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Abstract

Quantum Neural Networks (QNNSs), or the so-
called variational quantum circuits, are important
quantum applications both because of their similar
promises as classical neural networks and because
of the feasibility of their implementation on near-
term intermediate-size noisy quantum machines
(NISQ). However, the training task of QNNs is
challenging and much less understood. We con-
duct a quantitative investigation on the landscape
of loss functions of QNNs and identify a class
of simple yet extremely hard QNN instances for
training. Specifically, we show for typical under-
parameterized QNNs, there exists a dataset that
induces a loss function with the number of spuri-
ous local minima depending exponentially on the
number of parameters. Moreover, we show the
optimality of our construction by providing an al-
most matching upper bound on such dependence.
While local minima in classical neural networks
are due to non-linear activations, in quantum neu-
ral networks local minima appear as a result of
the quantum interference phenomenon. Finally,
we empirically confirm that our constructions can
indeed be hard instances in practice with typical
gradient-based optimizers, which demonstrates
the practical value of our findings.

1. Introduction

Motivations. With the recent establishment of quantum
supremacy (Arute et al., 2019; Zhong et al., 2020), the
research of quantum computing has entered a new stage
where near-term Noisy Intermediate-Scale Quantum (NISQ)
computers (Preskill, 2018) become the important platform
for demonstrating quantum applications. Quantum Neural
Networks (ONNs) (e.g., Farhi et al. (2020; 2014)), or the
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so-called variational quantum method (e.g., Peruzzo et al.
(2014)), are the major candidates of applications that can be
implemented on NISQ machines.

Typical QNNs replace classical neural networks (ClaNNs),
which are just parameterized classical circuits, by quan-
tum circuits with classically parameterized unitary gates.
Instead of a classical mapping in ClaNNs from input to out-
put, QNNs use a quantum one which could be very hard for
classical computation to simulate (e.g., Harrow & Monta-
naro (2017)) and hence provide potential quantum speedups
for machine learning tasks (e.g., see the survey by Bia-
monte et al. (2017) and by Harrow & Montanaro (2017)
and examples in Schuld & Killoran (2019) and in Havlicek
et al. (2019)). Moreover, given their quantum-mechanical
nature, QNNs (or the variational quantum method) have
also demonstrated huge promises in attacking problems
in quantum chemistry and material science. Contrary to
quantum supremacy tasks which serve only as a way to
separate quantum and classical computational power but are
not necessarily useful, Google has recently used the same
machine to demonstrate the variational quantum method
in calculating accurate electronic structures — an important
task in quantum chemistry (Arute et al., 2020). Please see
the survey (Benedetti et al., 2019) for more recent exciting
developments of QNNs.

Similar to the classical case, the success of QNN applica-
tions will critically depend on the effectiveness of the train-
ing procedure which optimizes a loss function in terms of
the read-outs and the parameters of QNN for specific appli-
cations. The design of effective training methods has been
under intense investigation both empirically and theoreti-
cally for ClaNNs. Moreover, understanding the landscape
of the loss functions (e.g., Sagun et al. (2015); Choroman-
ska et al. (2015b;a); Baity-Jesi et al. (2018)) and designing
corresponding training/optimization methods have recently
emerged as a principled approach to tackle this problem:
(Auer et al., 1996; Safran & Shamir, 2018; Yun et al., 2018;
Ding et al., 2019; Venturi et al., 2018) showed the existence
of spurious local minima for ClaNNs; In turn, (Kawaguchi,
2016; Du & Lee, 2018; Soudry & Carmon, 2016; Nguyen
& Hein, 2017; Li et al., 2018) characterized conditions for
benign landscapes in terms of choice of activation, loss
function and (over)-parameterization, providing insights on
the design of ClaNNs and motivating explanations to the
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success of gradient descent in training ClaNNs in certain
scenarios (Jacot et al., 2018; Arora et al., 2019; Du et al.,
2019); And training methods beyond simple variants of gra-
dient descent have been devised for training with guarantees
(Goel et al., 2017; Goel & Klivans, 2019; Zhong et al., 2017;
Du & Goel, 2018).

Much less has been understood for QNNs. Most of the study
of QNNs takes a trial-and-error approach by empirically
comparing the performance of standard classical optimizers
on training QNNs’ loss functions (Benedetti et al., 2019).
It has been observed empirically that training QNNs could
be very challenging due to the non-convex nature of the
corresponding loss functions (e.g., Wang et al. (2020; 2018)).
However, these empirical studies are unfortunately restricted
to small cases due to the limited access to quantum machines
of reasonable sizes and the exponential cost in simulating
them classically.

