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Abstract—(Full paper, Innovative Practice.) Linear circuit 

analysis is a complex topic in which students must use many 

principles to complete problems successfully, which may 

overload working memory and thereby impede learning. 

Introducing organizing principles may help students develop 

schemas that help reduce this burden and develop deeper 

conceptual understanding. The use of duality as such an 

organizing concept is explored in this work. To be effective, 

however, all the topics should be presented in a dual manner. 

Historically, definitions of series and parallel elements have 

been used that are not dual to each other, and mesh analysis has 

been performed in a way that is not fully dual to nodal analysis. 

This paper examines the research question of whether these key 

topics can be presented in a novel, fully dual fashion and 

whether students will accept and appreciate such a treatment. 

The revised approaches were implemented using lectures, online 

interactive tutorials, and step-based tutoring software exercises. 

Surveys using both quantitative and qualitative analysis were 

conducted over three semesters and showed positive reactions 

from 72-83% of students.  These results can lead to development 

of a full set of instructional materials centered around duality to 

enable improved learning of circuit analysis. 

Keywords— Computer-aided instruction, duality, linear 

circuit analysis, mesh analysis. 

I. INTRODUCTION 

Student success in widely taught courses covering linear 
circuit analysis is crucially important given the ubiquitous 
presence of circuits in a vast range of engineered products and 
their continually increasing importance in measurement and 
control in many domains. Such courses are vital gateways for 
electrical engineers and are often required in many other 
engineering majors as well to support broad engineering 
competence. Circuits are however highly complex 
interconnected systems in which a change in any one element 
often affects the entire circuit. Moreover, students must master 
and utilize a bewildering array of ideas to solve problems, 
such as series and parallel connections, the difference between 
voltage and current sources (the latter often being unfamiliar 
from prior work), voltage and current dividers, short and open 
circuits, the very nature of current and voltage (the distinction 
often being poorly understood), inductors and capacitors, 
nodes and meshes and the associated analysis methods, 
Thévenin & Norton equivalent circuits, time domain and 
frequency domain, and so forth. It is no wonder therefore that 
many novices to this subject struggle to do so. Yet there is an 

underlying symmetry hidden in this complexity where all the 
above ideas and more can be systematically interrelated in 
pairs, simplifying the entire conceptual structure of the 
subject! This unifying idea, known as duality, was first 
expounded and exploited in detail by Russell in 1904 in his 
treatise on AC circuits [1], and has since been incorporated 
into many (but not all) textbooks on the subject [2-12]. Yet the 
prevailing approaches to certain key topics such as parallel 
and series connections and nodal and mesh analysis fail to 
recognize or exploit duality as discussed below, obscuring its 
significance in the process.  

The present work is focused on developing and advocating 
new approaches to these two central topics that fully embrace 
duality and further improve fundamental definitions and 
procedures in the process. The central research question is 
whether a fully dual treatment of traditional topics can be 
developed and implemented in a way that will be embraced by 
students. Doing so will enable subsequent development of 
instructional materials in which duality plays a central role. 
Demands on working memory should therefore be reduced by 
limiting the number of distinct ideas employed at any one 
time, leading to improved learning based on cognitive load 
theory [13, 14]. Deeper and more transferable conceptual 
learning is expected to result, which is crucial in developing 
professional expertise [15]. 

II. THEORETICAL FRAMEWORK 

The basic framework used in this work is cognitive load 
theory (CLT) [13, 14]. Circuit analysis essentially consists of 
problem solving. Circuits often consist of many 
interconnected circuit elements, which are highly interrelated 
in that changes to one element typically affect the entire 
circuit. Solving such problems therefore involves high 
intrinsic load within CLT. Mental schemas in long-term 
memory are formed during instruction to understand the 
interrelationships among elements. However, many schemas 
may be required for a given problem and loading those into 
working memory may overload it in novice learners, resulting 
in inability to form and store new, more complex schemata to 
solve problems effectively. Experts differ from novices 
primarily in the number and complexity of schemas stored in 
long-term memory [13].  

An important distinction is the level of structural 
knowledge [16] possessed by experts in long-term memory, 
which helps to translate declarative knowledge (such as 
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“elements in series have the same current,” “current is the flow 
of charge,” “voltage is the potential energy per unit charge,” 
and “resistance is voltage divided by current for a resistor”) 
into procedural knowledge (such as “when I see two resistors 
in series, I can combine them into one resistor whose 
resistance is the sum of those of the original resistors.” I.e., 
structural knowledge provides the knowing “why” 
relationships that link factual knowledge (knowing “that”) to 
problem-solving procedures (knowing “how”). In this case, 
the structural knowledge might be that “voltages add for 
elements in series because a charge must change its energy 
each time it moves to a region with a different potential, so 
those changes are additive.” Structural knowledge is used to 
organize and classify declarative knowledge schemas into 
larger “chunks” that can each occupy the limited number of 
“slots” in working memory, thereby minimizing cognitive 
overload. Structural knowledge also facilitates recall of 
information stored in long-term memory, and is a strong 
predictor of a student’s ability to solve knowledge transfer 
problems [17]. It is used by experts to classify problems 
according to relevant principles, whereas novices tend to focus 
on surface features [18]. Congruence of structural knowledge 
between experts and novices is highly predictive of the 
problem solving abilities of the latter [19]. 

