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BOUNDING HEIGHTS UNIFORMLY IN FAMILIES OF HYPERBOLIC
VARIETIES

KENNETH ASCHER AND ARIYAN JAVANPEYKAR

ABSTRACT. We show that, assuming Vojta’s height conjecture, the height of a rational
point on an algebraically hyperbolic variety can be bounded “uniformly” in families. This
generalizes a result of Su-Ion Th for curves of genus at least two to higher-dimensional
varieties. As an application, we show that, assuming Vojta’s height conjecture, the height
of a rational point on a curve of general type is uniformly bounded. Finally, we prove a
similar result for smooth hyperbolic surfaces with ¢? > cs.

1. INTRODUCTION

The celebrated work of Caporaso, Harris, and Mazur [CHM97], sparked an interest in
discovering implications of Lang’s conjecture for rational points on varieties of general type.
In fact, they show that Lang’s conjecture implies a uniform bound, based solely on k£ and
the genus, of the number of k-points on a curve of general type defined over a number field &
(cf. [AV96, Has96]). As Vojta’s height conjecture (Conjecture 3.3) implies the conjecture of
Lang, the aforementioned results show that Vojta’s height conjecture also implies a uniform
version of Lang’s conjecture. In particular, it seems reasonable to suspect that Vojta’s height
conjecture also has consequences for “uniform” height bounds.

However, one cannot expect uniform height bounds in the naive sense. Indeed, for all
P € P*(Q) and all d > 4, there is a smooth curve X of degree d in Pg with P € X(Q).
Thus, for all d > 4, there is no real number ¢ > 0 depending only on d such that for all
smooth degree d hypersurfaces X C P and all P € X(Q) the inequality h(P) < ¢ holds.
In particular, there is no real number ¢ > 0 such that for all smooth quartic hypersurfaces
X C P§ and all P € X(Q) the inequality h(P) < ¢ holds.

Thus, it is at first sight not clear what is meant by “uniform” height bounds. However,
Su-Ton Th has shown [Th02] that Vojta’s height conjecture implies that the height of a rational
point on a smooth proper curve of general type is bounded uniformly in families with the
bound depending linearly on the height of the curve. Ih later showed in [ITh06] that the same
is true for integral points on elliptic curves.

The goal of this paper is to generalize Ih’s results in [[h02] by investigating consequences of
Vojta’s height conjecture for families of (algebraically) hyperbolic varieties of general type.
In this paper, a proper scheme X over a field k is called (algebraically) hyperbolic if all
integral subvarieties of X are of general type; see Definition 2.2.

In the statement of our main result we consider morphisms of algebraic stacks f: X — Y
which are representable by schemes, i.e., for all schemes S and all morphisms S — Y, the
algebraic stack X Xy S is (representable by) a scheme. Furthermore, a substack of an
algebraic stack is constructible if it is a finite union of locally closed substacks. Moreover,
we will use the relative discriminant di(7p) of a point on an algebraic stack over a number

field k; we refer the reader to Section 3.4.2 for a precise definition of the relative discriminant
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dip(Tp). Also, to state our theorem, we will use heights on stacks as discussed in Section
3.4.3.

Theorem 1.1. Let k be a number field and let f: X — 'Y be a proper surjective morphism of
proper Deligne-Mumford stacks over k which is representable by schemes. Let h be a height
function on X and let hy be a height function on Y associated to an ample divisor with
hy > 1. Assume Vojta’s height conjecture (Conjecture 3.3). Let U C'Y be a constructible
substack such that, for allt € U, the variety X; is smooth and hyperbolic. Then there is a
real number ¢ > 0 depending only on k, Y, X, and f such that, for all P in X (k) with f(P)
in U, the following inequality holds

h(P) < ¢« (hy (f(P)) + di(Tp)).

Note that Th proves Theorem 1.1 under the additional assumptions that the fibres are
one-dimensional, and Y is a scheme; see [Ih02, Theorem 1.0.1]. If one assumes that Y is a
scheme, then the discriminant term di(7p) can be omitted (as it equals zero).

Ih’s theorem for families of curves is slightly more general than Theorem 1.1, as he treats
points of bounded degree, and not merely rational points. To keep the proofs slightly more
transparent, we have restricted our attention to rational points. However, the transition
from rational points to points of bounded degree can be made easily. Furthermore, the
generalization of Ih’s theoem to stacks is unavoidable if one desires applications to all curves
simultaneously; see Theorem 1.2 below, and the discussion following it.