A theoretical study on the training of QNNs would be more
favorable and scalable given the limit on empirical study. In-
deed, a handful of such theoretical progress has been made.
One prominent result is that random initialization of param-
eters will lead to vanishing gradients for much smaller size
QNN than ClaNNs (McClean et al., 2018) and hence pose
one unique training difficulty for QNNs. Most of the remain-
ing theoretical results are about special cases of QNNs such
as quantum approximate optimization algorithms (QAOA)
(e.g., Farhi et al. (2014); Farhi et al. (2019)) and extremely
over-parameterized cases (e.g., Rabitz et al. (2004); Russell
et al. (2016); Kiani et al. (2020)).

In this paper, we conduct a quantitative investigation on the
landscape of loss functions for QNNs as a way to study
their training issue. In particular, we are interested in un-
derstanding the properties of local minima of loss functions,
such as, (1) the number of local minima depending on the
architecture of QNNs, and (2) whether these local minima
are benign or spurious ones, meaning that they are either
close to the global minima or saddle points that can be es-
caped, or they are truly bad local minima that will hinder
the training procedure. We are also motivated by the obser-
vation that QNN share some similarity with linear neural
networks without non-linear activation layers (Kawaguchi,
2016) or one-hidden layer neural networks with quadratic
activation (Du & Lee, 2018) that are both known to have
only benign local minima. The similarity is due to the fact
that quantum mechanics underlying QNNs has a linear al-
gebraic formulation similar to the linear part of ClaNNs.
(Details in Section 2.) It is hence natural to wonder whether
the local minima of QNN could share these nice properties.

Contributions. Contrary to our original hope, we turn out
to identify a class of simple yet extremely hard instances
of QNN for the training. Despite the similarity between
QNN and linear classical neural networks, we demonstrate

that spurious (or sub-optimal) local minima do appear in
QNNs and provide a quantitative characterization of the
possible number of them. We focus on QNNs with the com-
monly used square loss function under a practical range
of the number of parameters (or gates). Specifically, we
identify a general condition of under-parameterized QNNss,
which we refer to as QNNs with linear independence. We
show for such QNNs, a dataset can be constructed such
that the number of spurious local minima scales exponen-
tially with the number of parameters. It demonstrates that
QNN s behave quite differently from linear neural networks
(e.g., Kawaguchi (2016)) but share the feature of neurons
with non-linear activation functions (e.g., Auer et al. (1996)).
This conceptual paradox could be explained by one central
phenomenon of quantum mechanics behind QNN called
interference. We observe that interference replaces the role
of non-linear activation in creating bad local minima for
QNN:Ss. (Section 3)

We investigate further and prove that typical under-
parameterized QNNs are indeed with linear independence.
This indicates that for almost all under-parameterized QNNss,
there is a dataset where training with simple variants of
gradient-based methods is hard. (Section 4)

Moreover, we show our construction is almost optimal in
terms of the dependence of the number of local minima on
the number of parameters, by developing an almost match-
ing upper bound. This upper bound also demonstrates a
sharp separation between QNNs and ClaNNs: For ClaNNs,
provided an arbitrary number of training samples, the num-
ber of local minima could be unbounded, and hence won’t
be upper bounded by any function of the number of parame-
ters (Auer et al., 1996). (Section 5)

Finally, we perform numerical experiments on concrete
QNN instances with typical optimizers, and empirically
confirm that our constructions can indeed be hard instances
in practice. These experiments strengthen the value of our
theoretical findings on the practical end. (Section 6)

It is worthwhile mentioning that our investigation on the
landscape of loss functions has a direct implication on the
hardness of gradient-based methods. While it does not rule
out the possibility of efficient non-gradient-based training,
there are no obvious solutions to the efficient training for
our constructions. Identifying such training methods would
be very interesting.

Related work. There are only a few previous studies on
the training of QNNs, each of which has targeted at some
specific parameter range for QNNs. The observation of
vanishing gradients for random initialization of QNNs (Mc-
Clean et al., 2018) provides hard QNN instances for training,
which, however, still require many layers to demonstrate
the difficulty of training in practice. Our constructions are
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based on a general condition which includes simple special
cases like 1-layer QNN that are already able to demonstrate
QNNSs’ training difficulty.

Another line of work (Rabitz et al., 2004; Russell et al.,
2016; Kiani et al., 2020) considers the extremely over-
parameterized QNN cases. Specifically, when the number of
parameters is comparable to the dimension of the underlying
quantum system and the quantum controllability condition
can be established, all local minima of QNNs’ loss func-
tions will become global (Rabitz et al., 2004; Russell et al.,
2016). This theoretical prediction has also been observed
empirically (Kiani et al., 2020). However, as the dimension
of quantum systems grows exponentially with the number of
qubits, this over-parameterized case can hardly be realistic
for any QNN of reasonable size.

