
Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses
Anatoly Shusterman

Ben-Gurion Univ. of the Negev
shustera@post.bgu.ac.il

Daniel Genkin
University of Michigan

genkin@umich.edu

Ayush Agarwal
University of Michigan
ayushagr@umich.edu

Yossi Oren
Ben-Gurion Univ. of the Negev

yos@bgu.ac.il

Sioli O’Connell
University of Adelaide

sioli.oconnell@adelaide.edu.au

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract
The “eternal war in cache” has reached browsers, with mul-
tiple cache-based side-channel attacks and countermeasures
being suggested. A common approach for countermeasures is
to disable or restrict JavaScript features deemed essential for
carrying out attacks.

To assess the effectiveness of this approach, in this work
we seek to identify those JavaScript features which are es-
sential for carrying out a cache-based attack. We develop
a sequence of attacks with progressively decreasing depen-
dency on JavaScript features, culminating in the first browser-
based side-channel attack which is constructed entirely from
Cascading Style Sheets (CSS) and HTML, and works even
when script execution is completely blocked. We then show
that avoiding JavaScript features makes our techniques archi-
tecturally agnostic, resulting in microarchitectural website
fingerprinting attacks that work across hardware platforms
including Intel Core, AMD Ryzen, Samsung Exynos, and
Apple M1 architectures.

As a final contribution, we evaluate our techniques in hard-
ened browser environments including the Tor browser, Deter-
Fox (Cao el al., CCS 2017), and Chrome Zero (Schwartz et
al., NDSS 2018). We confirm that none of these approaches
completely defend against our attacks. We further argue that
the protections of Chrome Zero need to be more comprehen-
sively applied, and that the performance and user experience
of Chrome Zero will be severely degraded if this approach is
taken.

1 Introduction

The rise in the importance of the web browser in modern
society has been accompanied by an increase in the sensitiv-
ity of the information the browser processes. Consequently,
browsers have become targets of attacks aiming to extract
or gain control of users’ private information. Beyond attacks
that target software vulnerabilities and attacks that attempt to
profile the device or the user via sensor APIs, browsers have
also been used as a platform for mounting microarchitectural
side-channel attacks [22], which recover secrets by measuring
the contention on microarchitectural CPU components.

While traditionally such attacks were implemented using
native code [7, 29, 49, 58, 60, 79, 80], recent works have
demonstrated that JavaScript code in browsers can also be
used to launch such attacks [24, 30, 57, 69]. In an attempt
to mitigate JavaScript-based side-channel leakage, browser
vendors have mainly focused on restricting the ability of an
attacker to precisely measure time [15, 16, 84].

Side-channel attackers, in turn, attempt to get around these
restrictions by creating makeshift timers with varying accu-
racies through the exploitation of other browser APIs, such
as message passing or multithreading [42, 66, 72]. More re-
cently, Schwarz et al. [67] presented Chrome Zero, a Chrome
extension that protects against JavaScript-based side-channels
by blocking or restricting parts of the JavaScript API com-
monly used by side channel attackers, based on a user-selected
protection policy. Going even further, DeterFox [14] aims to
eliminate side-channel attacks by ensuring completely de-
terministic JavaScript execution, and NoScript [51] prevents
JavaScript-based attacks by completely disabling JavaScript.

A common trend in these approaches is that they are symp-
tomatic and fail to address the root cause of the leakage,
namely, the sharing of microarchitectural resources. Instead,
most approaches attempt to prevent leakage by modifying
browser behavior, striking different balances between security
and usability. Thus, we ask the following question.

What are the minimal features required for mounting mi-
croarchitectural side-channel attacks in browsers? Can at-
tacks be mounted in highly-restricted browser environments,
despite security-orientated API refinements?

Besides being influenced by defenses, microarchitectural
attacks are also affected by an increased hardware diversifi-
cation in consumer devices. While the market for high-end
processors used to be dominated by Intel, the past few years
have seen an increase in popularity of other alternatives, such
as AMD’s Zen architecture, Samsung’s Exynos, and the re-
cently launched Apple M1 cores.

Most microarchitectural attack techniques, however, are
inherently dependent on the specifics of the underlying CPU
hardware, and are typically demonstrated on Intel-based ma-
chines. While microarchitectural attacks on non-Intel hard-
ware do exist [46, 85], these are also far from universal, and

Countermeasure Chrome Zero Can Be Technique External
Policy Level Bypassed? Requirements

None None 3 Cache Contention [24, 57, 69] None
Reduced timer resolution Medium 3 Sweep Counting [69] None
No timers, no threads Paranoid 3 DNS Racing Non-Cooperating DNS server
No timers, threads, or arrays — 3 String and Sock Cooperating WebSockets server
JavaScript completely blocked — 3 CSS Prime+Probe Cooperating DNS server

Table 1: Summary of results: Prime+Probe Attacks can be Mounted Despite Strict Countermeasures

are also highly tailored to their respective hardware platforms.
Thus, given the ever increasing microarchitectural diversifica-
tion, we ask the following secondary question.

Can microarchitectural side-channel attacks become
architecturally-agnostic? In particular, are there universal
side channel attacks that can be mounted effectively across
diverse architectures, without requiring hardware-dependent
modifications?

1.1 Our Contribution

Tackling the first set of questions, in this paper we show that
side channel attacks can be mounted in highly restricted
browser environments, despite side-channel hardening of
large portions of JavaScript’s timing and memory APIs. More-
over, we show that even if JavaScript is completely disabled,
side-channel attacks are still possible, albeit with a lower
accuracy. We thus argue that completely preventing side chan-
nels in today’s browsers is nearly impossible, with leakage
prevention requiring more drastic design changes.

Next, tackling the second set of questions, we introduce
architecturally-agnostic side channel techniques, that can op-
erate on highly diverse architectures from different vendors.
Empirically evaluating this claim, we show side channel leak-
age from browser environments running on AMD, Apple,
ARM and Intel architectures with virtually no hardware-
specific modifications. Notably, to the best of our knowledge,
this is the first side-channel attack on Apple’s M1 CPU.
Reducing Side Channel Requirements. We focus our in-
vestigation on website fingerprinting attacks [34]. In these
attacks, an adversary attempts to breach the privacy of the
victim by finding out the websites that the victim visits. While
initially these attacks relied on network traffic analysis, sev-
eral past works demonstrated that an attacker-controlled web-
site running on the victim machine can determine the identity
of other websites the victim visits [6, 39, 53, 57, 74].

To identify the set of JavaScript features required for cache
attacks, we build on the work of [69]. We start from their
website fingerprinting attacks and design a sequence of new
attacks, each requiring progressively less JavaScript features.
Our process of progressively reducing JavaScript features cul-
minates in CSS Prime+Probe, which is a microarchitectural

attack implemented solely in CSS and HTML, yet is capable
of achieving a high accuracy even when JavaScript is com-
pletely disabled. To the best of our knowledge, this is the first
microarchitectural attack with such minimal requirements.

Architecturally-Agnostic Side Channel Attacks. Next,
we tackle the challenge of mounting side channel attacks
across a large variety of computing architectures. We show
that the reduced requirements of our techniques essentially
make them architecturally-agnostic, allowing them to run on
highly diverse architectures with little adaptation. Empirically
demonstrating this, we evaluate our attacks on AMD’s Ryzen,
Samsung’s Exynos and Apple’s M1 architectures. Ironically,
we show that our attacks are sometimes more effective on
these novel CPUs by Apple and Samsung compared to their
well-explored Intel counterparts, presumably due to their sim-
pler cache replacement policies.

Evaluating Existing Side Channel Protections. Having
reduced the requirements for mounting side channel attacks
in browser contexts, we tackle the question of evaluating the
security guarantees offered by existing API hardening tech-
niques. To that aim, we deploy Chrome Zero [67] and measure
the attack accuracy in the presence of multiple security poli-
cies. We show that while disabling or modifying JavaScript
features does attenuate published attacks, it does little to block
attacks that do not require the disabled features.

As a secondary contribution, we find that there are sev-
eral gaps in the protection offered by Chrome Zero, and that
fixing those adversely affects Chrome Zero’s usability and
performance. This raises questions on the applicability of the
approach suggested in [67] for protecting browsers.

Attacking Hardened Browsers. Having shown the effi-
cacy of our techniques in both Chrome and Chrome Zero
environments, we also evaluate our attacks on several popular
security-oriented browsers, such as the Tor Browser [71] and
DeterFox [14]. Here, we show that attacks are still possible,
albeit at lower accuracy levels.

Summary of Contribution. In summary, in this paper we
make the following contributions:
• We design three cache-based side-channel attacks on

browsers, under progressively more restrictive assumptions.
In particular, we demonstrate the first side-channel attack
in a browser that does not rely on JavaScript or any other

mobile code (Section 3).
• We empirically demonstrate architecturally-agnostic side

channel attacks, showing the first techniques that can handle
diverse architectures with little adaptation (Section 3.5).

• We re-evaluate the JavaScript API-hardening approach
taken by Chrome Zero, demonstrating significant limita-
tions that affect security, usability, and performance (Sec-
tion 5).

• We evaluate our attacks in multiple scenarios, including in
the restrictive environments of the Tor Browser and Deter-
Fox (Section 6).

1.2 Responsible Disclosure
Following the practice of responsible disclosure, we have
shared a draft of this paper with the product security teams of
Intel, AMD, Apple, Chrome and Mozilla prior to publication.

2 Background

2.1 Microarchitectural Attacks
To improve performance, modern processors typically exploit
the locality principle, which notes the tendency of software to
reuse the same set of resources within a short period of time.
Utilizing this, the processor maintains state that describes past
program behavior, and uses it for predicting future behavior.
Microarchitectural Side Channels. The shared use of a
processor, therefore, creates the opportunity for information
leakage between programs or security domains [22]. Leakage
could be via shared state [3, 32, 44, 80] or via contention
on either the limited state storage space [27, 49, 58, 60] or
the bandwidth of microarchitectural components [2, 10, 82].
Exploiting this leakage, multiple side-channel attacks have
been presented, extracting cryptographic keys [2, 10, 11, 25,
32, 49, 58, 60, 65, 80, 82], monitoring user behavior [29, 33,
57, 64, 69], and extracting other secret information [7, 36, 79].