One cannot expect a stronger uniformity type statement for heights on (not necessarily
hyperbolic) varieties of general type. Indeed, if k is a number field and f: X — Y is a
smooth proper morphism of k-schemes whose geometric fibres are varieties of general type
and t is a point in Y such that X; contains a copy of P,lf(t), then there is no real number
¢ > 0 such that for all P € X}, the inequality h(P) < ¢ - hy(f(P)) holds.

Our proof of Theorem 1.1 uses the recent [AMV17], which shows that Vojta’s conjecture
actually implies a version of the conjecture for stacks. Moreover, to prove Theorem 1.1 we
follow the strategy of Ih. Indeed, we combine an induction argument with an application of
Vojta’s conjecture to a desingularization of X (Proposition 4.1). This line of reasoning was
also used in Ih’s work [Th02, Th06].

We argue that it is more natural to work in the stacks setting, as this allows us to apply
our results to moduli stacks of hyperbolic varieties, thus obtaining more concrete results. In
fact, as a first corollary of Theorem 1.1 we obtain the following uniformity statement for
curves.

Theorem 1.2. Assume Conjecture 3.53. Let g > 2 be an integer and let k be a number field.
There is a real number ¢ depending only on g and k satisfying the following. For all smooth
projective curves X of genus g over k, and all P in X (k), the following inequality holds

h(P) < c(g. k) - (h(X) + di(Tx))-

The discriminant term dy(7x ) can not be omitted in Theorem 1.2 (and neither in Theorem
1.1). To explain this, for an integer n > 1, define d,, := n°® + 1 and define the genus 2 curve
C, by d,y? = 2° 4+ 1. Note that the height of C,, is equal to the height of C}, as C,5=0Cig
and the height is a “geometric” invariant. Let P, := (1,n) € Q? and note that P, defines a
Q-rational point of C),. Since h(P,) tends to infinity as n gets larger, we can not omit the

discriminant term in Theorem 1.2.
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It is not clear how to deduce Theorem 1.2 from Ih’s results, as Ih’s results only apply to
families of curves parametrized by schemes.
Finally, we also obtain a uniformity statement for certain hyperbolic surfaces.

Theorem 1.3. Assume Conjecture 3.3. Fiz an even integer a and a number field k. There is
a real number ¢ depending only on a and k satisfying the following. For all smooth hyperbolic
surfaces S over k with ¢3(S) = a > c3(S) and all P in S(k), the following inequality holds

h(P) < c- (h(S) + du(T5)).

We refer the reader to Section 6 for precise definitions of the height functions appearing
in Theorems 1.2 and 1.3. We prove Theorems 1.2 and 1.3 by applying Theorem 1.1 to
the universal family of the moduli space of curves and the moduli space of surfaces of
general type, respectively. The technical difficulty in applying Theorem 1.1 is to prove the
constructibility of the locus of points corresponding to hyperbolic varieties. In the setting
of curves (Theorem 1.2) this is simple, whereas the case of surfaces (Theorem 1.3) requires
deep results of Bogomolov and Miyaoka [Bog77, Miy08].

Theorem 1.1 applies to any family of varieties of general type for which the locus of
hyperbolic varieties is constructible on the base. However, as we show in Section 6, verifying
the constructibility of the latter locus is not straightforward.

We note that a conjecture of Lang (see [Lan86]) asserts that our notion of hyperbolicity for
X is equivalent to being Brody hyperbolic, i.e., that there are no non-constant holomorphic
maps f : C — X(C). In particular, as the property of being Brody hyperbolic is open in the
analytic topology [Bro78|, Lang’s conjecture implies that the property of being hyperbolic
is open in the analytic topology. In particular, assuming Lang’s conjecture, if the locus
of smooth projective hyperbolic surfaces is constructible in the moduli stack of smooth
canonically polarized surfaces, then [SGA03, Exposé XII, Corollaire 2.3] implies that it is
(Zariski) open.
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2. HYPERBOLICITY

In this section the base field k is a field of arbitrary characteristic.

Definition 2.1. Let X be a proper Deligne-Mumford stack of dimension n over k. A divisor
D on X is big if h°(X,Ox(mD)) > ¢-m™ for some ¢ >0 and m > 1.

Recall that a projective geometrically irreducible variety X over k is of general type if for
a desingularization X — X,¢q of the reduced scheme X4, the sheaf wg is big. Note that, if
X is of general type and X — X,.q is any desingularization, then wg is big.

Definition 2.2. A projective scheme X over k is hyperbolic (over k) if for all its closed

subschemes Z, any irreducible component of Zz. is of general type.
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Note that, if X is a hyperbolic projective scheme over k, then X and all of its closed
subvarieties are of general type. Moreover, if L/k is a field extension, then X is hyperbolic
over k if and only if X, is hyperbolic over L.

