
How to Design Robust Algorithms using Noisy Comparison
Oracle

Raghavendra Addanki
UMass Amherst

raddanki@cs.umass.edu

Sainyam Galhotra
UMass Amherst

sainyam@cs.umass.edu

Barna Saha
UC Berkeley

barnas@berkeley.edu

ABSTRACT

Metric based comparison operations such as finding maximum,
nearest and farthest neighbor are fundamental to studying various
clustering techniques such as𝑘-center clustering and agglomerative
hierarchical clustering. These techniques crucially rely on accurate
estimation of pairwise distance between records. However, com-
puting exact features of the records, and their pairwise distances
is often challenging, and sometimes not possible. We circumvent
this challenge by leveraging weak supervision in the form of a
comparison oracle that compares the relative distance between the
queried points such as ‘Is point 𝑢 closer to 𝑣 or𝑤 closer to 𝑥?’.

However, it is possible that some queries are easier to answer
than others using a comparison oracle. We capture this by introduc-
ing two different noise models called adversarial and probabilistic
noise. In this paper, we study various problems that include finding
maximum, nearest/farthest neighbor search under these noise mod-
els. Building upon the techniques we develop for these problems,
we give robust algorithms for𝑘-center clustering and agglomerative
hierarchical clustering. We prove that our algorithms achieve good
approximation guarantees with a high probability and analyze their
query complexity. We evaluate the effectiveness and efficiency of
our techniques empirically on various real-world datasets.

PVLDB Reference Format:

Raghavendra Addanki, Sainyam Galhotra, Barna Saha. How to Design
Robust Algorithms using Noisy Comparison Oracle. PVLDB, 14(10): 1703 -
1716, 2021.
doi:10.14778/3467861.3467862

1 INTRODUCTION

Many real world applications such as data summarization, social
network analysis, facility location crucially rely on metric based
comparative operations such as finding maximum, nearest neigh-
bor search or ranking. As an example, data summarization aims to
identify a small representative subset of the data where each repre-
sentative is a summary of similar records in the dataset. Popular
clustering algorithms such as 𝑘-center clustering and hierarchical
clustering are often used for data summarization [26, 40]. In this pa-
per, we study fundamental metric based operations such as finding
maximum, nearest neighbor search, and use the developed tech-
niques to study clustering algorithms such as 𝑘-center clustering
and agglomerative hierarchical clustering.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467862

1 2 3

654

Figure 1: Data summarization example

Clustering is often regarded as a challenging task especially due
to the absence of domain knowledge, and the final set of clusters
identified can be highly inaccurate and noisy [8]. It is often hard
to compute the exact features of points and thus pairwise distance
computation from these feature vectors could also be highly noisy.
This will render the clusters computed based on objectives such as
𝑘-center unreliable.

To address these challenges, there has been a recent interest to
leverage supervision from crowd workers (abstracted as an oracle)
which provides significant improvement in accuracy but at an added
cost incurred by human intervention [21, 56, 58]. For clustering, the
existing literature on oracle based techniques mostly use optimal

cluster queries, that ask questions of the form ‘do the points u and
v belong to the same optimal cluster?’[7, 18, 43, 58]. The goal is
to minimize the number of queries aka query complexity while
ensuring high accuracy of clustering output. This model is relevant
for applications where the oracle (human expert or a crowd worker)
is aware of the optimal clusters such as in entity resolution [21, 56].
However, inmost applications, the clustering output highly depends
on the required number of clusters and the presence of other records.
Without a global view of the entire dataset, answering optimal
queries may not be feasible for any realistic oracle. Let us consider
an example data summarization task that highlights some of the
challenges.

Example 1.1. Consider a data summarization task over a collection

of images (shown in Figure 1). The goal is to identify 𝑘 images (say

𝑘 = 3) that summarize the different locations in the dataset. The

images 1, 2 refer to the Eiffel tower in Paris, 3 is the Colosseum in

Rome, 4 is the replica of Eiffel tower at Las Vegas, USA, 5 is Venice
and 6 is the Leaning tower of Pisa. The ground truth output in this

case would be {{1, 2}, {3, 5, 6}, {4}}. We calculated pairwise similarity

between images using the visual features generated fromGoogle Vision

API [1]. The pair (1, 4) exhibits the highest similarity of 0.87, while all
other pairs have similarity lower than 0.85. Distance between a pair of
images𝑢 and 𝑣 , denoted as𝑑 (𝑢, 𝑣), is defined as (1−similarity between

https://doi.org/10.14778/3467861.3467862
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467862

𝑢 and 𝑣). We ran a user experiment by querying crowd workers to

answer simple Yes/No questions to help summarize the data (Please

refer to Section 6.2 for more details).

In this example, we make the following observations.
• Automated clustering techniques generate noisy clusters.

Consider the greedy approach for 𝑘-center clustering [28] which
sequentially identifies the farthest record as a new cluster center. In
this example, records 1 and 4 are placed in the same cluster by the
greedy 𝑘-center clustering, thereby leading to poor performance.
In general, automated techniques are known to generate erroneous
similarity values between records due to missing information
or even presence of noise [20, 57, 59]. Even Google’s landmark
detection API [1] did not identify the locations of images 4 and 5.
• Answering pairwise optimal cluster query is infeasible.

Answering whether 1 and 3 belong to the same optimal cluster
when presented in isolation is impossible unless the crowd worker
is aware of other records present in the dataset, and the granularity
of the optimum clusters. Using the pair-wise Yes/No answers
obtained from the crowd workers for the

(6
2
)
pairs in this example,

the identified clusters achieved 0.40 F-score for 𝑘 = 3. Please refer
to Section 6.2 for additional details.
• Comparing relative distance between the locations is easy.

Answering relative distance queries of the form ‘Is 1 closer to 3,
or is 5 closer to 6?’ does not require any extra knowledge about
other records in the dataset. For the 6 images in the example, we
queried relative distance queries and the final clusters constructed
for 𝑘 = 3 achieved an F-score of 1.
In summary, we observe that humans have an innate understanding
of the domain knowledge and can answer relative distance queries
between records easily. Motivated by the aforementioned observa-
tions, we consider a quadruplet comparison oracle that compares
the relative distance between two pairs of points (𝑢1, 𝑢2) and (𝑣1, 𝑣2)
and outputs the pair with smaller distance between them breaking
ties arbitrarily. Such oracle models have been studied extensively
in the literature [12, 18, 25, 33, 35, 49, 50]. Even though quadruplet
queries are easier than binary optimal queries, some queries maybe
harder to answer. In a quadruplet query, if there is a significant
gap between the two distances being compared, then they might
be easier to answer [10, 16]. However, when the two distances are
close, the chances of an error could increase. For e.g., ‘Is location in
image 1 closer to 3, or 2 is closer to 6?’ maybe difficult to answer.

To capture noise in quadruplet comparison oracle answers, we
consider two noise models. In the first noise model, when the pair-
wise distances are comparable, the oracle can return the pair of
points that are farther instead of closer. Moreover, we assume that
the oracle has access to all previous queries and can answer queries
by acting adversarially. More formally, there is a parameter 𝜇 > 0
such that if max𝑑 (𝑢1,𝑢2),𝑑 (𝑣1,𝑣2)

min𝑑 (𝑢1,𝑢2),𝑑 (𝑣1,𝑣2) ≤ (1+𝜇), then adversarial error may
occur, otherwise the answers are correct. We call this "Adversarial
Noise Model". In the second noise model called "Probabilistic Noise
Model", given a pair of distances, we assume that the oracle answers
correctly with a probability of 1 − 𝑝 for some fixed constant 𝑝 < 1

2 .
We consider a persistent probabilistic noise model, where our oracle
answers are persistent i.e., query responses remain unchanged even
upon repeating the same query multiple times. Such noise models
have been studied extensively [10, 11, 21, 25, 43, 47] since the error

due to oracles often does not change with repetition, and in fact,
sometimes increases upon repeated querying [21, 43, 47]. This is in
contrast to the noise models studied in [18] where response to every
query is independently noisy. Persistent query models are more
difficult to handle than independent query models where repeating
each query is sufficient to generate the correct answer by majority
voting.

1.1 Our Contributions

We present algorithms for finding the maximum, nearest and far-
thest neighbors, 𝑘-center clustering and hierarchical clustering
objectives under the adversarial and probabilistic noise model us-
ing comparison oracle. We show that our techniques have provable
approximation guarantees for both the noise models, are efficient
and obtain good query complexity. We empirically evaluate the
robustness and efficiency of our techniques on real world datasets.
(i) Maximum, Farthest and Nearest Neighbor: Finding maxi-
mum has received significant attention under both adversarial and
probabilistic model [5, 10, 16, 19, 22–24, 39]. In this paper, we pro-
vide the following results.
•Maximum under adversarial model. We present an algo-
rithm that returns a value within (1 + 𝜇)3 of the maximum among
a set of 𝑛 values 𝑉 with probability 1 − 𝛿1 using 𝑂 (𝑛 log2 (1/𝛿))
oracle queries and running time (Theorem 3.6).
•Maximum under probabilistic model. We present an
algorithm that requires 𝑂 (𝑛 log2 (𝑛/𝛿)) queries to identify
𝑂 (log2 (𝑛/𝛿))th rank value with probability 1 − 𝛿 (Theorem 3.7).
That is, in 𝑂 (𝑛 log2 (𝑛)) time we can identify 𝑂 (log2 (𝑛))th value
in the sorted order with probability 1 − 1

𝑛𝑐 for any constant 𝑐 .
To contrast our results with the state of the art, Ajtai et al. [5] study a
slightly different additive adversarial error model where the answer
of a maximum query is correct if the compared values differ by 𝜃 (for
some 𝜃 > 0) and otherwise the oracle answers adversarially. Under
this setting, they give an additive 3𝜃 -approximation with 𝑂 (𝑛)
queries. Although, our model cannot be directly compared with
theirs, we note that our model is scale invariant, and thus, provides
a much stronger bound when distances are small. As a consequence,
our algorithm can be used under additive adversarial model as well
providing the same approximation guarantees (Theorem 3.10).

