
CacheOut: Leaking Data on Intel CPUs
via Cache Evictions

Stephan van Schaik*
University of Michigan

stephvs@umich.edu

Marina Minkin
University of Michigan

minkin@umich.edu

Andrew Kwong
University of Michigan
ankwong@umich.edu

Daniel Genkin
University of Michigan

genkin@umich.edu

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract—Recent transient-execution attacks, such as RIDL,
Fallout, and ZombieLoad, demonstrated that attackers can leak
information while it transits through microarchitectural buffers.
Named Microarchitectural Data Sampling (MDS) by Intel, these
attacks are likened to “drinking from the firehose”, as the
attacker has little control over what data is observed and from
what origin. Unable to prevent the buffers from leaking, Intel
issued countermeasures via microcode updates that overwrite the
buffers when the CPU changes security domains.

In this work we present CacheOut, a new microarchitectural
attack that is capable of bypassing Intel’s buffer overwrite
countermeasures. We observe that as data is being evicted from
the CPU’s L1 cache, it is often transferred back to the leaky CPU
buffers where it can be recovered by the attacker. CacheOut
improves over previous MDS attacks by allowing the attacker
to choose which data to leak from the CPU’s L1 cache, as
well as which part of a cache line to leak. We demonstrate
that CacheOut can leak information across multiple security
boundaries, including those between processes, virtual machines,
user and kernel space, and from SGX enclaves.

I. INTRODUCTION

In 2018 Spectre [29] and Meltdown [31] left a lasting
impact on the design of modern processors. Speculative and
out-of-order execution, which were previously considered to
be harmless and important CPU performance features, were
discovered to have severe and dangerous security implica-
tions. Since their original discovery, many transient-execution
attacks have emerged, violating numerous security domains,
such as Intel’s Software Guard Extension (SGX) [46], virtual
machine boundaries [49], AES hardware accelerators [45] and
others [3, 6, 8, 15, 25, 28, 29, 30, 34, 35].

More recently, the security community uncovered a deeper
source of leakage: internal and mostly undocumented CPU
buffers. With the advent of RIDL, Fallout and ZombieLoad [5,
43, 48], it was discovered that an attacker can use an assisting
or faulting load to sample data as it appears in the buffer,
siphoning off information as the victim accesses it. Dubbed
Microarchitectural Data Sampling (MDS) by Intel, these at-
tacks were proven capable of bypassing all previous counter-
measures against transient-execution attacks, again breaking
nearly all hardware-backed security domains.

*Work partially done while affiliated with Vrije Universiteit Amsterdam.

Luckily, MDS attacks seem limited by two factors. First,
the attacker can only leak recently accessed data and only
for as long as the data remains in small internal CPU buffers.
Secondly, even if the data is still in the buffer, the attacker has
limited control over which part of the data leaks, requiring the
combination of structure in the leaked data (e.g., a known pre-
fix or suffix) and signal processing techniques to organize the
information leaked from the victim’s address space. Tackling
these limitations, in this paper we ask the following question:

Can an attacker overcome the control and availability limi-
tations of MDS attacks? In particular, can the attacker target
specific data from the victim’s address, present in larger more
persistent structure such as the L1-D cache?

Next, to protect against MDS attacks, Intel deployed coun-
termeasures for blocking leakage from internal CPU buffers.
For older hardware, Intel augmented verw, a legacy x86
instruction, to overwrite the contents of the leaking buffers
upon security domain changes. In parallel, Intel launched the
new Whiskey Lake architecture, which is designed to be MDS-
resistant [5, 43, 48]. The intuition behind the buffer overwrite
countermeasure is that it removes any remaining sensitive data
from the buffer. However, previous works [43, Section 7]
already report observing residual leakage of 0.1 B/s despite
buffer overwriting. Thus, in this paper we ask the following
secondary question:

Are buffer overwrites sufficient to block MDS-type leakage?

A. Our Contributions

We present CacheOut, a new transient-execution attack
which is capable of alleviating many of the challenges limiting
previous MDS works. More specifically, unlike MDS attacks
that are limited to leaking in-flight data present in the 12
entries of the CPU’s Line Fill Buffer (LFB), CacheOut is able
to leak data present in the CPU’s entire L1-D cache (32 KiB).
Next, CacheOut is not limited to leaking data that is recently
accessed by the victim, but instead allows the attacker to leak
arbitrary data from the L1-D cache, while controlling what to
leak from the victim’s address space. Finally, we show that
CacheOut is applicable to nearly all hardware-backed secu-

stephvs@umich.edu
minkin@umich.edu
ankwong@umich.edu
genkin@umich.edu
yval@cs.adelaide.edu.au

rity domains, including process and kernel isolation, virtual
machine boundaries, and SGX enclaves.
A New Leakage Path. The microarchitectural vulnerability
behind CacheOut stems from an undocumented interaction be-
tween the LFB and the L1-D cache present on Intel machines.
More specifically, on modern CPUs, the LFBs are intended
to provide a non-blocking operation of the L1-D cache by
handling data retrieval from lower levels of the memory archi-
tecture when a cache miss occurs [1, 2]. Despite their intended
role of fetching data into the L1-D cache, we empirically
find that on Intel CPUs there exists an undocumented path
where data evicted from the L1-D cache occasionally ends up
inside the LFB. Moreover, we show that this path exists even
despite recent microarchitectural changes done on Whiskey
Lake machines, aimed at mitigating MDS-related issues.
Exploiting Evictions. Next, we note that Intel’s MDS
countermeasures, both in software and in hardware, do not stop
the LFB from leaking. Instead, Intel’s approach sanitizes the
contents of the MDS-affected buffers, preventing the attacker
from recovering information across security boundaries. Thus,
by first evicting data from the L1-D cache to the LFB, we
are able to subsequently use a faulting or assisting load to
retrieve the victim’s evicted data from the still leaky LFB. In
particular, our leakage path allows CacheOut to bypass Intel’s
verw countermeasures, as the transfer of evicted data from the
L1-D cache to the LFB occurs well after the context switch
and completion of the associated verw instruction.
Controlling What Cache Set To Leak. Our technique of
forcing L1 eviction also allows us to lift another restriction of
MDS attacks, namely the attacker’s lack of control over which
data to read from the victim’s address space. Specifically, the
attacker can force contention on a specific cache set, causing
eviction of the corresponding victim data from this cache set
into the LFB. This allows the attacker to focus on leaking from
a specific cache set, rather than opportunistically siphoning
information as it transits through the LFB.
Leaking Specific Bytes. A final limitation of previous MDS
works is the ability of the attacker to leak specific bytes of
interest from the victim’s address space. More specifically,
previous works like TSX Asynchronous Abort (TAA) [16] are
limited to leaking at most 8 bytes of every 64-byte cache line,
leaving the other 56 bytes out of reach. Tackling this issue,
we discovered a new feature in Intel’s LFB implementation,
which seems to have a read offset mechanism that controls the
position within the LFB from which a load instruction reads.
Surprisingly, we observe that some faulting or assisting loads
can use stale offsets from subsequent load instructions which
are executed antecedently and out-of-order, before the faulting
loads themselves. Using this mechanism, we construct TAA-
NG, a new variant of TAA [16] which is capable of leaking
arbitrary attacker-controlled byte-offsets from within the LFB.
Reading Entire Victim Pages. Combined with cache evic-
tions, TAA-NG allows us to control the 12 least-significant bits
of the address of the data we leak. By repeating this technique
across all 64 L1-D cache sets, CacheOut is able to dump entire
4 KiB pages from the victim’s address space, recovering data

as well as the positions of data pieces relative to each other.
This significantly improves over previous MDS attacks which
can only recover information as it transits through the LFB
without its corresponding location. In particular, CacheOut
can recover random-looking data (e.g., cryptographic keys)
from the victim’s address space, thereby lifting the known-
prefix/suffix requirement of previous works [43, 48].

Leakage Amount. As noted above, the presence of data leak-
age despite using the verw instruction has been previously
observed by both the RIDL [48] and the ZombieLoad [43]
teams. RIDL does not report any rates but only shows leakage
via statistical significance. ZombieLoad reports a troubling but
insignificant amount of leakage, around 0.1 B/s [43, Section 7].
In this work we show that the leakage is significantly higher,
peaking out at around 2.85 KiB/s.

Attacking Process and Virtual Machine Isolation. We show
that CacheOut has severe implications for process-to-process
and VM-to-VM isolation, as it allows an unprivileged attacker
to leak information across these boundaries, thereby breaching
their confidentiality. We demonstrate this risk by implementing
attacks on private data across processes in different security
domains. Targeting OpenSSL’s AES and RSA operations, we
successfully recover secret keys and plaintext data. Finally,
we also demonstrate CacheOut’s capability of leaking secret
weights from an artificial neural network.

Attacking the Kernel Hypervisor. We also demonstrate
highly practical attacks against the Linux kernel and virtual
machine hypervisor, without requiring elevated permissions.
By taking advantage of CacheOut’s cache line selection ca-
pabilities, we are able to completely derandomize Kernel Ad-
dress Space Layout Randomization (KASLR) and Hypervisor
ASLR in under two seconds. Furthermore, we demonstrate
extraction of stack canaries from the kernel.

Attacking Software Guard Extensions (SGX). We show
that CacheOut can attack data at rest, dumping the contents
of enclaves without requiring the victim enclave to perform
any operation, or even execute at all, after placing the secret
into memory. We emperically demonstrate this through the
recovery of images from enclaves, and the extraction of the
production EPID attestation keys. These attacks are performed
on fully updated Whiskey and Coffee Lake CPUs, which are
resistant to previous MDS attacks, including ZombieLoad,
RIDL [43, 48], and TAA [16]. With the attestation keys, we
are able to pass fake enclaves as genuine, issue fake attestation
quotes, or even allow AMD / ARM machines to masquerade
as genuine Intel hardware.

Summary of Contributions. In this paper we make the
following contributions:
• We present CacheOut, a new transient-execution attack that

can leak across arbitrary address spaces while still retaining
fine-grained control over what data to leak.

• We demonstrate the effectiveness of CacheOut in violating
process and VM isolation by recovering AES and RSA keys
and plaintexts from an OpenSSL-based victim.

2

• We demonstrate practical exploits for derandomizing ker-
nel and hypervisor ASLR, and for recovering secret stack
canaries from the Linux kernel.