For example, a smooth proper geometrically connected curve X over k is hyperbolic if
and only if the genus of X is at least two. If X is a smooth projective scheme over C
such that the associated complex manifold X" admits an immersive period map (i.e., there
exists a polarized variation of Z-Hodge structures over X*" whose differential is injective at
all points), then X is hyperbolic. This follows from the proof of [JL17, Lemma 6.3] which
uses Zuo’s theorem [Zuo00] (cf. [Bru]). Finally, let X be a smooth projective scheme over C
and suppose that there exists a smooth proper morphism Y — X whose fibres have ample
canonical bundle such that, for all a in X(C), the set of b in X (C) with X, = X} is finite.
Then X is hyperbolic. This is a consequence of Viehweg’s conjecture for “compact” base
varieties [Pat12].

2.1. Kodaira’s criterion for bigness. We assume in this section that k is of characteristic
zero. Recall that for a big divisor D on a projective variety, there exists a positive integer n
such that nD ~g A+ E, where A is ample and E is effective [KM98, Lemma 2.60]. We state
a generalization of this statement (see Lemma 2.4) which is presumably known; we include
a proof for lack of reference.

Lemma 2.3. Let m: X — Y be a quasi-finite morphism of proper Deligne-Mumford stacks
over k. Let D be a divisor on'Y . The divisor D is big on Y if and only if 7*D is big on X.

Proof. This follows from the definition of bigness, and the fact that w,7* D is linearly equiv-
alent to mD, where m > 1 is some integer. OJ

If D is a divisor on a finite type separated Deligne-Mumford stack X over k with coarse
space X — X° then D is ample (resp. effective) on X if there exists a positive integer n
such that nD is the pull-back of an ample (resp. effective) divisor on X°¢. Note that, if X
has an ample divisor, then X¢ is a quasi-projective scheme over k.

Lemma 2.4. Let X be a proper Deligne-Mumford stack over k with projective coarse mod-
uli space X¢. If D is a big divisor on X, then there exists a positive integer n such that
nD ~qg A+E, where A is ample and £ is effective.

Proof. Let m: X — X¢ denote the morphism from X to its coarse moduli space X° It
follows from [Ols02, Proposition 6.1] that there exists a positive integer m such that mD is
Q-linearly equivalent to the pullback of a divisor Dy on X°. As mD is a big divisor on X,
the divisor Dy is big on X¢ (Lemma 2.3). By Kodaira’s criterion for bigness, there exists a
positive integer mso such that my Dy is Q-linearly equivalent to A + E, where A is an ample
divisor on X¢ and F is an effective divisor on X° Write n = m - ms. We now see that
nD =m-mg- D ~g mmaDy ~qg 7™ (A + E). Since A := 7*A is ample, and £ = 7*F is
effective, this concludes the proof of the lemma. O

3. VOJTA’S CONJECTURE FOR VARIETIES AND STACKS

In this section, we let k be a number field. We begin by recalling Vojta’s conjecture for
heights of points on schemes, using [AMV17] and [Voj98]. Our statement of the conjecture
is perhaps not the most standard, but is more natural for our setting as we will need the

extension of the conjecture to algebraic stacks.
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3.1. Discriminants of fields. Before defining the conjecture, we recall discriminants of
fields following Section 2 of [AMV17]. Given a finite extension F/k, define the relative
logarithmic discriminant to be:

E R log |Disc(Og)| — log |Disc(Oy)| = ﬁ deg(Qo,/0, ), (3.1)

where the second equality follows from the equality of ideals (Disc(Oy)) = Ny /g det Qo, /z.

dp(E) =

3.2. Heights. In this paper we will use logarithmic (Weil) heights. For more details, we
refer the reader to [BG06, HS00].

Definition 3.1. Let d be the degree of k over Q and let My, be a complete set of normalized
absolute values on k. The (logarithmic) height of a point P = [xg:---:x,] € P"(k) is
defined to be:

1
hi(P) = = > log(max {[[a]].})-
vEMj, -

If X is a projective variety with a projective embedding ¢ : X — P", we can define a
height function hy: X — R given by

he(P) = h(¢(P)).
More generally, given a very ample divisor D on X, we define hp(P) = h(¢pp(P)), where ¢p
is the natural embedding of X in P" given by D. (We stress that hp is well-defined, up to
a bounded function.)

Proposition 3.2. The following statements hold.
(1) If f: X =Y is a morphism, then hx pp = hy,p + O(1).
(2) If D and E are both divisors, then hpy g = hp + hg + O(1).
(8) If D is effective, hp > O(1) for all points not in the base locus of D.