Based on the above principles, the approach of guided 
instruction is used here to minimize cognitive load and 
facilitate acquisition of schemata of structural knowledge 
consisting of high-level conceptual relationships in circuit 
analysis based on duality. Following recommendations in the 
literature [20], the basic principles are presented first, 
emphasizing duality, followed by worked examples to 
minimize cognitive load and finally by problem-solving in a 
step-based tutoring system. 

III. DUALITY IN ELECTRIC CIRCUITS 

Symmetry is one of the most pervasive and vital 
organizing principles in physics, mathematics, and related 
areas. Together with symmetry breaking, symmetry groups 
help explain the families of elementary particles, their 
interactions, and their properties such as mass, charge, and 
spin. Conservation laws are direct consequences of symmetry 
based on Noether’s theorem [21]. Duality is a specific type of 
symmetry occurring in many domains, from ancient Chinese 
philosophy (yin and yang) to projective geometry to the 
Boolean algebra used to study digital circuits to wave-particle 
duality in quantum mechanics. In rigorous cases, it often 
involves a set of terms that can be exchanged in theorems to 
yield equally valid theorems, effectively doubling the 
knowledge in a field. In the projective geometry of a plane, for 
example, the words “line” and “point” can be so interchanged 
(e.g., “two points determine a line” implies that “two lines 
determine a point”). In Boolean algebra, the AND and OR 
operators can be exchanged (along with the literals 1 and 0) in 
any axiom or resulting theorem, so that theorems are normally 
presented in pairs in texts on this subject. 

In circuit analysis, terms including those listed in Table I 
are dual to each other so that any theorem interchanging all of 
them remains valid [1], even if the circuit is nonlinear or time 
varying [5]. Another aspect of duality in this domain is that 

the geometric dual of any planar circuit obeys the exact same 
(possibly integrodifferential) equations as the original circuit 
if current and voltage variables are interchanged. To form an 

TABLE I:  SETS OF DUAL TERMS IN CIRCUITS 

Branch current Branch voltage 

Kirchhoff’s current law (KCL) Kirchhoff’s voltage law (KVL) 

Mesh (including outer mesh) Node 

Mesh current Node voltage/potential 

Loop Cutset 

Parallel Series 

Current source Voltage source 

Open circuit Short circuit 

Resistance Conductance 

Inductance Capacitance 

Sought Currenta Sought Voltagea 

Sought Powera Sought Powera 

Control Currentb Control Voltageb 
aCurrent, voltage, or power one wishes to determine 
bFor a dependent source 

 

 

 
Fig. 1. a) A circuit whose exact geometric dual is to be constructed. (The 

symbol at upper right is a halt symbol denoting the reference mesh, as 

described below).  b) A new node is placed in each interior mesh and outside 
the circuit (the latter is the reference node), and new elements are drawn across 

each existing element based on the entries in Table I, rotating source and 

voltage/current senses by +90°. c) The resulting dual circuit, re-drawn for 
clarity, with color-coded nodes.  

  

a) 



exact geometric dual, similar to that in the theory of planar 
graphs [22], a node is placed within each mesh of a given 
circuit, including the region outside the circuit (called the 
outer mesh), as shown in Fig. 1. One then connects these 
nodes through the existing circuit elements, replacing each by 
a dual element with the same numerical value, based on Table 
I. Thus, a 2 Ω resistance is replaced by a 2 S conductance, a 7 
V voltage source by a 7 A current source, and so forth. Sought 
variables (quantities one wishes to find) and control variables 
for dependent sources are similarly replaced, so that a current-
controlled voltage source becomes a voltage-controlled 
current source, for example. The sense of each voltage source 
or voltage is defined as an arrow pointing from its negative 
side to its positive side and is in the direction of an arrow 
denoting a current source or current. The sense of each item 
with a polarity is rotated clockwise by 90° in the dual circuit 
(or alternatively, counterclockwise by the same amount). The 
direction is chosen to make the equations the same for the 
chosen type of analysis, depending on whether one chooses 
clockwise or counter-clockwise mesh currents and 
corresponding node voltages as V1, V2, etc. or –V1, –V2, etc.; 
both choices are arbitrary. The reference node and reference 
mesh (conventionally the outer mesh) must be connected to or 
contain the same elements in both cases, respectively. 

As an example, the mesh equations for the circuit in Fig. 
1a (using a supermesh consisting of meshes 2 and 3) are  

I3 – I2 = (6 S) Vx, I1 = 7 A,  Io = I2, 

 (I2 – I1)(2 Ω) + I2(4 Ω) + I3(5 Ω) + I2(8 Ω) = 0,  and 

Vx = (I2 – I1)(2 Ω). 