2. Preliminaries

Supervised learning. The goal of supervised learning is to
identify a mapping from the feature space X’ to the label
space Y, given a training set {(x;,y;)}/"; C (X x V)™
of m samples of feature vectors and labels. A common
practice to find a mapping based on a training set is through
empirical risk minimization (ERM), finding a mapping that
best align with the training sample with respect to a specific
loss function I : Y x Y — R. Let g; be the prediction of a
certain mapping given x;. The goal of ERM is to find the
mapping that minimizes the average loss = 3" | 1(9;, ;).
Throughout this paper we will consider square loss (3, y) =
(4 —v)*

Classical neural networks (ClaNNs). Neural networks are
parameterized families of mappings, widely considered for
practical problems. Typical feed-forward neural networks
are parameterized by a sequence of matrices {W; }!_,, such
that W; € R% *di—1 with d; = 1 and d is the same as the
dimension of the feature space X'. For feature vector x, the
output ¢ of the neural network is

§=Wio(Wi_1o(-- o(Wix)---)), (1)
)

where o(-) denotes an element-wise activation on the out-
put of each layer. (See Figure 1.) Linear neural net-
works (Kawaguchi, 2016) is one special example where o is
the identity mapping o(w) = w: § = W;W;_1--- Wix.
Another example is one-hidden layer neural networks with
quadratic activation o(w) = w? (Du & Lee, 2018), where
the output § = xTwalx. Given the training set
{(xi,y:) }i™,, the empirical risk minimization with square
loss solves the optimization problem:

1 - T T 2
min — x; Wi Wix; —y; 2
W, m Z( i 1 144 yv) ( )
=1
A common choice of o(+) is non-linear activation such as
Relu or Sigmoid. These activations introduce non-linearity

which is the source of spurious local minima in neural net-
works (Kawaguchi, 2016; Auer et al., 1996).

Quantum neural networks. QNN share the layered struc-
ture (Figure 1) where a linear transformation U; is applied
on the output of the previous layer, however, with the fol-
lowing differences:

(1) Input. The inputs to ClaNNs are feature vectors. Yet
for QNNS, a feature vector x is first encoded into a quan-
tum state p, then fed to the quantum circuits. We are not
restricted to specific encoding scheme (e.g., (Mitarai et al.,
2018; Benedetti et al., 2019; Lloyd et al., 2020)). For tech-
nical convenience, we will directly work with a set of m
samples of quantum encoding and labels S = {(p;, y:)} 74
where p; encodes the information of x;.

(2) Linear Transformation & Parameterization. The linear
transformations {W, }!_, in ClaNNs could be general ma-
trices, whereas the corresponding {U;}!_; in QNNs must
be unitaries. Moreover, although {U; }!_, can be efficiently
implemented by quantum machines, their classical represen-
tations are matrices of exponential dimension in terms of
the system size (e.g., the number of qubits in QNNs). This
makes classical simulation of QNNs extremely expensive
and also makes the parameterizations of {U;}!_; differ-
ent from the straightforward parameterizations of {W,}!_;
(explained below).

(3) Output. Contrary to ClaNNs, one needs to make a
quantum measurement to read information from QNN (ex-
plained below). While there exist more advanced models of
QNNs with additional nonlinearity, we consider the most
basic QNNs, where the measurements are the only source of
slight non-linearity allowed by quantum mechanics, which
as we will see won’t necessarily create bad local minima
for the training. Note further there is no direct counter-
part of classical non-linear activation o (-) in QNNs of our

consideration.
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Figure 1. An illustration of layer-structured classical and quantum
neural networks.

Mathematical formulation of quantum states. A general
quantum state with dimension d can be represented by a
density operator that is a positive semidefinite (PSD) Hermi-
tian matrix p € C4*4 with tr(p) = 1. A quantum state p is
pure if p = vv' for a £, unit vector v. A two-dimensional
quantum state p € C2*? is usually referred as a qubit, the
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quantum generalization of the classical binary bit. The state
of n qubits lies in ®7_; C2*2 following the tensor product of
spaces for single qubits, and is a linear operator on a Hilbert
space with dimension d = 2", i.e., scales exponentially with
the number of qubits n.

Parameterization of quantum transformations. Instead
of directly parameterized matrices W;, QNNs typically con-
sist of classically parameterized quantum gates. A gen-
eral form of these gates is exp(—ifH), where 6 is the
parameter, H the Hamiltonian (i.e., a Hermitian matrix)
, and the exponential is a matrix exponential. For example,
a commonly used gate set, called the Pauli rotation gate
(e.g., Farhi et al. (2020); Li et al. (2017); Ostaszewski et al.
(2019)), can be expressed as exp(—ifP.) (on c-th qubit)
or exp(—iP. @ P.) (on c-th and ¢’-th qubits), where P,
refers to Pauli X, Y, Z matrices.! We can also group gates
in QNNs with respect to the layer structure in Figure 1 by
putting gates that can be executed in parallel in the same
layer. For example, let V; ;(6; ;) = exp(—ib; ;H, ;) be
the jth gate in the ith layer. Then U;(0) = [[; V,;(0;,5)
and

U(0) = U(0)U;-1(0)--- U1 (), 3)
where U(0) refers to the unitary transformation of the entire
QNN with parameters 6. For technical convenience and to
highlight the dependence on the number of parameters p,
we can also write

U(e) = Vp(op)vp—l(ap—l) < Vi(01), “4)

with V;(6;) = e~*H for Hamiltonian H; and [ € [p].