For the probabilistic model, after a long series of works [10, 22, 24,
39], only recently an algorithm is proposed with query complexity
𝑂 (𝑛 log𝑛) that returns an 𝑂 (log𝑛)th rank value with probability
1 − 1

𝑛 [23]. Previously, the best query complexity was 𝑂 (𝑛3/2) [24].
While our bounds are slightly worse than [23], our algorithm is
significantly simpler.

As discussed earlier, persistent errors are much more difficult
to handle than independent errors [16, 19]. In [19], when the an-
swers are independent,the authors present an algorithm that finds
maximum using𝑂 (𝑛 log 1/𝛿) queries and succeeds with probability
1−𝛿 . Therefore, even under persistent errors, we obtain guarantees
close to the existing ones which assume independent error.
• Nearest Neighbor. Nearest neighbor queries can be cast as
“finding minimum” among a set of distances. We can obtain bounds
similar to finding maximum for the nearest neighbor queries. In the
1𝛿 is the confidence parameter and is standard in the literature of randomized
algorithms.

adversarial model, we obtain an (1 + 𝜇)3-approximation, and in the
probabilistic model, we are guaranteed to return an element with
rank𝑂 (log2 (𝑛/𝛿)) with probability 1−𝛿 using𝑂 (𝑛 log2 (1/𝛿)) and
𝑂 (𝑛 log2 (𝑛/𝛿)) oracle queries respectively.

Prior techniques have studied nearest neighbor search under
noisy distance queries [42], where the oracle returns a noisy es-
timate of a distance between queried points, and repetitions are
allowed. Neither the algorithm of [42], nor other techniques de-
veloped for maximum [5, 19] and top-𝑘 [16] extend for nearest
neighbor under our noise models.
• Farthest Neighbor. Similarly, the farthest neighbor query can
be cast as findingmaximum among a set of distances, and the results
for computing max extends to this setting. However, computing the
farthest neighbor is one of the basic primitives for more complex
tasks like 𝑘-center clustering, and for that the existing bounds under
the probabilistic model that may return an𝑂 (log𝑛)th rank element
is insufficient. Since distances on a metric space satisfies triangle
inequality, we exploit that to get a constant approximation to the
farthest query under the probabilistic model and a mild distribution
assumption (Theorem 3.10).
(ii) 𝑘-center Clustering: 𝑘-center clustering is one of the funda-
mental models of clustering and is very well-studied [53, 60].
• 𝑘-center under adversarial model We design algorithm that
returns a clustering that is a 2 + 𝜇 approximation for small values
of 𝜇 with probability 1 − 𝛿 using 𝑂 (𝑛𝑘2 + 𝑛𝑘 log2 (𝑘/𝛿)) queries
(Theorem 4.2). In contrast, even when exact distances are known, 𝑘-
center cannot be approximated better than a 2-factor unless 𝑃 = 𝑁𝑃

[53]. Therefore, we achieve near-optimal results.
• 𝑘-center under probabilistic noise model. For probabilistic
noise, when optimal 𝑘-center clusters are of size at least Ω(

√
𝑛), our

algorithm returns a clustering that achieves constant approximation
with probability 1−𝛿 using𝑂 (𝑛𝑘 log2 (𝑛/𝛿)) queries (Theorem 4.4).
To the best of our knowledge, even though 𝑘-center clustering is
an extremely popular and basic clustering paradigm, it hasn’t been
studied under the comparison oracle model, and we provide the
first results in this domain.
(iii) Single Linkage and Complete Linkage– Agglomerative

Hierarchical Clustering : Under adversarial noise, we show a
clustering technique that loses only amultiplicative factor of (1+𝜇)3
in each merge operation and has an overall query complexity of
𝑂 (𝑛2). Prior work [25] considers comparison oracle queries to per-
form average linkage in which the unobserved pairwise similarities
are generated according to a normal distribution. These techniques
do not extend to our noise models.

1.2 Other Related Work

For finding the maximum among a given set of values, it is known
that techniques based on tournament obtain optimal guarantees and
are widely used [16]. For the problem of finding nearest neighbor,
techniques based on locality sensitive hashing generally work well
in practice [6]. Clustering points using 𝑘-center objective is NP-
hard and there are many well known heuristics and approximation
algorithms [60] with the classic greedy algorithm achieving an
approximation ratio of 2. All these techniques are not applicable
when pairwise distances are unknown. As distances between points

cannot always be accurately estimated, many recent techniques
leverage supervision in the form of an oracle. Most oracle based
clustering frameworks consider ‘optimal cluster’ queries [14, 29,
34, 43, 44] to identify ground truth clusters. Recent techniques for
distance based clustering objectives, such as 𝑘-means [7, 13, 37, 38]
and 𝑘-median [4] use optimal cluster queries in addition to distance
information for obtaining better approximation guarantees. As
‘optimal cluster’ queries can be costly or sometimes infeasible, there
has been recent interest in leveraging distance based comparison
oracles for other problems similar to our quadruplet oracles [18, 25].

Distance based comparison oracles have been used to study
a wide range of problems and we list a few of them – learning
fairness metrics [35], top-down hierarchical clustering with a dif-
ferent objective [12, 18, 25], correlation clustering [50] and classi-
fication [33, 49], identify maximum [31, 54], top-𝑘 elements [15–
17, 39, 41, 46], information retrieval [36], skyline computation [55].
To the best of our knowledge, there is no work that considers
quadruplet comparison oracle queries to perform 𝑘-center cluster-
ing and single/complete linkage based hierarchical clustering.

Closely related to finding maximum, sorting has also been well
studied under various comparison oracle based noise models [9, 10].
The work of [16] considers a different probabilistic noise model
with error varying as a function of difference in the values but they
assume that each query is independent and therefore repetition can
help boost the probability of success. Using a quadruplet oracle, [25]
studies the problem of recovering a hierarchical clustering under a
planted noise model and is not applicable for single linkage.

2 PRELIMINARIES

Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a collection of 𝑛 records such that each
record maybe associated with a value 𝑣𝑎𝑙 (𝑣𝑖),∀𝑖 ∈ [1, 𝑛]. We as-
sume that there exists a total ordering over the values of elements
in 𝑉 . For simplicity we denote the value of record 𝑣𝑖 as 𝑣𝑖 instead
of 𝑣𝑎𝑙 (𝑣𝑖) whenever it is clear from the context.

Given this setting, we consider a comparison oracle that com-
pares the values of any pair of records (𝑣𝑖 , 𝑣 𝑗) and outputs Yes if
𝑣𝑖 ≤ 𝑣 𝑗 and No otherwise.

Definition 2.1 (Comparison Oracle). An oracle is a function

O : 𝑉 ×𝑉 → {Yes, No}. Each oracle query considers two values as

input and outputs O(𝑣1, 𝑣2) = Yes if 𝑣1 ≤ 𝑣2 and No otherwise.

Note that a comparison oracle is defined for any pair of values.
Given this oracle setting, we define the problem of identifying the
maximum over the records 𝑉 .

Problem 2.2 (Maximum). Given a collection of 𝑛 records 𝑉 =

{𝑣1, . . . , 𝑣𝑛} and access to a comparison oracle O, identify the

argmax𝑣𝑖 ∈𝑉 𝑣𝑖 with minimum number of queries to the oracle.

As a natural extension, we can also study the problem of identi-
fying the record corresponding to the smallest value in 𝑉 .

2.1 Quadruplet Oracle Comparison Query

In applications that consider distance based comparison of records
like nearest neighbor identification, the records 𝑉 = {𝑣1, . . . , 𝑣𝑛}
are generally considered to be present in a high-dimensional metric
space along with a distance 𝑑 : 𝑉 ×𝑉 → R+ defined over pairs of
records. We assume that the embedding of records in latent space

is not known, but there exists an underlying ground truth [6]. Prior
techniques mostly assume complete knowledge of accurate distance
metric and are not applicable in our setting. In order to capture the
setting where we can compare distances between pair of records,
we define quadruplet oracle below.

Definition 2.3 (Quadruplet Oracle). An oracle is a function

O : 𝑉 ×𝑉 ×𝑉 ×𝑉 → {Yes, No}. Each oracle query considers two pairs
of records as input and outputs O(𝑣1, 𝑣2, 𝑣3, 𝑣4) = Yes if 𝑑 (𝑣1, 𝑣2) ≤
𝑑 (𝑣3, 𝑣4) and No otherwise.

The quadruplet oracle is equivalent to the comparison oracle dis-
cussed before with a difference that the two values being compared
are associated with pair of records as opposed to individual records.
Given this oracle setting, we define the problem of identifying the
farthest record over 𝑉 with respect to a query point 𝑞 as follows.

Problem 2.4 (Farthest point). Given a collection of 𝑛 records

𝑉 = {𝑣1, . . . , 𝑣𝑛}, a query record 𝑞 and access to a quadruplet oracle

O, identify argmax𝑣𝑖 ∈𝑉 \{𝑞 } 𝑑 (𝑞, 𝑣𝑖).