The corresponding node equations for Fig. 1c (with a 
supernode consisting of nodes 2 and 3) are 

V3 – V2 = (6 Ω) Ix, V1 = 7 V, Vo = V2, 

(V2 – V1)(2 S) + V2(4 S) + V3(5 S) + V2(8 S) = 0,  and 

Ix = (V2 – V1)(2 S). 

The corresponding equations are identical if currents (I) 
are changed to voltages (V) and vice versa (and units are 
interchanged). The node equations for Fig. 1a likewise 
correspond to the mesh equations for Fig. 1c. 

The duality principle provides a framework to organize 
virtually all knowledge about circuits in a one-to-one 
correspondence that clarifies the structure of the entire subject. 

IV. DEFINING MESHES CONSISTENTLY 

The above discussion highlights the need to redefine the 
term mesh in a circuit to support the duality principle. In 
virtually all modern textbooks and other sources, the term 
mesh is defined as a loop that does not enclose any smaller 
loops or elements in a circuit (having the appearance of a 
windowpane) [6-11, 23-27]. The periphery of the circuit 
(sometimes termed the outer mesh) is excluded in this 
definition. Yet, doing so causes an immediate problem in the 
duality transformations discussed above. To construct a 
geometric dual, a node is placed inside each mesh, but also 
necessarily in the outer mesh. This procedure suggests that the 
outer mesh should be treated on the same exact basis as all 

interior meshes. If it is not, the number of meshes in a circuit 
would differ from the number of nodes in its dual, which 
would prevent construction of dual circuits and substitution of 
dual terms.  

In fact, if a planar circuit is drawn on the surface of a 
sphere using stereographic projection, which Whitney proved 
is always possible [28], the outer mesh in the plane drawing 
maps to a finite region of space surrounded by a loop of 
elements on the sphere, just like any other mesh. Given that 
circuits drawn in these two ways are electrically identical, 
there can be no logical basis to say that the number of meshes 
is different in the two cases. Further, the circuit on the sphere 
can be re-projected onto the plane in a way that makes any 
mesh become the outer mesh without changing any 
connections [28], so there is no reason to discriminate against 
the mesh that happens to lie on the outside for a particular way 
of drawing the circuit. One can even fold the circuit “inside 
out” on a plane to achieve the same transformation [29]. 

An improved definition is therefore that  

A mesh is a loop that does not enclose any smaller loops, 
or that is not enclosed by or a portion of any larger loop in a 
planar circuit. 

The outer mesh is thus placed on an equal footing with 
interior meshes. This approach is consistent with planar graph 
theory, where the term cycle corresponds to a mesh in a circuit, 
and the term face denotes the region either enclosed by a cycle, 
or outside the graph (called the infinite face) [22]. In graph 
theory it is widely accepted that the infinite face is equivalent 
to any other face [22]. Moreover, Guillemin argued that the 
term mesh itself should refer to the regions enclosed by (or 
outside, for the outer mesh) an elementary loop through circuit 
elements [3]. In this view, as in our definition, even the 
simplest single loop circuit has two meshes, the inside and 
outside of the loop. Its dual is a single node-pair circuit, so it 
is logical that it should be a single mesh-pair circuit. The 
circuit of Fig. 1a then has four meshes, not three as usually 
assumed. 

V. DUALIZING MESH ANALYSIS 

Recognizing that a circuit always has one more mesh than 
the number it is conventionally said to possess can help 
resolve a long-standing mystery, namely why the 
conventional textbook procedure for mesh analysis is not fully 
dual to that for nodal analysis. Specifically, the first step in 
nodal analysis is always to select a reference node whose 
voltage is conventionally set to zero, and then number only the 
remaining nodes [6-11, 23-27, 30-32]. Yet no such step 
conventionally appears in mesh analysis, even though it 
should be the exact dual of nodal analysis. The very first 
detailed exposition of mesh analysis by Fleming [33], 
however, based on notes of lectures by James Clerk Maxwell, 
the inventor of mesh analysis, contains a clue to this 
discrepancy. He states that the current of the outer mesh 
(called the “cyclic symbol of exterior space” in that paper) is 
taken to be zero. Yet this assumption seems to have been 
overlooked in most subsequent work, with the exception of a 
few more advanced treatments [3, 5, 34]. For consistency 
(e.g., when the circuit is drawn on the surface of a sphere), the 



current of the outer mesh should be directed counterclockwise 
if the interior mesh currents point clockwise, as shown in Fig. 
2. With this more complete view of mesh currents, it becomes 
clear that every branch current is in fact the difference of two 
mesh currents, not just those of interior elements. It is simply 
that one of the two can be zero. This situation now mirrors that 
of branch voltages, which are always the difference of two 
node voltages, one of which might be zero. 