• We breach SGX’s confidentiality guarantees by reading
out the contents of an SGX enclave and recovering the
machine’s attestation keys from a fully updated system.

• We demonstrate that some of the latest Intel CPUs are
still vulnerable, despite all of the most recent patches and
mitigations. In particular, to the best of our knowledge,
CacheOut is the first transient-execution attack to break
Intel’s MDS-resistant Whiskey Lake architecture.

B. Current Status and Disclosure

The first author and researchers from VU Amsterdam noti-
fied Intel about the findings contained in this paper during
October 2019. Intel acknowledged the issue and assigned
CVE-2020-0549, referring to the issue as L1 Data Eviction
Sampling (L1DES) with a CVSS score of 6.5 (medium). Intel
has also informed that L1DES has been independently re-
ported by researchers from TU Graz and KU Leuven. Finally,
dedicated microcode updates mitigating the root cause behind
CacheOut were published on June 9, 2020. We recommend
installing these on affected Intel platforms.

II. BACKGROUND

A. Caches

To bridge the performance gap between the CPU and main
memory, processors contain small buffers called caches. These
exploit locality by storing frequently and recently used data to
hide the access latency of main memory. Modern processors
typically include multiple caches. In this work we are mainly
interested in the L1-D cache, which is a small cache that stores
data that the program uses. A multi-core processor typically
has one L1-D cache in each physical core.
Cache Organization. Caches generally consist of multiple
cache sets that can host up to a certain number of cache lines
or ways. Part of the virtual or physical address of a cache
line maps that cache line to its respective cache set, where the
congruent addresses are those that map to the same cache set.
Cache Attacks. An attacker can infer secret information
from a victim in a shared physical system, such as a virtual
environment, by monitoring the victim’s cache accesses. Pre-
vious work proposed many different techniques to perform
cache attacks, the most notable among them being FLUSH+
RELOAD [12, 51] and PRIME+PROBE [24, 27, 32, 40, 41].

B. Microarchitectural Buffers

In addition to caches, modern processors contain multiple
microarchitectural buffers that are used for storing in-transit
data. In this work we are mainly interested in the Line Fill
Buffers, depicted in Figure 1, which handle data transfers be-
tween the L1-D cache, the L2 cache, and the core. One purpose
of the line fill buffers is to enable non-blocking operation mode
for the L1-D cache [1, 2] by handling the retrieval of data
from lower levels of the memory architecture when a cache
miss occurs. Specifically, when the processor serves a load

instruction, it consults both the LFBs and the L1-D cache
in parallel. If the data is available in either component, the
processor forwards the data to the load instruction. Otherwise,
the processor allocates an entry in the LFB to keep track of the
address, and issues a request for the data from the L2 cache.
When the data arrives, the processor forwards it to all pending
loads. The processor may also allocate an entry for the data
in the L1-D cache, where it is stored for future use.

L1-D Cache (32 KiB)

L2 Cache
256 KiB

Processor
Core

Fill Buffer (12 entries)

Fig. 1: Connections between the CPU core, caches, and LFB

C. Speculative and Out-of-Order Execution
Modern processors try to predict future instructions and

execute instructions as soon as the required data is available,
rather than following the strict order stipulated by the program.
Because the exact sequence of future instructions is not always
known in advance, the processor may sometimes execute
transient instructions that are not part of the nominal program
execution. This can occur, for example, when the processor
mispredicts the outcome of a branch instruction and executes
instructions following the wrong branch. When the processor
determines that a transient instruction has been executed
incorrectly, it discards all of the instruction’s results, rather
then committing them to the architectural state.

D. Speculative-Execution Attacks
Because transient instructions are not part of the nominal

program order, they may sometimes process data that is
not accessible in nominal program order. In recent years,
multiple speculative-execution attacks have demonstrated the
possibility of leaking such data [6, 8, 15, 28, 29, 30, 35].
In a typical attack, the attacker induces speculative execution
of transient instructions that access secret data and leak it
back to the attacker. Because the instructions are transient,
they cannot transmit the secret data via the architectural state
of the processor. However, execution of transient instructions
can modulate the state of microarchitectural components based
on the secret data. The attacker then probes the state of the
microarchitectural component to determine the secret data.

Most published speculative-execution attacks use a FLUSH+
RELOAD-based covert channel for sending the data. In a typi-
cal attack, the attacker maintains a probing array consisting of
256 distinct cache lines. The attacker flushes all of these cache
lines from the cache before triggering speculative execution of
the attack gadget. Transient instructions in the attack gadget
access a secret data byte, and use it to index a specific cache
line in the probing array, bringing the line into the cache. The
attacker then performs the reload step of the FLUSH+RELOAD
attack to identify which of the probing array’s cache lines is
in the cache, revealing the secret byte.

3

E. Transactional Memory
Introduced in Intel’s 4th generation cores (Haswell), the

Transactional Synchronization Extensions (TSX) lets program-
mers start and end transactions using the xbegin and xend
instructions (respectively). To guarantee that transactions be-
come either globally visible or not at all, the CPU executes
the transaction speculatively until the CPU reaches the xend
instruction, commiting the results, or when a transactional
abort occurs, discarding the results.
TSX Asynchronous Abort. TSX Asynchronous Abort
(TAA) is a transient-execution attack that allows an attacker
to sample data from the LFB. The primitive leaks this data by
reading the data from a memory address for which a clflush
instruction is in flight while executing the transaction. This
ultimately causes a cache line conflict which results in a
transactional abort. However, as the code within the transaction
runs speculatively, it is possible for an attacker to sample data
from the LFB and leak it through a FLUSH+RELOAD side
channel. See Appendix A for a TAA code example.
TAA Limitations. While TAA is a powerful primitive for
leaking LFB contents, it is limited to only leaking the in-flight
data bytes used by the victim’s load and store operations [16,
43, 48]. As on Intel CPUs the victim can only access at most 8
bytes in a single load or store operation, this upperbounds TAA
attacks to leaking at most 8 bytes of every 64-byte cache line,
leaving the other 56 bytes, and any cache lines not accessed
by the victim out of reach. In Section IV-D, we improve this
limitation by presenting a variant of TAA, called TAA-NG,
that can leak the entire 64-byte cache line regardless of any
accesses performed by the victim.

III. THREAT MODEL AND HARDWARE SETUPS

Threat Model. We assume that the attacker is an unprivileged
user, such as a VM or unprivileged user process on the
victim’s system. For the victim, we assume an Intel-based
system that has been fully patched against Meltdown [31],
Foreshadow [46, 49], and MDS [5, 43, 48] either in hardware
or software. We further assume that there are no software bugs
or vulnerabilities in the victim software, or in any support
software running on the victim machine. We also assume that
TSX is present and enabled and that the attacker can run on
the same physical processor core as the victim. At the time of
writing, TSX is indeed enabled by default on all Intel machines
launched prior to 2018-Q4.

Finally, when attacking SGX, we assume a malicious op-
erating system capable of configuring the CPU and scheduler
as chosen by the attacker. This includes re-enabling TSX (if
disabled), stopping and starting enclaves, and making arbitrary
calls to SGX’s paging instructions as needed.
Hardware Setup. We have tested CacheOut on multiple
generations of Intel processors, ranging from Skylake (2016)
to Whiskey Lake (launched 2019-Q2). However, since the dis-
covery of transient-execution attacks [5, 6, 16, 29, 31, 46, 48],
Intel has launched several generations of processors, each
containing an increasing amount of hardware-based counter-
measures. See Table I for a summary.

We now proceed to describe MDS-specific software and
hardware countermeasures present on Intel machines.
Flushing MDS Buffers. Fallout [5], RIDL [48], and
ZombieLoad [43] show that attackers can leak data transiting
through various internal microarchitectural buffers, such as the
LFBs discussed in Section II-B. To address these issues for
older hardware, Intel provided microcode updates [21] that
repurposed the verw instruction to flush these microarchitec-
tural buffers by overwriting them. The operating system has
to issue the verw instruction upon every context switch to
effectively flush these microarchitectural buffers.
Disabling TSX. In November 2019, during the course of
our work and after our disclosure of CacheOut, Intel attempted
to mitigate TAA by publishing microcode updates that enable
turning off TSX on CPUs made after 2018-Q4. These have
been deployed by OS vendors, preventing non-SGX variants
of CacheOut on Intel machines made after 2018-Q4.

We note however, that all variants of CacheOut (e.g., cross-
process, -kernel and -VM) are still applicable on Intel ma-
chines launched before 2018-Q4, which represent the majority
of deployed hardware at the time of writing. Moreover, as TSX
can still be re-enabled by a malicious OS, CacheOut’s ability
to access data at rest allows us to bypass Intel’s SGX⊕TSX
policy, thereby leaking content from SGX enclaves even on
fully updated machines with all countermeasures in place. In
particular, as Whiskey Lake machines are only vulnerable to
TAA, which is limited to leaking LFB data directly accessed
by the victim, CacheOut is the only attack currently capable
of leaking the contents of the L1-D cache on these machines.

IV. THE CACHEOUT ATTACK

In this section we present CacheOut, a transient-execution
attack that allows an attacker to read the victim’s data from
the L1-D cache through cache evictions. We describe two
variants: the first targets data modified by the victim’s write
operations, while the second aims at data that the victim reads
but does not modify. Besides defeating all previously deployed
MDS mitigations both in software and hardware, CacheOut
addresses three challenges left open by previous MDS works.

[C1] Controlling What to Leak. How can an attacker
control what to leak from the victim’s address space?

[C2] Reading the Entire Cache Line. How can an attacker
read all the data present in the victim’s cache line, including
data not affected by the victim’s load or store operations?

[C3] Temporal Persistence. How can an attacker read the
victim’s data long after the execution of the victim’s load or
store operation, as opposed to being limited to in-flight data
briefly present in the CPU’s LFB?

CacheOut Overview. Listing 1 presents a high-level
overview of CacheOut. Assume that the victim performed a
write operation to some address a, which the attacker would
like to read (Line 2). After finding the correct eviction set
which evicts a from the L1-D cache, the attacker accesses
the eviction set, causing the data written by the victim to be
evicted from the CPU’s L1-D cache (Lines 5-7) into the LFB.