Side-channel attacks were shown to allow leaking between
processes [32, 49, 58, 60, 80], web browser tabs [24, 57, 69],
virtual machines [37, 49, 80, 86], and other security bound-
aries [7, 18, 36, 44]. In this work we are mostly interested
in the two attack techniques that target the limited storage in
caching elements, mainly data caches.
Prime+Probe. The Prime+Probe attack [49, 58, 60] exploits
the set-associative structure in modern caches. The attacker
first creates an eviction set, which consists of multiple memory
locations that map to a single cache set. The attacker then
primes the cache by accessing the locations in the eviction set,
filling the cache set with their contents. Finally, the attacker
probes the cache by measuring the access time to the eviction
set. A long access time indicates that the victim has accessed
memory locations that map to the same cache set, evicting
part of the attacker’s data, and therefore teaches the attacker
about the victim’s activity.

Cache Occupancy. In the cache occupancy attack [54, 69],
the attacker repeatedly accesses a cache-sized buffer while
measuring the access time. Because the buffer consumes the
entire cache, the access time to the buffer correlates with the
victim’s memory activity. The cache occupancy attack is sim-
pler than Prime+Probe, and provides the attacker with less
detailed spatial and temporal information. It is also less sensi-
tive to the clock resolution [69]. Sweep counting is a variant
of the cache occupancy attack, in which the adversary counts
the number of times that the buffer can be accessed between
two clock ticks. The main advantage of this technique is that
it can work with even lower-resolution clocks.

2.2 Defenses
The root cause of microarchitectural side-channels is the shar-
ing of microarchitectural components across code executing
in different protection domains. Hence, partitioning the state,
either spatially or temporally, can be effective in preventing
attacks [23]. Partitioning can be done in hardware [19, 77] or
by the operating system [40, 45, 50, 68].

Fuzzing or reducing the resolution of the clock are often
suggested as a countermeasure [16, 35, 73, 84]. However,
these approaches are less effective against the cache occu-
pancy attack, as it does not require high-resolution timers.
Furthermore, these approaches only introduce uncorrelated
noise to the channel and do not prevent leakage [17].

Randomizing the cache architecture is another commonly
suggested countermeasure [61, 77, 78]. These often aim to
prevent eviction set creation. However, they are less effective
against the cache occupancy attack, both because the attack
does not require eviction sets and because these techniques
do not change the overall cache pressure.

2.3 The JavaScript Types and Inheritance

JavaScript Typing. JavaScript is an object oriented language
where every value is an object, excluding several basic prim-
itive types. For object typing, JavaScript mostly uses “duck
typing”, where an object is considered to have a required
type as soon as it has the expected methods or properties.
JavaScript deviates from this model for some built-in types,
such as TypedArrays, which are arrays of primitive types.
While JavaScript code mostly uses these built-in types equiva-
lently to objects, the JavaScript engine itself provides certain
APIs that match the arguments against the required built-in
types, raising exceptions if they mismatch.
JavaScript Inheritance. JavaScript uses a prototypal inher-
itance model, where each object can have a single prototype
object. When searching for a property of an object, JavaScript
first checks the object itself. If the property is not found on in
the object, JavaScript proceeds to check its prototype, until it
either finds the property or reaches an object that has no pro-
totype. The list of prototypes used in this search is called the

object’s prototype chain. Finally, when JavaScript modifies an
object property, the prototype chain is not consulted. Instead,
JavaScript sets the property on the object itself, creating it if
it does not already exist.

2.4 Virtual Machine Layering
Virtual machine layering [43] is a low overhead technique for
implementing function call interception. To intercept calls to
a particular function, the function is overwritten with a new
function, in effect intercepting calls to the original function.

To partially override the behavior of the original function,
a reference to the original function is stored, and the desired
behavior is delegated to it if needed. To prevent external ac-
cess to the original intercepted function, a JavaScript closure
is used to store this reference. JavaScript closures create new
variable scopes, preventing code outside the closure from
accessing references stored within the closure.

Virtual machine layering offers a significant advantage
over other techniques for guaranteeing that all calls to a given
JavaScript function are intercepted. This is because virtual
machine layering changes the definition of the function di-
rectly, automatically supporting the interception of function
calls from code generated at runtime.

3 Overcoming Browser-based Defenses

In this section we present several novel browser-based side-
channel techniques that are effective against increasing levels
of browser defenses. More specifically, we present a series
of attacks that progressively require less JavaScript features,
culminating in CSS Prime+Probe– an attack that does not use
JavaScript at all and can work when JavaScript is completely
disabled. To the best of our knowledge, this is the first side-
channel attack implemented solely with HTML and CSS,
without the need of JavaScript.

We evaluate the effectiveness of our techniques via website
fingerprinting attacks in the Chrome browser, which aim to
recover pages currently open on the target’s machine. Be-
yond demonstrating accurate fingerprinting levels against the
Chrome browser, we show that our attacks are highly portable,
and are effective across several different micro-architectures:
Intel x86, AMD Ryzen , Samsung Exynos 2100 (ARM), and
finally Apple M1.

3.1 Methodology and Experimental Setup
We follow the methodology of Shusterman et al. [69], where
we collect memorygrams, or traces of cache use over the web
site load time. We use these traces to train a deep neural net-
work model, which is then used to identify web sites based on
the corresponding memorygrams. Similarly to [69], we mea-
sure cache activity using both the cache occupancy and sweep
counting methods (described below). Both of these methods

measures the overall level of cache contention, obviating the
need to construct eviction sets. Finally, we adapt both tech-
niques to progressively more restrictive environments. The
specific assumptions on attackers’ capabilities appear in the
respective sections (Sections 3.2 to 3.4).
The Cache Occupancy Channel. To measure the web
page’s cache activity, we follow past works [54, 69] and use
the cache occupancy channel. Specifically, we allocate an
LLC-sized buffer and measure the time to access the entire
buffer. The victim’s access to memory evicts the contents of
our buffer from the cache, introducing delays for our access.
Thus, the time to access our buffer is roughly proportional to
the number of cache lines that the victim uses.

Compared with the Prime+Probe attack, the cache occu-
pancy channel does not provide any spatial information, mean-
ing that the attacker does not learn any information about the
addresses accessed by the victim. Thus, it is less appropri-
ate for detailed cryptanalytic attacks which need to track the
victim at the resolution of a single cache set. However,the
cache occupancy attack is simpler than Prime+Probe and in
particular avoids the need to construct eviction sets. It also
requires less accurate temporal information, on the order of
milliseconds instead of nanoseconds. Thus, cache occupancy
attacks are better suited to restricted environments, such as
those considered in this section.
Sweep Counting. Sweep counting [69] is a variant of the ba-
sic cache occupancy attack, with reduced temporal resolution.
Here, rather then timing the traversal of a cache-sized buffer,
the attacker counts the number of sweeps across the buffer
than fit within a time unit. While providing even less accu-
racy than cache occupancy, sweep counting remains effective
when used with low-resolution timing sources (e.g., hundreds
of milliseconds). Just like the cache occupancy attack, sweep
counting does not provide any spatial resolution.
Closed World Evaluation. Using the channels we describe
above, we collect memorygrams of visits to the Alexa Top 100
websites. We visit each site 100 times, each time collecting
a memorygram that spans 30 seconds. We then evaluate the
accuracy of our techniques in the closed-world model, where
an adversary knows the list of 100 websites and attempts to
guess which one is visited. Here, the base accuracy rate of a
random guess is 1%, with any higher accuracy indicating the
presence of side-channel leakage in the collected traces.
Evaluated Architectures. We demonstrate in the attacks
described in this section on several different architectures
made by multiple hardware vendors. For Intel, we use sev-
eral machines featuring an Intel Core i5-3470 CPU that has a
6 MiB last-level cache and 20 GiB memory. The machines are
running Windows 10 with Chrome version 78, and are con-
nected via Ethernet to a university network. Next, for AMD,
we used six machines equipped with an AMD Ryzen 9 3900X
12-Core Processor, which has a 4x16 MiB last-level cache
and 64 GiB memory. These machines were running Ubuntu
20.04 server with Chrome version 88.0, and were connected

via Ethernet to a cloud provider network. For our ARM eval-
uation we used five Samsung Galaxy S21 5G mobile phones
(SM-G991B), featuring an ARM-based Exynos 2100 CPU
with an 8 MiB last-level cache and 8 GiB memory. These
phones were running Android 11 with Chrome 88 and were
connected via Wi-Fi to a University network. Finally, for our
evaluation on Apple, we used four Apple Mac Mini machines
equipped with an Apple M1 CPU with a 12 MiB last-level
cache for performance cores and 4 MiB for efficiency cores.
The machines were equipped with 16 GiB memory and were
running MacOS Big Sur version 11.1 together with Chrome
88.0 for arm64. These machines were connected via Ethernet
to a University network.
Machine Learning Methodology. As a classifier we use a
deep neural network model, with 10-fold cross validation. See
Appendix A for details. Following previous works [12, 55],
we report both the most likely prediction of the classifier
and the top 5 predictions, noting that the base accuracy for
the top 5 results is 5% for the closed-world scenarios, and
34% for the open world. The collected data volume of all the
experiments is 27 GiB consisting of 40 datasets, where each
dataset takes about one week to collect, and each classifier
takes on average 30 minutes to train on a cluster of Nvidia
GTX1080 and GTX2080 GPUs.

3.2 DNS Racing
For our first attack, DNS Racing, we assume a hypothetical
JavaScript engine that does not provide any timer, neither
through an explicit interface nor via repurposing JavaScript
features such as multithreading [42, 66].
DNS-based Time Measurement. Ogen et al. [56] observe
that browsers behave very predictably when attempting to
load a resource from a non-existent domain, waiting for ex-
actly one network round-trip before returning an error. Thus, it
is possible to create an external timer by setting the onerror
handler on an image whose URL points to a non-existent
domain. We evaluate this timer with a local DNS server and
with a remote Cloudflare DNS server, using both Ethernet and
Wi-Fi connections. The results, depicted in Figure 1, show
that all the timers are fairly stable, with little jitter.