A consequence of this viewpoint is that no mesh current is 
ever absolute in nature or even measurable; only differences 
of mesh currents can be measured. Duality in fact demands 
that if such a statement is valid for node voltages, as is 
generally accepted, it must be equally valid for mesh currents. 
Yet at least one existing handbook claims that exterior mesh 
currents are in fact absolute and measurable [35], which is 
now seen to be a fallacy. Both node voltages and mesh 
currents are purely fictitious quantities defined to obviate the 
explicit application of Kirchhoff’s voltage law (KVL) in nodal 
analysis and of Kirchhoff’s current law (KCL) in mesh 
analysis, respectively. Adding any constant value to all node 
voltages leaves all branch voltages unchanged, just as adding 
any constant to all mesh currents leaves all branch currents 
unchanged. A different choice of reference node merely adds 
a constant to all node voltages, with no consequence for any 
measurable quantity (like a gauge transformation in 
electromagnetics).  

A logical extension of this analogy follows from the fact 
that one is free to choose a reference node to advantage in 
nodal analysis. Typically, selecting one that is connected to 
voltage sources can reduce or eliminate the need to use 
supernodes, which have less regular KCL equations than do 
normal nodes. Further, a reference node connected to many 
circuit elements is typically somewhat advantageous in that 
the corresponding complicated KCL equation is 
conventionally not written. By duality, it should be possible to 
exercise similar freedom by actively choosing a reference 

mesh to be one that contains current sources and that contains 
many elements. One could do so by re-drawing the circuit with 
the desired reference mesh as the outer reference mesh, but 
such a tedious and difficult process is not needed. There is no 
reason that an inner mesh cannot be selected as a reference 
mesh, if the outer mesh current is then maintained instead of 
being suppressed as is conventionally done. The reference 
node is normally designated by a ground (datum node) symbol 
being attached to it. We therefore propose a corresponding 
symbol to designate an arbitrary reference mesh, called a halt 
symbol. It consists of a circle enclosing an X, as shown in Fig. 
2, and is placed within a mesh (or anywhere outside the circuit 
to designate the outer mesh as the datum mesh). The mesh 
current of the reference mesh is defined to be zero, so only the 
remaining mesh currents need be drawn and numbered. When 
a different reference mesh is (arbitrarily) selected, all mesh 
currents are shifted by the same amount (the current of the new 
reference mesh when the old reference was used). The purely 
fictitious nature of mesh currents is thus exposed. This 
behavior is now exactly dual to the effect of choosing a 
different reference node, as it should be. 

Using this more flexible approach makes the mesh 
analysis procedure completely dual to the nodal analysis 
procedure, as it should be to support duality. Interior and 
exterior current sources are now both treated exactly the same. 
In a circuit like that in Fig. 2, it is advantageous to pick an 
inner reference mesh instead an outer one, simplifying the 
resulting equations. For example, the mesh equations with the 
reference mesh chosen in Fig. 2 are 

I4 = 1120° A, I2 = 3Ix,  Io  = I4 – I5, 

Ix = I3 – I4, I3( j1 Ω) + (I3 – I4)(–j6 Ω) = 0, 

(I5 – I4)( j9 Ω) + (I5 – I2)(4 Ω) = 0, and 

I1(8 Ω) + 30° V + (I1 – I2)(7 Ω) = 0. 

(The last equation is the KVL equation for the outer mesh, 
summing voltage drops in the direction of the outer mesh 
current.) If the outer mesh were instead chosen as the 
reference mesh and the interior ones were numbered the same 
except that the lower left mesh now has clockwise current I1, 
the equations would instead be 

I4 – I1 = 1120° A, I2 – I1 = 3Ix, Io  = I4 – I5, 

Ix = I3 – I4, (I3 – I1)( j1 Ω) + (I3 – I4)(–j6 Ω) = 0, 

(I5 – I4)( j9 Ω) + (I5 – I2)(4 Ω) = 0, and 

(I1 – I3)( j1 Ω) + (I4 – I3)(–j6 Ω) + (I4 – I5)( j9 Ω) +  

(I2 – I5)(4 Ω) + I2(7 Ω)  – 30° V  + I1(8 Ω) = 0, 

which are clearly more complex. (The last equation is KVL 
for a supermesh consisting of meshes 1, 2, and 4.) 

VI. REDEFINING SERIES CONNECTIONS 

Another aspect of conventional circuit analysis that fails to 
obey duality is that of series and parallel connections (the 
latter being originally being referred to as “elements forming 
multiple arcs,” which avoided confusion with the geometrical 
meaning of “parallel” [33]). The usual definition of parallel 
elements is those having the same physical voltage, therefore 

 
Fig. 2. Example of an AC phasor-domain circuit where an interior mesh has 

been selected as the reference mesh using a halt symbol, to simplify the 

resulting analysis. The counterclockwise outer mesh current is shown. Meshes 

2 and 4 become part of the reference supermesh so that no KVL equation need 
be written for them, and no supermesh need be explicitly defined. The label I1s 

in the figure denotes 1120° A, and V1s is 30° V. The symbol Io denotes a 

“sought current;” i.e., one we wish to find. 