4

CPU Year CPUID Meltdown Foreshadow MDS TAA CacheOut

Intel Core i7-8665U (Whiskey Lake) Q2 ’19 806EC 2 2 2 ± X/ ±
Intel Core i9-9900K (Coffee Lake Refresh - Stepping 13) Q4 ’18 906ED 2 2 2 ± X/ ±
Intel Core i9-9900K (Coffee Lake Refresh - Stepping 12) Q4 ’18 906EC 2 2 ± ± X
Intel Core i7-8700K (Coffee Lake) Q4 ’17 906EA ± ± ± ± X
Intel Core i7-7700K (Kaby Lake) Q1 ’17 906E9 ± ± ± ± X
Intel Core i7-7800X (Skylake X) Q2 ’17 50654 ± ± ± ± X
Intel Core i7-6700K (Skylake) Q3 ’15 506E3 ± ± ± ± X

TABLE I: Vulnerability of Intel processors to transient-execution attacks. X indicates that the machine is vulnerable. ± indicates
that vulnerability is mitigated by a microcode update and/or the OS, while 2 indicates that the vulnerability is mitigated in
silicon. Finally, X/ ± indicates that the mitigations are incomplete, as the attack is possible against SGX, or if TSX is enabled.

1 victim:
2 a = secret
3

4 attacker:
5 for (i = 0; i < 8; ++i) //evict secret

from L1D cache↪→

6 *(evict_set + 4096 * i) = 0;
7

8 TAA-NG(FRbuffer);
9

10 for (i = 0; i < 256; ++i)
11 if (flush_reload(FRbuffer + i * 4096))
12 ++results[i];

Listing 1: high-level overview of the CacheOut attack.

The attacker then samples the data from the LFB using our
TAA-NG sampling primitive (Line 9), leaking the results using
a FLUSH+RELOAD side channel. Finally, the attacker checks
the FLUSH+RELOAD channel by measuring the access time to
every entry of the FRbuffer, thereby recovering the victim’s
data (Lines 11-14). See Figure 2 (left) for an overview.
Overcoming Challenges. We now describe how each
component of CacheOut allows us to overcome limitations
of previous MDS and TAA techniques. First, by constructing
eviction sets that precisely evict only certain cache lines, we
alleviate challenge [C1], allowing the attacker to control what
cache line to leak from the victim’s address space. Next, as
TAA is limited to only leaking bytes directly accessed by the
victim (and at most 8 bytes in total from every 64B cache line
[43]), in Section IV-D we present TAA-NG, a new variant of
TAA which is capable of leaking arbitrary byte offsets from the
LFB. This overcomes challenge [C2], allowing the attacker to
read arbitrary bytes of their choice from the victim’s address
space. Finally, as we show in Section IV-E, data present in
the L1-D cache remains cached for millions of cycles. Thus,
by exploiting L1-D evictions rather than opportunistic LFB
sampling, we overcome challenge [C3], giving the attacker
the capability of selecting and leaking any L1-D data written
by the victim, as opposed to being limited to in-flight data
present in the LFB following the victim’s memory operations.
Attacking Reads. The attack described so far is capable of
extracting data written by the victim into its address space.
However, for data that is only read by the victim but never
modified, we note that in case of an L1-D miss, the data

Evict

Write Secret

L1-D Cache

L1-D Cache

Fill Buffer

Sample using
TAA-NG

W
riteback

FLUSH
RELOAD

Evict

Read Secret

L1-D Cache

Sample using
TAA-NG

FLUSH
RELOAD

Fill Buffer

Sampling ReadsSampling Writes

2

3

4

11

2

3

4

L1-D Cache

L2 Cache

Fig. 2: Overview of our use TAA-NG for leaking LFB data.
Victim activity, attacker activity, and microarchitectural effects
are shown in green, red, and yellow respectively. Victim and
attacker may run on the same or sibling hyper-threads.

must also traverse through the LFB in order to satisfy the
victim’s read operation. Thus, by evicting the victim’s data
beforehand, we are able to attack the victim’s read operations,
selecting which data to leak from the victim’s address space.
The right part of Figure 2 shows a variant of CacheOut for
attacking victim read operations. As before, we assume that the
attacker has already constructed an eviction set for the cache
set that contains the victim’s data. Unlike the attack for writes
however, which can be executed both with and without hyper-
threading, here we assume that the attacker and the victim run
on the two hyper-threads of the same physical core.

The attacker starts by reading from all of the addresses in the
eviction set (Step 1). This loads the eviction set into the L1-D
cache to evict the victim’s data. Next, the attacker waits for the
victim to access their data (Step 2). This victim access brings
the victim’s data from the L2 cache into the line fill buffers,
and subsequently to the L1-D cache. Finally, the attacker uses
TAA-NG (Step 3) to sample values from the line fill buffer
and transmit them via a FLUSH+RELOAD channel (Step 4).
Microbenchmarking. Before discussing the attacks in
Sections V, VI, and VII, we proceed to benchmark individual
components required to mount CacheOut in the remainder

5

of this section. Furthermore, we discuss CacheOut’s leakage
source and potential signal improvements.

A. Measuring Cache Eviction

Eviction Set Construction. A precondition for CacheOut is
that the attacker is able to construct an eviction set for L1-D
cache sets. On contemporary Intel processors, bits 6–11 of the
virtual address are used to identify the cache set. Consequently,
by allocating eight 4 KiB memory pages, the attacker can cover
the whole cache, and eviction sets can be constructed from
memory addresses with the same page offsets.
Measuring Eviction. To confirm that we leak data from the
L1-D cache through evictions, we first measure the number
of accesses required to evict the victim’s cache line out of
the cache. We run a victim that repeatedly accesses the same
cache set, while we test CacheOut with varying eviction set
sizes under three different attack scenarios. Figure 3 shows
the result of the three scenarios: on the same hyper-thread
(left), victim reads across hyper-threads (middle) and victim
writes across hyper-threads (right). As expected, an eviction
set of eight addresses yields the best result, except for victim
writes where a set of six addresses yields the best result. Our
attack likely requires fewer evictions due to the increased
L1-D cache contention while both hyper-threads are active.
Moreover, further increasing the eviction set has a negative
impact, as larger eviction sets result in a longer execution time,
reducing the frequency at which the attack can sample data.

Conclusion: By using cache evictions, we can reliably leak
data present in the CPU’s L1D cache.

0 8
0%

2%

4%

Same-Thread Writes

0 8

Cross-Thread Reads

0 8

Cross-Thread Writes

Secret Cache Set
Other Cache Set

Eviction Set Size

Su
cc

es
s

R
at

e

Fig. 3: Number of loads/stores required to evict the secret
cache line from the victim. The blue bars indicate how often
we observe the secret from the correct cache line, while the
orange bars indicate how often we observe it from the strongest
wrong cache line. We ran 10,000 iterations per tested value.

B. Investigating CacheOut’s Leakage Source

We now investigate CacheOut’s microarchitectural leakage
source and the leakage’s path through internal CPU structures.
Flushing Methodology. To ascertain CacheOut’s source of
leakage, we use the instructions Intel provided to flush these
caches and MDS-affected buffers in order to address previous
vulnerabilities (e.g., MDS and Foreshadow), and then try to
mount CacheOut to see whether these buffers affect the actual
leakage. In all experiments, we run the victim and attacker
on the same hyper-thread, where the victim first writes some
data to different cache lines, followed by an mfence to ensure
that these stores have been committed. We then perform some

flushing operation, followed by an explicit lfence to ensure
that the flushing completes before executing any other code,
with the exception of the base case where no flushing is
performed. Finally, we execute the CacheOut attacker, which
attempts to leak the victim’s data from a specific cache line.
Figure 4 shows a summary of our findings.

ba
sel

ine ver
w

L1
D_FL

USH
4 K

iB
8 K

iB
12

KiB
16

KiB
20

KiB
24

KiB
28

KiB
32

KiB
0.00%

1.00%

2.00%

3.00%

4.00%

Su
cc

es
s R

at
e

Fig. 4: CacheOut’s success rate when using different flushing
operations between attacker and victim.

Ineffective verw. We observe that rather than mitigating
CacheOut, the verw instruction actually improves CacheOut’s
leakage rate. While verw did initially not fully clear the
affected buffers [42], we have performed our experiment on
an Intel Core i7-8665U (Whiskey Lake) CPU running the
November 2019 microcode update, which mitigates this issue.
As verw has been repurposed to mitigate MDS attacks by
overwriting the contents of MDS-affected buffers, we deduce
that CacheOut does not directly leak from the LFB.

Effective L1-D Flushing. Next, we use the MSR_IA32_-
FLUSH_CMD countermeasure, originally designed to mitigate
the Foreshadow attack, in an attempt to flush the contents of
the L1-D cache. Figure 4 shows that this does fully mitigate
CacheOut by completely eliminating the leakage signal. As
the contents of the L2 and L3 cache were not flushed, we
deduce that CacheOut leaks data from the L1-D cache, but is
unable to access data stored in higher-level caches.

Partial L1-D Flushing. Finally, we experiment with partial
L1-D flushing by performing verw to flush MDS buffers and
subsequently accessing a contiguous buffer of 4 KiB - 32 KiB
not cached in the L1-D cache. Accessing a buffer of at least
16 KiB eliminates the leakage signal, whereas accessing 4-
12 KiB buffers before executing the CacheOut attacker appears
to actually improve the leakage signal considerably compared
to the baseline measurement. We conjecture that this is due to
the partitioning of the L1-D cache for cache line allocations
while both hyper-threads are active, as the L1-D cache is
indeed competitively shared between hyper-threads [18]. We
further investigate this effect in Appendix C.

A New Data Path. While on Intel CPUs the LFB is
responsible for handling data coming into the L1-D cache, we
conclude that there exists an undocumented path between L1-
D evictions and the LFB (marked in red in Figure 5). CacheOut
exploits this path by causing L1-D evictions and subsequently
leaking the evicted data from the LFB. Finally, we demonstrate
that this undocumented path exists on MDS-resistant Whiskey
Lake machines, making these vulnerable to CacheOut.

6

L2 Cache (256 KiB)

Write Path

Read Path Processor Core

Fill Buffer (12 entries)L1-D Cache (32 KiB)New Path L1-D Cache (32 KiB)

Fig. 5: The data paths within the CPU core, with the paths for
loads marked in blue, the path for stores in orange, and the
new undocumented path that we uncovered marked in red.