Quantum measurements and observables. Quantum o0b-
servables, mathematically formulated as Hermitian matri-
ces M € C%, are used in quantum mechanics to encode
the information of the classical random outcomes gener-
ated by quantum measurements on quantum states. The
expected outcome ¢ of observable M on the output state
U(0)pU'(8) of any QNN U(6) is given by

7 =f(p,6) = tx(U(6)pU" (6)M)
or tr(viUT(0)MU(#)v) when p = vv'.

A more complete introduction to quantum mechanics and
QNNSs can be found in S.M. Sect. A.

Given a quantum training set S = {(p;, y;)}/*, and a QNN
with output § = f(p, 6), the empirical r1sk m1n1m1zat10n
with square loss optimizes the following loss function:

v [0 1 o —i N
=[] v 5] 2=l
10

matrix Z, exp(—i0Z) = {e;’ 699}-

701} . For Pauli

(#(U@p T OM) - 5) . ©

Ms

1
m
i=1

When quantum encoding states are pure, namely p; = vivz

for i € [m], the loss function becomes

1= L3 (vuiemuey, ) ©

Jj=1

which resembles Eqn.(2) from one-hidden layer neural net-
works with quadratic activation except for unitary transfor-
mations. It is known in (Du & Lee, 2018) that such neural
networks do not possess spurious local minima almost cer-
tainly, whereas we establish a completely different behavior
for QNN:gs.

Characterization of the landscape. For a differentiable
function F' defined on an unconstrained domain, 8* is a
critical point if and only if the gradient vanishes at the point:
VF(0") = 0. 0 is a local minimum if and only if there is
an open set U containing 8™ such that F'(60*) < F(8) for all
6 € U. A local minimum is global if the minimum value of
F is attained at 0. For twice-differentiable function over an
unconstrained domain, 0™ is a local minimum if the Hessian
is positive definite at 8™ (sufficient condition) and only if
0" is a critical point (necessary condition).

Note further that the form of quantum gates exp(—i6H)
will be periodic in 6 for H with rational eigenvalues, which
is typically true for commonly used H (e.g., Pauli matrices).
It hence suffices to study the number of (spurious) local
minima of the loss function within one period.

3. Exponentially Many Spurious Local
Minima for Under-parameterized QNNs

In this section, we present our main result on the construc-
tions of datasets for p-parameter quantum neural network
instances with 2(2P) spurious local minima. We consider
QNN defined in Eqn. (4), with parameterized gates V;(6;)
generated by H; with eigenvalues 1. This is the case
for single-qubit parameterized gates and two-qubit gates
generated by Kronecker products of Pauli matrices.

Shifting H; by I for any A € R introduces a global phase
factor to the output state and does not change the output
f(p, 0). Also, shifting the observable M by Al is equivalent
to shifting the labels in the dataset by —\. Without loss of
generality, we assume tr(H;) = 0 and tr(M) = 0.

We start by characterizing the output f(p, 0). For any [ €
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[p], define linear maps CIJZ(O) (), <I>l(1) () and <I>l(2)(~) such that

1
2”(A) = 5 (A + HAH) )
MWy = 1
P, (A) = §(A - H,AH,)) ®)
1
@7(A) = 3[H), Al ©)
Here [-, -] is the commutator of two matrices. For any

Hermitian A, @EO)(A) commutes with H;, and the out-

put of @l(l) and <I>l(2) anti-commute with H;. For any vector
£ €{0,1,2}?, define:

De(A) =0 0 a0 00 (A)  (10)
with o denoting the composition of mappings.
The observable in Heisenberg picture M(6) :=
U (0)MU(6) can be expanded as:
> M) J] cos20, ] sin20, (1D

£€{0,1,2}» 16 =1 16, =2

The QNN output f(p, 0) = tr(pM(0)) can be expressed
as the following trigonometric polynomial:

> tr(p®e(M)) ] cos26, [] sin26r (12)

£e{0,1,2}» 1:6=1 17:€, =2

As shown in S.M. Sect. B, the loss function remains invari-
ant under the joint transformation ¢; — 60; + 7 and

o () »H@" ()H, = 2{”(-) (13)
V() »H e (VH = o () (14)
V() »H0 (VH = 07 () (15)

Under the transformation 6; +— ¢; + 7, terms in Eqn. (12)
associated with & : & = 0 are invariant, while terms associ-
ated with € : & = 1, 2 flip signs.