 

  



being connected to the same pair of nodes [7-11, 23-26, 30-
32]. This definition is simple, elegant, easy to apply, and fully 
inclusive. Yet the usual definition of series elements is not the 
dual of the above statement. Instead, it is typically stated that 
elements are in series if they have the same physical current, 
due to being pairwise connected to a common node, with no 
other conducting path connected to that node [6-8, 10, 11, 23, 
24, 27, 30-32]. Further, a transitivity property is implied, so 
that if A is in series with B, and B is in series with C, then A 
must be in series with C. This condition is certainly sufficient 
for elements to be in series, but by no means necessary. For 
example, the 4 Ω and 8 Ω resistors in Fig. 1a have no nodes in 
common at all, and neither is in series with any other element. 
Yet they must have the same magnitude of current, as easily 
proved by applying KCL to the subcircuit (one-port) 
consisting of a current source in parallel with a resistor on 
either end of the circuit. They could be combined to form a 
single 12 Ω resistor, replacing one of them by a short.  

The usual end-to-end definition could be salvaged by 
generalizing it to include both subcircuits and individual 
elements, to cover cases like that in Fig. 1a. Doing so 
algorithmically can be very complicated for general circuits, 
however, as subcircuits can be enclosed in larger subcircuits 
and can overlap each other, making it difficult to identify the 
specific subcircuits that form a series connection with 
individual elements. A vastly better approach is to start with 
the normal definition of parallel and form its dual. Namely, 

Two or more elements are in series if they are connected 
in the same pair of meshes. 

(For non-planar circuits, this can be modified to have 
elements connected in the same set of fundamental loops.) For 
this definition to work, one must include the outer mesh as a 
true mesh as was done above, which is logically necessary for 
other reasons anyway. In Fig. 1a, for example, both the 4 Ω 
and 8 Ω resistors are part of the central mesh and outer mesh. 
Being part of the same two meshes obviously implies that their 
branch currents, being the differences of the two relevant 
mesh currents in each case, must always be the same. This 
definition is simple, elegant, and easy to apply without any 
need for subcircuits, and needs no additional transitivity 
property. It is easily implemented as an algorithm by creating 
a meshlist for a circuit, which lists each element and the two 
meshes in which it is connected, and then comparing the 
entries in the list. Such a list is analogous to the normal netlist 
(or nodelist) used for example in SPICE analysis. 

The usual chain-based definition can still be used when 
desired, but the new approach is more general and gives a 
complete list of elements in series, which the usual one does 
not always do unless subcircuits are included (with great 
algorithmic difficulty). It requires introducing the idea of 
meshes a bit earlier than usual, but students may benefit from 
that early introduction when treating mesh analysis later. A 
major advantage of the new definition is its fully dual 
relationship with the usual definition of parallel elements. The 
dual of the traditional definition of series elements would be 
that elements are in parallel if they are both in the same mesh 
and no other element is contained in that mesh. Yet this 
definition clearly fails for the 8 S and 4 S resistors in Fig 1c, 

even though those elements are obviously in parallel, just as 
the usual series definition fails for its dual circuit in Fig. 1a. 
Use of the node-based definition of parallel elements and its 
dual mesh-based definition of series elements is clearly 
superior. Nodes are not the best tool to identify series 
connections, because they are linked to voltages rather than to 
currents. 

VII. IMPLEMENTING THE NEW APPROACHES IN INSTRUCTION 

Lecture notes used by the first author for mesh analysis 
were revised to explain the outer mesh and its importance and 
to include selection of the most advantageous reference mesh 
using the halt symbol starting in Fall 2019 and continuing 
through Spring 2021 (PowerPoint was not used and the 
material was written on a blackboard instead or on a tablet 
when teaching remotely in Fall 2020-Spring 2021). Figures 
showing how a given circuit can be redrawn with any mesh as 
the outer mesh [29] and pictures of that circuit drawn on the 
surface of a sphere were used (together with rubber balls on 
which the circuit had been drawn that were passed around in 
live lectures). The procedure for mesh analysis was revised to 
be exactly dual to that for nodal analysis. The first author’s 
lecture explanations of series relationships were revised in 
Spring 2020 to show them in terms of elements having the 
same pair of mesh currents.  

Further, an introductory interactive multiple-choice 
tutorial was created on mesh analysis in Fall 2019 and 
incorporated into the existing step-based tutoring system 
called Circuit Tutor  [36-39]. This tutorial introduced the new 
definition of meshes that includes the outer mesh as a mesh, 
and the ideas of a selectable reference mesh and halt symbol 
as discussed above. It covers the entire process of mesh 
analysis including current constraint equations for current 
sources, supermeshes for current sources not contained in the 
reference mesh (instead of exterior current sources in the old 
approach), and dependent sources. A previously existing 
introductory tutorial on series and parallel connections was 
revised in late Spring 2020 to include these new features of 
meshes and to explain series connections using both the 
traditional definition with subcircuits and the new definition 
using mesh currents.  