Similarly, the nearest neighbor query returns a point that satis-
fies argmin𝑢𝑖 ∈𝑉 \{𝑞 } 𝑑 (𝑞,𝑢𝑖). Now, we formally define the k-center
clustering problem.

Problem 2.5 (k-center clustering). Given a collection of 𝑛

records𝑉 = {𝑣1, . . . , 𝑣𝑛} and access to a comparison oracle O, identify
𝑘 centers (say 𝑆 ⊆ 𝑉) and a mapping of records to corresponding

centers, 𝜋 : 𝑉 → 𝑆 , such that the maximum distance of any record

from its center, i.e., max𝑣𝑖 ∈𝑉 𝑑 (𝑣𝑖 , 𝜋 (𝑣𝑖)) is minimized.

We assume that the points 𝑣𝑖 ∈ 𝑉 exist in a metric space and
the distance between any pair of points is not known. We denote
the unknown distance between any pair of points (𝑣𝑖 , 𝑣 𝑗) where
𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 as 𝑑 (𝑣𝑖 , 𝑣 𝑗) and use 𝑘 to denote the number of clusters.
Optimal clusters are denoted as𝐶∗ with𝐶∗ (𝑣𝑖) ⊆ 𝑉 denoting the set
of points belonging to the optimal cluster containing 𝑣𝑖 . Similarly,
𝐶 (𝑣𝑖) ⊆ 𝑉 refers to the nodes belonging to the cluster containing
𝑣𝑖 for any clustering given by 𝐶 (·).

In addition to the k-center clustering, we study single linkage
and complete linkage–agglomerative clustering techniques where
the distance metric over the records is not known apriori. These
techniques initialize each record 𝑣𝑖 in a separate singleton cluster
and sequentially merge the pair of clusters having the least distance
between them. In case of single linkage, the distance between two
clusters 𝐶1 and 𝐶2 is characterized by the closest pair of records
defined as:

𝑑𝑆𝐿 (𝐶1,𝐶2) = min
𝑣𝑖 ∈𝐶1,𝑣𝑗 ∈𝐶2

𝑑 (𝑣𝑖 , 𝑣 𝑗)

In complete linkage, the distance between a pair of clusters 𝐶1
and 𝐶2 is calculated by identifying the farthest pair of records,
𝑑𝐶𝐿 (𝐶1,𝐶2) = max𝑣𝑖 ∈𝐶1,𝑣𝑗 ∈𝐶2 𝑑 (𝑣𝑖 , 𝑣 𝑗) .

2.2 Noise Models

The oracle models discussed in Problem 2.2, 2.4 and 2.5 assume that
the oracle answers every comparison query correctly. In real world
applications, however, the answers can be wrong which can lead
to noisy results. To formalize the notion of noise, we consider two
different models. First, adversarial noise model considers a setting
where a comparison query can be adversarially wrong if the two

values being compared are within a multiplicative factor of (1 + 𝜇)
for some constant 𝜇 > 0.

O(𝑣1, 𝑣2) =

Yes, if 𝑣1 < 1

(1+𝜇) 𝑣2

No, if 𝑣1 > (1 + 𝜇)𝑣2
adversarially incorrect if 1

(1+𝜇) ≤
𝑣1
𝑣2
≤ (1 + 𝜇)

The parameter 𝜇 corresponds to the degree of error. For example,
𝜇 = 0 implies a perfect oracle. The model extends to quadruplet
oracle as follows.

O(𝑣1, 𝑣2, 𝑣3, 𝑣4) =

Yes, if 𝑑 (𝑣1, 𝑣2) < 1

(1+𝜇) 𝑑 (𝑣3, 𝑣4)
No, if 𝑑 (𝑣1, 𝑣2) > (1 + 𝜇)𝑑 (𝑣3, 𝑣4)
adversarially incorrect if 1

1+𝜇 ≤
𝑑 (𝑣1,𝑣2)
𝑑 (𝑣3,𝑣4) ≤ 1 + 𝜇

The second model considers a probabilistic noise model where
each comparison query is incorrect independently with a proba-
bility 𝑝 < 1

2 and asking the same query multiple times yields the
same response. We discuss ways to estimate 𝜇 and 𝑝 from real data
in Section 6.

3 FINDING MAXIMUM

In this section, we present robust algorithms to identify the record
corresponding to the maximum value in 𝑉 under the adversarial
noise model and the probabilistic noise model. Later we extend the
algorithms to find the farthest and the nearest neighbor. We note
that our algorithms for the adversarial model are parameter free
(do not depend on 𝜇) and the algorithms for the probabilistic model
can use 𝑝 = 0.5 as a worst case estimate of the noise.

3.1 Adversarial Noise

Consider a trivial approach that maintains a running maximum
value while sequentially processing the records, i.e., if a larger
value is encountered, the current maximum value is updated to the
larger value. This approach requires 𝑛 − 1 comparisons. However,
in the presence of adversarial noise, our output can have a signifi-
cantly lower value compared to the correct maximum. In general,
if 𝑣𝑚𝑎𝑥 is the true maximum of 𝑉 , then the above approach can
return an approximate maximum whose value could be as low as
𝑣𝑚𝑎𝑥/(1 + 𝜇)𝑛−1. To see this, assume 𝑣1 = 1, and 𝑣𝑖 = (1 + 𝜇 − 𝜖)𝑖
where 𝜖 > 0 is very close to 0. It is possible that while comparing 𝑣𝑖
and 𝑣𝑖+1, the oracle returns 𝑣𝑖 as the larger element. If this mistake
is repeated for every 𝑖 , then, 𝑣1 will be declared as the maximum
element whereas the correct answer is 𝑣𝑛 ≈ 𝑣1 (1 + 𝜇)𝑛−1.

To improve upon this naive strategy, we introduce a natural
keeping score based idea where given a set 𝑆 ⊆ 𝑉 of records, we
maintain Count(𝑣, 𝑆) that is equal to the number of values smaller
than 𝑣 in 𝑆 .

Count(𝑣, 𝑆) =
∑

𝑥 ∈𝑆\{𝑣 }
1{O(𝑣, 𝑥) == No}

It is easy to observe that when the oracle makes no mistakes,
Count(𝑠max, 𝑆) = |𝑆 | − 1 and obtains the highest score, where 𝑠max
is the maximum value in 𝑆 . Using this observation, in Algorithm 1,
we output the value with the highest Count score.

Given a set of records 𝑉 , we show in Lemma 3.1 that
Count-Max(𝑉) obtained using Algorithm 1 always returns a good
approximation of the maximum value in 𝑉 .

Lemma 3.1. Given a set of values 𝑉 with maximum value 𝑣max,

Count-Max(𝑉) returns a value 𝑢max where 𝑢max ≥ 𝑣max/(1 + 𝜇)2
using 𝑂 (|𝑉 |2) oracle queries.

Using Example 3.2, when 𝜇 = 1, we demonstrate that (1 + 𝜇)2 = 4
approximation ratio is achieved by Algorithm 1.

Example 3.2. Let 𝑆 denote a set of four records 𝑢, 𝑣,𝑤 and 𝑡 with

ground truth values 51, 101, 102 and 202, respectively. While iden-

tifying the maximum value under adversarial noise with 𝜇 = 1, the
oracle must return a correct answer to O(𝑢, 𝑡) and all other oracle

query answers can be incorrect adversarially. If the oracle answers all

other queries incorrectly, we have, Count values of 𝑡,𝑤,𝑢, 𝑣 are 1, 1, 2,
and 2 respectively. Therefore, 𝑢 and 𝑣 are equally likely, and when

Algorithm 1 returns 𝑢, we have a 202/51 ≈ 3.96 approximation.

From Lemma 3.1, we have that 𝑂 (𝑛2) oracle queries where |𝑉 | = 𝑛,
are required to get (1 + 𝜇)2 approximation. In order to improve the
query complexity, we use a tournament to obtain the maximum
value. The idea of using a tournament for finding maximum has
been studied in the past [16, 19].

Algorithm 2 presents pseudo code of the approach that takes
values 𝑉 as input and outputs an approximate maximum value. It
constructs a balanced 𝜆-ary tree T containing 𝑛 leaf nodes such
that a random permutation of the values𝑉 is assigned to the leaves
of T . In a tournament, the internal nodes of T are processed bottom-
up such that at every internal node𝑤 , we assign the value that is
largest among the children of𝑤 . To identify the largest value, we
calculate argmax𝑣∈children(𝑤) Count(𝑣, children(𝑤)) at the internal
node𝑤 , where Count(𝑣, 𝑋) refers to the number of elements in 𝑋

that are considered smaller than 𝑣 . Finally, we return the value at the
root of T as our output. In Lemma 3.3, we show that Algorithm 2
returns a value that is a (1 + 𝜇)2 log𝜆 𝑛 multiplicative approximation
of the maximum value.

Algorithm 1 Count-Max(S) : finds the max. value by counting
1: Input : A set of values 𝑆
2: Output : An approximate maximum value of 𝑆
3: for 𝑣 ∈ 𝑆 do

4: Calculate Count(𝑣, 𝑆)
5: 𝑢max ← arg max𝑣∈𝑆Count(𝑣, 𝑆)
6: return 𝑢max

Lemma 3.3. Suppose 𝑣𝑚𝑎𝑥 is the maximum value among the set

of records 𝑉 . Algorithm 2 outputs a value 𝑢𝑚𝑎𝑥 such that 𝑢𝑚𝑎𝑥 ≥
𝑣𝑚𝑎𝑥

(1+𝜇)2 log𝜆 𝑛 using 𝑂 (𝑛𝜆) oracle queries.

