complexity. The bottleneck of ALGR is from
the task of finding all subsets X in line 4. As there is
(ls’;ll) subsets X, ALGR takes ('S’;ll) queries for each
fi to only find X; and in the worst case, each f; will gen-
erate (‘S' 1|) functions f; x (line 6). Then, if ALGR uses
RANDGR or GREEDY as ALGO, in worst case, each f; is
queried at most O(n(rln 2 +r*Inn) OPT(V, r)(ls";ll))
times. If THRESGR is used at round ¢, each f; is queried
at most O(@ In M) Overall, ALGR using THRESGR

will query each f; at most O(% (= h(rin ™ + 72 1nn))
times. ALGR is polynomial with fixed r and favourable if
OPT(V,r) < n.

Experimental Evaluation

In this section, we compare our algorithms with existing meth-
ods and intuitive heuristics on two applications of MINRF,
Information Propagation for Multiple Groups (IP) and Movie
Recommendation for Multiple Users (MR). The source code
is available at https://github.com/lannn2410/minrf.

Information Propagation for Multiple Groups (IP) In
this problem, a social network is modeled as a directed graph
G = (V, E) where V is a set of social users. Each edge (u, v)
is associated with a weight w,, ,,, representing the strength of
influence from user u to v.

To model the information propagation process, we use
Linear Threshold (LT) Model (Kempe, Kleinberg, and Tardos

=—©— RANDGR == GREEDY ==@= THRESGR === SEP
|S| (IP) - # queries (IP) |S| (MR) 106 # queries (MR)
T T T ST T T 3 T T T T
60 | B 3l |
’ 200 103
50| 467 1.
150 | 1, |
40} f
ne 1 100| f
30| g 1 7
50| N
20 402)
ol 1 of N
S S T SO ! S SO T NN S \ ; \ \ \ \ \ \
06 065 07 075 08 085 09 06 065 07 075 08 085 09 2 1 6 s 2 1 6 B
T T T 1073 T 1073

Figure 1: Performance of algorithms with » = 0

2003; Nguyen and Thai 2020). In general, the process is as
follows: Each v € V has a threshold 6,, chosen uniformly at
random in [0, 1] and the information start from a seed set S C
V. At first all users in S become active. Next, information
cascades in discrete steps and in each step, a user v becomes
active if Zactive w Wuw = 6,. The process stops when no
more user can become active.

Given a collection U of subsets of V, ie U
{C1,...,Cp} where C; C V. Each C; represents a group
that we need to influence. Denote I;(.5) as the expected num-
ber of active users in C; by a seed set S. Given a number
T € [0,1], IP aims to find the smallest .S such that for all
C;elU, min|X‘§r L(S \ X) > T|Cl|

We use Facebook dataset from SNAP database (Leskovec
and Krevl 2014), an undirected graph with 4,039 nodes and
88,234 edges. Since it is undirected, we treat each edge as
two directed edges. The weight w,, , is set to be 1/d,, where
d, is in-degree of v. U is a collection of groups to which
users are classified based on their gender or race. Due to lack
of data information, a user’s race and gender are randomly
assigned. I;(.9) is estimated over 100 graph samples.

Movie Recommendation for Multiple Users (MR) In
this problem, given a set M of movies, a set U of users,
each user v has a list L,, of his/her favourite movies. Given
S C U, a utility score of u to S is defined as f,(S) =
D ieL.jes\L, Si,j (Mirzasoleiman, Zadimoghaddam, and
Karbasi 2016) where s; ; € [0, 1] which measures the sim-
ilarity between movie ¢ and j. Given a number 7', the ob-
jective is to find the smallest set of movies to recommend
to all users in a way such that every user’s utility level is at
least 7" under any r “inaccurate-data” movies removal, i.e.
min x|<, fu(S\ X) > T forallu € U.