For an Ethernet connection to a local DNS server, the timer
resolution is about 2 ms, which Shusterman et al. [69] report
is high enough for the basic cache occupancy channel. A local
server over Wi-Fi gives a resolution of about 9 ms, and the
Cloudflare server provides a resolution of roughly 70 ms, for
both Ethernet and Wi-Fi. While these resolutions are unlikely
to be suitable for the basic cache occupancy attack, Shuster-
man et al. [69] show that sweep counting works well with the
100 ms timer of the Tor Browser.
Exploiting DNS for Cache Attacks. Figure 2a shows how
to use the DNS response as a timer. As illustrated in the figure,
the attacker first sets the src attribute of an image to a non-
existent domain, in causing the operating system to access a

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Latency (ms)

Local DNS over Ethernet
Local DNS over WiFi

Cloudflare DNS over Ethernet
Cloudflare DNS over WiFi

Figure 1: Measured response latencies when loading an image
from a non-existent domain (local server).

remote DNS server for address resolution. The attacker then
starts the cache probe operation, creating a race between the
probe and the asynchronous report of the DNS error. When
the asynchronous error handling function is called after name
resolution fails, the attacker can determine whether the cache
probing operation was faster or slower than the network round-
trip time. Alternatively, when the DNS round-trip time is
large, the attacker can repeat the probe step, counting the
number of probes before the DNS error is reported. We note
that the attack generates a large number of DNS requests.
Such anomalous traffic may be detected by intrusion detection
systems and blocked by the firewall.

3.3 String and Sock
Another commonality feature of most microarchitectural at-
tacks in browsers, including our DNS racing attack, is the
use of arrays [24, 28, 47]. Consequently, the use of arrays
is often assumed essential for performing cache attacks in
browsers and suggested countermeasures aim for hardening
arrays against side channels, while maintaining their func-
tionality [67]. To refute this assumption, in this section we
investigate a weaker attack model, in which the attacker can-
not use JavaScript arrays and similar data structures.
Exploiting Strings. Instead of using JavaScript arrays, our
String and Sock attack uses operations on long HTML strings.
Specifically, we initialize a very long string variable covering
the entire cache. Then, to perform a cache contention mea-
surement, we use the standard JavaScript indexOf() function
to search for a short substring in this long text. We make sure
that the substring we search for does not appear within the
long string, thus ensuring that the search scans all of the long
string. Because the length of the long string is the same as
the size of the LLC, the scan effectively probes the cache
without using any JavaScript array object. To measure the
duration of this probe operation, we take advantage of an
external WebSockets [21] server controlled by the attacker.
Socket-Based Time Measurement. Figure 2b shows how
the String and Sock method operates. The attacker first sends
a short packet to a cooperating WebSockets server. Next, the

Web Page

on Target

Innocent

DNS Server

Resolve Non-Existent
Domain

Probe Cache

NXDOMAIN Err

(a) DNS Racing

Web Page

on Target

Malicious

WebSocket Server

Send Short Packet

Search in
String

Send Short Packet

Log Start
Time

Log End
Time

(b) String and Sock

Web Page

on Target

Malicious

DNS Server

Resolve Domain

Search in
String

Resolve Domain

Log Start
Time

Log End
Time

(c) CSS Prime+Probe

Figure 2: Interaction diagrams for attacks.

attacker performs a string search operation which is known to
fail. As this search scans the entire string before failing, it has
the side effect of probing the entire LLC cache. Finally, the
attacker sends a second short packet to the cooperating Web-
Sockets server. The server calculates the timing difference
between the first and second packets, arriving at an estimate
of the time taken to probe the cache.
String and Sock in Chrome. We find that Chrome allocates
three bytes for each character. As we would like our string
to occupy the machines entire last level cache, we allocate
different string lengths for each architecture considered in
this paper. In particular, we use 2 MiB strings for our Intel
machines that feature a 6 MiB LLCs, 3 MiB strings for our
AMD machines (4x16 MiB LLCs), 1.5 MiB strings for our
Samsung phones (8 MiB LLC), and 2 MiB strings for our
Apple machines (12 MiB LLCs on performance cores). We
also note that Chrome caches results of recent searches. To
bypass this caching, for each search we generate a small fresh
sequence of emojis and search for it. With the long string
consisting only of ASCII characters, it is guaranteed not to
contain any emojis.

3.4 CSS Prime+Probe
Our final attack, CSS Prime+Probe targets an even more
restricted setting, in which the browser does not support
JavaScript or any other scripting language, for example due
to the NoScript extension [51]. CSS Prime+Probe only uses
plain HTML and Cascading Style Sheets (CSS) to perform a
cache occupancy attack, without using JavaScript at all.
CSS Prime+Probe Overview. At a high level, CSS Prime+
Probe builds on the String-and-Sock approach, and like it
relies on string search for cache contention and an attacker-
controlled server for timing, see Figure 2c. Here, the at-
tacker first includes in the CSS an element from an attacker-
controlled domain, forcing DNS resolution. The malicious
DNS server logs the time of the incoming DNS request. The
attacker then designs an HTML page that evokes a string
search from CSS, effectively probing the cache. This string
search is followed by a request for a CSS element that requires
DNS resolution from the malicious server. Finally, the time

difference between consecutive DNS requests corresponds
to the time it takes to perform the string search, which as
described above is a proxy for cache contention.

CSS Prime+Probe Implementation. Figure 3 shows a code
snippet implementing CSS Prime+Probe, using CSS Attribute
Selectors to perform the attack. Specifically, Line 9 defines
a div with a very long class name (two million characters).
This div contains a large number of other divs, each with its
own ID (Lines 10–12). The page also defines a style for each
of these internal divs (Lines 3–5). Each of these matches
the IDs of the internal and external div, and uses an attribute
selector that searches for a substring in the external div. If
not found, the style rule sets the background image of the
element some URL at an attacker-controlled domain.

1 <head>
2 <style>
3 #pp:not([class*=’vukghj’]) #s0 {

background-image: url("https://
kxdfvcgx.attack.com");}

4 [...]
5 #pp:not([class*=’vatwjo’]) #s9999 {

background-image: url("https://
bwpqxunq.attack.com");}

6 </style>
7 </head>
8 <body>
9 <div id="pp" class="AA...A">

10 <div id="s0">X</div>
11 [...]
12 <div id="s9999">X</div>
13 </div>
14 </body>

Figure 3: Simplified version of CSS-based Prime+Probe.

When rendering the page, the browser first tries to render
the first internal div. For that, it performs a long search in the
class name, effectively probing the cache occupancy. Having
not found the substring, it sets the background image of the
div, resulting in sending a request to the attacker’s DNS
server. The browser then proceeds to the next internal div.
As a result of rendering this page, the browser sends to the
attacker a sequence of DNS requests, whose timing depends
on the cache contention.

Top-1 Accuracy (%) Top-5 Accuracy (%)

Intel AMD Ryzen 9 Apple Samsung Intel AMD Ryzen 9 Apple Samsung
Attack Technique i5-3470 3900X M1 Exynos 2100 i5-3470 3900X M1 Exynos 2100

Cache Occupancy 87.5 69.1 89.7 84.5 97.0 91.4 97.8 95.3
Sweep Counting 45.8 54.9 90.5 69.7 74.3 82.9 98.1 91.5
DNS Racing 50.8 5.4 48.2 5.8 78.5 16.3 83.5 37.1
String and Sock 72.0 53.9 90.6 60.2 90.6 85.5 97.9 85.5
CSS Prime+Probe 50.1 — 15.7 — 78.6 — 32.6 —

Table 2: Closed-world accuracy (percent) across different microarchitectures.

Intel AMD Ryzen 9 Apple Samsung
Attack Technique i5-3470 3900X M1 Exynos 2100

Cache Occupancy 2.9 ms 6.0 ms 6.3 ms 4.0 ms
Sweep Counting 100.0 ms 100.0 ms 100.0 ms 100.0 ms
DNS Racing 20.3 ms 1.8 ms 7.2 ms 2.9 ms
String and Sock 1.5 ms 2.9 ms 2.6 ms 2.5 ms
CSS Prime+Probe 0.3 ms 6.7 ms 0.3 ms 33.8 ms

Table 3: Temporal accuracy of attack techniques across differ-
ent microarchitectures.

3.5 Empirical Results
We now present the classification results of the attacks de-
scribed in this section across different CPU architectures.
Table 2 summarizes the accuracy of the most likely predic-
tion of the classifier (Top-1), as well as the likelihood that
the correct answer is one of the top 5 results (Top-5). Finally,
Table 3 shows the temporal resolution of each measurement
method, calculated as the time it takes to capture the entire
trace, divided by the number of points in the trace.
Cache Occupancy. This method uses JavaScript code both
to iterate over the eviction buffer, and to measure time. The
JavaScript code goes iterates over the buffer using the tech-
nique of Osvik et al. [58] to avoid triggering the prefetcher,
and is written to prevent speculative reordering from trigger-
ing the timing measurement before the eviction is completed.
As can be seen from the results, this approach provides good
accuracy on all of the targets we evaluated, obtaining a top-5
accuracy of over 90% across all platforms.
Sweep Counting. This method is designed for situations
with lower clock resolution, but still uses JavaScript both for
cache eviction and for timing measurement. As the results
show, this added limitation translates to a loss in accuracy for
most targets, with the Apple M1 target the least affected by
the reduced timer resolution.
DNS Racing. This method uses JavaScript for cache evic-
tion, but switches to the network for timing measurements.
This added limitation translates to a loss in accuracy for most
targets, largely due to the added jitter of the network. The
targets most severely affected by the added jitter were the
ARM-based mobile phones, which were connected to the net-

work using a wireless link, and the AMD devices, which were
located in a third-party data center whose network conditions
were beyond our direct control. We hypothesize that these net-
working circumstances led to jitter related to DNS responses,
causing the severe loss of accuracy for these targets.