According to Lemma 3.3, Algorithm 2 identifies a constant ap-
proximation when 𝜆 = Θ(𝑛), 𝜇 is a fixed constant and has a query
complexity of Θ(𝑛2). By reducing the degree of the tournament
tree from 𝜆 to 2, we can achieve Θ(𝑛) query complexity, but with a
worse approximation ratio of (1 + 𝜇)log𝑛 .

Now, we describe our main algorithm (Algorithm 4) that uses the
the following observation to improve the overall query complexity.

Observation 3.4. At an internal node 𝑤 ∈ T , the identified

maximum is incorrect only if there exists 𝑥 ∈ children(𝑤) that is very
close to the true maximum (say𝑤𝑚𝑎𝑥), i.e.

𝑤max
(1+𝜇) ≤ 𝑥 ≤ (1+ 𝜇)𝑤max.

Based on the above observation, our AlgorithmMax-Adv uses
two steps to identify a good approximation of 𝑣max. Consider the
case when there are a lot of values that are close to 𝑣max. In Algo-
rithm Max-Adv, we use a subset 𝑉 ⊆ 𝑉 of size

√
𝑛𝑡 (for a suitable

choice of parameter 𝑡) obtained using uniform sampling with re-
placement. We show that using a sufficiently large subset 𝑉 , ob-
tained by sampling, we ensure that at least one value that is closer
to 𝑣max is in 𝑉 , thereby giving a good approximation of 𝑣max. In

Algorithm 2 Tournament : finds the maximum value using a
tournament tree
1: Input : Set of values𝑉 , Degree 𝜆
2: Output : An approximate maximum value 𝑢max
3: Construct a balanced 𝜆-ary tree T with |𝑉 | nodes as leaves.
4: Let 𝜋𝑉 be a random permutation of𝑉 assigned to leaves of T
5: for 𝑖 = 1 to log𝜆 |𝑉 | do
6: for internal node 𝑤 at level log𝜆 |𝑉 | − 𝑖 do
7: Let𝑈 denote the children of 𝑤.
8: Set the internal node 𝑤 to Count-Max(𝑈)
9: 𝑢max ←value at root of T
10: return 𝑢max

order to handle the case when there are only a few values closer to
𝑣max, we divide the entire data set into 𝑙 disjoint parts (for a suitable
choice of 𝑙) and run the Tournament algorithm with degree 𝜆 = 2
on each of these parts separately (Algorithm 3). As there are very
few points close to 𝑣max, the probability of comparing any such
value with 𝑣max is small, and this ensures that in the partition con-
taining 𝑣max, Tournament returns 𝑣max. We collect the maximum
values returned by Algorithm 2 from all the partitions and include
these values in𝑇 in AlgorithmMax-Adv. We repeat this procedure
𝑡 times and set 𝑙 =

√
𝑛, 𝑡 = 2 log(2/𝛿) to achieve the desired success

probability 1 − 𝛿 . We combine the outputs of both the steps, i.e., 𝑉
and 𝑇 and output the maximum among them using Count-Max.
This ensures that we get a good approximation as we use the best
of both the approaches.

Algorithm 3 Tournament-Partition
1: Input : Set of values𝑉 , number of partitions 𝑙
2: Output : A set of maximum values from each partition
3: Randomly partition𝑉 into 𝑙 equal parts𝑉1,𝑉2, · · ·𝑉𝑙
4: for 𝑖 = 1 to 𝑙 do
5: 𝑝𝑖 ← Tournament(𝑉𝑖 , 2)
6: 𝑇 ← 𝑇 ∪ {𝑝𝑖 }
7: return𝑇

Theoretical Guarantees. In order to prove approximation guar-
antee of Algorithm 4, we first argue that the sample 𝑉 contains a
good approximation of the maximum value 𝑣max with a high prob-
ability. Let 𝐶 denote the set of values that are very close to 𝑣max.
Suppose 𝐶 = {𝑢 : 𝑣max/(1 + 𝜇) ≤ 𝑢 ≤ 𝑣max}. In Lemma 3.5, we first
show that 𝑉 contains a value 𝑣 𝑗 ∈ 𝑉 such that 𝑣 𝑗 ≥ 𝑣max/(1 + 𝜇),
whenever the size of 𝐶 is large, i.e., |𝐶 | >

√
𝑛/2. Otherwise, we

show that we can recover 𝑣max correctly with probability 1 − 𝛿/2
whenever |𝐶 | ≤

√
𝑛/2.

Lemma 3.5. (1) If |𝐶 | >
√
𝑛/2, then there exists a value 𝑣 𝑗 ∈ 𝑉

satisfying 𝑣 𝑗 ≥ 𝑣max/(1 + 𝜇) with probability of 1 − 𝛿/2.

Algorithm 4 Max-Adv : Maximum with Adversarial Noise
1: Input : Set of values𝑉 , number of iterations 𝑡 , partitions 𝑙
2: Output : An approximate maximum value 𝑢max
3: 𝑖 ← 1,𝑇 ← 𝜙

4: Let𝑉 denote a sample of size
√
𝑛𝑡 selected uniformly at random (with

replacement) from𝑉 .
5: for 𝑖 ≤ 𝑡 do

6: 𝑇𝑖 ← Tournament-Partition(𝑉 , 𝑙)
7: 𝑇 ← 𝑇 ∪𝑇𝑖
8: 𝑢max ← Count-Max(𝑉 ∪𝑇)
9: return 𝑢max

(2) Suppose |𝐶 | ≤
√
𝑛/2. Then, 𝑇 contains 𝑣max with probability

at least 1 − 𝛿/2.

Now, we briefly provide a sketch of the proof of Lemma 3.5.
Consider the first step, where we use a uniformly random sample
𝑉 of

√
𝑛𝑡 points from 𝑉 (obtained with replacement). When |𝐶 | ≥√

𝑛/2, probability that 𝑉 contains a value from 𝐶 is given by 1 −
(1 − |𝐶 |/𝑛) |𝑉 | = 1 − (1 − 1

2
√
𝑛
)2
√
𝑛 log(2/𝛿) ≈ 1 − 𝛿/2.

In the second step, Algorithm 4 uses a modified tournament
tree that partitions the set 𝑉 into 𝑙 =

√
𝑛 parts of size 𝑛/𝑙 =

√
𝑛

each and identifies a maximum 𝑝𝑖 from each partition 𝑉𝑖 using
Algorithm 2. We have that the expected number of elements from
𝐶 in a partition 𝑉𝑖 containing 𝑣max is |𝐶 |/𝑙 =

√
𝑛/(2
√
𝑛) = 1/2.

Thus by the Markov’s inequality, the probability that 𝑉𝑖 contains
a value from 𝐶 is ≤ 1/2. With 1/2 probability, 𝑣max will never be
compared with any point from𝐶 in the partition𝑉𝑖 . To increase the
success probability, we run this procedure 𝑡 times and obtain all the
outputs. Among the 𝑡 runs of Algorithm 2, we argue that 𝑣max is
never compared with any value of𝐶 in at least one of the iterations
with a probability at least 1 − (1 − 1/2)2 log(2/𝛿) ≥ 1 − 𝛿/2.

In Lemma 3.1, we show that using Count-Max we get a (1+ 𝜇)2
multiplicative approximation. Combining it with Lemma 3.5, we
have that 𝑢max returned by Algorithm 4 satisfies 𝑢max ≥ 𝑣max

(1+𝜇)3
with probability 1− 𝛿 . For query complexity, Algorithm 3 identifies√
𝑛𝑡 samples denoted by 𝑉 . These identified values, along with 𝑇

are then processed by Count-Max to identify the maximum 𝑢𝑚𝑎𝑥 .
This step requires 𝑂 (|𝑉 ∪𝑇 |2) = 𝑂 (𝑛 log2 (1/𝛿)) oracle queries.

Theorem 3.6. Given a set of values 𝑉 , Algorithm 4 returns a

(1 + 𝜇)3 approximation of maximum value with probability 1 − 𝛿
using 𝑂 (𝑛 log2 (1/𝛿)) oracle queries.

3.2 Probabilistic Noise

We cannot directly extend the algorithms for the adversarial noise
model to probabilistic noise. Specifically, the theoretical guarantees
of Lemma 3.3 do not apply when the noise is probabilistic. In this
section, we develop several new ideas to handle probabilistic noise.

Let rank(𝑢,𝑉) denote the index of𝑢 in the non-increasing sorted
order of values in𝑉 . So, 𝑣𝑚𝑎𝑥 will have rank 1 and so on. Our main
idea is to use an early stopping approach that uses a sample 𝑆 ⊆ 𝑉
of𝑂 (log(𝑛/𝛿)) values selected randomly and for every value 𝑢 that
is not in 𝑆 , we calculate Count(𝑢, 𝑆) and discard 𝑢 using a chosen
threshold for the Count scores. We argue that by doing so, it helps
us eliminate the values that are far away from the maximum in
the sorted ranking. This process is continued Θ(log𝑛) times to

𝑠

51
𝑢

50
𝑣

1
𝑤

100
𝑡

Figure 2: Example for Lemma 3.1 with 𝜇 = 1.

identify the maximum value. We present the pseudo code in the
full version [3] and prove the following approximation guarantee.