Conclusion: CacheOut leaks data present in the CPU’s L1-
D cache, exploiting L1-D cache evictions to move data into
the LFB through a previously undocumented data path.

C. Overcoming [C1]: Selecting Cache Lines

Having established CacheOut’s source of leakage, we now
demonstrate CacheOut’s ability to select the L1-D cache set
from which the attacker leaks, giving us control over the page
offset at a granularity of cache lines (64 bytes). This allows
us to overcome previous limitations of MDS attacks where
the attacker could only target in-flight data, rather than target
data from a particular L1-D cache set. To that aim, we repeat
the experiments of Figure 3 but this time we vary the “secret”
cache set the victim chooses, while the attacker tries to evict
and leak from every possible cache set. Figure 6 contains a
summary of our findings for victim reads and writes in both
single-threaded and cross-threaded scenarios. As can be seen,
in all scenarios the attacker can target a specific cache set,
correctly leaking the victim’s data, albeit with some noise for
the case of cross-thread victim writes.

0
8

16
24
32
40
48
56
64

Same-Thread Read Same-Thread Write

0 8 16 24 32 40 48 56 64
0
8

16
24
32
40
48
56
64

Cross-Thread Read

0 8 16 24 32 40 48 56 64

Cross-Thread Write

Evicted Cache Set

Se
cr

et
 C

ac
he

 S
et

Fig. 6: The victim loads/stores a secret to every possible cache
line (y-axis), while the attacker evicts every possible cache line
(x-axis) to leak it. We ran 10K iterations per test.

Conclusion: By constructing an eviction set for a particular
L1-D cache set, CacheOut can leak from that particular
cache set, giving the attacker control over what cache set
to leak from the victim’s address space.

1 ; %rdi = leak source
2 ; %rsi = FLUSH + RELOAD channel
3 ; %rcx = offset-control address
4 taa_ng_sample:
5 ; Cause TSX to abort asynchronously.
6 clflush (%rdi)
7 clflush (%rsi)
8 ; Leak a single byte.
9 xbegin abort

10 movq (%rdi), %rax
11 shl $12, %rax
12 andq $0xff000, %rax
13 movq (%rax, %rsi), %rax
14 movq (%rcx), %rax
15 movq (%rcx), %rax
16 xend
17 abort:
18 retq

Listing 2: the TAA-NG leak primitive.

D. Overcoming [C2]: Using TAA-NG for Reading Entire
Cache Lines

We proceed to now overcome another limitation of TAA,
RIDL and Zombieload [16, 43, 48], where the attacker is
limited to leaking only bytes directly accessed by the victim’s
load or store operations. As on Intel machine a load or store
operation can access at most 8 bytes simultaneously, the
attacker can recover at most 8 bytes from the 64 byte cache
line, leaving the remaining 56 bytes inaccessible.
TAA-NG Overview. We found that by extending the TAA
primitive, we can target entire cache lines. More specifically,
Listing 2 shows our leakage primitive, which we call TAA-NG.
The code is virtually identical to the code in Appendix A, with
the exception of two critical movq instructions added at Lines
16–17. Like the original TAA, the attacker starts by flushing
a cache line in their own address space (Line 6 in Listing 2).
The attacker then initiates a TSX transaction (Line 10) which
attempts to read the cache line flushed at Line 6.

Next, during the speculative execution of the load instruc-
tion (movq) at Line 11, much like the original TAA attack,
the processor allocates an LFB entry. Similarly to the original
TAA, as the previous clflush makes the data of the load
instruction unavailable, the transaction proceeds speculatively
with stale data present in the LFB entry from a previous
memory access being served to the rax register at Line 11.

However, while in the original TAA the bytes accessed by
the victim appear in the rax register (leaving the other bytes
out of reach), here we discovered that reading from the exact
attacker-chosen byte offset into the rax register at Lines 16-
17 gives us precise control over the byte offset of the victim’s
data appearing in rax. Finally, similarly to the original TAA
primitive, TAA-NG proceeds to leak the recovered information
through a FLUSH+RELOAD side channel (Lines 12-14).
TAA-NG Microarchitectural Root Cause. We note that the
instructions controlling the attacker’s read offset (Lines 16-17
in Listing 2) appear after the instruction that actually reads
the victim’s data (Line 11 in Listing 2). While it is odd that

7

later movq instructions can affect the outcomes of earlier
instructions, we observe that the there is no data dependency
between the offset-control instructions at Lines 16-17 with the
data-reading instruction at Line 11. Consequently, due to out-
of-order execution, the instructions at Lines 16-17 can execute
before the instructions that precede them in program order
(i.e., before Line 11). We hypothesize that the line fill buffer
output has a read offset, i.e., some internal state that determines
the offset at which buffer entries have been read. This read
offset gets reused by the leaking movq at Line 11 when the
transaction aborts, allowing us to select the desired cache line
offset. However, as we were unable to find any documentation
of these mechanisms in Intel manuals and patents, we leave
the task of precisely understanding this internal mechanism to
future work. Finally, to the best of our knowledge, we are the
first paper to demonstrate how latter instructions in program
order can affect the speculative output of former instructions.
Evaluating Offset Selection. To evaluate our cache-line
offset selection method, we used a victim that chooses a byte
offset and writes a secret value to this byte, setting the rest of
the bytes in the cache line to zero. The attacker then tries to
leak the secret from every byte offset from the victim’s cache
line. As we can see in Figure 7, we can successfully select
the offset in the cache line from which we leak.

0 8 16 24 32 40 48 56 64
Evicted Byte Offset

0

8

16

24

32

40

48

56

64

Se
cr

et
 B

yt
e

O
ffs

et

Byte Leakage

Fig. 7: The victim loads/stores a secret byte to every possible
offset within a fixed cache line (y-axis), while the attacker
tries to leak from every possible byte offset (x-axis) to leak it.

Conclusion: Our TAA-NG primitive is capable of leaking
all 64 bytes in a cache line. Combining this with the L1-
D cache set eviction described in Section IV-C, CacheOut
has the capability of leaking the precise byte located in the
L1-D cache that the attacker would like to leak.

E. Overcoming [C3]: Obtaining Temporal Persistence
Having demonstrated that CacheOut can target data by

matching the 12 least-significant bits of the victim’s address,
we tackle the final limitation of only being able to target in-
flight data and instead show that CacheOut is able to leak data
that is at rest in the L1-D cache. To benchmark CacheOut’s
ability to recover data from the L1-D cache far after the
victim’s access, we perform an experiment where after the
victim’s access, we delay the attacker’s execution for a fixed
amount of CPU cycles before mounting CacheOut sequentially
after the victim on the same hyper-thread.

Figure 8 shows that we can recover the victim’s data even
when waiting for 1,000,000 cycles after the victim’s access.

103 104 105 106

Delay (CPU cycles)

4.00%

6.00%

8.00%

10.00%

12.00%

Su
cc

es
s R

at
e

Fig. 8: The amount of leakage when waiting for a given
number of CPU cycles before running the attacker.

Rather than targeting the data of the victim’s memory access
directly, CacheOut evicts the data from the L1-D cache into
the LFB to then leak it, which allows CacheOut to leak data
long after the victim’s execution as long as that data remains
present in the L1-D cache. Finally, the varying success rate of
Figure 8 may be due to poor synchronization between attacker
and victim, as we may end up sampling the LFB before the
L1-D eviction or after the data has left the LFB.

Conclusion: CacheOut is not limited to leaking data during
the victim’s memory operations, but can leak any byte
present in the L1-D, long after the victim’s memory access.

F. Negative Result: The Need for TSX

We have also explored the possibility of mounting CacheOut
without the need for TSX, replacing aborting TSX transactions
with other fault-generating mechanisms such as dereferencing
null pointers or accessing non-canonical addresses. While
these were used in previous MDS works [5, 36, 43, 48]
for sampling internal CPU buffers, we were unable to use
these techniques for mounting CacheOut on MDS-mitigated
machines (e.g., Whiskey Lake). Attempting these experiments
on older MDS-vulnerable hardware, we were able to correctly
identify LFB leakage, but without the ability to leak from
the L1-D cache, or control what data is being leaked. As
the hardware is MDS-vulnerable, we attribute this leakage to
an MDS-like sampling similar to RIDL [48] as opposed to
CacheOut’s successful exploit of an L1-D evictions.

Conclusion: CacheOut requires TSX to leak data from
the L1-D cache. We leave the task of finding a variant of
CacheOut which does not rely on TSX as an open problem.

V. CROSS-PROCESS AND CROSS-VM ATTACKS

Demonstrating the implications of CacheOut, we developed
multiple proof-of-concept attacks wherein an unprivileged user
process leaks data from another process. First, we estimate
CacheOut’s leakage rate in the best possible scenario, where
a cooperating transmitter attempts to exfiltrate data to a coop-
erating receiver. We then show more realistic attacks, where
an unprivileged attacker recovers AES keys, RSA keys, and
the weights of a neural network from another victim process.
Finally, we show that CacheOut also extends to the cross-VM
setting, allowing data recovery across VM boundaries.
Leaking Unstructured Data. In all the examples, we
demonstrate how CacheOut’s capabilities allow an attacker to
target specific victim data in the L1-D cache. As the attacker
knows which data is being targeted, this removes the need for

8

online data filtration using a known prefix or suffix, allowing
us to leak random-looking data spanning multiple consecutive
cache lines without the need of some known structure.

Indeed, instead of using a known prefix or suffix, we use
CacheOut to simply read as much data as possible from the L1-
D cache. As we know the location of the data pieces relative to
each other and relative to public data in the victim’s address
space, we are able to reconstruct a portion of the victim’s
address space that is located inside the L1-D cache, albeit
with some amount of errors due to noise. Finally, we exploit
redundancies in the data such as derived AES round keys or
the relationship between p, q and n = pq for RSA to denoise
the data, recovering the victim’s keys inside the reconstructed
parts of the victim’s memory.
Experimental Setup. We run the attacks presented in
this section on an Intel Core i7-8665U CPU (Whiskey Lake)
running Ubuntu 18.04.3 LTS with a Linux 5.0.0-37 generic
kernel and CPU microcode version 0xca.