String and Sock. This is the first method which repur-
poses the browser’s string-handling code for cache eviction.
Unlike the adversary-controlled code used for mounting the
cache occupancy attack described earlier, this third-party code
naturally makes no attempt to trick the processor’s cache man-
agement heuristics, and, as such, we expected it to have lower
performance than the JavaScript-based code.

As we see, this was indeed the case for the Intel, AMD and
Samsung targets. The Apple M1 target, on the other hand, did
not encounter a loss in accuracy. It seems that, on this target,
naïvely accessing a large block of memory is an efficient way
to evict the cache, and more advanced approaches for tricking
the processor’s prefetcher are not necessary.

CSS Prime+Probe. As CSS Prime+Probe requires no
JavaScript, we test this attack in the presence of the NoScript
[51] extension, applying the countermeasure only to our at-
tacker website. As our attack does not use JavaScript at all,
NoScript does nothing to prevent it. The accuracy we obtained
using this attack was comparable to the one obtained by the
String and Sock attack, showing that there is no need for
JavaScript, or any other mobile code, to mount a successful
side-channel attack.

When running this attack on the Intel target, the accuracy is
similar to DNS racing, which uses JavaScript for cache evic-
tions. On the M1 target, there was still a significant amount
of data leaked by the attack, but the accuracy was less than
the DNS racing attack. On the ARM and AMD targets, we
are unable at the present to extract any meaningful data using
this method. As our CSS Prime+Probe also relies on DNS
packets, we conjecture that this is due to the network condi-
tions of the devices under test, or due to particular aspects
of the micro-architecture of these devices which make cache
eviction less reliable.

Architectural Agnosticism. As the results show, we were
able to mount our side-channel attack across a large variety
of diverse computing architectures. In particular, the Intel,

AMD, ARM and Apple target architectures all incorporate
different design decisions concerning different cache sizes,
cache coherency protocols and cache replacement policies, as
well as related CPU front-end features such as the prefetcher.
The reduced requirements of our attack made it immediately
applicable to all of these targets, with little to no tuning of
the attack’s parameters, and without the need of per-device
microarchitectural reverse engineering.
Attacking Apple’s M1 Architecture. To the best of our
knowledge, this is the first side-channel attack on Apple’s M1
CPU. The memory and cache subsystem of this new architec-
ture have never been studied in detail, leading one to hope for
a “grace period” where attackers will find this target difficult
to conquer. As this work shows, the novelty and obscurity
of this new target do little to protect it from side-channel at-
tacks. The M1 processor is rumored to toggle between two
completely different memory ordering mechanisms, based
on the program it is executing. Another noteworthy outcome
from the M1 evaluation is that both the native arm64 binary of
Chrome, as well as the standard MacOS Intel x64 Chrome bi-
nary running under emulation, were vulnerable to the attacks
we described here.

Finally, observing Table 2, it can be seen that our attacks
are, somewhat ironically, more effective on M1 architecture,
than they are on other architectures, including the relatively
well studied Intel architecture. Intel x86 CPUs are known
to have advanced cache replacement and prefetcher policies,
which are have been shown in other works to anticipate and
mitigate the effect of large memory workloads on cache per-
formance [8, 62, 76]. We hypothesize that the M1 architecture
makes use of less advanced cache heuristics, and that, as a
result, the simplistic memory sweeps our attack performs are
more capable of flushing the entire cache on these devices
than they are on the Intel architecture. This in turn results in
a higher signal-to-noise ratio for the attack on these newer
targets, and therefore in a higher overall accuracy.

4 Attack Scenarios

We now turn our focus to a deeper investigation of the two
new attacks we present, String and Sock and CSS Prime+
Probe, on the Intel targets. Table 4 provides a summary of the
results discussed in this section.

Attack Scenario String and Sock CSS Prime+Probe

Closed World 74.5±1.6 48.8±1.6
Open World 80.2±1.1 60.9±1.4
Artificial Jitter 40.6±1.9 26.6±1.4
Tor Browser 19.5±8.7 —
DeterFox — 65.7±1.2

Table 4: Attack accuracy (%) with 95% confidence intervals.

4.1 Closed World Evaluation on Newer Intel
Architectures

We begin by reproducing the closed world methodology
and the results of Section 3 albeit on a newer Intel proces-
sor. Specifically, we perform the experiments on an Apple
Macbook Pro featuring an Intel Core i5-7267 CPU with a
4 MiB last-level cache, and 16 GiB memory, running macOS
10.15 and Chrome version 81. Despite the microarchitectural
changes across 4 CPU generations and the different cache
size, the results are very similar to those achieved on the older
i5-3470 (72.0±1.3% for String and Sock and 50.1±2.3 for
CSS Prime+Probe), with the difference being well inside the
statistical confidence levels. We thus argue that our results
transfer across a verity of Intel architectures.

4.2 Open-World Evaluation
A common criticism of closed-world evaluations is that the
attacker is assumed to know the complete set of websites
the victim might visit, allowing the attacker to prepare and
train classifiers for these websites [38]. For a more realistic
scenario, we follow the methodology proposed by Panchenko
et al. [59] and perform an open-world evaluation, collecting
5000 traces of different websites used in [63], in addition to
the Alexa Top 100 websites collected in the closed-world
setting. We use the same data collection setting as for the
closed-world collection. (See Section 4.1.)

Here, the attacker’s goal in this setting is to first detect if
the victim visits one of the Alexa Top 100 sites, and secondly
to identify the website if it is indeed in the list. We note that
in this case, a naive classifier can always claim that the site is
not one of the Alexa Top 100, achieving a base rate of 30%,
resulting in slightly higher accuracy scores for any classifier.

In this open-world setting, the String and Sock and CSS
Prime+Probe attacks obtain accuracy results of 80% and 61%,
respectively. The data in this setting is unbalanced – there
are more traces from “other” web sites than from each of
the Alexa Top 100 sites. For such data, the F1 score may be
more representative than accuracy. The F1 scores are 67% and
45%, for String and Sock and CSS Prime+Probe, respectively.
These are similar to those of the closed-world settings (70%
and 48%). We can therefore conclude that our attacks are as
effective in the open-world as in the closed-world setting.

4.3 Robustness to Jitter
As DNS racing, String and Sock, and CSS Prime+Probe use
an external server for time measurement, these techniques are
inherently sensitive to jitter naturally present on the network
between the victim and the web server.
Measuring Network Jitter. We measure the network jit-
ter in two scenarios. First, we perform a local measurement,
where the target and an attacker-controlled WebSockets server

0.0

0.2

0.4

0.6

0.8

1.0

 1 5 10 15 20 25

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(a) String and Sock

0.0

0.2

0.4

0.6

0.8

1.0

 1 5 10 15 20 25

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(b) CSS Prime+Probe

0.0

0.1

0.2

0.3

0.4

 1 5 10

A
c
c
u

ra
c
y

Added Jitter (msec)

Top-1 Top-5

(c) DNS Racing (note different scale)

Figure 4: Attack classifiers performance with additional jitter.

are located on the same institutional network at Ben Gurion
University, Israel. Next, we also perform an inter-continental
measurement, where the attacker is located in Israel, while the
server is located in the United States (University of Michigan).
Figure 5 shows the distribution of the jitter observed while
sending 100 packets per second for 30 seconds to the Web-
Sockets servers. We find that the jitter in the local network
has a standard deviation of 0.17 ms, whereas the jitter to the
cross-continent server has standard deviation of 0.78 ms.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-1 -0.5 0 0.5 1

P
ro

b
a
b

ili
ty

 D
e
n
si

ty

Jitter (ms)

Local LAN Server Cross-Continent Server

Figure 5: Measured Jitter of the WebSockets server response.

Evaluating Robustness to Jitter. Having established the
typical jitter between the target and the external server, we
now evaluate the robustness of our techniques to various lev-
els of jitter. To that aim, we artificially inject different amounts
of jitter to the closed-world dataset of Section 4.1. The jit-
ter is injected by adding random noise to the timing of the
monitored events. This noise is selected at random from a
normal distribution with a mean zero and a standard deviation
that varies from 1 to 25 milliseconds, with higher standard
deviation corresponding to larger jitter.

As Figure 4 shows, both the String and Sock and the CSS
Prime+Probe attacks still retain most of their accuracy even
if the jitter is an order of magnitude larger than the ones we
measured on a real network. We finally note that the DNS
Racing attack is more sensitive to added jitter, as it relies on a
binary race condition to determine timing.

5 Analysis of an API-based Defense

Having established the efficacy of our techniques on various
microarchitectures, in this section we evaluate our attacks in

the presence of increasing levels of browser hardening.
To that aim, we make use of Chrome Zero [67], a Chrome

extension that supports per-website restrictions on JavaScript
browser API features. We begin by presenting an overview of
Chrome Zero’s JavaScript implementation and security objec-
tives, focusing on a subset of Chrome Zero’s features which
are relevant to this work. We next describe how we modified
Chrome Zero to offer more comprehensive protection, at the
cost of usability and performance. Finally, we show that even
with these modifications, Chrome Zero is unable to offer side
channel protections against the techniques presented in this
paper. Unless stated otherwise, we use the current version at
Chrome Zero’s Git repository.*

5.1 Chrome Zero Overview

Chrome Zero implements a list-based access control policy,
which dictates actions to be taken when a website invokes
a JavaScript function or accesses an object property. When
an access is detected, Chrome Zero either allows the access,
modifies it, or completely blocks the access based on the
policy chosen for the particular website.† Chrome Zero also
supports the option of asking the user about the action to take.
Default Policies. Chrome Zero offers five preset protection
policies for the user to choose from: None, Low, Medium, High,
and Paranoid. ‡ As it progresses through protection policy
levels, Chrome Zero makes increasingly severe restrictions
on JavaScript capabilities and resources, including blocking
them altogether. Table 5 summarizes which capabilities and
resources are available at each protection level.
Performance. Schwarz et al. [67] claim that Chrome Zero
blocks all of the building blocks required for successful side-
channel attacks, including high resolution timers, arrays and
access to hardware sensors. Moreover, they claim that Chrome
Zero prevents many known CVEs and 50 percent of zero-day
exploits published since chrome 49. Finally, Schwarz et al.
[67] benchmark Chrome Zero’s performance and perform a

*https://github.com/IAIK/ChromeZero commit
fee8adc6c8fce9dd1ab62d7ff8f0697b44a188c1

†Chrome Zero currently only supports a global protection policy that
can be changed but applies to all websites.