Proof. See [HS00, Theorems B.3.2.b, B.3.2.c, and B.3.2.e]. O

3.3. Vojta’s conjecture. We now state Vojta’s conjecture for schemes. We stress that this
conjecture (Conjecture 3.3) implies a version for stacks; see Proposition 3.4.

Conjecture 3.3 (Vojta). [Voj98, Conjecture 2.3] Let X be a smooth projective scheme over
k. Let H be a big line bundle on X, let r be a positive integer, and fix 6 > 0. Then there
exists a proper Zariski closed subset Z C X such that, for all closed points x € X with x € Z
and [k(x) : k] <r,

hiy(x) —ohy(x) < di(k(x)) + O(1).

Note that the discriminant term dy.(k(z)) equals zero when z is a k-rational point of X.

3.4. Vojta’s conjecture for stacks. Before stating the version of Vojta’s conjecture for
Deligne-Mumford stacks, we introduce some preliminaries, following Section 3 of [AMV17].
If S is a finite set of finite places of k, we let O g be the ring of S-integers in £.

3.4.1. The stacky discriminant. Let X — Spec(Oy.s) be a finite type separated Deligne-
Mumford stack with generic fibre X — Speck. Given a point z € X (k) = X (k), we define
T. — X to be the normalization of the closure of x in X'. Note that 7, is a normal proper
Deligne-Mumford stack over Oy, s whose coarse moduli scheme is Spec((’)k(x)ﬁk(z)). Here Sy ()
is the set of finite places of k(x) lying over S.
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3.4.2. Relative discriminants for stacks. Let E be a finite field extension of k, and let 7 be
a normal separated Deligne-Mumford stack over O whose coarse moduli scheme is Spec Og.
We define the relative discriminant of 7 over O, as follows:

di.(T) ﬁ deg(Q7/spec(0y))- (3.2)

- deg

Note that di(T) is a well-defined real number, and that exp(d(7)) is a rational number.

3.4.3. Heights on stacks. Let X be a finite type Deligne-Mumford stack over k with finite
inertia whose coarse space X¢ is a quasi-projective scheme over k. Fix a finite set of finite
places S of k and a finite type separated Deligne-Mumford stack X — Spec(Oy s) such that
X = X. Let H be a divisor on X. Let n > 1 be an integer such that nH is the pull-back of
a divisor H¢ on X°¢. Fix a height function hy. for H¢ on X¢. We define the height function
hy on X (k) with respect to H to be

1
hy(z) = Eth(ﬂ'([L’)).
Note that hy is a well-defined function on X (k) which is independent of the choice of n and
He.

We now give another way to compute the height function, under suitable assumptions on
X. By [KV04, Theorem 2.1], a finite type separated Deligne-Mumford stack over k which is
a quotient stack and has a quasi-projective coarse moduli space admits a finite flat surjective
morphism f: Y — X, where Y is a quasi-projective scheme. Fix a height function hg«g on

Y. We define the height hy(x) of x € X (k) as follows. If 2 € X'(k), then we choose y € Y (k)
to be a point over z, and we define

hi(z) == hpey(y).

It follows from the projection formula (which holds for Deligne-Mumford stacks, in particular
see the introduction of [Vis89]) that hy is a well-defined function on X (k). Moreover, if H
is ample, for all d > 1 and C € R, the set of isomorphism classes of k-points = of X such
that hy(x) < C and [k(x) : k] < d is finite. The analogous finiteness statement for k-
isomorphism classes can fail. However, the set of k-isomorphism classes of k-points x of X
such that hy(z) + di(7T:) < C and [k(z) : k] < d is finite. In particular, as hy(x) + di(T.)
has the Northcott property, the expression hy(x)+ di.(7;) can be considered as “the” height
of x [AMV17].

Proposition 3.4 (Vojta’s Conjecture for stacks). Assume Congecture 3.3 holds and fix 6 > 0.
Let S be a finite set of finite places of k. Let X be a smooth proper Deligne-Mumford stack
over Oy s whose generic fibre X = X}, is geometrically irreducible over k and has a projective
coarse space. Let H be a big line bundle on X. Then, there is a proper Zariski closed substack
Z C X such that, for all x € (X \ Z)(k) the following inequality holds

Proof. This is [AMV17, Proposition 3.2]. O



4. APPLYING THE STACKY VOJTA CONJECTURE

We prove a generalization of [Ih06, Proposition 2.5.1] to morphisms of proper Deligne-
Mumford stacks, under suitable assumptions. We stress that our reasoning follows Ih’s
arguments in loc. cit. in several parts of the proof.