A. Evaluating Leakage Amount

To determine CacheOut’s leakage rate, we implement a
covert channel where the victim writes some byte value to a
known cache location, while the attacker attempts to leak the
victim’s data using 10K iterations of CacheOut on the same
physical core. We distinguish between not leaking anything,
leaking correct values, and leaking incorrect values. We obtain
a leakage rate of 26 B/s, 2918 B/s, and 343 B/s for same-thread
writes, cross-thread reads and cross-thread writes respectively.

Next, rather than mitigating CacheOut, we found that Intel’s
verw instruction might ironically assist the attacker. More
specifically, using verw before evicting the victim’s data
from the cache can significantly improve the signal when
extracting data written by the victim, both in cross-thread
and same-thread scenarios. We conjecture that this attacker-
issued verw removes all values but the leaked one from
the LFB, thereby increasing the probability of successfully
recovering the leaked value through TAA. To confirm this
we extend our previous experiment to issue a verw before
running CacheOut. With verw, we report a leakage rate of
81 B/s, 1833 B/s and 2433 B/s, respectively.

B. Attacking Cryptographic Keys

We now show CacheOut’s ability to extract random-looking
encryption keys from an OpenSSL-based victim, demonstrat-
ing attacks both in the cross-process and cross-VM scenarios.
Victim and Attacker Setup. Our victim process uses
the AES and RSA decryption routines from OpenSSL 1.1.1
to repeatedly decrypt an encrypted message. The OpenSSL
library remains unmodified and we do not use instrumentation,
as our victim only uses the public API exposed by OpenSSL.
On the sibling hyper-thread, we run the CacheOut attacker
which leaks OpenSSL’s AES and RSA key data structures.
AES Key Extraction. We use CacheOut to sample the data
from all 64 cache sets in the L1-D cache and use TAA-NG
to sample the 64 bytes in every cache line to fully recon-
struct 4 KiB of data from the victim, including the address

corresponding to each byte of the recovered data. Examining
the recovered page, we observed 98.34% of the AES key and
associated round keys, where the initial AES key appears at at
least two locations, providing us with additional redundancy.
Next, as OpenSSL’s AES key data structure lays the initial
AES key and the associated round keys consecutively in
memory, we use a technique similar to Cold Boot attacks [13]
in order to recognize the key in the victim’s memory.

For cross-process attacks, our measurement phase takes
76.2 seconds on average over ten runs, and we leak data
with a raw throughput of 8.90KiB/s and an actual throughput
of 63.39B/s. Finally, the key-recognition technique of [13]
recovers the correct AES key from the victim’s address space
within 183.29s on average.
Cross-VM AES Key Extraction. We performed the same
experiment on two VMs running on two different hyper-
threads using QEMU 2.11.1 with KVM and 1 GB hugepages
enabled. We ran our attack three times, where for each run we
attempt to leak each key byte 10,000 times. During all three
runs, the bytes corresponding to the victim’s AES key were
observed during 20 out of the 10,000 attempts. After some
signal processing, we were able to recover 75% of the key
bits on average across the three runs, leaking the key at an
average rate of 15 seconds per single 64-byte cache line.
Recovering RSA Private Keys. We use a setup similar to the
proof of concept for AES, except the victim now repeatedly
decrypts a given ciphertext using RSA. Here, the attacker
observes 8-byte chunks of p and q, though not in any particular
order. However, as we are able to observe all chunks of p
and q, we could fully reconstruct p and q using reconstruction
technique described in Appendix B.

We generated 512, 1024, 2048 and 4096-bit RSA keys, and
sampled key data from our victim. We gathered 100% of the
key data in all cases, where the sampling phase taking 7.4-
51 seconds, based on the key size. Finally, we recovered the
RSA keys from the data sampled for all key sizes, using the
technique described in Appendix B in about 2.5 min/key.

We also performed the same experiment across VMs set up
on two sibling hyper-threads. We found that we can extract
100% of the key data, taking between 11-24 seconds to sample
data from the victim VM (with larger keys requiring more
time). Our reconstruction phase described in Appendix B took
between 2 and 95 seconds for key reconstruction (with larger
keys needing more CPU time). Finally, we note that previous
MDS atacks (e.g., Zombieload [43] or Medusa [36]) did not
demonstrate any cross-VM data extraction attacks (besides a
covert channel), presumably due to noise and the inability to
exercise sufficient control over the data leaked by the attacker.

C. Attacking Neural Networks

To further demonstrate the utility of address selection, we
also use CacheOut to steal the weights from an artificial
neural network. We run a victim which uses the generic
FANN model [38] created by fann_create_standard()
to repeatedly classify a random chosen piece of English text
as one of three languages. We again run CacheOut on the

9

sibling hyper-thread using 5K iterations to sample data from
each byte offset. We observe 98.4% of the weights among
the extracted data. However, the vast amount of raw data
that CacheOut leaks complicates the process of identifying
the network’s weights, requiring a number of techniques for
identifying the weights’ values.

More Specifically, the model has 376 weights, each rep-
resented in 32 bits, resulting in a 1504 B array. Since the
weights are stored sequentially, finding the array’s start reveals
the page offsets of all of the weights. After instrumenting
the FANN classifier to reveal the address of the weights’
array, we found that it always starts at a fixed page offset.
Thus, the attacker can find this location in an offline phase,
enabling them to specifically target the cache lines containing
the weights during the online phase. With the naive approach
of simply selecting the most common 8 byte value for each
offset containing a weight, we achieve 63.0% accuracy for
determining the value of each weight. In Appendix D we
describe how to improve the accuracy to 96.1% by exploiting
the weights’ storage format and the observation that the
weights of a neural network tend to be small.

Crucially, we note that without address selection, the at-
tacker would not be able to map the recovered weights to
the neural network model. As the 1504 B weight array spans
23 different cache lines, even if the attacker could accurately
identify each weight with 100% accuracy, they would not be
able to determine which weight connects which two neurons.

Trying to leak the weights from a trained neural network,
our attacker takes 40 seconds to run on average over ten runs,
recovering the model’s weights with a 95.2% accuracy. Finally,
we also reproduced similar results for stealing the weights
from FANN across VM boundaries, obtaining an average run
time of 376.69 seconds and accuracy of 93.95%.

VI. ATTACKING KERNEL AND HYPERVISOR

The results of Section V clearly demonstrate CacheOut’s
ability to recover information from cross-process and cross-
VM boundaries on MDS-resistant machines, assuming hyper-
threading is enabled. While hyper-threading has been re-
enabled on these architectures, in this section we focus on
the case where hyper-threading is disabled, demonstrating that
CacheOut can also leak data from the unmodified kernels
and hypervisors. More specifically, we demonstrate Cache-
Out’s ability to control what to leak by again focusing on
random-looking data, recovering kernel stack canaries and
break KASLR by recovering kernel pointers. As both of these
countermeasures are aimed at preventing privilege escalation
attacks, the ability to recover both kernel stack canaries
and pointers makes it significantly easier to exploit software
vulnerabilities on unpatched kernels and hypervisors.

A. Derandomizing Kernel ASLR

KASLR Overview. Kernel Address Space Layout Ran-
domization (KASLR) is a defense-in-depth countermeasure to
binary exploits. By randomizing offsets of entire code sections,

the kernel impedes control flow redirection attacks, which
require knowledge of the location of targeted code pieces.
Attacking Kernel ASLR. We now show how CacheOut’s
line selection capabilities enable an attacker to reliably leak
a kernel function pointer, thus breaching KASLR in under a
second. The attacker binds itself to a single core and executes
a loop composed of a sched_yield() followed by our
TAA-NG primitive. When sched_yield() returns from the
kernel, we use TAA-NG to leak stale L1-D data leftovers
from the kernel during the context switch. We used TAA-
NG to leak data from all 64 cache lines at all byte offsets.
Upon inspection, we found that a pointer corresponding to
the hrtick kernel symbol could be consistently recovered
from the same cache line at the same byte offset. We then
verified that this location remains static across both reboots
and different machines running the same kernel version.
Attack Evaluation. An attacker can exploit this by first
conducting offline analysis, running the attack code on a
machine running the same kernel version as the victim. Then,
after learning the location, the attacker can conduct the online
attack against the victim. Here, the attacker only has to leak a
single cache line and eight byte offsets that contain the kernel
pointer, as opposed to an entire 4 KiB of data. Thus, the cache-
line selection capabilities of CacheOut result in a running time
of 14 seconds for the offline analysis phase, and under a single
second for the online attack phase.

B. Defeating Kernel Stack Canaries

Stack Canaries [11] are another widely deployed defense-
in-depth countermeasure aiming to protect against stack-based
buffer overflows, where an attacker writes beyond the end of
a buffer on the stack and overwrites data used for control flow
(e.g. function pointers and return addresses).

We used CacheOut to leak the Linux kernel’s 64-bit stack
canary value, which is shared for all kernel functions running
on the same core in the context of the same process. The
attack is similar to the KASLR break, but instead of repeatedly
calling sched_yield(), we execute a loop with a write to
/dev/null, followed by performing TAA-NG to leak from
the L1-D cache. We found three different locations where
the kernel’s stack canary can be leaked. On average, the
attack succeeds in 23 seconds. To our knowledge, CacheOut
is the first transient-execution attack that recovers kernel stack
canaries. This is made possible by the address selection
capabilities, as a completely random 64-bit value is extremely
difficult to detect without targeting a particular cache line.

C. Breaking Hypervisor ASLR

Similar to kernels, hypervisors also deploy ASLR. To leak
any information regarding ASLR from the hypervisor, we
first find a controlled way to trap into the hypervisor. One
way of trapping into the hypervisor is by issuing cpuid
from the VM, as hypervisors often hide or modify the CPU
information presented to the guest VM. We assume an attacker
VM controlling both threads of at least a single CPU core. The

10

attacker runs a loop issuing cpuid on one of the threads,
while running the attacker program on the other thread.
Disambiguating Guest and Host. In addition to the
hypervisor, our attacker VM is also running its own kernel
from which we leak kernel pointers. In order to disambiguate
the kernel pointers from actual hypervisor pointers, we simply
reboot our VM. This forces the guest kernel to choose new
random values for KASLR, while the hypervisor keeps using
the same random value, allowing us to tell apart the pointers
we leak from the hypervisor, as the kernel pointers belonging
to the attacker’s VM are likely to change after a reboot.
Hypervisor ASLR Attack Evaluation. We first perform an
offline phase to determine whether there are static locations
that we can leak hypervisor addresses from. We found that
there are indeed various locations that leak a hypervisor
pointer to x86_vm_ops. After establishing the fixed locations
for a known kernel, we can mount an online attack on the
hypervisor. This reduces the time from roughly 17 minutes in
the offline phase to 1.8 seconds.