The introductory tutorial on both topics is followed by 
step-based tutoring instruction using circuits whose topologies 
and element values are both generated in a random fashion as 
described previously [36-38]. The “game” in each case 
includes both fully worked and explained examples at four 
progressive levels of difficulty and corresponding exercises. 
The worked examples are included in line with our theoretical 
framework as they are known to be an effective way to 
minimize excessive cognitive load [13, 20]. The series-
parallel game presents random circuit diagrams and asks 
students to click on sets of elements that are either in series or 
in parallel, followed by clicking a button to check the 
appropriate case. Checkmarks are placed directly on the 
elements when they are selected to minimize extraneous 
cognitive load. Immediate feedback is provided with the 
option of detailed explanations of wrong answers. Students 
may also “give up” on a problem at any time for no penalty 
(grading is based purely on completion) to see a full 



explanation and solution, followed by a new problem of the 
same type (or by viewing additional worked examples first). 
Explanations and visualizations were introduced starting in 
late Spring 2020 on the mesh-based definition of series 
elements, including display of color-coded mesh currents and 
colored highlighting of subcircuits that make individual 
elements be in series using the traditional chain-based 
definition. A YouTube video is also available from within the 
software to illustrate both the operation of the user interface 
and to show example problems being worked at each level. 
This approach can help to minimize cognitive overload by 
using both auditory and visual portions of working memory, 
as the problem solving is narrated [13]. A complete PDF 
transcript of each student’s work is generated and stored 
(including both correct and incorrect answers, so labeled) for 
their later use while studying or reviewing. The series-parallel 
game incorporates a built-in pre-test and post-test (two 
problems each), but such tests have not yet been implemented 
for mesh analysis. 

For the mesh analysis topic, four separate “games” are 
available on writing the relevant equations (without solving 
them) in both DC and AC (phasor) cases, and on solving the 
complete problems (when given the KVL equations) for both 
DC and AC circuits. Students select the type of equation to 
enter (current constraint due to a current source, KVL for a 
mesh or supermesh, equations for circuit variables controlling 
dependent sources, and sought variable equations for any 
specified branch currents, voltages, or powers (the latter for 
now only in DC circuits) [36-38]. The placement of the halt 
symbol in an inner mesh is not yet supported but is planned to 
be. Once an equation type is selected, the student is now asked 
(since Fall 2020) for which mesh(es) they wish to write a KVL 
equation or for which source they wish to write another type 
of equation. If they select inappropriate meshes, they are 
immediately warned and charged with an error (a certain 
number of errors causes a game to be forfeited and to have to 
be repeated for credit).  

Students are then presented with a palette of terms of 
appropriate types for the selected type of equation, which they 
then drag & drop into an equation builder and fill in the blanks 
to create an equation. Once entered, they are given immediate 
feedback on its correctness and potentially charged with an 
error and given a chance to correct it if they have not exceeded 
their allowable errors. In the games requiring complete 
solutions, they must re-formulate their equations into standard 
form, then create and solve the appropriate matrix equation 
(doing the algebra on paper), and finally compute the desired 
sought quantities using a calculator (with complex number 
abilities for AC problems). Each step is immediately checked, 
and errors are potentially charged. They can give up at any 
point to see a fully worked and explained solution without 
penalty (but must then complete another full problem of that 
type). 

VIII.   DATA AND RESULTS 

An initial analysis of the new version (2.0) of the series-
parallel game was conducted in Spring 2020 with students 
who had already completed the prior version 1.0 at the 
beginning of that semester (which used the traditional chain-

based definition and would not even accept sets such as the 4 
Ω and 8 Ω resistors in Fig. 1a as a valid series set). These 
students in three different sections (with two instructors) were 
offered extra credit to complete the revised introductory 
tutorial and game (v. 2.0) and to complete a survey comparing 
the two. A total of 72% of 88 students either strongly or 
somewhat agreed that the mesh-based definition of series 
connections is better than the chain-based definition they 
learned originally, and the same percentage strongly or 
somewhat agreed that future students should use version 2.0 
in preference to the prior version. (These percentages were 80 
and 87%, respectively, in the section of an instructor who used 
the new definition in lecture as well.) Only 11% of students 
strongly or somewhat disagreed that the new definition is 
better, and 13% strongly or somewhat disagreed that future 
students should use version 2.0. The remainder in each case 
were neutral. 