Let k£ be a number field, and let f : X — ) be a proper morphism of proper integral
Deligne-Mumford stacks over B = Spec Oy g, where X is smooth with a projective coarse
moduli space. Let h be a height function on X and let hy be a height function on Y
associated to an ample divisor such that hy > 1. Let 7 be the generic point of Y, let &, be
the generic fibre of f: X — ), and let X}, be the generic fibre of X — B. Note that X} is a
smooth proper Deligne-Mumford stack over k£ with a projective coarse space.

Proposition 4.1. Assume Conjecture 3.3. Suppose that the morphism f is representable

by schemes, and that X, is smooth and of general type. Then there exists a real number
c(k,S, Y, f) and a proper Zariski closed substack Z C X such that, for all P in X(B)\ Z,
the following inequality holds:

h(P) < c(k, Y, f) - (di(Tp) + hy(f(P))).

Proof. Let A be an ample divisor on X such that the associated height ha on X satisfies
ha > 1. Note that the push-forward of A to the coarse space is ample. Recall that A},
denotes the generic fibre of X — B. Moreover, Vojta’s conjecture (Conjecture 3.3) implies
Vojta’s conjecture for stacks (Proposition 3.4). Therefore, by Vojta’s conjecture for stacks
(Proposition 3.4) applied to X}, there exists a proper Zariski closed substack Z C A} such
that, for all P € Xy (k) \ Z, the following inequality

hice, (P) = 5eha(P) < d(Tp) +0(1)

holds, where we compute all invariants with respect to the model X for &} over B. In
particular, there exists a proper closed substack Z of X' (namely, the closure of Z in X’) such
that, for all P in X'(B) not in Z, the following inequality holds

hic, (P) — %m(p) < dy(Tp) + O(1). (4.1)

Since f is representable, &, is a scheme. Moreover, since &, is smooth and of general type,
by the Kodaira criterion for bigness (Lemma 2.4), there exists an ample divisor A on X)), an
effective divisor E on X)), and a positive integer n such that

n(KXn) ~Q A + FE.

For a small enough € € Q-, we can rewrite

1 1
(Kx — €A)|, = Kx, — €Al ~q (EA + EE) —€eAl,

= (EA — eA|n) + 1E
n n

Thus, there exists an effective divisor £’ on &, and a positive integer m such that

1 1 ,
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Taking Zariski closures of these divisors in X, it follows that there exists a vertical Q-divisor
F on X and an effective divisor £ on X" such that

1
Kx—EA—FFNQ Eg

Since F is a vertical divisor on X, there is an effective divisor G on ) such that F < f*G.
Therefore, by Proposition 3.2, the inequality hr < hg+ O(1) holds, outside of Supp (f*G),
and hpg = (hgo f)+O(1). In particular, since hy is a height associated to an ample divisor,
we see that hg < O(hy) by [Lan83, Proposition 5.4]. Therefore, for all points ¢ in Y (k) and
all P € X,(B) \ Supp(f*G), the inequality

hr(P) < hpg(P)+0(1) = hg(f(P)) +O(1) < O(hy(f(P))) + O(1)

holds, outside of Supp (f*G). In particular, replacing Z by the union of Z with Supp(f*G),
it follows that

hr <O(hyo f)+ O(1) (4.2)

outside Z. Since Ky — eA + F is effective, it follows that, replacing Z by a larger proper
closed substack of X" if necessary, the inequality

hix—enyr > O(1) (4.3)

holds outside Z by Proposition 3.2 (3). B
Let di(7T) be the function that assigns to a point P in X' (k) the real number d(7p). In
particular, we obtain that

1 1
O(l) < hKX—eA—i-F < (hKX — §€hA) - §€hA + hF + 0(1)
Lenay -1 1
2 2 2

where the inequalities follow from Equation (4.3), Proposition 3.2.(2), Equation (4.2), and
Vojta’s conjecture (4.1) respectively.
We conclude that, for all ¢ in J(B) and all P in X;(B) \ Z the inequality

< (hg, — =€ha) eha +O(hyo f)+O(1) < di(T) eha + O(hy o f)+O(1),

%ehA(P) < dy(Tp) + O(hy(t)) + O(1)

holds. Therefore, there is a real number ¢ > 0 such that, for all ¢ in )(¢) and all P in X; not
in Z, the inequality

alP) < o- ((T5) +0(hy(0) ) + O
holds. In particular, replacing ¢ by a larger real number if necessary, we conclude that

ha(P) < c- (dk(ﬂ:) + hy(t)) + O(1).