Theorem 3.7. There is an algorithm that returns 𝑢max ∈ 𝑉 such

that rank(𝑢max,𝑉) = 𝑂 (log2 (𝑛/𝛿)) with probability 1 − 𝛿 and re-

quires 𝑂 (𝑛 log2 (𝑛/𝛿)) oracle queries.
The algorithm to identify the minimum value is same as that of

maximumwith amodificationwhere Count scores consider the case
of Yes (instead of No): Count(𝑣, 𝑆) = ∑

𝑥 ∈𝑆\{𝑣 } 1{O(𝑣, 𝑥) == Yes}

3.3 Extension to Farthest and Nearest Neighbor

Given a set of records 𝑉 , the farthest record from a query 𝑢 corre-
sponds to the record 𝑢 ′ ∈ 𝑉 such that 𝑑 (𝑢,𝑢 ′) is maximum. This
query is equivalent to finding maximum in the set of distance val-
ues given by 𝐷 (𝑢) = {𝑑 (𝑢,𝑢 ′) | ∀𝑢 ′ ∈ 𝑉 } containing 𝑛 values
for which we already developed algorithms in Section 3. Since the
ground truth distance between any pair of records is not known, we
require quadruplet oracle (instead of comparison oracle) to identify
the maximum element in 𝐷 (𝑢). Similarly, the nearest neighbor of
query record 𝑢 corresponds to finding the record with minimum
distance value in 𝐷 (𝑢). Algorithms for finding maximum from
previous sections, extend for these settings with similar guarantees.

Example 3.8. Figure 2 shows a worst-case example for the ap-

proximation guarantee to identify the farthest point from 𝑠 (with

𝜇 = 1). Similar to Example 3.2, we have, Count values of 𝑡,𝑤,𝑢, 𝑣 are

1, 1, 2, 2 respectively. Therefore, 𝑢 and 𝑣 are equally likely, and when

Algorithm 1 outputs 𝑢, we have a ≈ 3.96 approximation.

For probabilistic noise, the farthest identified in Section 3.2 is
guaranteed to rank within the top-𝑂 (log2 𝑛) values of set 𝑉 (Theo-
rem 3.7). In this section, we show that it is possible to compute the
farthest point within a small additive error under the probabilistic
model, if the data set satisfies an additional property discussed be-
low. For the simplicity of exposition, we assume 𝑝 ≤ 0.40, though
our algorithms work for any value of 𝑝 < 0.5.

One of the challenges in developing robust algorithms for far-
thest identification is that every relative distance comparison of
records from 𝑢 (O(𝑢, 𝑣𝑖 , 𝑢, 𝑣 𝑗) for some 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉) may be an-
swered incorrectly with constant error probability 𝑝 and the suc-
cess probability cannot be boosted by repetition. We overcome
this challenge by performing pairwise comparisons in a robust
manner. Suppose the desired failure probability is 𝛿 , we observe
that if Θ(log(1/𝛿)) records closest to the query 𝑢 are known (say
𝑆) and max𝑥 ∈𝑆 {𝑑 (𝑢, 𝑥)} ≤ 𝛼 for some 𝛼 > 0, then each pairwise
comparison of the form O(𝑢, 𝑣𝑖 , 𝑢, 𝑣 𝑗) can be replaced by Algo-
rithm PairwiseComp and use it to execute Algorithm 4. Algorithm 5
takes the two records 𝑣𝑖 and 𝑣 𝑗 as input along with 𝑆 and outputs
Yes or No where Yes denotes that 𝑣𝑖 is closer to 𝑢. We calculate
FCount(𝑣𝑖 , 𝑣 𝑗) =

∑
𝑥 ∈𝑆 1{O(𝑣𝑖 , 𝑥, 𝑣 𝑗 , 𝑥) == Yes} as a robust esti-

mate where the oracle considers 𝑣𝑖 to be closer to 𝑥 than 𝑣 𝑗 . If
FCount(𝑣𝑖 , 𝑣 𝑗) is smaller than 0.3|𝑆 | ≤ (1 − 𝑝) |𝑆 |/2 then we output
No and Yes otherwise. Therefore, every pairwise comparison query
is replaced with Θ(log(1/𝛿)) quadruplet queries using Algorithm 5.

𝑆

𝑣 𝑗
𝑣𝑖

𝑢
𝛼

2𝛼

In this example, O(𝑢, 𝑣𝑖 , 𝑢, 𝑣 𝑗) is an-
swered correctly with a probability
1− 𝑝 . To boost the correctness prob-
ability, FCount uses the queries
O(𝑥, 𝑣𝑖 , 𝑥, 𝑣 𝑗), ∀𝑥 in the red region
around 𝑢, denoted by 𝑆 .

Figure 3: Algorithm 5 returns ‘Yes’ as 𝑑 (𝑢, 𝑣𝑖) < 𝑑 (𝑢, 𝑣 𝑗) − 2𝛼 .

We argue that Algorithm 5 will output the correct answer with a
high probability if |𝑑 (𝑢, 𝑣 𝑗)−𝑑 (𝑢, 𝑣𝑖) | ≥ 2𝛼 (See Fig 3). In Lemma 3.9,
we show that, if 𝑑 (𝑢, 𝑣 𝑗) > 𝑑 (𝑢, 𝑣𝑖) + 2𝛼 , then, FCount(𝑣𝑖 , 𝑣 𝑗) ≥
0.3|𝑆 | with probability 1 − 𝛿 .

Lemma 3.9. Suppose max𝑣𝑖 ∈𝑆 𝑑 (𝑢, 𝑣𝑖) ≤ 𝛼 and |𝑆 | ≥ 6 log(1/𝛿).
Consider two records 𝑣𝑖 and 𝑣 𝑗 such that 𝑑 (𝑢, 𝑣𝑖) < 𝑑 (𝑢, 𝑣 𝑗) −2𝛼 then

FCount(𝑣𝑖 , 𝑣 𝑗) ≥ 0.3|𝑆 | with a probability of 1 − 𝛿

With the help of Algorithm 5, relative distance query of any
pair of records 𝑣𝑖 , 𝑣 𝑗 from 𝑢 can be answered correctly with a high
probability provided |𝑑 (𝑢, 𝑣𝑖)−𝑑 (𝑢, 𝑣 𝑗) | ≥ 2𝛼 . Therefore, the output
of Algorithm 5 is equivalent to an additive adversarial error model
where any quadruplet query can be adversarially incorrect if the
distance |𝑑 (𝑢, 𝑣𝑖) − 𝑑 (𝑢, 𝑣 𝑗) | < 2𝛼 and correct otherwise. In the
full version [3], we show that Algorithm 4 can be extended to
the additive adversarial error model, such that each comparison
(𝑢, 𝑣𝑖 , 𝑢, 𝑣 𝑗) is replaced by PairwiseComp (Algorithm 5).We give
an approximation guarantee, that loses an additive 6𝛼 following a
similar analysis of Theorem 3.6.

Algorithm 5 PairwiseComp (𝑢, 𝑣𝑖 , 𝑣𝑗 , 𝑆)

1: Calculate FCount(𝑣𝑖 , 𝑣𝑗) =
∑

𝑥∈𝑆 1{O(𝑥, 𝑣𝑖 , 𝑥, 𝑣𝑗) == Yes}
2: if FCount(𝑣𝑖 , 𝑣𝑗) < 0.3 |𝑆 | then
3: return No
4: else return Yes

Theorem 3.10. Given a query vertex 𝑢 and a set 𝑆 with |𝑆 | =
Ω(log(𝑛/𝛿)) such that max𝑣∈𝑆 𝑑 (𝑢, 𝑣) ≤ 𝛼 then the farthest iden-

tified using Algorithm 4 (with PairwiseComp), denoted by 𝑢max is

within 6𝛼 distance from the optimal farthest point, i.e., 𝑑 (𝑢,𝑢max) ≥
max𝑣∈𝑉 𝑑 (𝑢, 𝑣) − 6𝛼 with a probability of 1 − 𝛿 . Further the query
complexity is 𝑂 (𝑛 log3 (𝑛/𝛿)).

4 𝑘-CENTER CLUSTERING

In this section, we present algorithms for 𝑘-center clustering and
prove constant approximation guarantees of our algorithm. Our
algorithm is an adaptation of the classical greedy algorithm for
𝑘-center [28]. The greedy algorithm [28] is initialized with an arbi-
trary point as the first cluster center and then iteratively identifies
the next centers. In each iteration, it assigns all the points to the cur-
rent set of clusters, by identifying the closest center for each point.
Then, it finds the farthest point among the clusters and uses it as the
new center. This technique requires𝑂 (𝑛𝑘) distance comparisons in
the absence of noise and guarantees 2-approximation of the optimal
clustering objective. We provide the pseudo code for this approach
in Algorithm 6. If we use Algorithm 6 where we replace every

comparison with an oracle query, the generated clusters can be
arbitrarily worse even for small error. In order to improve its robust-
ness, we devise new algorithms to perform assignment of points to
respective clusters and farthest point identification. Missing Details
from this section are discussed in the full version [3].

Algorithm 6 Greedy Algorithm
1: Input : Set of points𝑉
2: Output : Clusters C
3: 𝑠1 ← arbitrary point from𝑉 , 𝑆 = {𝑠1 },𝐶 = {{𝑉 }}.
4: for 𝑖 = 2 to 𝑘 do

5: 𝑠𝑖 ← Approx-Farthest(𝑆,𝐶)
6: 𝑆 ← 𝑆 ∪ {𝑠𝑖 }
7: C ← Assign(𝑆)
8: return C

4.1 Adversarial Noise

Now, we describe the two steps (Approx-Farthest and Assign) of
the Greedy Algorithm that will complete the description of Algo-
rithm 6. To do so, we build upon the results from previous section
that give algorithms for obtaining maximum/farthest point.
Approx-Farthest. Given a clustering C, and a set of centers 𝑆 ,
we construct the pairs (𝑣𝑖 , 𝑠 𝑗) where 𝑣𝑖 is assigned to cluster 𝐶 (𝑠 𝑗)
centered at 𝑠 𝑗 ∈ 𝑆 . Using Algorithm 4, we identify the point, cen-
ter pair that have the maximum distance i.e. argmax𝑣𝑖 ∈𝑉 𝑑 (𝑣𝑖 , 𝑠 𝑗),
which corresponds to the farthest point. For the parameters, we
use 𝑙 =

√
𝑛, 𝑡 = log(2𝑘/𝛿) and number of samples 𝑉 =

√
𝑛𝑡 .