‡The Chrome Zero extension uses the name “Tin Foil Hat” for Paranoid.
We stick to the naming in Schwarz et al. [67].

https://github.com/IAIK/ChromeZero

Policy Level Low Medium High Paranoid

Memory Addresses Buffer ASLR Array preloading Non-deterministic array Array index randomization
Timer manipulation Ask User Low-resolution timestamp Fuzzy time Disabled
Multithreading — Message delay WebWorker polyfill Disabled
Shared Array Buffer — Slow SharedArrayBuffer Disabled Disabled
Sensor API — Ask User Fixed Value Disabled

Table 5: Defense techniques used in each Chrome Zero Policy Level.

 JavaScript engine(V8)

Chrome Zero

Client JavaScript code

Benign
JavaScript

Malicious
JavaScript

Benign
JavaScript

Figure 6: High-level concept of Chrome Zero

usability study. They claim that Chrome Zero has an aver-
age overhead of 1.82% at the second-highest protection level
(High) and that its presence is indistinguishable to users in 24
of Alexa’s Top 25 websites.
Chrome Zero’s Access Control Implementation. To en-
force security policies, Chrome Zero intercepts JavaScript
API calls using Virtual Machine Layering. Specifically,
Chrome Zero is implemented as JavaScript code that is in-
jected into a web page when upon initialization. This injected
code wraps sensitive API functions, having the wrappers im-
plement actions specified by Chrome Zero’s policy. Chrome
Zero uses closures to ensure that the wrapper contains the
only reference to the original API functions, thus ensuring
that websites do not trivially bypass its protection (Figure 6).
Protecting Timers. Traditionally, microarchitectural side-
channel attacks rely on having access to a high-resolution
timer, e.g. to distinguish cache hits from cache misses. This
includes attacks implemented in native code [3, 27, 29, 31,
49, 58, 60, 80, 82] as well as attacks in JavaScript run-
ning inside the browser [24, 26, 57, 66]. As a countermea-
sure for such attacks, Chrome’s current implementation of
performance.now() already reduces timer resolution from
nanoseconds to microseconds and introduces a small amount
of jitter. Although these mitigations protect against some high-
resolution attacks [26, 57, 66], microsecond-accurate timers
still provide sufficient resolution for other side-channel at-
tacks from within JavaScript [28, 30, 66, 70, 72].

To block attacks that exploit microsecond-accurate timers,
Chrome Zero employs two main strategies. At its Medium

protection policy, Chrome Zero applies a “rounded floor”
function, matching the 100 ms resolution of the Tor Browser.
While this already prevents many attacks [66], higher reso-
lution timers may still be constructed [42, 66, 72]. Thus, at
higher protection levels, instead of using a simple “rounded
floor” 100 ms timers, Chrome Zero follows the approach of
Vattikonda et al. [73] and fuzzes the timer measurements by
adding random microsecond-level noise. Finally, at its highest
protection level, Chrome Zero disables timers altogether.

Arrays. Schwarz et al. [67] identify that many side-channel
attacks in browsers [24, 26, 28, 30, 57, 66] require some
information about memory addresses. Typically, recovering
the page offset (least significant 12 of 21 bits of the address)
facilitates the attacks. Using this information the attacker then
analyzes the victim’s behavior, deducing information about its
control flow and internal data. Chrome Zero therefore applies
several mitigations to JavaScript array APIs.

More specifically, Chrome Zero’s second-highest protec-
tion level introduces array non-determinism, adding an access
to a random element for each array access. The idea is that
the random accesses themselves force page faults, impeding
the use of page faults as signals for page boundaries. Schwarz
et al. [67] argue that this method prevents eviction set con-
struction [24, 30, 57, 66, 81], as it interferes with the specific
sequences required to construct an eviction set, while adding
noise to the timing information.

Next, Chrome Zero further deploys the buffer ASLR policy,
which shifts the entire buffer by a random offset. This is
achieved by intercepting the array constructors and access
methods. To prevent page alignment, Chrome Zero increases
the requested array size by 4 KiB, and associates a random
page offset with the array. On array access, Chrome Zero
adds the random offset to the requested array index, thereby
shifting the access by the random offset.

Finally, to protect the offset from being discovered, Chrome
Zero attempts to use the additional accesses to random ele-
ments to pre-load all the array’s memory pages into the cache,
thus preventing attackers from detecting page boundaries by
looking for array elements which have an increased access
time due to page faults.

Protecting Against Browser Exploits. While not being a
primary goal of Chrome Zero, Schwarz et al. [67] argue that
Chrome Zero is also capable of protecting users against some

browser exploits. To validate their claim, they reproduced
12 CVEs in the then-current Chrome JavaScript engine, and
found that Chrome Zero prevents exploiting half of the CVEs.
Schwarz et al. [67] attribute this protection to the modification
of JavaScript objects in Chrome Zero, which breaks the CVE
exploit code.

5.2 API Coverage
As stated above, Chrome Zero is essentially an interception
layer, which intercepts the critical JavaScript API calls and
subsequently directs them to the appropriate logic based on
the current website and protection policy. Thus, to guaran-
tee security, it is critical to ensure that malicious JavaScript
code cannot access the original API or otherwise bypass the
Chrome Zero protections.

Our investigation of Chrome Zero demonstrated that API
coverage in Chrome Zero leaves a lot to be desired. Specifi-
cally, we have identified multiple instances of APIs that are
not protected by Chrome Zero. These include:
• Delayed Extension Initialization. The Chrome Zero ex-

tension initializes after the browser finishes constructing
the Document Object Model (DOM) for the page. Conse-
quently, Chrome Zero does not protect JavaScript objects
created before the DOM is constructed.

• Missed Contexts. Chrome Zero only applies its security
policies in the context of the topmost page in each browser
tab. It does not, however, protect code in sub-contexts of
the page, including worker threads and iframes.

• Unprotected Prototype Chains. As we discuss in Sec-
tion 2.3, properties of global objects may be inherited from
their prototypes. Yet, while Chrome Zero does protect
global objects, it fails to protect their prototype chains, al-
lowing attackers to access the original JavaScript API.

Exploitation. We have exploited each of those omissions and
demonstrated complete bypass of Chrome Zero protections.
In most cases, such bypasses are fairly trivial. As an example
we show how we exploit unprotected prototype chains.

new Array()

Array

Protected
Array

Array
Prototype

prototype

prototype

constructor

Without CRZ

With CRZ

Figure 7: Object hierarchy with Chrome Zero.

Figure 7 shows the object hierarchy for Array with Chrome
Zero (solid line) and without it (dotted line). The original un-
protected Array class can be accessed using the Array con-
structor method of the prototype object. Figure 8 shows a by-

1 let secureArray = new Array(10);
2 let secureTimer = performance.now();
3
4 let insecureArray = new

secureArray.__proto__.constructor (10);
5 let insecureTimer =

performance.__proto__.now.call(
performance);

Figure 8: Bypassing Chrome Zero defenses using prototypes.

pass of Chrome Zero object protections, allowing the attacker
to create original non-proxied JavaScript objects. Lines 1
and 2 show the standard ways of creating an array or get-
ting the timer, both protected by Chrome Zero. In contrast,
Lines 4 and 5 show how to use prototypes to achieve the same
functionality, bypassing Chrome Zero.
Evaluating Chrome Zero’s CVE Protection. We also
evaluate Chrome Zero’s claimed protection against browser
exploits. We first reproduce the results of Schwarz et al. [67]
finding that Chrome Zero prevents six of the 12 exploits they
experiment with. We then extend the evaluation to CVEs
reported after the Chrome Zero publication and find that
Chrome Zero blocks four of the 17 exploits we managed
to reproduce in Chrome. We then modify the exploits that
Chrome Zero blocks to use APIs that Chrome Zero fails to
protect, allowing the attacks to run unhindered.

We further note that Chrome Zero only protects incidental
properties of the exploits rather than addressing the underly-
ing vulnerabilities. Specifically, we can easily modify many
of the blocked exploits to avoid using features that Chrome
Zero protects. For the four exploits we cannot modify to by-
pass Chrome Zero, we find that the cause is that the use of
protected typed arrays prevents Chrome from compiling Web
Assembly [75, “read the imports”]. Since the Web Assembly
compiler is not invoked, the browser remains protected.

5.3 Fixing and Re-evaluating Chrome Zero
Chrome Zero’s failure to protect all of the JavaScript API
has implications beyond security. Unprotected objects do not
affect the usability or the performance of the browser. To
evaluate the impact of the approach on usability and perfor-
mance, we fix Chrome Zero to improve its API coverage.
Specifically, we set Chrome Zero to initialize before any other
script executes and to also apply to frames. We further modify
Chrome Zero to apply its interception to protected objects
and all the objects in their prototype chain. We do not protect
Web Workers, hence our analysis below may still understate
the impact on usability and performance. We further remove
bypasses of array protections that apply to some hard-coded
websites. Specifically, Chrome Zero does not apply some
array protections to YouTube and to Google Maps.§

§We note that without the bypass, YouTube does not play videos. We
could not find any indication of this bypass in Schwarz et al. [67], which we

Finally, Schwarz et al. [67] argue that Chrome Zero offers
no noticeable impact on user experience while only having
a negligible performance cost. We test this claim with and
without our security fixes.
Experimental Setup. We use a ThinkPad P50 featuring an
Intel Core i7-6820HQ CPU, with 16 GiB of memory, running
Ubuntu version 18.04, with a Chrome 80 browser without any
extensions. We evaluate usability on Alexa’s Top 25 USA
websites, checking for discernible differences in behavior.
Usability Results. We first replicate the results of Schwarz
et al. [67], finding that an unmodified Chrome Zero has no
discernible impact on the usability of websites. However, after
fixing the issues identified in Section 5, we observe a signifi-
cant impact on the usability of websites. Even when setting
Chrome Zero to the Low policy, less than half of the websites
function without noticeable problems. At the a higher protec-
tion level, High, only the websites for Wikipedia and eBay
function properly.
Strict Type Checking. Investigating the difference in web-
site usability between the original and modified Chrome Zero,
we find that forcing Chrome Zero to apply its policies before
document loading results in type mismatch exceptions while
loading many JavaScript-enabled web sites.