As A is ample and ha > 1, we conclude that, using [Lan83, Proposition 5.4] and replacing ¢
by a larger real number if necessary, for all ¢ in )(¢) and all P in X, not in Z, the inequality

h(P) < O(ha(P)) < c- (dgk(%) +hy(f(P))) +0(1)



holds. In particular, replacing ¢ by a larger real number c(k, ), f) if necessary, we conclude
that the following inequality

hP) < c(k, Y, f) - (de(Tp) + hy(f(P)))
holds. ]

5. UNIFORMITY RESULTS
Let k be a number field. In this section we prove Theorem 1.1.

Lemma 5.1. Let f: X — Y be a proper surjective morphism of proper Deligne-Mumford
stacks over k which is representable by schemes. Let h be a height function on X and let hy
be a height function on'Y associated to an ample divisor with hy > 1. Assume Conjecture
3.3. Suppose that the generic fibre X, of f: X — Y is smooth and of general type. There
exists a proper Zariski closed substack Z C X and a real number ¢ depending only on k, X,
Y, and f, such that, for all P in X (k) \ Z, the following inequality holds

h(P) < c- (hy (f(P)) + di(Tp)).

Proof. We may and do assume that X and Y are geometrically integral over k.

Let pu: X — X be a desingularization of X; see [Teml12, Theorem 5.3.2]. Note that

f X Yisa proper surjective morphism of proper Deligne-Mumford stacks whose generic
fibre is of general type. Define X, .. C X to be the exceptional locus of p: X - X, so that
1 induces an isomorphism of stacks from X \ 7 (Xewe) to X \ Xeze. Note that X, is a
proper closed substack of X, as X is reduced.
_ Let h be the height function on X associated to h, so that, for all P in X we have
h(P) = h(P). As we are assuming Conjecture 3.3, it follows from Proposition 4.1 that there
exists a proper Zariski closed substack Z C X such that, for all P in X (k) \ Z, the following
inequality

n(P) < c- (hy (f(P)) + di(Tp))

holds, where ¢ is a real number depending only on k, Y, X, and f. (Here we use that X=X
only depends on X.)

Define Z to be the closed substack M(Z )U Xeze in X. Note that g induces an isomorphism
from X \ p(Z) to X \ Z. Therefore, we conclude that, for all P in X (k)\ Z, the inequality

B(P) = h(P) < c- (hy (f(P)) + di(Tp))
holds, where P is the unique point in X mapping to X. U

Proof of Theorem 1.1. Since U is constructible, we have that U = U}_,U; is a finite union of
locally closed substacks U; C Y. Let Y; be the closure of U; in Y, let X; = X xy Y, and
let f; : X; — Y, be the associated morphism. Note that U; is open in Y;. In particular, to
prove the theorem, replacing X by X;, Y by Y;, U by U;, and f: X — Y by f;: X; = Y, if
necessary, we may and do assume that U is open in Y.

We now argue by induction on dim X. If dim X = 0, then the statement is clear.

As we are assuming Conjecture 3.3, it follows from Lemma 5.1 that there exists a proper

Zariski closed substack Z C X and a real number ¢y > 0 depending only on k, X, Y, and f
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such that, for all P in X (k) \ Z, the inequality
h(P) < co- (hy(f(P))+ di(Tp)) (5.1)

holds.

Let Xi,..., X C Z be the irreducible components of Z. Fori € {1,...,s}, let Y; = f(X})
be the image of Y; in Y. Note that f; == f|x,: X; — Y; is a proper morphism of proper
integral Deligne-Mumford stacks which is representable by schemes. Moreover, for ¢ in the
open subscheme Y;NU of Y}, the proper variety X ; is hyperbolic, as X; ; is a closed subvariety
of the hyperbolic variety X;. Let h; be the restriction of h to X;, and let hy; be the restriction
of hy to Y.

Since X; is a proper Zariski closed substack of X, it follows that dim X; < dim X. There-
fore, by the induction hypothesis, we conclude that there is a real number ¢; > 0 depending
only on k, X;, Y;, and f; such that, for all P in X;(k), the following inequality

WP)=hi(P) < ¢ (hy(fi(P)) +di(Tp)) = i (hy (f(P)) +di(Tp)).  (5.2)
holds. Let ¢ := max(cy,...,cs). By (5.2), we conclude that, for all P in Z(k), the inequality
h(P) < - (hy(f(P))+di(Tp)) (5.3)

holds.
Combining (5.1) and (5.3), we conclude the proof of the theorem with ¢ := max(cy, ). O