All students used v. 2.0 of the series-parallel game in Fall 
2020 and were surveyed on their opinions of the new approach 
at the end of the semester. A total of 80 students responded, 
mainly from four class sections at two different institutions. 
Of these, 75% felt that the new definition was somewhat or 
much better than the old one, 16% were neutral, and only 9% 
felt it was somewhat or much worse. When recommending 
which definition students should use in the future, 29% 
favored using only the mesh-based definition, 10% favored 
using only the traditional definition, and 51% favored using a 
combination of the two as is now done in Circuit Tutor (the 
remainder felt it did not matter). Analysis of qualitative 
comments in Spring 2020 by dividing them into (non-
mutually exclusive) categories showed the most common 
views to be that the new method yielded more complete 
understanding and identified series elements missed by the old 
method, and that the new method is better than the old one for 
a variety of other reasons (29 students each). A total of 19 
students preferred the old method, feeling the new one was too 
complicated or confusing. Comments in Fall 2020 were 
similar. Four students mentioned favoring the dual nature of 
the new approach. 

The new version of the introductory tutorial on mesh 
analysis and the related game were used in 57 different class 
sections taught by 24 different instructors from Fall 2019 
through Spring 2021 at 7 different institutions of different 
types (including 3 minority-serving institutions). Over 1800 
students used them. Between 90-95% of these students rated 
the activity as “very useful” or “somewhat useful” to learn 
mesh analysis (as opposed to “not very useful” or “a waste of 
time”) in a survey administered automatically at the end of 
each game. To assess student opinions of the new approach, a 
total of 10 sections at four institutions were given a survey 
after using the material in Fall 2019, Fall 2020, and Spring 
2021. Of the 195 respondents, 42% felt the new approach was 
much better than the traditional one in their textbooks, 41% 
felt it was somewhat better, 11% felt it was about the same, 
and 9% felt it was somewhat or much worse. For hypothesis 
testing using a 50% threshold for positive reactions from 
students to the new approach compared to the traditional 
approach, a one-sample t-test found that significantly more 
students had positive reactions to the approach than 



anticipated (p < .01). Further, 70% of respondents felt that 
students who had not yet studied this topic should learn it with 
the new approach, 25% felt it did not matter, and only 5% 
recommended the traditional approach. Qualitative comments 
were also solicited in Fall 2019 and Spring 2021. Of the 63 
comments received, 38 were considered positive towards the 
new approach, 7 as neutral, 5 as negative, and 13 as irrelevant 
or no opinion. Six of the comments specifically mentioned the 
duality and symmetry between nodal and mesh analysis as 
helpful for learning. Some example comments are shown in 
Table II.  

A special effort was made to emphasize the symmetry 
between nodal and mesh analysis and to improve student 
learning by incorporating the “desirable learning difficulties 
[40]” of spacing student work over time and interleaving the 
two topics of nodal and mesh analysis in two sections taught 
by the first author in Spring 2021. Students in each section 
were randomly assigned to one of two groups, A and B. Group 
B had  a single due date for the four games involving either 
DC nodal or mesh analysis, which they could complete in any 
order. Group A had four different due dates spread over the 
space of a week. The first level of the node equations game, 
node solutions game, mesh equations game, and mesh 
solutions game were due after two days; the second levels of 
each were due two days later; the third levels two days later; 

and the fourth levels three days later (the same day that all the 
work was due for Group B). Students in Group A were thereby 
encouraged to compare and contrast the nodal and mesh 
analysis methods by being required to “interleave” the two 
topics in their work. For AC nodal and mesh analysis later in 
the semester, the roles of Groups A and B were reversed for 
fairness. Learning was assessed (to a limited degree) using a 
single exam problem on either nodal or mesh equations 
(depending on section) that formed 20% of the Hour Exam #1 
grade for the DC topics and 22% of the Hour Exam #2 grade 
for the AC ones. Hypothesis testing using an independent t-
test analysis found no statistically significant differences on 
the scores for those problems.    

A survey was administered on the above experiment, 
which asked students in one question if they felt that they were 
able to get a deeper understanding of nodal and mesh analysis 
by comparing and contrasting those methods. Of the 34 
respondents, 74% either strongly agreed or agreed, 9% 
disagreed, none strongly disagreed, and 12% were neutral. In 
exam problems involving DC or AC mesh analysis, 50%, 
45%, and 61% explicitly marked a reference mesh in three 
separate cases. In two exam problems where it was not 
particularly advantageous to pick an inner mesh as the 
reference mesh, 0% and 8% of students did so, and in one 
problem where it was advantageous, 13% did so. Higher rates 
of usage will likely be achieved if Circuit Tutor is modified to 
allow choosing a mesh other than the outer mesh as a reference 
mesh, to allow homework practice using that approach. 