VII. BREACHING SGX ENCLAVES

Intel’s Software Guard Extensions (SGX) is a set of CPU
features that offer hardware-backed confidentiality and in-
tegrity to user space programs, even in the presence of a root-
level adversary. In this section we present attacks for dumping
the contents of an SGX enclave, thereby violating SGX’s
confidentiality guarantees. Moreover, unlike RIDL [48] and
ZombieLoad [43], CacheOut is capable of attacking SGX data
at rest, dumping the enclave’s entire address space, without
even requiring the victim enclave to execute or perform any
memory operation. Moreover, CacheOut’s ability to control
which memory address is being leaked allows us to recover
unstructured large secrets, such as images. Finally, we show
how to extract EPID signing keys from SGX’s quoting en-
claves in release mode. With production attestation keys at
hand, we are able to pass fake enclaves as genuine, issue fake
attestation quotes, or even allow AMD and ARM machines to
pass as genuine Intel hardware.

Following SGX’s threat model, we assume a malicious OS
that aims to breach enclave confidentiality.
Experimental Setup. We run the SGX attacks using two ma-
chines, an i7-8665U (Whiskey Lake) and an i9-9900K (Coffee
Lake Refresh, Stepping 13). Both machines use microcode
version 0xca and are mitigated against MDS and Foreshadow,
meaning that enabling hyper-threading does not violate SGX’s
security and Intel considers hyper-threading to be safe on
these machines. Furthermore, the machines execute the latest
microcode at the time of writing, which mitigates TAA attacks
on SGX by disallowing TSX transactions on logical cores that
are co-resident with logical cores running SGX enclaves [16].

A. Reading Enclave Data

The first building block for attacking SGX with CacheOut is
to force the victim enclave’s data into the L1-D cache, without
having the victim enclave running. Even though the malicious
kernel cannot directly read the contents of the enclave, the

kernel is still responsible for paging the victim enclave’s
pages using the special SGX instructions ewb and eldu.
Foreshadow [46] discovered that by using these instructions,
an attacker can load the data into the L1-D cache, even in case
the victim enclave is not running at all.
Loading Secret Data into the Cache. Similarly to [46],
we used the ewb and eldu instructions to load the victim’s
decrypted page into the L1-D. See Steps 1 and 2 in Figure 9.
However, we improved upon this technique by forcing multiple
copies of the plaintext corresponding to the victim’s page into
the cache, thereby obtaining a stronger leakage signal. To
achieve this, each time the attacker executes ewb and eldu,
they allocate a different physical frame for the SGX enclave.
Since writing to different physical addresses puts the data in
different cache ways, we were able to fill the entire L1-D
cache with an attacker-chosen page from the victim’s enclave,
thereby improving the probability of evicting the correct data.

Swap Out
(EWB)

1

Swap In
(ELDU)

2

Evict from
L1-D

3

TAA-NG
Sampling

4

FLUSH
RELOAD

5

L1-D LFB

Fig. 9: Overview of how the SGX paging mechanism, in
combination with TAA, leaks arbitrary SGX data.

Reading Secret Enclave Data. After loading the secret data
into the L1-D (Figure 9, Steps 1-2), we execute a CacheOut
attacker that performs Steps 3-5. As CacheOut is able to
reconstruct entire 4 KiB pages from the L1-D cache, this
allows us to retrieve entire pages from within the enclave.
Finally, as ewb and eldu operate at page granularity, we are
able to focus on specific pages or even dump the entire content
of the enclave (by iterating over all of its pages), without the
need for any memory access from the victim enclave.
Bypassing TAA Countermeasures. With the introduction
of the microcode patches to mitigate TAA, on MDS-resistant
machines (such as the one used in this section), Intel provides
operating systems with the ability to disable TSX. However,
as a malicious OS can simply enable TSX, Intel’s TAA
mitigations abort TSX transactions on the sibling hyper-thread
when entering an SGX enclave, resulting in a core-wide
‘SGX⊕TSX’ policy where both cannot execute concurrently.

However, we observe that by continuously swapping in
and out enclave pages of interest from the L1-D cache using
the ewb and eldu instructions, we are still able to use
CacheOut’s TAA-NG primitive for leaking the page’s content,
thereby breaking SGX on TAA-mitigated machines. As TAA-
NG uses TSX, we conjecture that Intel’s countermeasure does
not consider the ewb and eldu instructions to be SGX-related
activity, allowing us to circumvent Intel’s ‘SGX⊕TSX’ policy.
SGX Image Extraction. To quantify our leakage from SGX,
we set up an SGX enclave that contains a picture of the Mona
Lisa (Figure 10 (left)), and leak the picture using CacheOut.
As the image is 128 by 194 pixels, it spans multiple pages.
Thus, we use the above-described ewb and eldu technique
on each image page individually, and use address selection

11

for leaking unstructured pixel data from the entire page. We
note that CacheOut is effective despite the victim enclave not
performing any processing on the image, and is in fact not
even executing after placing the image in its memory space.
We sample the image data from the SGX enclave five times,
observing 36% of the image data on average in each run.
Image Reconstruction. To reconstruct the Mona Lisa from
the collected data sampled over multiple runs, we use our
address selection capabilities to obtain all the candidates for
every pixel address from our sampled data. Then we score each
candidate based on the candidates for neighboring pixels using
a distance function, selecting the candidate with the smallest
score as the actual pixel value. The offline phase took 9s to
reconstruct the image, which can be seen in Figure 10 (right).

Fig. 10: On the left the original picture (128x194) and on the
right the picture recovered from an SGX.

B. Extracting Production SGX EPID Attestation Keys

One of most compelling properties that SGX provides is the
ability of an enclave to attest to a remote verifying party that
it is running on genuine Intel hardware and not on a malicious
SGX simulator that does not offer any security properties.
From a cryptographic perspective, this is done using an
Enhanced Privacy ID (EPID) attestation key, which is available
only to enclaves written and signed by Intel. In particular, a
compromise of even a single EPID key breaches the security of
the entire SGX ecosystem, as it allows the attacker to sign fake
unlinkable attestation quotes, pass fake enclaves as genuine,
or even enable AMD / ARM CPUs running SGX simulators
to masquerade as genuine Intel hardware.
Experimental Setup. We begin by configuring an SGX-
capable machine to be in a fully trusted state according to
Intel’s Attestation Sever (IAS). As our Whiskey Lake platform
cannot obtain a fully trusted status due to an unrelated security
vulnerability with its internal GPU [22], we used a Coffee
Lake Refresh i9-9900K (stepping 13) desktop with the latest
microcode at the time of writing (0xcc), mitigating all SGX
attacks known at the time [16, 37, 43, 47, 48]. After contacting
the IAS, the machine was deemed to be fully trusted and was
provisioned by Intel with an EPID attestation key. This key is

stored as a normal file, but encrypted using sealing keys that
are only available to Intel’s quoting and provisioning enclaves.
Attacking Production Quoting Enclaves. To extract the ma-
chine’s EPID key, we reverse engineered the quoting enclave
binary shipped and signed by Intel, and used a controlled-
channel attack [50] to pause Intel’s quoting enclave after it has
loaded the EPID sealing key into memory. After this point, the
quoting enclave never resumes execution and is permanently
stopped. In particular, it is unable to apply any defensive
measures, such as side-channel detection [7, 39, 44] or wiping
the key from memory. After stopping the enclave, we use the
technique from Section VII to repeatedly swap in and out the
page containing the sealing key, extracting it using CacheOut.
The entire extraction process lasted about 1.5 minutes and the
key recovery takes less than a second, allowing us to use the
sealing key to successfully decrypt the EPID key file.
Signing Fake Attestation Quotes. Demonstrating our ability
to sign arbitrary attestation quotes, we created an attestation
report setting the MRENCLAVE field, representing the SHA-
256 of the enclave’s initial state, to be the string “This
enclave should not be trusted”, the MRSIGNER, representing
the SHA-256 of the public key of the enclave writer, to
be “CacheOut”, and setting the report’s debug flag to 0,
thereby indicating that the enclave is a production enclave.
We have also populated the report’s body (commonly used for
establishing a Diffie-Hellman key exchange with the enclave
corresponding to the report) to be “Mary had a little lamb,
Little lamb, little lamb, Mary had a....”. Finally, we signed
the report using our malicious quoting enclave that uses our
extracted EPID keys, thereby producing an attestation quote.
Quote Verification. To verify the validity of our quote, we
sent it to Intel’s IAS for verification. According to Intel’s SGX
manuals [4, 26], the IAS will only approve the quote if it can
verify that the quote’s EPID signature is correct. Since we have
correctly extracted a non-revoked EPID private signing key,
using version 3 of the attestation API [23], the IAS accepted
our quote and replied with “isvEnclaveQuoteStatus:
OK”. The IAS also signed its response with Intel’s private
key and accompanied it with the appropriate certificate chain
leading to Intel’s CA certificate.
Comparison to State-of-the-Art. Our breach of SGX
exmplifies CacheOut’s advancement over the state of the art in
transient-execution attacks, in terms of both noise, and control
over the data that the attacker would like to leak. While sev-
eral previous transient-execution attacks demonstrated leakage
from SGX enclaves [43, 47, 48], the only other attack which
demonstrated a sufficient amount of control over the leakage
signal to extract production EPID keys from architectural
enclaves, compiled and signed by Intel, is Foreshadow [46],
which has been long since mitigated on recent Intel hardware.