From an alternative perspective, L(0;S) contains oscil-
lating wave components proportional to cos 46;, sin46;,
cos 26; and sin 26;, hence periodic with 7 on each coordi-
nate. However, due the existence of lower frequency, the
periodicity with 7 does not always hold for all datasets.
Our construction utilizes the presence and absence of this
5 -translational symmetry.

We will focus on a general class of QNN, which we call
QNN with linear independence:

Definition 1 (QNN with linear independence). A QNN is
said to be with linear independence, if the associated set of
3P — 1 operators {®¢(M)}¢c(0,1,2}»,£0 forms a linearly
independent set.

Note that for the linear independence condition to hold, the
dimension of the QNN d > 3r/2, Namely, it is a under-
parameterized case, which differentiates us from the over-
parameterized ones (Rabitz et al., 2004; Russell et al., 2016;
Kiani et al., 2020). Our main result states:

Theorem 2 (Construction: exponentially many local min-
ima). Consider QNNs composed of unitaries generated by
two-level Hamiltonians, parameterized by 8 € RP. If the
ONN is with linear independence, a dataset S can be con-
structed to induce a loss function L(0;8) with 2P local
minima within each period, and 2P — 1 of these minima are
spurious with positive suboptimality gap.

Proof of Theorem 2. The dataset we construct is composed
of two parts Sy and S;. The first component of the loss
function L(0; Sp) is constructed with 2P local minima using
the 7-translational symmetry:

Lemma 3 (Creating symmetry). For QNNs with linear in-
dependence as mentioned in Theorem 2, a dataset Sy can
be constructed to induce a loss function L(0;Sy) that (1)
has a local minimum at some 0, and (2) is invariant under
translation 0 — 0; + % for all | € [p].

Due to the translational invariance, for any ¢ € {0,1}?,
0" + 5 is a local minimum for L(8; Sy), forming a total
of 2P local minima. A second dataset S; is introduced to
break this symmetry, creating spurious local minima:

Lemma 4 (Breaking symmetry). Consider the QNN,
dataset Sy and local minimum 0 defined in Lemma 3. Let
O denote the set of 2P local minima due to the translational
invariance. There exists a dataset S1 such that

inf  L(6;Sp) + L(0;S1) <

0eN(6*)
ge%fe,)L(O;So)+L(0;81) (16)
forall @' € ©/{6*}, and that
L(0;S0) + L(8;S) > L(0';So) + L(0';S1)  (17)

forall @' € © and all 6 € ON(0'). Here N(-) denote
a bounded and closed neighbourhood, such that N'(6) N
N(0') = 0 for any 0,0" € ©. And let ON denote its
boundary.

Eqn. (17) in Lemma 4 ensures the existence of a local mini-
mum within N/ (0) for each 8 € ©, and Eqn. (16) promises
that only the local minimum within A(6*) achieves the
global optimal value. Combining Sy and S; finishes the
proof for Theorem 2. O

We give proof sketches for Lemma 3 and 4. The full proofs
are postponed to S.M. Sect. B.
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Proof sketch for Lemma 3. It suffices to construct a dataset
So = {(py, yx)} 122, such that (1) for all & € [p], fr(0) :=
(p, M(0)) — yy, is either symmetric or anti-symmetric
under 6; — 0; 4 % for all | € [p], and (2) the intersection
O of the set of roots O of f;(0) = 0 is non-empty and
contains at least one isolated point *. For such Sy, 6* is an
isolated root of the non-negative loss function L(8; Sp) =

2k fi(0)?.

The existence of such dataset Sy follows from the linear
independence of operators for the QNN. As a result, for any
k € [mg], the solution to the following linear system for
Hermitian D;, € C?*4 is non-empty:

{ tr(Dy - I) = 0 a8)

tr(Dy, - (M) = fer, V€ #0.