Assign. After identifying the farthest point, we reassign all the
points to the centers (now including the farthest point as the new
center) closest to them. We calculate a movement score called
MCount for every point with respect to each center. MCount(𝑢, 𝑠 𝑗) =∑
𝑠𝑘 ∈𝑆\{𝑠 𝑗 } 1{O((𝑠 𝑗 , 𝑢), (𝑠𝑘 , 𝑢)) == Yes}, for any record 𝑢 ∈ 𝑉 and

𝑠 𝑗 ∈ 𝑆 . This step is similar to Count-Max Algorithm. We assign
the point 𝑢 to the center with the highest MCount value.

Example 4.1. Suppose we run k-center algorithm with 𝑘 = 2 and
𝜇 = 1 on the points in Example 3.8. The optimal centers are 𝑢 and

𝑡 with radius 51. On running our algorithm, suppose 𝑤 is chosen

as the first center and Approx-Farthest calculates Count values

similar to Example 3.2. We have, Count values of 𝑠, 𝑡, 𝑢, 𝑣 are 1, 2, 3, 0
respectively. Therefore, our algorithm identifies 𝑢 as the second center,

achieving 3-approximation.

Theoretical Guarantees. We now prove the approximation guar-
antee obtained by Algorithm 6. In each iteration, we show that As-
sign reassigns each point to a center with distance approximately
similar to the distance from the closest center. This is surprising
given that we only use MCount scores for assignment. Similarly,
we show that Approx-Farthest (Algorithm 4) identifies a close
approximation to the true farthest point. Concretely, we show that
every point is assigned to a center which is a (1 + 𝜇)2 approxima-
tion; Algorithm 4 identifies farthest point 𝑤 which is a (1 + 𝜇)5
approximation.

In every iteration of the Greedy algorithm, if we identify an 𝛼-
approximation of the farthest point, and a 𝛽-approximation when
reassigning the points, then, we show that the clusters output are a

2𝛼𝛽2-approximation to the 𝑘-center objective. For complete details,
please refer the full version [3]. Combining all the claims, for a
given error parameter 𝜇, we obtain:

Theorem 4.2. For 𝜇 < 1
18 , Algorithm 6 achieves a (2 + 𝑂 (𝜇))-

approximation for the 𝑘-center objective using𝑂 (𝑛𝑘2+𝑛𝑘 ·log2 (𝑘/𝛿))
oracle queries with probability 1 − 𝛿 .

4.2 Probabilistic Noise

For probabilistic noise, each query can be incorrect with probability
𝑝 and therefore, Algorithm 6 may lead to poor approximation guar-
antees. Here, we build upon the results from section 3.3 and provide
Approx-Farthest and Assign algorithms. We denote the size of
minimum cluster among optimum clusters 𝐶∗ to be𝑚, and total
failure probability of our algorithms to be 𝛿 . We assume 𝑝 ≤ 0.40,
a constant strictly less than 1

2 . Let 𝛾 = 450 be a large constant used
in our algorithms which obtains the claimed guarantees.
Overview. Algorithm 7 presents the pseudo-code of our algorithm
that operates in two phases. In the first phase (lines 3-12), we sam-
ple each point with a probability 𝛾 log(𝑛/𝛿)/𝑚 to identify a small
sample of ≈ 𝛾𝑛 log(𝑛/𝛿)

𝑚 points (denoted by 𝑉) and use Algorithm 7
to identify 𝑘 centers iteratively. In this process, we also identify
a core for each cluster (denoted by 𝑅). Formally, core is defined
as a set of Θ(log(𝑛/𝛿)) points that are very close to the center
with high probability. The cores are then used in the second phase
(line 15) for the assignment of remaining points. Now, we describe

Algorithm 7 Greedy Clustering
1: Input : Set of points𝑉 , smallest cluster size𝑚.
2: Output : Clusters𝐶
3: For every 𝑢 ∈ 𝑉 , include 𝑢 in𝑉 with probability 𝛾 log(𝑛/𝛿)

𝑚

4: 𝑠1 ← select an arbitrary point from𝑉 , 𝑆 ← {𝑠1 }
5: 𝐶 (𝑠1) ← 𝑉

6: 𝑅 (𝑠1) ← Identify-Core(𝐶 (𝑠1), 𝑠1)
7: for 𝑖 = 2 to 𝑘 do

8: 𝑠𝑖 ← Approx-Farthest(𝑆,𝐶)
9: 𝐶,𝑅 ← Assign(𝑆, 𝑠𝑖 , 𝑅)
10: 𝑆 ← 𝑆 ∪ {𝑠𝑖 }
11: 𝐶 ← Assign-Final(𝑆, 𝑅,𝑉 \𝑉)
12: return𝐶

the main challenge in extending Approx-Farthest and Assign
ideas of Algorithm 6. Given a cluster 𝐶 containing the center 𝑠𝑖 ,
when we find the Approx-Farthest, the ideas from Section 3.2
give a 𝑂 (log2 𝑛) rank approximation. As shown in section 3.3, we
can improve the approximation guarantee by considering a set of
Θ(log(𝑛/𝛿)) points closest to 𝑠𝑖 , denoted by 𝑅(𝑠𝑖) and call them
core of 𝑠𝑖 . We argue that such an assumption of set 𝑅 is justified.
For example, consider the case when clusters are of size Θ(𝑛) and
sampling 𝑘 log(𝑛/𝛿) points gives us log(𝑛/𝛿) points from each op-
timum cluster; which means that there are log(𝑛/𝛿) points within
a distance of 2OPT from every sampled point where OPT refers to
the optimum 𝑘-center objective.
Assign. Consider a point 𝑠𝑖 such that we have to assign points to
form the cluster 𝐶 (𝑠𝑖) centered at 𝑠𝑖 . We calculate an assignment

score (called ACount in line 4) for every point 𝑢 of a cluster 𝐶 (𝑠 𝑗) \
𝑅(𝑠 𝑗) centered at 𝑠 𝑗 . ACount captures the total number of times 𝑢

is considered to belong to same cluster as that of 𝑥 for each 𝑥 in the
core 𝑅(𝑠 𝑗). Intuitively, points that belong to same cluster as that of
𝑠𝑖 are expected to have higher ACount score. Based on the scores,
we move 𝑢 to 𝐶 (𝑠𝑖) or keep it in 𝐶 (𝑠 𝑗).

Algorithm 8 Assign(𝑆, 𝑠𝑖 , 𝑅)
1: 𝐶 (𝑠𝑖) ← {𝑠𝑖 }
2: for 𝑠 𝑗 ∈ 𝑆 do

3: for 𝑢 ∈ 𝐶 (𝑠 𝑗) \ 𝑅 (𝑠 𝑗) do
4: ACount(𝑢, 𝑠𝑖 , 𝑠 𝑗) =

∑
𝑣𝑘 ∈𝑅 (𝑠 𝑗) 1{O(𝑢, 𝑠𝑖 ,𝑢, 𝑣𝑘) == Yes}

5: if ACount(𝑢, 𝑠𝑖 , 𝑠 𝑗) > 0.3 |𝑅 (𝑠 𝑗) | then
6: 𝐶 (𝑠𝑖) ← 𝐶 (𝑠𝑖) ∪ {𝑢 };𝐶 (𝑠 𝑗) ← 𝐶 (𝑠 𝑗) \ {𝑢 }
7: 𝑅 (𝑠𝑖) ← Identify-Core(𝐶 (𝑠𝑖), 𝑠𝑖)
8: return C, R

Algorithm 9 Identify-Core(𝐶 (𝑠𝑖), 𝑠𝑖)
1: for 𝑢 ∈ 𝐶 (𝑠𝑖) do
2: Count(u)=

∑
𝑥∈𝐶 (𝑠𝑖) 1{O(𝑠𝑖 , 𝑥, 𝑠𝑖 ,𝑢) == No}

3: 𝑅 (𝑠𝑖) denote set of 8𝛾 log(𝑛/𝛿)/9 points with the highest Count values.
4: return 𝑅 (𝑠𝑖)

Identify-Core. After forming cluster 𝐶 (𝑠𝑖), we identify the core
of 𝑠𝑖 . For this, we calculate a score, denoted by Count and captures
number of times it is closer to 𝑠𝑖 compared to other points in 𝐶 (𝑆𝑖).
Intuitively, we expect points with high values of Count to belong to
𝐶∗ (𝑠𝑖) i.e., optimum cluster containing 𝑠𝑖 . Therefore we sort these
Count scores and return the highest scored points.
Approx-Farthest. For a set of clusters C, and a set of centers 𝑆 ,
we construct the pairs (𝑣𝑖 , 𝑠 𝑗) where 𝑣𝑖 is assigned to cluster 𝐶 (𝑠 𝑗)
centered at 𝑠 𝑗 ∈ 𝑆 and each center 𝑠 𝑗 ∈ 𝑆 has a corresponding core
𝑅(𝑠 𝑗). The farthest point can be found by finding the maximum
distance (point, center) pair among all the points considered. To do
so, we use the ideas developed in section 3.3.