IX. ANALYSIS AND DISCUSSION 

Only two major topics usually taught in linear circuit 
analysis courses are typically treated in ways that do not fully 
comport with duality, namely the non-dual traditional 
definitions of series and parallel connections and mesh 
analysis. The above discussion has affirmed that both topics 
can be approached from fully dual points of view, which 
moreover have other advantages (e.g., simplifying mesh 
equations in some cases by an optimal choice of reference 
mesh, and identifying series elements that would be missed 
using the conventional definition). A positive answer can 
therefore be given to the first portion of the research question, 
whether these topics can be presented in a fully dual fashion. 
The second portion of the question asks if students will accept 
and appreciate these new treatments. The survey data 
discussed above show that students felt the new approaches 
were better than the old ones by margins of 72%, 75%, and 
83% in different surveys, and only 11%, 11%, and 9% thought 
the new approaches were worse. Regarding future use, 72% 
favored the revised approach (including both mesh-based and 
connection-based definitions of series elements) and only 
13% favored the prior version of series and parallel 
instruction. In a second survey, 79% favored using the mesh-
based definition either exclusively or in combination with the 
traditional one, and only 10% favored using only the 
traditional one. For mesh analysis, 70% recommended the 
new approach and only 5% specifically recommend the 
traditional one. Taken together, these surveys clearly show 
that students not only accept approaches that embrace duality 
but actually prefer them, answering the second part of the 
research question in the affirmative. 

TABLE II.  SAMPLE STUDENT COMMENTS ON THE NEW APPROACH 

• The duality concept is genius. I think it is very important for students to 

understand and grasp the concept, even if it's a bit confusing (Which it 

isn't...) 

• The new approach really helped me with mesh analysis because, although 

it confused me at first, it made things a lot easier once I got the hang of 

it. Especially since it was similar to the way we dealt with node analysis. 

I liked it. 

• I never learned mesh analysis by textbook or the traditional method. 

However, getting to look at both nodal and mesh analysis through the 

same lens made it very easy to catch on. Since the same line of logic 

applies to both, it didn't feel like I was learning two separate topics, but 

rather two different applications of the same principles, which made a lot 

of sense to me. 

• Tying mesh and nodal analysis together helped my comprehension and 

made retention easier  

• The difference between working with currents and voltage is flipped. It is 

the same, but mirrored. I love that this new approach helped complete the 

symmetry of the two approaches. 

• I've taken this Circuits 1 online before and many mistakes with the old 

method. I've been more successful by using the new method. 

• The new approach is definitely beneficial for displaying the concept of 

duality. However, it does not necessarily make mesh analysis easier than 

if it was ommitted entirely. With that being said, it also does not make it 

harder. 

• Having a reference mesh was a bit confusing to me. 

• It's useful in cases in which there are current sources within the circuit but 

not on the outer mesh, which can make the problems easier to solve in 

avoiding using supermeshes 

• The more similar the steps are to nodal analysis, the harder they will be 

to mess up. Teaching mesh analysis in this way has been extremely 

beneficial due to how similar they look through the techniques learned in 

class. 

• As long as practice opportunities are provided on how to determine where 

to put the reference mesh, the new method will work well. The lack of 

practice discouraged me from picking a reference mesh that wasn't the 

outer loop due to my worries of if I am abiding by passive sign convention 

or not. 

 



Having reformulated the key obstacles to using duality, the 
next step will be to develop a full set of instructional materials 
that develop dual topics in a one-to-one correspondence with 
their duals, such as KVL and KCL, voltage division and 
current division, short and open circuits, series and parallel 
RLC circuits, etc. It is expected that doing so could result in 
improved understanding of the distinctions between current 
and voltage, which are often confused by students beginning 
(or even completing) courses in circuit analysis [41, 42]. 
These materials should incorporate simple graphic organizers 
to help students understand, as doing so is known to be 
effective [20]. A possible example is shown in Fig. 3. Once 
such materials are fully developed, the next research step 
should be to determine if a dual approach can improve 
learning, retention, and transfer. 

X. CONCLUSIONS 

Two key subject areas in linear circuit analysis have been 
shown to be inconsistent with the underlying duality of 
electric circuits, namely the conventional definition of series 
elements and the usual approach to mesh analysis. To be fully 
inclusive and dual to the normal definition of parallel 
elements, series elements should be defined as those 
belonging to the same pair of meshes (and therefore having 
the same currents), just as parallel elements are those 
connected to the same pair of nodes (therefore having the 
same voltages). Mesh analysis needs to permit the flexibility 
of explicitly choosing a reference mesh anywhere in the 
circuit, just as nodal analysis does. In both cases the basic 
variables (node voltages and mesh currents) should be 
recognized as being equally fictitious and unmeasurable. For 
both of the above areas, it is essential to recognize that the 
outer mesh of a circuit is in every way equivalent to inner 

meshes, so that the very definition of mesh must be revised to 
comport with duality.  

These ideas have been successfully incorporated into 
traditional lectures as well as a step-based learning system, 
and student surveys indicate strong (72-83%) endorsement of 
the revised approaches. Further work should center on 
developing learning materials that use duality as a central 
theme to help create structural knowledge. That knowledge 
can be used by students to form expert-like schemas while 
avoiding excessive load on their working memory. The 
duality concept can be further be exploited when comparing 
the time and frequency domains in phasor, Laplace, and 
Fourier-based circuit analysis. 
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