The cause of the issue is that as part of applying its policies,
Chrome Zero replaces any JavaScript object it protects with a
proxy that masquerades as the original object. Typically this
does not cause any problems due to JavaScript’s use of “duck
typing”, since replacing objects with the corresponding proxy
objects is transparent to most JavaScript code, as long as the
original object’s properties are all supported. However, the
W3C standard [20] dictates strict type checking for many in-
ternal JavaScript functions, especially for typed array objects.
In this case, passing a proxy object instead of the original ob-
ject results in a type mismatch exception from the browser’s
JavaScript engine, causing the website’s loading to fail.

Unfortunately, fixing this issue turns out to be a non-trivial
problem, as a significant portion of the JavaScript environment
is forced to strictly type check its inputs. This goes well
beyond the member functions of TypedArrays and includes
diverse JavaScript libraries, such as, for example, the Web
Crypto and Web Socket APIs.
Estimating Performance Impact. While we do not claim to
know an efficient method of automatically solving this prob-
lem for the entire JavaScript API, we can efficiently solve
the issue for specific functions through manual intervention,
allowing us to benchmark the result. While we acknowledge
that this does not produce a secure or even correct implemen-
tation, we argue that it nonetheless allows us to measure a
lower-bound of the performance impact that any JavaScript
zero implementation must have. To that aim, we enumerate

find odd given the use of YouTube in the usability evaluation. The Chrome
Zero source code claims that the bypass is due to a bug in Chrome, however
our root cause analysis shows that YouTube fails to play videos due to the
type mismatch we discuss in this section.

all of the functions used by the JetStream 1.1 benchmark, and
manually implement fixes for functions that perform strict
type checking. We note that only the set and subarray meth-
ods for typed arrays need to be fixed, while all other parts of
the JavaScript environment can remain unaltered.
Benchmarking Performance For performance benchmarks
we first try to reproduce the results of Schwarz et al. [67]. We
use the JetStream 1.1 benchmark to facilitate comparison with
Schwarz et al. [67]. We find a slight performance impact of
1.54% when using an unmodified Chrome Zero. However,
when ensuring that Chrome Zero applies its protections cor-
rectly and applying the minimum level of fixes for strict type
checking we observe a performance impact of 26% in the
latency benchmarks and 98% in the throughput benchmarks.

5.4 Bypassing Non-Deterministic Arrays
With the exception of speculative execution attacks [9, 13,
41, 48], most microarchitectural side-channel attacks retrieve
information about memory access patterns performed by the
victim. For a language such as JavaScript with no notion of
pointers or addresses, most attacks exploit the contiguous
nature and predictable memory layout of arrays to reveal
information about the least significant 12 or 21 bits of the
addresses accesses by the victim [26, 30, 57, 66].

To prevent this leakage, Chrome Zero’s second-highest pro-
tection level introduces array non-determinism, performing a
spurious access to a random array index whenever the script
accesses an array element. Chrome Zero further deploys the
buffer ASLR policy, which shifts the entire buffer by a ran-
dom offset, thereby preventing the attacker from obtaining
page-aligned buffers. The main idea is to use the random
offset to deny the attacker from finding the array elements
located on page boundaries. To protect the offset from being
discovered, Chrome Zero attempts to use the additional ac-
cesses to random elements in order to pre-load all the array’s
memory pages into the cache, thus preventing the attacker
from discovering the array elements which have an increased
accesses time due to page faults.

We now show how we can reliably recover the array ele-
ments corresponding to page boundaries, despite Chrome
Zero’s use of buffer ASLR, non-deterministic arrays, and
fuzzy timers.
Array Implementation in Chrome. Unlike their C coun-
terparts, JavaScript arrays are quite flexible and can be ex-
tended [5], shrunk [4] and even have their type changed [52]
at run-time. While the W3C standards require browsers to
support the extension and shrink APIs, the implementation of
these capabilities is left entirely to the browser vendors.

In Chrome’s V8 JavaScript engine, whenever an array is
initialized, V8 allocates the memory required for the array,
along with an additional memory to support insertion of more
elements in O(1) amortized time. However, after the addi-
tion of enough elements, memory reallocation is eventually

needed. Hence V8 allocates a new chunk of memory which is
about 1.5× larger than the old one, and frees the old one after
copying the array’s content to the new location. The formula
used by V8 to determine the size of the new memory buffer is

new_size = size+ size � 1+16, (1)

where � is a bit-wise shift-right operation.

1 let array = new Array();
2 let times = new Array();
3
4 for(let i=0; i<10000000; i++){
5 let start = performance.now();
6 array.push(0);
7 let delta = performance.now() - start;
8 times.push(delta);
9 }

Figure 9: Measuring Array.push timings

Attack Methodology. We begin by measuring the timings
of Array.push using the code presented in Figure 9. We start
with an empty array array (Line 1). We then append data to
the end of the array using the JavaScript Array.push method
(Line 6). On every such element addition we measure the time
taken to add an element (Lines 5 and 7). While most of these
additions are fast, at the point where the memory allocated for
the current size of array is exhausted, V8 performs additional
work by allocating new memory using Equation 1 and copying
the old content to the newly-allocated space.

Figure 10: Push timings with native Chrome (top), and with
Chrome Zero at High level (bottom).

Figure 10 shows the insertion times for elements, using both
a high resolution timer (top) and Chrome Zero’s fuzzy timer
(bottom). As can be seen, some array insertions are slower
than others. We verify that these additional time costs hap-
pened at a point where the buffer allocated by V8 to support
the array array was exhausted, forcing V8 to allocate a new
memory space using using Equation 1.

Observing Figure 10, the time required to handle the ele-
ment addition at the point of buffer exhaustion increases as
the size of the array grows. This is expected as more elements
need to be copied by V8 as the buffer grows. However, as the
number of elements added to the array is attacker-controlled,
we can make Array.push take an arbitrary amount of time.

We exploit this property to mount an attack against Chrome
Zero’s Buffer ASLR policy despite Chrome Zero’s attempts
at reducing the resolution of JavaScript timers. More specif-
ically, after a sufficient number of iterations of the loop in
Line 4, the time taken to handle the re-allocation of array
during the insertion of an additional element in Line 6 be-
comes visible despite Chrome Zero’s low resolution timer.
To deduce the buffer’s offset generated by Chrome Zero, we
apply Chrome Zero’s buffer ASLR policy to Equation 1 to
obtain the following equation.

new_size+offset = (size+offset)+(size+offset)� 1+16.
(2)

Observing the spikes in Figure 10, an attacker can detect when
the memory of array is exhausted. From that, to recover the
value of offset, we rearrange Equation 2 as

offset = 2×new_size−3× size−2×16, (3)

where size and new_size are the size’s of array before and
after resizing. Finally, to detect resizing events, an attacker
can observe spikes in Figure 10. Thus, Chrome Zero’s buffer
ASLR policy can be defeated using two sequential resizing
events and applying Equation 3 to solve for offset.

5.5 Attacking Chrome Zero
We now present the classification results of the attacks de-
scribed in Section 3 across different Chrome Zero policies,
starting with the closed-world scenario. Table 6 summarizes
the accuracy of our technique, using the Intel i5-3470 setup
outlines in Section 3.1.
Cache Occupancy and Sweep Counting. As we can see,
for the basic cache occupancy attack, Chrome Zero policies
have varying impact on the attack accuracy. Low has some
impact, but the accuracy is still high. Medium almost com-
pletely blocks the attack, with the accuracy being slightly
more than the base rate. Surprisingly, High is less effective
than the two lower policy levels, possibly because of its sim-
pler code design, resulting only in a slight decrease in the
accuracy compared to no protection at all. For the sweep
counting attack, we see that the accuracy is lower than that
of the basic cache occupancy channel. However, the Medium
policy no longer breaks the attack. Furthermore, while lower
than that of the cache occupancy attack, the accuracy is still
significantly higher than the base rate. Finally, because these
attacks require Worker threads, which are blocked in Paranoid,
they both fail in this policy.

Temporal Top-1 Accuracy (%) Top-5 Accuracy (%)

Attack Technique Resolution None Low Medium High Paranoid None Low Medium High Paranoid

Cache Occupancy 2.9 ms 87.5 71.1 2.2 81.8 N/A 97.0 87.4 6.1 96.5 N/A
Sweep Counting 100.0 ms 45.8 24.1 32.2 60.1 N/A 74.3 50.1 59.0 88.3 N/A
DNS Racing 20.3 ms 50.8 20.9 61.1 37.2 16.2 78.5 48.9 86.0 67.7 40.1
String and Sock 1.5 ms 72.0 51.3 46.2 58.4 59.9 90.6 80.0 75.9 85.3 82.8

CSS Prime+Probe 2.8 ms (with the NoScript extension) 50.1 (with the NoScript extension) 78.6

Table 6: Closed-world accuracy (percent) with different API restriction levels (Intel i5-3470).

DNS Racing. The DNS Racing technique achieves a mod-
erate accuracy in the range 20% to 61%. As expected for a
technique that requires neither timers nor threads, the attack
also works with Paranoid policy.