We leverage ClusterComp (Algorithm 10) to compare the dis-
tance of two points, say 𝑣𝑖 , 𝑣 𝑗 from their respective centers 𝑠𝑖 , 𝑠 𝑗 .
ClusterComp gives a robust answer to a pairwise comparison
query to the oracle O(𝑣𝑖 , 𝑠𝑖 , 𝑣 𝑗 , 𝑠 𝑗) using the cores 𝑅(𝑠𝑖) and 𝑅(𝑠 𝑗).
ClusterComp can be used as a pairwise comparison subroutine in
place of PairwiseComp for the algorithm in Section 3 to calculate
the farthest point. For every 𝑠𝑖 ∈ 𝑆 , let 𝑅(𝑠𝑖) denote an arbitrary
set of

√
𝑅(𝑠𝑖) points from 𝑅(𝑠𝑖). For a ClusterComp comparison

query between the pairs (𝑣𝑖 , 𝑠𝑖) and (𝑣 𝑗 , 𝑠 𝑗), we use these subsets
in Algorithm 10 to ensure that we only make Θ(log(𝑛/𝛿)) oracle
queries for every comparison. However, when the query is between
points of the same cluster, say 𝐶 (𝑠𝑖), we use all the Θ(log(𝑛/𝛿))
points from 𝑅(𝑠𝑖). For the parameters used to find maximum using
Algorithm 4, we use 𝑙 =

√
𝑛, 𝑡 = log(𝑛/𝛿).

Example 4.3. Suppose we run 𝑘-center Algorithm 7 with 𝑘 = 2 and
𝑚 = 2 on the points in Example 3.8. Let𝑤 denote the first center chosen

and Algorithm 7 identifies the core 𝑅(𝑤) by calculating Count values.
If O(𝑢,𝑤, 𝑠,𝑤) and O(𝑠,𝑤, 𝑡,𝑤) are answered incorrectly (with prob-

ability 𝑝), we obtain Count values of 𝑣, 𝑠,𝑢, 𝑡 as 3, 2, 1, 0 respectively;
and 𝑣 is added to 𝑅(𝑤). We identify the second center𝑢 by calculating

FCount for 𝑠,𝑢 and 𝑡 (See Figure 3). After assigning (using Assign),

the clusters identified are {𝑤, 𝑣}, {𝑢, 𝑠, 𝑡}, achieving 3-approximation.

Algorithm 10 ClusterComp (𝑣𝑖 , 𝑠𝑖 , 𝑣𝑗 , 𝑠 𝑗)

1: comparisons← 0, FCount(𝑣𝑖 , 𝑣𝑗) ← 0
2: if 𝑠𝑖 = 𝑠 𝑗 then

3: Let FCount(𝑣𝑖 , 𝑣𝑗) =
∑

𝑥∈𝑅 (𝑠𝑖) 1{O(𝑣𝑖 , 𝑥, 𝑣𝑗 , 𝑥) == Yes}
4: comparisons← |𝑅 (𝑠𝑖) |
5: else Let FCount(𝑣𝑖 , 𝑣𝑗) =

∑
𝑥∈𝑅 (𝑠𝑖),𝑦∈𝑅 (𝑠 𝑗) 1{O(𝑣𝑖 , 𝑥, 𝑣𝑗 , 𝑦) == Yes}

6: comparisons← |𝑅 (𝑠𝑖) | · |𝑅 (𝑠 𝑗) |
7: if FCount(𝑣𝑖 , 𝑣𝑗) < 0.3 · comparisons then

8: return No
9: else return Yes

Assign-Final. After obtaining 𝑘 clusters on the set of sampled
points 𝑉 , we assign the remaining points using ACount scores,
similar to the one described in Assign. For every point that is
not sampled, we first assign it to 𝑠1 ∈ 𝑆 , and if ACount(𝑢, 𝑠2, 𝑠1) ≥
0.3|𝑅(𝑠1) |, we re-assign it to 𝑠2, and continue this process iteratively.
After assigning all the points, the clusters are returned as output.
Theoretical Guarantees. Our algorithm first constructs a sample
𝑉 ⊆ 𝑉 and runs the greedy algorithm on this sampled set of points.
Our main idea to ensure that good approximation of the 𝑘-center
objective lies in identifying a good core around each center. Using a
sampling probability of 𝛾 log(𝑛/𝛿)/𝑚 ensures that we have at least
Θ(log(𝑛/𝛿)) points from each of the optimal clusters in our sampled
set 𝑉 . By finding the closest points using Count scores, we identify
𝑂 (log(𝑛/𝛿)) points around every center that are in the optimal
cluster. Essentially, this forms the core of each cluster. These cores
are then used for robust pairwise comparison queries (similar to
Section 3.3), in our Approx-Farthest and Assign subroutines. We
give the following theorem, which guarantees a constant, i.e., 𝑂 (1)
approximation with high probability.

Theorem 4.4. Given 𝑝 ≤ 0.4, a failure probability 𝛿 , and 𝑚 =

Ω(log3 (𝑛/𝛿)/𝛿). Then, Algorithm 7 achieves a 𝑂 (1)-approximation

for the 𝑘-center objective using 𝑂 (𝑛𝑘 log(𝑛/𝛿) + 𝑛2

𝑚2 𝑘 log2 (𝑛/𝛿)) or-
acle queries with probability 1 −𝑂 (𝛿).

5 HIERARCHICAL CLUSTERING

In this section, we present robust algorithms for agglomerative
hierarchical clustering using single linkage and complete linkage
objectives. The naive algorithms initialize every record as a single-
ton cluster and merge the closest pair of clusters iteratively. For
a set of clusters C = {𝐶1, . . . ,𝐶𝑡 }, the distance between any pair
of clusters 𝐶𝑖 and 𝐶 𝑗 , for single linkage clustering, is defined as
the minimum distance between any pair of records in the clusters,
𝑑𝑆𝐿 (𝐶1,𝐶2) = min𝑣1∈𝐶1,𝑣2∈𝐶2 𝑑 (𝑣1, 𝑣2). For complete linkage, clus-
ter distance is defined as the maximum distance between any pair
of records. All algorithms discussed in this section can be easily
extended for complete linkage, and therefore we study single link-
age clustering. The main challenge in implementing single linkage
clustering in the presence of adversarial noise is identification of
minimum value in a list of at most

(𝑛
2
)
distance values. In each

iteration, the closest pair of clusters can be identified by using Algo-
rithm 4 (with 𝑡 = 2 log(𝑛/𝛿)) to calculate the minimum over the set
containing pairwise distances. For this algorithm, Lemma 5.1 shows
that the pair of clusters merged in any iteration are a constant ap-
proximation of the optimal merge operation at that iteration. The
proof of this lemma follows from Theorem 3.6.

Lemma 5.1. Given a collection of clusters C = {𝐶1, . . . ,𝐶𝑟 }, our
algorithm to calculate the closest pair (using Algorithm 4) identifies𝐶1
and𝐶2 to merge according to single linkage objective if 𝑑𝑆𝐿 (𝐶2,𝐶2) ≤
(1 + 𝜇)3min𝐶𝑖 ,𝐶 𝑗 ∈C 𝑑 (𝐶𝑖 ,𝐶 𝑗) with 1 − 𝛿/𝑛 probability and requires

𝑂 (𝑛2 log2 (𝑛/𝛿)) queries.

Algorithm 11 Greedy Algorithm
1: Input : Set of points𝑉
2: Output : Hierarchy 𝐻
3: 𝐻 ← {{𝑣 } | 𝑣 ∈ 𝑉 }, C ← {{𝑣 } | 𝑣 ∈ 𝑉 }
4: for𝐶𝑖 ∈ C do

5: 𝐶𝑖 ←NearestNeighbor of𝐶𝑖 among C \ {𝐶𝑖 } using Sec 3.3
6: while |C | > 1 do
7: Let (𝐶 𝑗 ,𝐶 𝑗) be the closest pair among (𝐶𝑖 ,𝐶𝑖), ∀𝐶𝑖 ∈ C
8: 𝐶′ ← 𝐶 𝑗 ∪𝐶 𝑗

9: Update Adjacency list of𝐶′ with respect to C
10: Add𝐶′ as parent of𝐶 𝑗 and𝐶 𝑗 in 𝐻 .
11: C ←

(
C \ {𝐶 𝑗 ,𝐶 𝑗 }

)
∪ {𝐶′ }

12: 𝐶′ ← NearestNeighbor of𝐶′ from its adjacency list
13: return 𝐻

Overview. Agglomerative clustering techniques are inefficient and
involve merge operations comparing at most

(𝑛
2
)
pairs of distance

values in each of the 𝑛 iterations, yielding an overall query com-
plexity of 𝑂 (𝑛3). Improving upon this, SLINK algorithm [48] was
proposed to construct the hierarchy in 𝑂 (𝑛2) comparisons. To im-
plement this algorithm with a comparison oracle, for every cluster
𝐶𝑖 ∈ C, we maintain an adjacency list containing every cluster
𝐶 𝑗 in C along with a pair of records with the distance equal to
the distance between the clusters. For example, the entry for 𝐶 𝑗

in the adjacency list of 𝐶𝑖 contains the pair of records (𝑣𝑖 , 𝑣 𝑗) such
that 𝑑 (𝑣𝑖 , 𝑣 𝑗) = min𝑣𝑖 ∈𝐶𝑖 ,𝑣𝑗 ∈𝐶 𝑗

𝑑 (𝑣𝑖 , 𝑣 𝑗). Algorithm 11 presents the
pseudo code for single linkage clustering under the adversarial
noise model. The algorithm is initialized with singleton clusters
where every record is a separate cluster. Then, we identify the clos-
est cluster for every 𝐶𝑖 ∈ C, and denote it by 𝐶𝑖 . This step takes
𝑛 nearest neighbor queries, each requiring 𝑂 (𝑛 log2 (𝑛/𝛿)) oracle
queries. In every subsequent iteration, we identify the closest pair
of clusters (Using section 3.3), say 𝐶 𝑗 and 𝐶 𝑗 from C.