We use Movie Lens dataset from GroupLens (2015)
database, which includes information of 10,381 movies; and
their 20,000,264 ratings (ranging in [0, 5]) from 138,493
users. We randomly pick 4 users for a set U, L,, contains
movies that u rated at least 4. Each movie ¢ is associated by
a 1,129-dimension vector v;, where each entry (ranging in
[0, 1]) represents the relevant score between the movie and a
keyword. The relevant scores are available in the dataset. We
use cosine similarity score il to present s; ;. For each
user u, f,,(.S) is normalized to be in range [0, 1].

9114

Compared Algorithms With » 0, we compare
RANDGR, GREEDY and THRESGR (v = 0.2) with SEP al-
gorithm: which considers each constraint separately, runs
greedy to find a set S; that f;(S;) > 1 — « and return
Uie[m] Si- SEP obtains a ratio of O(mIn 1).

With r» > 0, we compare ALGR’s performance in com-
bination with each ALGO, including RANDGR, GREEDY,
THRESGR, SEP. Each combination of ALGR to a ALGO
algorithm is denoted, in short, ALGR-name of the ALGO
algorithm, e.g. ALGR-RANDGR.

We also compare ALGR with DISJOINT, a heuristic we
propose to evaluate. DISJOINT finds r + 1 disjoint sets
S1,...,Sr41 such that f;(S;) > 1 — « for all i € [m]
and j € [r + 1]; and returns S = Uj¢[41)5;. If DIs-
JOINT successfully finds all {S;}c[,1]. then S is feasible
to MINRF without the need for checking all subsets of size
r. This is because for any set X of size r, there should ex-
ist S; that S; N X = (. Thus, S; C S\ X, which means
fi(S\X) > fi(S;) > 1 —aforall i € [m]. However, there
are two problems with DISJOINT: (1) If DISJOINT cannot
find all {S;}c[r41) the algorithm does not guarantee there
exists no feasible solution to MINRF; and (2) DISJOINT does
not obtain any approximation ratio.

For r = 1, we also evaluate ALG1 performance in com-
bination with each ALGO algorithm, including RANDGR,
GREEDY, THRESGR.

Other. We set o = 0.1. Results are averaged over 10
repetitions.

Experimental Results

Fig. 1 shows the performances of different ALGO algorithms
in comparison with SEP. We can see that ALGO algorithms
totally outperformed SEP in solution quality by a huge mar-
gin. RANDGR returned solutions approximately close to
GREEDY, which is the best one in term of solution qual-
ity. However, in term of query efficiency, RANDGR took
much fewer queries than GREEDY and; and was the fastest
algorithm in the IP problem. This confirms the efficiency of
RANDGR by introducing randomness and discarding satisfied
constraints after each iteration.

Fig. 2 shows algorithms’ performance on the IP and MR
problems when r = 1. The two proposed heuristics, ALG1-
SEP and D1SJOINT, showed the worst performance in solu-

—@— ALGI RANDGR

== ALG1 GREEDY

—@®— ALG] THRESGR

=== ALGR SEP

== ALGR RANDGR ALGR GREEDY =©= ALGR THRESGR DISJOINT
|S] (IP) " # queries (IP) |S| (MR) " # queries (MR)
100F T T 9 2 T T - T T T T
- 6 B
S0t
10 |
60 |
sl]
a0t]
20| ® 1 ol |
06 065 07 075 08 085 09 06 065 07 075 08 085 09 2 4 6 B 2 1 6 8
T T T 1073 T 1073
Figure 2: Performance of algorithms with r = 1
’ =@— ALGR RANDGR == ALGR GREEDY =@=— ALGR THRESGR ==#= ALGR SEP DISJOINT
|S] (IP) o # queries (IP) |S| (MR) 0 # queries (MR)
140 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
151 1
120] 120 F |
1000 10 | 100 420 i
80|] sof 1
60 - -4 051 - 60 - - 1+ B
I .’__.,,/-':_’f/"‘ | o |
wl 1 of 1 | == - 1 of
= L L L L L L L L L L L L L L
2 3 1 5 2 3 1 5 6 2 3 1 5 6

Figure 3: Performance of algorithms with various r

tion quality. DISJOINT’s undesirable performance came from
the fact that a union of disjoint subsets, each is able to satisfy
all constraints, is not a necessary condition to guarantee ro-
bustness. Also, by finding disjoint subsets, DISJOINT needed
more queries than any other algorithms.