Lemma 5.2. Let f: X — Y be a proper surjective morphism of proper Deligne-Mumford
stacks over Ok which is representable by schemes. If P € X (k), then di(Tp) = dp(Tspy))-

Proof. Since the normalization morphism of an integral algebraic stack is representable and
X — ) is representable, we see that the morphism 7p — Ty(py is representable. Therefore,
we see that Tp — Typ) is proper surjective and representable by schemes. Moreover, it is
birational, and it has a section generically. This implies that the morphism Tp — T p) is
a proper birational quasi-finite representable morphism. Since 7Ty(p) is normal, the lemma
follows from Zariski’s Main Theorem for stacks. O

Corollary 5.3. Let f: X — ) be a proper surjective morphism of proper Deligne-Mumford
stacks over Z which is representable by schemes. Let X = Xg and Y = YVg. Let h be a
height function on X and let hy be a height function on'Y associated to an ample divisor with
hy > 1. Assume Vojta’s height conjecture (Conjecture 3.3). Let U C'Y be a constructible
substack such that, for all t € U, the variety X; is smooth and hyperbolic. Then there is a
real number ¢ > 0 depending only on k, Y, X, and f such that, for all P in X (k) with f(P)
in U, the following inequality holds

h(P) < e (hy (f(P)) + di(Tscr)))-
Proof. Combine Theorem 1.1 and Lemma 5.2. U

6. APPLICATIONS

In this section we apply our main result (Theorem 1.1) to some explicit families of hyper-

bolic varieties, and prove Theorems 1.2 and 1.3.
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6.1. Application to curves. For g > 2 an integer, let M, be the stack over Z of smooth
proper genus g curves. Let M, be the stack of stable genus g curves. Note that M, and M,
are smooth finite type separated Deligne-Mumford stacks. Moreover, M, — Mg is an open
immersion, and M, is proper over Z with a projective coarse space [Kol90, Theorem 5.1].
These properties of M, and M, are proven in [DM69]. We fix an ample divisor H on M,

If X is a smooth projective curve of genus at least two over a number field k, we let
h: X (k) — R be the height with respect to the canonical embedding X — P;~°. Moreover,
we define the height of X to be the height of the corresponding k-rational point of M, with
respect to the fixed ample divisor H on M, (following Section 3.4.3).

If X is a smooth projective curve of genus at least two over k£ and P is a k-rational point
of X, then the pair (X, P) defines a point on the universal curve M,; over M,. We let
di(T(x,p)) denote the discriminant of this point, as defined in Section 3.4.2.

Proof of Theorem 1.2. Since U := M, is open in Y := M,, we can apply Corolary 5.3 to
the universal family of stable genus g curves f: X — Y. O

Remark 6.1. In Theorem 1.2, one can also use the (stable) Faltings height hpa(X) of X
(instead of the height h introduced above). Indeed, it follows from [Fal91, Pazl2] that the
Faltings height hpa(X) is bounded by h(X) + ¢, where ¢ is a real number depending only on
the genus of X.

6.2. Hyperbolic surfaces. Recall that, if S is a smooth projective surface, then ¢3(S) = K2
and ¢y (S) = e(.9) is the topological Euler characteristic. Moreover, by Noether’s lemma, they
are related by the following equality:

c1(8)? + 02(5)2.
12

In particular, the information of K2 and x(5) is equivalent to the data of ¢;(S) and cy(S).
Finally, we note that co(S) > 1 for any surface of general type S [Bea96, X.1 and X.4].

A smooth proper morphism f : X — Y of schemes is a canonically polarized smooth
surface over Y if, for all ¥ in Y, the scheme X, is a connected two-dimensional scheme
and wy, /k(y) 15 ample. If a and b are integers, we let M, over Z be the stack of smooth
canonically polarized surfaces S with ¢;(S5)? = a and cy(S) = b. Note that M, is a finite
type algebraic stack over Z with finite diagonal (cf. [MM64, Tan72]).

X(S> OS) =

Lemma 6.2. If S is a smooth hyperbolic surface over a field k, then S is canonically polar-
1zed.