String and Sock. The results with the String and Sock tend
to be better than DNS Racing. In fact, the results tend to only
be slightly inferior to those of the cache occupancy attack,
despite not requiring timers, arrays, or threads. We further
observe that because the attack uses no protected API, the
various Chrome Zero policies have only a marginal effect on
attack success.

CSS Prime+Probe. As mentioned in Section 3.4, our CSS
Prime+Probe technique does not require JavaScript and is ef-
fective even if the attacker’s website is banned from executing
any JavaScript code (e.g., due to the NoScript extension [51]).
In particular, Chrome Zero’s focus on JavaScript does not
effect our CSS Prime+Probe technique, leaving CSS Prime+
Probe completely unmitigated.

Discussion. Examining the results in Table 6, we see that
restricting browser APIs such as threads, timers, and array
access can thwart the standard Cache Occupancy and Sweep
Counting attacks, and can significantly degrade the effective-
ness of the DNS Racing attack. Nevertheless, the two remain-
ing attacks, String and Sock and CSS Prime+Probe, are not
affected by this browser-based countermeasure, since they do
not use any API which is receiving protection. While there is
some variation in accuracy between the different protection
modes for String and Sock, this is likely due to the usability
and site loading side-effects related to our fortified version of
Chrome Zero, and not due to any intrinsic protection offered
the API limiting approach. We thus argue that preventing side
channels in today’s browsers using API modifications is prac-
tically impossible. Properly preventing leakage would require
a more systematic approach which considers the sources of
leakage, and not merely the means for measuring it.

6 Attacking Hardened Browsers

Having established the feasibility of mounting cache side
channel attacks while only having limited (or no) access to
the JavaScript API, in this section we proceed to demonstrate

the effectiveness of our techniques on two privacy enhanced
browsers: Tor [71] and DeterFox [14].

6.1 Attacking the Tor Browser
The Tor Browser [71] is a highly-modified version of Firefox,
designed to offer a high level of privacy even at the cost of
usability and performance. At a high level, the Tor Browser
combines two elements to achieve a higher level of protection
compared to other browsers. First, it hides the user’s browsing
habits from network adversaries by using the Tor network as
an underlying transport layer. Second, it provides a highly
restrictive browser configuration, designed to limit or disable
convenience features that may have a security impact. In the
context of side channel attacks, the Tor Browser limits the
resolution of the timer API to only 100 milliseconds.

In this section we evaluate our attack techniques from
within the Tor Browser and demonstrate that they are pos-
sible even within this restricted environment. We note that
Shusterman et al. [69] have already demonstrated the Sweep
Counting attack in the Tor Browser. We extends that result,
demonstrating that making the environment more restrictive
by disabling JavaScript feature does not guarantee protection.
Negative Result: DNS Racing and CSS Prime+Probe. We
begin with a negative result, that the CSS Prime+Probe attack
we designed is not effective in the Tor Browser. The cause is
that for security reasons, the Tor Browser does not directly
resolve DNS requests. Instead, it asks a Tor exit relay to
resolve the name on its behalf. This extra redirection step
adds a very large delay to DNS requests, on the order of
hundreds of milliseconds, as well as a high degree of jitter,
well beyond what the attack can handle. This issue also affects
the DNS Racing attack, making it inapplicable.
Adapting String and Sock to Tor. The String and Sock
technique described in Section 3.3 uses a high bandwidth
WebSockets connection to offload timing measurements to a
remote server. Unfortunately, due to the high round-trip delay
of a Tor connection, the bandwidth available to a WebSockets
connection over the Tor transport is significantly lower than
a connection made over a regular TCP transport. Effectively
the connection operates in a stop-and-wait mode, buffering
outgoing packets as long as not all previously transmitted

packets are acknowledged. This buffering removes the timing
information that the attack needs.

To avoid buffering, we reduce the communication of our
String and Sock attack by sending a probe packet only once
every n sweeps over the cache, instead of after every sweep.
We experimentally find that n = 72 provides the best accuracy.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250 300

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Probe latency (ms)

Figure 11: String and Sock Probe latency distribution on Tor
Browser using an Intel i5-3470 target (6MB LLC).

Observing the Distribution of Probe Times. Figure 11
shows the probe time distribution using the Intel i5-3470
target. As the figure shows, there are three main elements to
this distribution. First, we note a large subset of the probes
have a fixed latency of around 120 ms. These are buffered by
Tor’s network layer, as described above, and sent immediately
after all previously sent packets are acknowledged. Thus,
these packets do not measure contention of the cache, but
instead measure the round-trip delay of the Tor connection.
Next, a large number of probes have a near-zero latency. These
are packets which are sent together with other packets, and
similarly do not encode any cache information. The final
subset of the probes has a more diverse set of values, with an
estimated mean of between 150 and 250 milliseconds. These
probes encode cache contention information.
Website Fingerprinting. To demonstrate that these probes
indeed contain cache information, we collect a dataset of
10,000 traces of Alexa Top 100 websites on the i5-3470 tar-
get running Tor Browser, using our adapted String and Sock
method described above. Using this data, we can correctly
fingerprint websites, obtaining a Top-1 accuracy of 20% and
a Top-5 accuracy of 49%. Well above base rates of 1% and
5%, respectively. This demonstrates that completely eliminat-
ing access to timer and array APIs in the Tor Browser does
prevent cache attacks.

6.2 Attacking DeterFox
DeterFox is a Firefox fork aiming to provably prevent timing
attacks from within browser executed code [14]. Its authors
argue that when using DeterFox, “an observer in a JavaScript
reference frame will always obtain the same fixed timing in-
formation, so that timing attacks are prevented”. To achieve
this, DeterFox splits its execution context into multiple de-
terministic reference frames, and uses a priority-based event
queue for communication between these reference.

However, we note that our CSS Prime+Probe technique
does not require any JavaScript, with the colluding DNS
server providing time measurement remotely. Thus, our tech-
niques effectively sidestep all of the side channel protections
offered by DeterFox. To demonstrate the effectiveness of our
attacks on DeterFox, we collect one more dataset of 10,000
traces of Alexa Top 100 websites, using the CSS Prime+Probe
method while using DeterFox. As expected, DeterFox’s prov-
ably secure deterministic timing countermeasure did not pre-
vent our attack, giving us a Top-1 accuracy of 66% and a
Top-5 accuracy of 88%.

7 Conclusion

This paper shows that defending against JavaScript-based
side-channel attacks is more difficult than previously consid-
ered. We show that advanced variants of the cache contention
attack allow Prime+Probe attacks to be mounted through the
browser in extremely constrained situations. Cache attacks
cannot be prevented by reduced timer resolution, by the abo-
lition of timers, threads, or arrays, or even by completely dis-
abling scripting support. This implies that any secret-bearing
process which shares cache resources with a browser connect-
ing to untrusted websites is potentially at risk of exposure.

We also show that the reduced requirements of our attack
make it agnostic across a variety of microarchitectures with
no modifications. This allows us to present the first end-to-end
side-channel attack which targets Apple’s new M1 processors.

So, how can security-conscious users access the web? One
complicating factor to this concept is the fact that the web
browser makes use of additional shared resources beyond
the cache, such as the operating system’s DNS resolver, the
GPU and the network interface. Cache partitioning seems a
promising approach, either using spatial isolation based on
cache coloring [40], or by OS-based temporal isolation [23].

Acknowledgements

This work was supported the Air Force Office of Scientific Re-
search (AFOSR) under award number FA9550-20-1-0425; an
ARC Discovery Early Career Researcher Award (project num-
ber DE200101577); an ARC Discovery Project (project num-
ber DP210102670); the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory (AFRL)
under contracts FA8750-19-C-0531 and HR001120C0087;
Israel Science Foundation grants 702/16 and 703/16; the Na-
tional Science Foundation under grant CNS-1954712; the
Research Center for Cyber Security at Tel-Aviv University
established by the State of Israel, the Prime Minister’s Office
and Tel-Aviv University; and gifts from Intel and AMD.

The authors thank Jamil Shusterman for his assistance in
bringing up the measurement setup.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[2] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism
implies cheap security. In FDTC. IEEE Computer Society, 2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, pages 225–242, 2007.

[4] Array.prototype.pop. Array.prototype.pop(). https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/pop, 2020.

[5] Array.prototype.push. Array.prototype.push(). https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/push, 2020.

[6] Jo M. Booth. Not so incognito: Exploiting resource-based side channels
in JavaScript engines. Bachelor thesis, Harvard, April 2015.

[7] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In WOOT, 2017.

[8] Samira Briongos, Pedro Malagón, José Manuel Moya, and Thomas
Eisenbarth. Reload+Refresh: abusing cache replacement policies to
perform stealthy cache attacks. In USENIX Security, pages 1967–1984,
2020.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel SGX kingdom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018.

[10] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida García, and Nicola Tuveri. Port contention for fun and profit.
In IEEE SP, pages 870–887, 2019.

[11] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Al-
varez Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA
key generation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):
213–242, 2019.

[12] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-
anonymizing programmers via code stylometry. In USENIX Sec, pages
255–270, 2015.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In USENIX Security, pages 249–266, 2019.

[14] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. Deterministic
browser. In CCS, pages 163–178, 2017.

[15] Alex Christensen. Reduce resolution of performance.now.
https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now, 2015.

[16] Chromium Project. window.performance.now does not support sub-
millisecond precision on Windows. https://bugs.chromium.org/
p/chromium/issues/detail?id=158234#c110, 2016.

[17] David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. The last
mile: An empirical study of timing channels on seL4. In CCS, pages
570–581, 2014.

[18] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote:
Efficiently recovering long-term secrets of SGX EPID via cache attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):171–191, 2018.

[19] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. TACO, 8(4):35:1–35:21, 2012.

[20] ECMA International. ECMAScript 2016 language specifica-
tion. https://www.ecma-international.org/ecma-262/7.0/
index.html, 2016.

[21] I. Fette and A. Melnikov. The WebSocket protocol. RFC 6455, IETF,
December 2011.

[22] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptographic Engineering, 8(1):1–27, 2018.

[23] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protec-
tion: The missing OS abstraction. In EuroSys, pages 1:1–1:17, 2019.