In combination with the same ALGO algorithm, ALGI
and ALGR had almost similar returned solution but ALG1
totally outperformed ALGR in term of number of queries.
That can be explained by the fact that whenever ALG1 finds
an element e whose removal violates at least one constraint,
ALG1 will add elements to compensate for e’s removal. That
guarantees not only .S is robust to e’s removal but also the
newly-added elements may help .S being robust against some
other elements’ removal as well. On the other hand, ALGR
gathers all elements, each element’s removal violates at least
one constraint, to form a new MINRF instance with a much
larger set of submodular functions than ALG1. That helps
ALG]1 obtain better number of queries than ALGR.

Fig. 3 shows algorithms’ performance with larger r. We
observed that ALGR-SEP and DISJOINT were outperformed
by other algorithms by a huge margin in solution quality;
but took much fewer number of queries than the others. That
is because with larger r, the number of subsets of size r is
increased by an exponent rate in term of r, which increases
significantly the number of queries of ALGR for scanning
subsets of size r of S,._1. SEP was less suffered than our
ALGO algorithms because SEP returned much larger solu-

9115

tions, which can reach robustness at S; where ¢ < r. On
the other hand, DISJOINT had the small number of queries
because DISJOINT does not need to scan all removals of its
subsets of size r to check feasibility of the returned solution.
Fig. 3 also shows that: ALGR-RANDGR performed the
best in both solution quality and the number of queries in
comparison with ALGR-GREEDY and ALGR-THRESGR. Al-
though THRESGR was the most efficient ALGO algorithm
when r = 0 (standalone) or r = 1 (combining with ALG1 or
ALGR), ALGR-THRESGR’s performances were undesirable
with large r. This is because THRESGR tends to return larger
solution than RANDGR and GREEDY. Therefore, ALGR-
THRESGR requires more queries to scan over all subset of
size r of S,_; than ALGR-RANDGR and ALGR-GREEDY.

Conclusion

Motivated by real-world applications, in this work, we studied
a problem of minimum robust set subject to multiple submod-
ular constraints, namely MINRF. We investigate MINRF’s
hardness using complexity theories; and proposed multi-
ple approximation algorithms to solve MINRF. Our algo-
rithms are proven to return tight performance guarantees to
MINRF’s inapproximability and required query complexity.
Finally, we empirically demonstrated that our algorithms out-
perform several intuitive methods in terms of the solution
quality and number of queries.

Acknowledgements

This work was supported in part by the National Science
Foundation (NSF) grants IIS-1908594, 11S-1939725, and
the University of Florida Informatics Institute Fellowship
Program. We would like to thank the anonymous reviewers
for their helpful feedback.

References

Anari, N.; Haghtalab, N.; Naor, S.; Pokutta, S.; Singh, M.;
and Torrico, A. 2019. Structured Robust Submodular Maxi-
mization: Offline and Online Algorithms. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics,
3128-3137.

Bogunovic, I.; Mitrovié, S.; Scarlett, J.; and Cevher, V. 2017.
Robust submodular maximization: A non-uniform partition-
ing approach. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, 508-516. JIMLR.
org.

Dinh, T. N.; and Thai, M. T. 2014. Network under joint
node and link attacks: Vulnerability assessment methods and

analysis. IEEE/ACM Transactions on Networking 23(3):
1001-1011.

Goyal, A.; Bonchi, F.; Lakshmanan, L. V.; and Venkatasubra-
manian, S. 2013. On minimizing budget and time in influence
propagation over social networks. Social network analysis
and mining 3(2): 179-192.