Here f&k is the coefficient corresponding to the term
11,21 o820 [ 1), —osin 26y in fi(6). Given the so-
lution {D;};™,, Sp can be constructed by setting p;, :=
éI + Dy, for a proper scaling factor x and let y;, =
{r(py, @0 (M)). O

Proof sketch for Lemma 4. Rewrite the loss function as

2 &
L(6;81) = - - > yk tr(pM(6)) (19)
k=1

ma miq

1 5 L 2
+ o ’;tr(pkM(G)) +o ;yk (20)

As will be made clear in S.M. Sect. B, our key observa-
tion is that, under a joint scaling of ¥, and p,, the second
term can be arbitrarily suppressed while the first term re-
mains the same. Therefore it suffices to study the first term
L'(6;8) = _n% Sorty yk tr(pp M(0)). The linear inde-
pendence allows us to solve a linear system to construct Sy
that satisfies the requirements in Lemma 4. O

Remarks. The statements above involve unitaries gener-
ated by two-level Hamiltonians only. For more general local
quantum gates, {H;}}_, are allowed to have more than two
distinct eigenvalues. We are especially interested in Hamil-
tonians with eigenvalues {E1, -+, E4} C Z, as arbitrary
Hamiltonians with rational spectrum can be converted to
ones with integral spectrum with proper shifting and scaling.
Theorem 2 can be generalized for H;’s with largest eigen-
gap max, ¢(q) | Ec — E| bounded by A, with the number
of spurious local minima being 2(AP). This observation
further supports the intuition of interference as the source
of local minima.

1-layer QNN. A simple example of QNNs with linear
independence is a one-layer circuit with local H; acting on
the [-th qubit, and a product operator M as the observable:

Proposition 5 (One-layer QNNs with product observables).
Consider the family of QNNs composed of unitaries gener-
ated by two-level Hamiltonians, parameterized by 6 € RP.
For alll € [p], let H; be a local Hamiltonian on the l-qubit,
taking the form1® --- @ h; ® - - - ® I for some Hermitian
h; at the I-th position, and M = m; ® --- ® my, such
that m; + hym;h; and m; — hym;h; are non-zero for any
l. There exists a dataset that induces a loss function with
2P — 1 spurious local minima.

This follows from the fact that tr(®¢(M)®¢ (M)) = 0 if
and only if €& # &’. In S.M. Sect. B, we provide proof
for Proposition 5 and several concrete example QNNs to
demonstrate that our construction can have local minima
at arbitrary @, and does not allow trivial solutions such as
coordinate-wise greedy optimization.

4. Typical QNNs are with Linear
Independence

In Section 3, we provided a general condition (Definition 1)
for QNN to have exponentially many bad local minima for
some datasets. In this section, we show that this condition
is met for typical under-parameterized QNNs. To see this,
we consider the following measure over instances of QNNs:
Let H be a d-dimensional Hermitian such that tr(H) = 0
and H? = I. A random circuit U() is specified as

U(9) = e~ 0 W,HW]  —i6i W HW] Q1)

with {W;}}"_, independently sampled with respect to the
Haar measure on the d-dimensional unitary group U(d).

Up to a unitary transformation, this random model is equiv-
alent to a circuit with p interleaving parameterized gate
{e~"HYP_ and unitary {W,}}_, randomly sampled with
respect to the Haar measure:

U(0) = W,e HBW, ... W e hH (22)

The equivalence is due to the left (or right) invariance of the
Haar measure. This interleaving nature of fixed and parame-
terized gates are shared by existing designs of QNNs, and
any p-parameter QNN generated by two-level Hamiltonians
can be expressed in Eqn. (22). Moreover, applying poly-
nomially many random 2-qubit gates on random pairs of
qubits generates a distribution over gates that approximates
the Haar measure up to the 4-th moments (Brandao et al.,
2016), which is what we require in this section.

The Gram matrix for the set {®¢(M)}¢c0,1,2)7,¢0 is de-
fined such that the element corresponding to the pair (&, ¢)
is tr(®¢ (M) ®¢/ (M)). The Gram matrix is always positive
semidefinite, and a positive definite Gram matrix implies
the linear independence of the set.

Using the integral formula with respect to Haar measure
on unitary groups (Puchata & Miszczak, 2011), we can
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estimate the expectations and variances of the diagonal and
off-diagonal terms, and upper bound the probability of the
event:

3 tr(@e(M)) < 3 [1r(@e(M)@g (M))] (23)
3

'#€

Applying the Gershgorin circle theorem (Golub & Van Loan,
1996), we can lower bound the probability for a random
QNN to have linear independent terms:

Theorem 6 (Typical under-parameterized QNNs are with
linear independence). Consider a random p-parameter d-
dimensional QNN with two-level Hamiltonians sampled
from the model specified in Eqn. (21). Let the observable M
be an arbitrary non-zero trace-0 Hermitian. Such QNN is
with linear independence with probability > 1—O(d') for
fixed p, and with probability > 1 — O(e~P) for dimension
d : log(d) = ©(p).

Please refer to S.M. Sect. C for the full proof.

5. Upper Bound on the Number of Local
Minima

Our construction above possesses 2P local minima for
p parameters, whereas the classical work of Auer et al.
(1996) demonstrates a construction for a single neuron with
|m/p]? local minima for m training samples. Note that
the latter could grow unboundedly with m. In this section,
we show, however, this classical unbounded growth of local
minima does not hold for QNNs. In fact, we could establish
an almost matching upper bound for 2P. All the formal
proofs are deferred to S.M. Sect. D.