[24] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In ACNS, pages
83–102, 2018.

[25] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval Yarom, and Yuan-
jing Zhao. Cache vs. key-dependency: Side channeling an implementa-
tion of Pilsung. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):
231–255, 2020.

[26] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[27] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security, pages 955–972, 2018.

[28] Daniel Gruss, David Bidner, and Stefan Mangard. Practical memory
deduplication attacks in sandboxed JavaScript. In ESORICS, pages
108–122, 2015.

[29] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, pages 897–912, 2015.

[30] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in JavaScript. In DIMVA,
pages 300–321, 2016.

[31] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A fast and stealthy cache attack. In DIMVA, pages 279–
299, 2016.

[32] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games –
bringing access-based cache attacks on AES to practice. In IEEE SP,
pages 490–505, 2011.

[33] Berk Gülmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. In AsiaCCS, pages 214–227, 2019.

[34] Andrew Hintz. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies, 2002.

[35] Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE
SP, pages 8–20, 1991.

[36] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing
side channel attacks against kernel space ASLR. In IEEE SP, pages
191–205, 2013.

[37] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on the
cloud. In CHES, pages 368–388, 2016.

[38] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Green-
stadt. A critical evaluation of website fingerprinting attacks. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, CCS, pages 263–274,
2014.

https://www.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://www.ecma-international.org/ecma-262/7.0/index.html
https://www.ecma-international.org/ecma-262/7.0/index.html

[39] Hyungsub Kim, Sangho Lee, and Jong Kim. Inferring browser activity
and status through remote monitoring of storage usage. In ACSAC,
2016.

[40] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-
MEM: system-level protection against cache-based side channel attacks
in the cloud. In USENIX Security Symposium, pages 189–204. USENIX
Association, 2012.

[41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE SP, pages 1–19, 2019.

[42] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncer-
tain times. In USENIX Sec, pages 463–480, 2016.

[43] Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable and efficient
run-time monitoring of JavaScript applications using virtual machine
layering. In ECOOP 2014, pages 541–566, 2014.

[44] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In USENIX Security, pages 557–574,
2017.

[45] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-controlled
cache predictability for real-time systems. In RTAS, pages 213–224,
1997.

[46] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache attacks on mobile devices.
In USENIX Security, pages 549–564, 2016.

[47] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing attacks
in sandboxed JavaScript. In ESORICS (2), pages 191–209, 2017.

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security, pages 973–990, 2018.

[49] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015.

[50] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Carlos V. Rozas,
Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, pages 406–418,
2016.

[51] Giorgio Maone. Noscript. https://noscript.net.

[52] Bynens Mathias. Elements kinds in V8. https://v8.dev/blog/
elements-kinds, 2017.

[53] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub
Szefer, and Stefan Katzenbeisser. Magneticspy: Exploiting magne-
tometer in mobile devices for website and application fingerprinting.
In WPES, pages 135–149, 2019.

[54] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: cross-cores cache covert channel. In DIMVA, pages
46–64, 2015.

[55] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethen-
court, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song. On the
feasibility of internet-scale author identification. In IEEE SP, pages
300–314, 2012.

[56] Rom Ogen, Kfir Zvi, Omer Shwartz, and Yossi Oren. Sensorless,
permissionless information exfiltration with Wi-Fi micro-jamming.
In WOOT, 2018.

[57] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, pages 1406–1418, 2015.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.

[59] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In Yan Chen and Jaideep Vaidya, editors, WPES, pages 103–114, 2011.

[60] Colin Percival. Cache missing for fun and profit. In BSDCan 2005,
2005. URL http://css.csail.mit.edu/6.858/2014/readings/
ht-cache.pdf.

[61] Moinuddin K. Qureshi. CEASER: mitigating conflict-based cache
attacks via encrypted-address and remapping. In MICRO, pages 775–
787, 2018.

[62] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel S. Emer. Set-dueling-controlled adaptive insertion for
high-performance caching. IEEE Micro, 28(1):91–98, 2008.

[63] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem,
and Wouter Joosen. Automated website fingerprinting through deep
learning. In NDSS, 2018.

[64] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In CCS, pages 199–212, 2009.

[65] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 lives of Bleichenbacher’s CAT: new cache
attacks on TLS implementations. In IEEE SP, pages 435–452, 2019.

[66] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in JavaScript. In Financial Cryptography and Data
Security, pages 247–267, 2017.

[67] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero:
Real JavaScript and zero side-channel attacks. In NDSS, 2018.

[68] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting
cache-based side-channel in multi-tenant cloud using dynamic page
coloring. In DSN Workshops, pages 194–199. IEEE Computer Society,
2011.

[69] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website finger-
printing through the cache occupancy channel. In USENIX Security,
pages 639–656, 2019.

[70] Paul Stone. Pixel perfect timing attacks with HTML5.
https://www.contextis.com/media/downloads/Pixel_
Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf, 2013.

[71] The Tor Project, Inc. The Tor Browser. https://www.torproject.
org/projects/torbrowser.html.en.

[72] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock
is still ticking: Timing attacks in the modern web. In ACSAC, pages
1382–1393, 2015.

[73] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in Xen. In CCSW, pages 41–46, 2011.

[74] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event
loops in Chrome. In USENIX Sec, pages 849–864, 2017.

[75] W3C. Webassembly JavaScript interface. https://webassembly.
github.io/spec/js-api/index.html, 2020.

[76] Daimeng Wang, Zhiyun Qian, Nael B. Abu-Ghazaleh, and Srikanth V.
Krishnamurthy. PAPP: prefetcher-aware prime and probe side-channel
attack. In DAC, page 62, 2019.

[77] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ISCA, pages 494–505,
2007.

[78] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting cache
attacks via cache set randomization. In USENIX Security, pages 675–
692, 2019.

[79] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In USENIX Security, 2020.

https://noscript.net
https://v8.dev/blog/elements-kinds
https://v8.dev/blog/elements-kinds
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://webassembly.github.io/spec/js-api/index.html
https://webassembly.github.io/spec/js-api/index.html

[80] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
719–732, 2014.

[81] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser.
Mapping the Intel last-level cache. IACR Cryptology ePrint Archive
2015/905, 2015.

[82] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. In CHES, pages 346–
367, 2016.

[83] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Sim-
ple Linux utility for resource management. In Dror Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 44–60. Springer Berlin Heidelberg,
2003.

[84] Boris Zbarsky. Clamp the resolution of performance.now() calls to
5us. https://hg.mozilla.org/integration/mozilla-inbound/
rev/48ae8b5e62ab, 2015.

[85] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented
Flush-Reload side channels on ARM and their implications for android
devices. In CCS, pages 858–870, 2016.

[86] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
pages 305–316, 2012.

A Machine Learning Model

Our machine learning classifier receives as input a side-
channel trace, and outputs a probability distribution over the
100 potential websites. Before the trace is fed to the model, the
input vector was normalized between 0 and 1. We then used a
deep learning network to perform our analysis, meaning that
feature extraction was done inside the neural network and did
not require additional preprocessing steps. We used the deep
learning model whose hyperparameters are presented in Ta-
ble 7. The model begins with a convolution layer which learns
the unique patterns of each label, followed by a Max-Pooling
layer which reduces the dimensionality of the output of the
previous layer. The output of the Max-Pooling layer is then
reshaped to a one dimension vector and fed to a Long-Short
Term Layer, which extracts temporal features over its input.
Finally, the output layer of the network is a fully-connected
layer with a softmax activation function.

The model was evaluated on a test set whose traces are
not part of the training set. The metric we use is accuracy –
the probability of a trace to be classified correctly. To avoid

Table 7: Hyperparameters for the deep learning classifier

Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Batch size 128
Training epoch Early stop by validation accuracy
Input units vector size of the 30 seconds input
Convolution layers 2
Convolution activation relu
Convolution Kernels 256
Convolution Kernel size 16,8
Pool size 4
LSTM activation tanh
LSTM units 32
Dropout 0.7

overfitting in model estimation, we employ 10 fold cross
validation, a method which divides the dataset into 10 parts,
with each part becoming the test set while the others are used
as the train set. Each training set is fed to a different model,
and the evaluation is made on the related test set. After each
experiment, we noted the average cross-fold accuracy, as well
as the standard deviation between folds.

The output of our classifier is not only the label of the most
probable class, but rather a complete probability distribution
over all possible labels. This flexibility allows us to capture
the case where the attacker has some prior knowledge of the
victim and some expectation of the websites they may be
browsing. To do so, we look not only at the top-rated label,
but also at a few of the next most probable predictions. This
methodology was previously used in similar works where
low-accuracy classifiers were evaluated [12, 55]. We thus
calculated not only the raw accuracy, but also the probability
that the right prediction is among the top 5 websites output
as the most probable by the classifier. The base accuracy rate
of this prediction method, as obtained by a random classifier
with no knowledge of the traces, is 5%.

The machine learning model was implemented in python
version 3.6, using TensorFlow [1] library version 1.4. The
model training algorithms were run on a cluster made out of
Nvidia GTX1080 and GTX2080 graphics processing units
(GPUs), managed by Slurm workload manager [83] version
19.05.4.

https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

	Introduction
	Our Contribution
	Responsible Disclosure

	Background
	Microarchitectural Attacks
	Defenses
	The JavaScript Types and Inheritance
	Virtual Machine Layering

	Overcoming Browser-based Defenses
	Methodology and Experimental Setup
	DNS Racing
	String and Sock
	CSS Prime+Probe
	Empirical Results

	Attack Scenarios
	Closed World Evaluation on Newer Intel Architectures
	Open-World Evaluation
	Robustness to Jitter

	Analysis of an API-based Defense
	Chrome Zero Overview
	API Coverage
	Fixing and Re-evaluating Chrome Zero
	Bypassing Non-Deterministic Arrays
	Attacking Chrome Zero

	Attacking Hardened Browsers
	Attacking the Tor Browser
	Attacking DeterFox

	Conclusion
	Machine Learning Model