GroupLens. 2015. MovieLens 20M Dataset.
grouplens.org/datasets/movielens/20m/.

https://

Guillory, A.; and Bilmes, J. A. 2011. Simultaneous learning
and covering with adversarial noise .

Iyer, R. K.; and Bilmes, J. A. 2013. Submodular optimization
with submodular cover and submodular knapsack constraints.
In Advances in Neural Information Processing Systems, 2436—
2444.

Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing
the spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 137-146. ACM.

Krause, A.; McMahan, H. B.; Guestrin, C.; and Gupta, A.
2008. Robust submodular observation selection. Journal of
Machine Learning Research 9(Dec): 2761-2801.

Kuhnle, A.; Pan, T.; Alim, M. A.; and Thai, M. T. 2017.
Scalable bicriteria algorithms for the threshold activation
problem in online social networks. In IEEE INFOCOM
2017-1EEE Conference on Computer Communications, 1-9.
IEEE.

Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/
data.

Mirzasoleiman, B.; Karbasi, A.; Badanidiyuru, A.; and
Krause, A. 2015. Distributed submodular cover: Succinctly
summarizing massive data. In Advances in Neural Informa-
tion Processing Systems, 2881-2889.

9116

Mirzasoleiman, B.; Zadimoghaddam, M.; and Karbasi, A.
2016. Fast distributed submodular cover: Public-private data
summarization. In Advances in Neural Information Process-

ing Systems, 3594-3602.

Mitrovic, S.; Bogunovic, I.; Norouzi-Fard, A.; Tarnawski,
J. M.; and Cevher, V. 2017. Streaming robust submodu-
lar maximization: A partitioned thresholding approach. In
Advances in Neural Information Processing Systems, 4557—
4560.

Nguyen, H. T.; Thai, M. T.; and Dinh, T. N. 2016. Stop-
and-stare: Optimal sampling algorithms for viral marketing
in billion-scale networks. In Proceedings of the 2016 In-

ternational Conference on Management of Data, 695-710.
ACM.

Nguyen, L.; and Thai, M. T. 2020. Streaming k-Submodular
Maximization under Noise subject to Size Constraint. In
International Conference on Machine Learning, 7338-7347.
PMLR.

Nguyen, L. N.; and Thai, M. T. 2019. Network Resilience
Assessment via QoS Degradation Metrics: An Algorithmic
Approach. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 3(1): 1-32.

Nguyen, L. N.; Zhou, K.; and Thai, M. T. 2019. Influence
maximization at community level: A new challenge with non-
submodularity. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), 327-337. IEEE.

Norouzi-Fard, A.; Bazzi, A.; Bogunovic, 1.; El Halabi, M.;
Hsieh, Y.-P.; and Cevher, V. 2016. An efficient streaming
algorithm for the submodular cover problem. In Advances in
Neural Information Processing Systems, 4493-4501.

Ohsaka, N.; and Yoshida, Y. 2015. Monotone k-submodular
function maximization with size constraints. In Advances in
Neural Information Processing Systems, 694-702.

Orlin, J. B.; Schulz, A. S.; and Udwani, R. 2018. Robust
monotone submodular function maximization. Mathematical
Programming 172(1-2): 505-537.

Qian, C.; Shi, J.-C.; Yu, Y.; Tang, K.; and Zhou, Z.-H. 2017.
Subset selection under noise. In Advances in neural informa-
tion processing systems, 3560-3570.

Staib, M.; Wilder, B.; and Jegelka, S. 2019. Distributionally
Robust Submodular Maximization. In The 22nd International
Conference on Artificial Intelligence and Statistics, 506-516.
Zhang, H.; Mishra, S.; Thai, M. T.; Wu, J.; and Wang, Y.
2014. Recent advances in information diffusion and influence

maximization in complex social networks. Opportunistic
Mobile Social Networks 37(1.1): 37.