Proof. If S is a (smooth) minimal surface of general type, then the canonical model S°
is obtained by contracting all rational curves with self intersection —2 [Liu02, Chapter 9].
Consequently, the singularities on a singular surface in M, (k) are rational double points
arising from the contraction of these —2 curves. As having a —2 rational curve would
contradict S being hyperbolic, we see that S¢ must be smooth, and thus equal to S. As the
canonical bundle on S¢ is ample, we conclude that S is canonically polarized. U

Let Mgvb C M, be the substack of hyperbolic surfaces, i.e., for a scheme S, the objects
f X — S of the full subcategory M ,(S) of M,,(S) satisfy the property that, for all s

in S, the surface X is hyperbolic (Definition 2.2). We do not know of any result on the
11



algebraicity of M, (nor the algebraicity of M, xz SpecC). However, if S is a minimal
projective surface of general type over C and ¢3(S) > ¢2(S), then Bogomolov proved [Bog77]
that S contains only a finite number of curves of bounded genus, and thus S contains only
finitely many rational and elliptic curves. In [Miy08, Theorem 1.1] Miyaoka proved a more
effective version of Bogomolov’s result, showing that in fact the canonical degree of such
curves is bounded in terms of ¢ and c,. Using these results we are able to prove the
following.

Lemma 6.3. Ifa > b, then Mf;b xz Spec C is a constructible substack of M, X7z Spec C.

Proof. Let a and b be integers such that a > b. Let N be an integer such that, for all
S in M, ;(C), the ample line bundle w?f(\é is very ample. In particular, S is embedded in

P = P(HO(S, cu?/(v:)). Let Hilb,; be the Hilbert scheme of N-canonically embedded smooth
surfaces, and note that M, ;, = [Hilb,,/PGLy,11].

Let Hy be the Hilbert scheme of (possibly singular) curves of canonical degree d in P".
Let H be the subfunctor of geometrically integral curves. Since the universal family over
H, is flat and proper, the subfunctor H is an open subscheme of Hy; see [GW10, Appen-
dix E.1.(12)].

Let Wepa C HI x Hilb,; be the incidence correspondence subscheme parametrizing
parametrizing pairs (C, S) where the curve C' is inside the surface S. (Note that W, ;4 is a
closed subscheme of HI x Hilb,.)

By Miyaoka’s theorem [Miy08, Theorem 1.1], there exist integers dj, . . ., d,, which depend
only on a and b with the following property. A surface S € M,;(C) is hyperbolic if and
only if, for all = 1,...,m, it does not contain an integral curve of degree d;.

Note that, by Chevalley’s theorem, for all d € Z, the image of the composed morphism

Wapa C Hg x Hilb, , — Hilb,, = Mgy

is constructible. Let M,; 4, be the stack-theoretic image of W, 4, in M, ;. Since a finite
union of constructible substacks is constructible, the union Uﬁl Mpa; is a constructible
substack of M.

Finally, by construction, a surface S in M,g;,(C) is hyperbolic if and only if it is not
(isomorphic to an object) in the constructible substack [J", Mg pq4,. As the complement of
a constructible substack is constructible, we conclude that M, ; xz Spec C is a constructible
substack of M, ; xz C. O

Let U, , — M, denote the universal family. We let M, ; ¢ be a compactification of M,
with a projective coarse moduli space; see [Hac12, Section 2.5] (or [Kol90, Corollary 5.6])
for an explicit construction of such a compactification. (As the stack of smooth canonically
polarized surfaces is open in the stack of canonical models, it suffices to compactify the latter,
as is achieved in loc. cit. for all a and b.) We now choose ﬂa,b to be a compactification
of M, over Z whose generic fibre ﬂa,b Xz Spec Q is isomorphic to M, and we also
choose a representable proper morphism U,; — M, extending the universal family over
M, compatibly with the universal family over M, o.

If S is a smooth projective canonically polarized hyperbolic surface over a number field k,
we let h: S(k) — R be the height with respect to the very ample divisor w?/?’,f (see [TanT72]).
Moreover, we define the height of S in M,; (k) to be the height of the corresponding
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k-rational point of M,; with respect to some fixed ample divisor H on M, (following
Section 3.4.3).

If S is a smooth projective surface and P is a k-rational point of S, then the pair (.5, P)
defines a point on the universal surface U, over M. We let dy(7(s,py) denote the discrim-
inant of this point, as defined in Section 3.4.2.

Proof of Theorem 1.3. By Lemma 6.3 and standard descent arguments (cf. [Stalb, Tag 02YJ]),
we conclude that Mz,b Xz SpecQ is a constructible substack of M,; xz SpecQ. Also, a
smooth hyperbolic surface is canonically polarized by Lemma 6.2. Therefore, the result
follows from an application of Corollary 5.3 to the universal family over Y := M,;, with
Y := M, 0, and the constructible substack U := Mg,b@ inY. O

Remark 6.4. There are many examples of surfaces of general type with ¢; > cy. Some of the
simplest examples are surfaces S with ample canonical bundle such that there exist a smooth
proper curve C' and a smooth proper morphism S — C' (see for instance [Kod67]).
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