To that end, let us examine the Fourier expansion of the loss
function L(8, S) (Eqn. (5)). Let T} be the period of L(8;S)
corresponding to ;, and ﬁ(k) the Fourier coefficient for
k= (k1, - ,ky)T € ZP. We have

p

where K C Z7” is the support of the Fourier coefficients.

One critical observation is that, for arbitrary choice of two-
level {H;}}_,, observable M and training set S, the sup-
port K of the Fourier spectrum is bounded in ¢;-norm:
maxkex » 1 |k1| < 2p, indicating that the Fourier degree
of L(6;S) is upper bounded by 2p (See S.M. Sect. D.1).

By definition, a local minimum must be a critical point,
hence it suffices to bound the number of critical points for
functions with Fourier spectrum supported on a ¢1-bounded

set. Define G;(0) as %L(G;S):

Gi(0) = Z kﬂ:(k) (— sin %91 + i cos leel) (25)
kekK ! !
kel ke
) H(COb T + ¢sin T ) (26)

U1

Notice that the Fourier spectrum of G is supported on the
same set K. A critical point of L(60;S) must satisfy that for
all I € [p], G;(8) = 0. By basic trigonometry, cos kf can
be expressed as a degree-k polynomial of cos # and sin k6
as a degree-(k — 1) polynomial of cos f multiplied by sin 6.
Consider the change of variable

¢ = cos(0;/Ty), si =sin(0,/T;), VI € [p]. (27)
Let g;(c1, 81, ,¢p, Sp) be the multivariate polynomial
constraints corresponding to G;(8) after the change of vari-
able. For each g;, the sum of degrees of ¢y and s; is
bounded by maxye i |ki-|, and the degree deg(g;) of g
is bounded by maxye » ;. |ki| < 2p. The change of vari-
able is one-to-one from 6, € [0, T}) to a pair of (c;, s;) € R?
under the constraint ¢ + s7 = 1. Therefore, it suffices to
count the number of roots of the polynomial system with 2p
parameters and 2p constraints:

gi(cr, 81, ,¢py8p) =0, i +57 —1=0 (28)
for all [ € [p]. Notice that for a general polynomial sys-
tem, the number of critical points can be unbounded. For
example, consider a system composed of constant polyno-
mials, every point in the domain is a critical point. This
corresponds to the constant loss function, where the gradi-
ents vanish everywhere with positive semidefinite Hessians.
For this reason, we will focus on the non-degenerated case
with finitely many local minima. Under the premise of
non-degeneracy, by Bézout’s Theorem (e.g. Section 3.3 in
Cox et al. (2006)), the number of roots can be bounded
by the product of the degree of polynomial constraints
2Pdeg(g1)deg(g2) - - - deg(gp) < (4p)P. A formal state-
ment of the above derivation is as follows:

Theorem 7 (Upper bound: the number of local minima).
Consider non-degenerated QNNs composed of unitaries
generated by two-level Hamiltonians {H;}}_, with p pa-
rameters. For training set S, within each period, the loss
Sfunction L(0; S) possesses at most (4p)? local minima.

We also prove a similar result for the more general case
where the generators are Hamiltonians with integral spec-
trum: let A be the largest eigen-gap for each of the Hamil-
tonians, the number of local minima within each period is
upper bounded by O((Ap)P). Please refer to S.M. Sect. D
for details.
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6. Experiments

We investigate the practical performance of the common
optimizers on our construction in this section. It is well-
known in the classical literature that the existence of spuri-
ous local minima does not necessarily cause difficulties in
optimization (e.g., Ge & Ma (2017)). We show, however,
our constructions can indeed be hard instances for training
in practice.

To that end, we evaluate a specific construction from Propo-
sition 5 in Section 3 by using the standard optimizers with
randomly initialized parameters uniformly sampled from the
domain?, and visualize the distribution of function values
at convergence. For p-parameter instances, our construc-
tion involves p-qubits. We choose h; = --- = h, = Z and
m; = --- =m,; = Y +1L The specific form of the instance
and all the training details are provided in S.M. Sect. E.

Implementation The experiments are run on Intel Core
17-7700HQ Processor (2.80GHz) with 16G memory. We
classically simulate the training with Pytorch (Paszke et al.,
2019), using the analytical form of the objective function
for the purpose of efficiency.