VIII. MITIGATIONS

With Intel’s approach of applying spot mitigations to
address transient-execution vulnerabilities, some issues are
often overlooked resulting in incomplete mitigations. For
instance, verw’s initial implementation turned out to be

12

incomplete [42], and we discovered that Intel’s mitigations
against TAA do not fully protect Intel SGX. Intel’s mitigations
focus on disabling certain features on vulnerable CPUs, or to
provide mechanisms to flush buffers as well as the L1-D cache,
rather than addressing the root causes. We discuss both various
solutions to mitigate CacheOut on current hardware, as well
as various solutions to fundamentally address these issues.
Disabling Hyper-Threading. Similar to MDS, CacheOut
works best when the attacker and victim run on two parallel
hyper-threads. However, as CacheOut is also effective in
the scenario without hyper-threading where the attacker and
the victim run on the same CPU thread, disabling hyper-
threading makes the attack difficult but not impossible (see
Section V and VI). Finally, as disabling hyper-threading carries
a significant performance overhead, we do not recommend this
countermeasure for mitigating CacheOut.
Flushing the L1-D Cache. As discussed in Section IV,
CacheOut leaks information from the L1-D cache. Thus, one
might attempt to flush the L1-D cache and LFB on security
domain changes, in an attempt to eliminate the source of the
signal. Unfortunately, L1-D cache flushing adds significant
overhead and only covers the case without hyper-threading,
as leaving hyper-threading enabled means that CacheOut can
leak data from the L1-D cache as the victim accesses it. Thus,
given the cost of implementing both of these countermeasures,
we do not recommend deploying them to mitigate CacheOut.
Disabling TSX. As discussed in Section III, the microcode
update to address TAA [16] only provides the ability to disable
TSX on platforms released after 2018-Q4, leaving the vast
majority of Intel platforms vulnerable. Given that TSX is not
widely in use, we recommend to disable TSX by default on all
CPUs. However, as a malicious operating system can always
re-enable TSX to use CacheOut to leak data from SGX en-
claves while bypassing Intel’s SGX countermeasures for TAA
(as we demonstrated in Section VII) leaving SGX vulnerable,
we recommend to disable TSX at the microarchitectural level.
Microcode Updates. On June 9, 2020 Intel had published
a security advisory [20] and a microcode update aiming to
mitigate CacheOut (called L1DES in Intel’s terminology),
which indeed seems to mitigate CacheOut’s root cause. In
private communication, Intel further indicated that mitigating
the new data path between L1-D evictions and the LFB
discovered by this work is done by adjusting internal CPU
timing, preventing the leakage exploited by CacheOut. We
recommend to install these on affected systems, especially on
pre-2018-Q4 machines where TSX is still enabled by default.
Partitioning. As hyper-threads share resources, those are
either partitioned statically or dynamically, or they are com-
petitively shared [18], leaving some of them vulnerable to
contention attacks. Even though statically dividing resources
such as the LFB and the L1-D cache mitigates this, the
CPU could alternatively provide something similar to Intel
CAT [17, 33] to provide control over the partitioning. To avoid
sharing resources between transactional and non-transactional
code, TSX should maintain dedicated read and write sets.

Serializing TSX. Through experimentation we found that
issuing mfence before the transaction is an effective mitiga-
tion against CacheOut. Intel’s manual [19, vol. 3 pg. 3-145]
states that mfence and clflush instructions are ordered.
Thus, modifying the xbegin to issue an mfence before
executing the transaction forces the CPU to complete any
pending clflush instruction, preventing the attacker from
exploiting clflush to perform TAA and TAA-NG.

IX. RELATED WORK

Several prior works explore leakage from internal CPU
buffers. These include RIDL [48], ZombieLoad [43], Fall-
out [5], and Medusa [36], collectively known as MDS attacks.
RIDL. RIDL [48] shows that faulty loads are served from
LFBs and load ports, bypassing any address and permission
checks. While RIDL shows statistical evidence that data
evicted from the L1-D cache ends up in the LFB, it does not
study the security implications of the issue or Intel’s MDS
countermeasures. Moreover, RIDL lacks control over what
data the attacker leaks, instead relying on averaging techniques
to filter the data from the acquired noise.
ZombieLoad. ZombieLoad [43] extends RIDL’s findings
to loads that require microcode assists showing that leakage
exists even without faulting loads. It also demonstrates LFB
leakage from the MDS-resistant Cascade Lake architecture.
Moreover, ZombieLoad [43, Section 7] mentions the possibil-
ity of leakage via L1-D cache evictions to the LFB. However,
the authors argue that the leakage is negligible at 0.1 B/s.
ZombieLoad resorts to Domino-bytes to process the data as it
has no control over the leakage. Finally, while ZombieLoad
does mention the possibility of hypervisor and cross-VM
leakage, Schwarz et al. [43] only demonstrate a cross-VM
covert channel (presumably due to noise).
Medusa. In concurrent independent work, Medusa [36] recov-
ers information from write-combining (WC) operations [9] by
sampling data from the LFB where the write combining takes
place on Intel CPUs [19, vol. 3 pg. 6-38]. By focusing on
recovering data from write combining, Medusa can obtain a
cleaner LFB signal. However, Medusa has no control over the
exact offsets and can only partially sample the in-flight data.
This results in slow leakage rates of 12 B/s for kernel data, and
the need for Domino-bytes signal averaging. Unstructured data
(e.g., RSA keys) requires a 400 CPU hour lattice attack [10]
to recover the 1024-bit RSA key from the raw leakage, which
is obtained during a 7 minutes measurement phase.

X. ACKNOWLEDGMENTS

This work was supported by the Air Force Office of
Scientific Research (AFOSR) under award number FA9550-
20-1-0425; the Australian Research Council projects numbers
DE200101577 and DP210102670; the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) under contracts FA8750-19-C-0531 and
HR001120C0087; the National Science Foundation (NSF) un-
der grant CNS-1954712; the Cyber Security Research Center
at Tel-Aviv University; and by gifts from Intel and AMD.

13

REFERENCES

[1] H. Akkary, J. M. Abramson, A. F. Glew, G. J. Hinton,
K. G. Konigsfeld, P. D. Madland, M. S. Joshi, and B. E.
Lince, “Methods and apparatus for caching data in a non-
blocking manner using a plurality of fill buffers,” US
Patent 5,671,444, Oct 1996.

[2] ——, “Cache memory system having data and tag arrays
and multi-purpose buffer assembly with multiple line
buffers,” US Patent 5,680,572, Jul 1996.

[3] A. Bhattacharyya, A. Sandulescu, M. Neugschwandt-
ner, A. Sorniotti, B. Falsafi, M. Payer, and A. Kur-
mus, “SMoTherSpectre: Exploiting speculative execution
through port contention,” in CCS, 2019.

[4] E. Brickell and J. Li, “Enhanced privacy ID from bilinear
pairing for hardware authentication and attestation,” In-
ternational Journal of Information Privacy, Security and
Integrity 2, vol. 1, no. 1, pp. 3–33, 2011.

[5] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom, “Fallout: Leaking
data on Meltdown-resistant CPUs,” in CCS, 2019.

[6] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp,
B. Von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss, “A systematic evaluation of transient execution
attacks and defenses,” in USENIX Security, 2019, pp.
249–266.

[7] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang,
T.-H. Lai, and D. Lin, “Racing in hyperspace: Closing
hyper-threading side channels on SGX with contrived
data races,” in IEEE SP, 2018, pp. 178–194.

[8] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-
H. Lai, “SgxPectre: Stealing Intel secrets from SGX
enclaves via speculative execution,” in Euro S&P, 2019,
pp. 142–157.

[9] I. Cooperation, “Copying accelerated video decode frame
buffers,” 2009. [Online]. Available: https://software.i
ntel.com/content/www/us/en/develop/articles/copying-
accelerated-video-decode-frame-buffers.html

[10] D. Coppersmith, “Small solutions to polynomial equa-
tions, and low exponent RSA vulnerabilities,” Journal of
cryptology, vol. 10, no. 4, pp. 233–260, 1997.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang,
“StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks,” in USENIX Security,
1998.

[12] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–
bringing access-based cache attacks on AES to practice,”
in IEEE SP, 2011, pp. 490–505.

[13] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Ap-
pelbaum, and E. W. Felten, “Lest we remember: cold-
boot attacks on encryption keys,” Communications of the
ACM, vol. 52, no. 5, pp. 91–98, 2009.

[14] N. Heninger and H. Shacham, “Reconstructing RSA

private keys from random key bits,” in CRYPTO, Aug.
2009, pp. 1–17.

[15] J. Horn, “Speculative execution, variant 4: Speculative
store bypass,” https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528, 2018.

[16] Intel, “Deep dive: Intel transactional synchronization ex-
tensions (Intel TSX) asynchronous abort,” https://softwa
re.intel.com/security-software-guidance/insights/deep-
dive-intel-transactional-synchronization-extensions-
intel-tsx-asynchronous-abort, Nov 2019.

[17] ——, “Introduction to Cache Allocation Technology in
the Intel Xeon Processor E5 v4 family,” https://software
.intel.com/content/www/us/en/develop/articles/introducti
on-to-cache-allocation-technology.html, Nov 2016.

[18] ——, “Intel 64 and IA-32 architectures optimization
reference manual,” Jun 2016.

[19] ——, “Intel 64 and IA-32 architectures software devel-
oper’s manual,” 2016.

[20] ——, “L1D eviction sampling,” https://software.intel.c
om/security-software-guidance/software-guidance/l1d-
eviction-sampling, Jan 2020.

[21] ——, “Microcode revision guidance,” https://www.intel.
com/content/dam/www/public/us/en/documents/corpora
te-information/SA00233-microcode-update-guidance.p
df, Aug 2019.

[22] ——, “2019.2 IPU – Intel SGX with Intel processor
graphics update advisory,” https://www.intel.com/co
ntent/www/us/en/security-center/advisory/intel-sa-
00219.html, Nov 2019.

[23] Attestation Service for Intel Software Guard Extensions
(Intel SGX): API Documentation, Intel, https://api.trus
tedservices.intel.com/documents/sgx-attestation-api-
spec.pdf.

[24] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared
cache attack that works across cores and defies VM
sandboxing–and its application to AES,” in IEEE SP,
2015.

[25] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulme-
zoglu, T. Eisenbarth, and B. Sunar, “SPOILER: Specula-
tive load hazards boost Rowhammer and cache attacks,”
in USENIX Security, 2019, pp. 621–637.

[26] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and
F. Mckeen, “Intel software guard extensions: EPID pro-
visioning and attestation services,” White Paper, 2016.

[27] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and
A. Jaleel, “A high-resolution side-channel attack on last-
level cache,” in DAC, 2016.

[28] V. Kiriansky and C. Waldspurger, “Speculative buffer
overflows: Attacks and defenses,” arXiv preprint
arXiv:1807.03757, 2018.

[29] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in IEEE SP, 2019.