Optimizers The QNN instances are trained with three
popular optimizers in classical optimization or machine
learning: Adam(Kingma & Ba, 2015), RMSProp(Bengio,
2015), and L-BFGS(Liu & Nocedal, 1989). The first two
methods (Kingma & Ba, 2015; Bengio, 2015) are variants of
vanilla gradient descent with adaptive learning rate. and are
widely used for training large-scale deep neural networks as
well as for the quantum counterparts (Killoran et al., 2019;
Mari et al., 2020; Lloyd et al., 2020; Ostaszewski et al.,
2019; Sweke et al., 2020). The last method (Liu & Nocedal,
1989) is an efficient implementation of the approximate
Newton method that utilizes the second-order information
(i.e. the Hessian). For all instances and optimizers, we use
the exact gradient induced by the dataset without stochastic-
ity from the mini-batched gradient descent.

It turns out, for all the examined instances and all three
optimizers, under random initialization, the optimizations
converge to local minima with non-negligible suboptimal-
ity (i.e., different from the global one by a non-negligible
amount) with high probability. In Figure 2, we train the 4-
parameter construction with RMSProp and repeat for 100
times. Let 8; and 8¢ denote the parameters at initialization
and at convergence. The function values at initialization
L(0;; S) are supported on a continuous spectrum as shown
in gray. After training and converging with RMSProp,
the function values L(8s; S) fall into discretized values as
shown in orange. The smallest training loss attainable in our

2For p-parameter instances, we uniformly sample the initial
parameters from [0, 27)P.

construction is 0, therefore only the leftmost bar (to the left
of the dotted black vertical line) corresponds to the global
minimum. Namely, the success probability of converging to
the global minimum is very small. A similar phenomenon
persists for instances with more parameters and with dif-
ferent optimizers in Figure 3. As the number of bad local
minima grows exponentially in our construction, the success
probability should also in theory decay exponentially. This
is empirically confirmed in Figure 4, where we illustrate
the precise empirical success probability for all these tests.
Moreover, as shown in S.M. Sect. E.3, the tendency of ex-
ponential decay remains unchanged in the presence of label
noises, indicating the robustness of our constructions.

At initialization
At convergence

8

[~
=]

Freguency

10

0.0 01 02 0.3 0.4 0.5 0.6
Loss function: 4-parameter

Figure 2. Loss functions at random initialization and at conver-
gence for 4-parameter instances trained with RMSProp, repeated
for 100 times. The function values are supported on a continu-
ous spectrum at initialization as plotted in gray and converge to
discretized values as plotted in
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Figure 3. Distributions of loss functions at convergence for in-
stances with 16 parameters trained with Adam, RMSProp and
L-BFGS, repeated 5000 times with uniformly random initializa-
tion. All methods fail to converge to the global minimum 0.0 with
high probability.

Beyond the constructed datasets To demonstrate the
generality of our results, we repeat the experiments for
datasets with more practical significance: for p-parameter
instances, we choose the input state to be a p-qubit encod-
ing of x € [0,27)?" via X- and Y-rotations on each of
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Figure 4. The decay of success rate for finding the global min-
imum under random initialization with Adam, RMSProp, L-
BFGS. For each data point, we repeat the experiments for 5000
times.

the qubits. The associated label is either 1 or 0, depending
on the sign of w'x, with w being the normal vector of a
hyperplane in R??. These datasets have the interpretation
as an encoding of a linearly separable classical concept. In
Figure5, we plot the function values at convergence for an
8-parameter instance: no more than 4 of the 70 random ini-
tializations have reached the global minima. This is repeated
for instances with 2,4 and 6 qubits. While we no longer
have a clear exponential dependency in the success rate,
the number of local minima increases significantly as the
number of parameters increases (see S.M. Sect. E.4). This
observation suggests that our theory and experiments on
the constructed datasets can capture the practical difficulty
in training under-parameterized QNNs with gradient-based
methods.

AL convergence

Frequency
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Function values

Figure 5. Function values at convergence for training an 8-
parameter instance with RMSProp on the linearly-separable clas-
sical concept. No more than 4 among the 70 random initializa-
tions find the global minima, indicating the existence of many
sub-optimal local minma.

7. Conclusion

In this work, we provide a characterization of the land-
scape for under-parameterized QNNs, by showing that in
the worst-case, the number of local minima can increase
exponentially with the number of parameters. Supported
by numerical simulations, our result suggests when under-
parameterized, QNNs may not be efficiently solved by
gradient-based black-box methods.

This work leaves several open questions:

e Given the knowledge of the data distribution, can we
design a QNN architecture with a benign landscape?

e We know that when sufficiently parameterized (e.g.
(Russell et al., 2016)), the landscape for optimizing
variational quantum ansatz can be benign. It is there-
fore natural to ask, fixing the system size, how does
the landscape change as the number of parameters in-
creases?

e Classically, despite the provable bad landscape of shal-
low neural networks(e.g. Safran & Shamir (2018)),
Goel & Klivans (2019) came up with algorithms that
can minimize the loss with guarantees. Can we design
an algorithm (beyond gradient-based method) that can
solve the optimization problem efficiently and prov-
ably?
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