[30] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the

14

https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/SA00233-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/SA00233-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/SA00233-microcode-update-guidance.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/SA00233-microcode-update-guidance.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

return stack buffer,” in WOOT, 2018.
[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in USENIX Security, 2018.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in IEEE
SP, 2015.

[33] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee, “CATalyst: Defeating last-level cache side
channel attacks in cloud computing,” in HPCA, 2016, pp.
406–418.

[34] A. Lutas and D. Lutas, “Security implications of specula-
tively executing segmentation related instructions on Intel
CPUs,” https://businessresources.bitdefender.com/hubf
s/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf,
Aug 2019.

[35] G. Maisuradze and C. Rossow, “ret2spec: Speculative
execution using return stack buffers,” in CCS, 2018, pp.
2109–2122.

[36] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz,
“Medusa: Microarchitectural data leakage via automated
attack synthesis,” in USENIX Security, Aug. 2020.

[37] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens, “Plundervolt: Software-based
fault injection attacks against Intel SGX,” in IEEE SP,
2020.

[38] S. Nissen, “Implementation of a fast artificial neural
network library (fann),” Department of Computer Science
University of Copenhagen (DIKU), Tech. Rep., 2003.

[39] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer, “Varys: Protecting SGX enclaves from prac-
tical side-channel attacks,” in USENIX ATC, 2018, pp.
227–240.

[40] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in CT-RSA,
2006.

[41] C. Percival, “Cache missing for fun and profit,” 2005.
[42] RedHat, “Intel November 2019 microcode update,” https:

//access.redhat.com/solutions/2019-microcode-nov, Nov
2019.

[43] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss, “ZombieLoad:
Cross-privilege-boundary data sampling,” in CCS, 2019.

[44] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating controlled-channel attacks against enclave
programs.” in NDSS, 2017.

[45] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU reg-
ister state using microarchitectural side-channels,” arXiv
preprint arXiv:1806.07480, 2018.

[46] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution,” in USENIX Security, 2018.

[47] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,

M. Minkin, D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and
F. Piessens, “LVI: Hijacking transient execution through
microarchitectural load value injection,” in IEEE SP,
2020.

[48] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“Rogue in-flight data load,” in IEEE SP, 2019.

[49] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F.
Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking the
virtual memory abstraction with transient out-of-order
execution,” https://foreshadowattack.eu/foreshadow-
NG.pdf, 2018.

[50] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel at-
tacks: Deterministic side channels for untrusted operating
systems,” in IEEE SP, 2015, pp. 640–656.

[51] Y. Yarom and K. Falkner, “Flush+Reload: A high res-
olution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

APPENDIX A
TSX ASYNCHRONOUS ABORT

The TAA primitive relies on TSX instructions as well
as on the the clflush instruction, which flushes specific
cache lines from the cache hierarchy. In particular, Intel’s
manual [19, vol. 2A, pg. 3-139–3-142] states that executing the
clflush instruction for a cache line read or modified by a
transaction may cause the transaction to abort, whereupon the
CPU reverts the architectural state modified by the transaction.

TAA exploits this behavior by executing a transaction that
attempts to load from a cache line that was just flushed via
the clflush instruction. While this will eventually cause
a transactional abort, it does allow the attacker to recover
information from the CPU’s LFB. First the attacker flushes
some cache line in their own address space. The attacker then
initiates a TSX transaction which attempts to read that cache
line. More specifically, Listing 3 shows the Assembly code
for the TAA primitive, as described in [16, 43, 48]. First
the attacker flushes some cache line in their own address
space (Line 5 in Listing 3). The attacker than initiates a
TSX transaction (Line 9) which attempts to read the cache
line flushed at Line 5. As the clflush instruction does
not complete immediately, the transaction proceeds to execute
speculatively until the clflush instruction completes. Next,
during the speculative execution of the load instruction, the
processor allocates an entry from the LFB. As the data for the
load instruction is not available due to the previous clflush,
the transaction proceeds speculatively with stale data present in
the LFB entry from a previous memory access. The attacker
then leaks this data using a FLUSH+RELOAD side channel.
Finally, once the clflush instruction completes, the CPU
aborts the transaction, attempting to roll back the speculation.
However, at that point the attacker has already extracted the
data using the FLUSH+RELOAD side channel.

15

https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-INTEL-CPUs.pdf
https://access.redhat.com/solutions/2019-microcode-nov
https://access.redhat.com/solutions/2019-microcode-nov
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

1 ; %rdi = leak source
2 ; %rsi = FLUSH + RELOAD channel
3 taa_sample:
4 ; Cause TSX to abort asynchronously.
5 clflush (%rdi)
6 clflush (%rsi)
7 ; Leak a single byte.
8 xbegin abort
9 movq (%rdi), %rax

10 shl $12, %rax
11 andq $0xff000, %rax
12 movq (%rax, %rsi), %rax
13 xend
14 abort:
15 retq

Listing 3: the leak primitive using TSX Asynchronous Abort.

APPENDIX B
RECOVERING P AND Q

With all the chunks making up p and q successfully recov-
ered, the next challenge is to reconstruct p and q such that
N = p ·q. We assume that the attacker knows the modulus N ,
which is part of the public key. Then, as observed by Heninger
and Shacham [14], N = p · q implies that the low k bits of N
are equal to the low k bits of p · q. In order to reconstruct p
and q, we iteratively recover the the primes 8 bytes at a time
as follows, starting from the LSB.

We first iterate over all possible pairs of the 8 byte chunks,
and for each pair (p0, q0) compute n0 ← p0 · q0. If the low 8
bytes of n0 match the least-significant 8-byte chunk of N , then
p0 and q0 are the least-significant bytes of p and q. To find the
second least significant 8-byte chunks, we again iterate over
all pairs and for each pair (p1, q1) compute n1 ← (p1||p0) ·
(q1||q0), where || denotes appending 8-byte chunks. If the two
least-significant bytes of n1 are equal to the two low bytes of
N , then p1 and q1 are the 2nd least-significant bytes of p and
q. By repeating in this manner for each 8-byte chunk, we can
fully recover both p and q.

APPENDIX C
EXPLORING CROSS-THREAD EVICTIONS.

To confirm our belief that the L1-D cache influences our
leakage, we now perform an experiment where the sibling
hyper-thread tries to evict the L1-D cache set used by both
attacker and victim as well as an unrelated cache set. For
this experiment, we extend the experiment from Figure 4
where the victim first writes data into different cache lines
and where the attacker subsequently tries to leak data from
a specific cache set on the same hyper-thread. Whereas the
sibling hyper-thread was previously idle, the sibling hyper-
thread now performs a number of evictions on either the same
L1-D cache set or an unrelated one to determine the influence
of cross-thread evictions. We expect that if the sibling hyper-
thread evicts the same L1-D cache set as the one used by both
victim and attacker, that the attacker will no longer be able to
observe the victim’s data. The results of this experiment can

be seen in Figure 11. Indeed, we see that as the sibling hyper-
thread evicts the same L1-D cache set, the attacker no longer
is able to observe the victim’s data. Whereas if the sibling
hyper-thread accesses an unrelated L1-D cache set, the signal
remains largely unaffected. This again confirms that CacheOut
is indeed leaking from the L1-D cache.

0 1 2 3 4 5 6 7 8
Number of Evictions

0.00%

2.50%

5.00%

7.50%

10.00%

Su
cc

es
s R

at
e

Same Cache Set
Different Cache Set

Fig. 11: The victim writes data to different cache lines and the
attacker subsequently tries to target a cache set to leak data
from on the same hyper-thread. Simultaneously, the sibling
hyper-thread performs a number of evictions on the same L1-
D cache set as the one used by both victim and attacker, as
well as an unrelated one to determine the influence of such
evictions.

APPENDIX D
ANN WEIGHT RECOVERY

Weight Filtering. We improve the accuracy of our weight
stealing attack by exploiting both the weights’ storage format
and the observation that the weights of a neural network tend
to be small (typically within the range [-1,1]). The weights are
small due to machine learning algorithms using regularization
during the training phase, which pushes the weights towards
zero in order to prevent both overfitting of the model and
the gradient explosion problem, which results in untrainable
neural networks.

The weights are stored as 32-bit single-precision floating
points, which are specified by the IEEE 754 single-precision
floating-point standard to use bit 31 for the sign bit, bits 23-30
for the exponent with a bias of -127, and the remaining 23 bits
for the mantissa. A small value implies that the exponent field
will be very near to 127, and despite the 24 bits of precision,
this format means that the smallness of the weights result in a
very limited set of values for the most significant byte of each
weight. In practice, we find that the MSB does not deviate
from 0x40 or 0xc0 by more than 3 for positive and negative
weights, respectively. By rejecting all candidates for weights
that do not fit, we improve the accuracy to 93%.

We further improve the accuracy by observing that the dis-
tribution of the frequency of different bytes of noise produced
by CacheOut is not uniform. In particular, the values 0x00
and 0xff appear with a far higher frequency than all others.
As such, by penalizing the scores for recovered values that
contain 0x00 or 0xff, we improve the accuracy to 96.1%.

16

	Introduction
	Our Contributions
	Current Status and Disclosure

	Background
	Caches
	Microarchitectural Buffers
	Speculative and Out-of-Order Execution
	Speculative-Execution Attacks
	Transactional Memory

	Threat Model and Hardware Setups
	The CacheOut Attack
	Measuring Cache Eviction
	Investigating CacheOut's Leakage Source
	Overcoming [C1]: Selecting Cache Lines
	Overcoming [C2]: Using TAA-NG for Reading Entire Cache Lines
	Overcoming [C3]: Obtaining Temporal Persistence
	Negative Result: The Need for TSX

	Cross-Process and Cross-VM Attacks
	Evaluating Leakage Amount
	Attacking Cryptographic Keys
	Attacking Neural Networks

	Attacking Kernel and Hypervisor
	Derandomizing Kernel ASLR
	Defeating Kernel Stack Canaries
	Breaking Hypervisor ASLR

	Breaching SGX Enclaves
	Reading Enclave Data
	Extracting Production SGX EPID Attestation Keys

	Mitigations
	Related Work
	Acknowledgments
	Appendix A: TSX Asynchronous Abort
	Appendix B: Recovering p and q
	Appendix C: Exploring Cross-Thread Evictions.
	Appendix D: ANN Weight Recovery