After merging these clusters, in order to update the adjacency
list, we need the pair of records with minimum distance between
the merged cluster 𝐶 ′ ≡ 𝐶 𝑗 ∪𝐶 𝑗 and every other cluster 𝐶𝑘 ∈ C.
In the previous iteration of the algorithm, we already have the
minimum distance record pair for (𝐶 𝑗 ,𝐶𝑘) and (𝐶 𝑗 ,𝐶𝑘). Therefore
a single query between these two pairs of records is sufficient to
identify the minimum distance edge between 𝐶 ′ and 𝐶𝑘 (formally:
𝑑𝑆𝐿 (𝐶 𝑗 ∪ 𝐶 𝑗 ,𝐶𝑘) = min{𝑑𝑆𝐿 (𝐶 𝑗 ,𝐶𝑘), 𝑑𝑆𝐿 (𝐶 𝑗 ,𝐶𝑘)}). The nearest
neighbor of the merged cluster is identified by running minimum
calculation over its adjacency list. In Algorithm 11, as we iden-
tify closest pair of clusters, each iteration requires 𝑂 (𝑛 log2 (𝑛/𝛿))
queries. As our Algorithm terminates in at most 𝑛 iterations, it has
an overall query complexity of 𝑂 (𝑛2 log2 (𝑛/𝛿)). In Theorem 5.2,
we given an approximation guarantee for every merge operation
of Algorithm 11.

Theorem 5.2. In any iteration, suppose the distance between a clus-
ter 𝐶 𝑗 ∈ C and its identified nearest neighbor 𝐶 𝑗 is 𝛼-approximation

of its distance from the optimal nearest neighbor, then the distance

between pair of clusters merged by Algorithm 11 is 𝛼 (1 + 𝜇)3 approx-
imation of the optimal distance between the closest pair of clusters in

C with a probability of 1 − 𝛿 using 𝑂 (𝑛 log2 (𝑛/𝛿)) oracle queries.

Probabilistic Noise model. The above discussed algorithms do
not extend to the probabilistic noise due to constant probability
of error for each query. However, when we are given a priori, a
partitioning of𝑉 into clusters of size > log𝑛 such that themaximum
distance between any pair of records in every cluster is smaller than
𝛼 (a constant), Algorithm 11 can be used to construct the hierarchy
correctly. For this case, the algorithm to identify the closest and
farthest pair of clusters is same as the one discussed in Section 3.3.
Note that agglomerative clustering algorithms are known to require
Ω(𝑛2) queries, which can be infeasible for million scale datasets.
However, blocking based techniques present efficient heuristics to
prune out low similarity pairs [45]. Devising provable algorithms
with better time complexity is outside the scope of this work.

6 EXPERIMENTS

In this section, we evaluate the effectiveness of our techniques on
various real world datasets and answer the following questions.
Q1: Is quadruplet oracle practically feasible? How do the different
types of queries compare in terms of quality and time taken by
annotators? Q2: Are proposed techniques robust to different levels
of noise in oracle answers? Q3: How does the query complexity
and solution quality of proposed techniques compare with optimum
for varied levels of noise?

6.1 Experimental Setup

Datasets. We consider the following real-world datasets.
(1) cities dataset [2] comprises of 36K cities of the United States.
The different features of the cities include state, county, zip code,
population, time zone, latitude and longitude.
(2) caltech dataset comprises 11.4K images from 20 categories.
The ground truth distance between records is calculated using the
hierarchical categorization described in Griffin et al. [30].
(3) amazon dataset contains 7K images and textual descriptions
collected from amazon.com [32]. For obtaining the ground truth
distances we use Amazon’s hierarchical catalog.
(4) monuments dataset comprises of 100 images belonging to 10
tourist locations around the world.
(5) dblp contains 1.8M titles of computer science papers from differ-
ent areas [61]. From these titles, noun phrases were extracted and
a dictionary of all the phrases was constructed. Euclidean distance
in word2vec embedding space is considered as the ground truth
distance between concepts.
Baselines. We compare our techniques with the optimal solution
(whenever possible) and the following baselines. (a) Tour2 con-
structs a binary tournament tree over the entire dataset to compare
the values and the root node corresponds to the identified maxi-
mum/minimum value (Algorithm 2 with 𝜆 = 2). This approach is
an adaptation of the maximum calculation algorithm in [16] with a
difference that each query is not repeated multiple times to increase
success probability. We also use them to identify the farthest and
nearest point in the greedy 𝑘-center Algorithm 6 and closest pair
of clusters in hierarchical clustering. (b) Samp considers a sample

of
√
𝑛 records and identifies the farthest/nearest by performing

quadratic number of comparisons over the sampled points using
Count-Max. For 𝑘-center, Samp considers a sample of 𝑘 log𝑛 points
to identify 𝑘 centers over these samples using the greedy algorithm.
It then assigns all the remaining points to the identified centers by
querying each record with every pair of center.

Calculating optimal clustering objective for 𝑘-center is NP-hard
even in the presence of accurate pairwise distance [60]. So, we com-
pare the solution quality with respect to the greedy algorithm on
the ground truth distances, denoted by TDist. For farthest, nearest
neighbor and hierarchical clustering, TDist denotes the optimal
technique that has access to ground truth distance between records.

Our algorithm is labelled Far for farthest identification, NN for
nearest neighbor, kC for 𝑘-center and HC for hierarchical clustering
with subscript 𝑎 denoting the adversarial model and 𝑝 denoting
the probabilistic noise model. All algorithms are implemented in
C++ and run on a server with 64GB RAM. The reported results are
averaged over 100 randomly chosen iterations. Unless specified, we
set 𝑡 = 1 in Algorithm 4 and 𝛾 = 2 in Algorithm 7.
Evaluation Metric. For finding maximum and nearest neighbors,
we compare different techniques by evaluating the true distance
of the returned solution from the queried points. For 𝑘-center, we
use the objective value, i.e., maximum radius of the returned clus-
ters as the evaluation metric and compare against the true greedy
algorithm (TDist) and other baselines. For datasets where ground
truth clusters are known (amazon, caltech and monuments), we
use F-score over intra-cluster pairs for comparing it with the base-
lines [21]. For hierarchical clustering, we compute the pairs of
clusters merged in every iteration and compare the average true
distance between these clusters. In addition to the quality of re-
turned solution, we compare the query complexity and running
time of the proposed techniques with the baselines described above.
Noise Estimation. For cities, amazon, caltech, and monuments
datasets, we ran a user study on Amazon Mechanical Turk to esti-
mate the noise in oracle answers over a small sample of the dataset,
often referred to as the validation set. Using crowd responses, we
trained a classifier (random forest [52] obtained the best results)
using active learning to act as the quadruplet oracle, and reduce the
number of queries to the crowd. Our active learning algorithm [51]
uses a batch of 20 queries and we stop it when the classifier accu-
racy on the validation set does not improve by more than 0.01 [27].
To efficiently construct a small set of candidates for active learning
and pruning low similarity pairs for dblp, we employ token based
blocking [45] for the datasets. For the synthetic oracle, we simulate
quadruplet oracle with different values of the noise parameters.

6.2 User study

In this section, we evaluate the users ability to answer quadruplet
queries and compare it with other types of queries.
Setup. We ran a user study on Amazon Mechanical Turk platform
for four datasets cities, amazon, caltech and monuments. We con-
sider the ground truth distance between record pairs and discretize
them into buckets, and assign a pair of records to a bucket if the
distance falls within its range. For every pair of buckets, we query a
random subset of log𝑛 quadruplet oracle queries (where 𝑛 is size of

(a) caltech

0 1 3 4 5 6 7 8 9 10 11 12

0
1
3
4
5
6
7
8
9
10
11
12 0.0

0.2

0.4

0.6

0.8

1.0

(b) amazon

Figure 4: Accuracy values (denoted by the color of a cell)

for different distance ranges observed during our user study.

The diagonal entries refer to the quadruplets with similar

distance between the corresponding pairs and the distance

increases as we go further away from the diagonal.

dataset). Each query is answered by three different crowd workers
and a majority vote is taken as the answer to the query.

6.2.1 Qualitative Analysis of Oracle. In Figure 4, for every pair of
buckets, using a heat map, we plot the accuracy of answers obtained
from the crowd workers for quadruplet queries. For all datasets,
average accuracy of quadruplet queries is more than 0.83 and the
accuracy is minimum whenever both pairs of records belong to the
same bucket (as low as 0.5). However, we observe varied behavior
across datasets as the distance between considered pairs increases.

For the caltech dataset, we observe that when the ratio of the
distances is more than 1.45 (indicated by a black line in the Fig-
ure 4(a)) , there is no noise (or close to zero noise) observed in the
query responses. As we observe a sharp decline in noise as the
distance between the pairs increases, it suggests that adversarial
noise is satisfied for this dataset. We observe a similar pattern for
the cities and monuments datasets. For the amazon dataset, we
observe that there is substantial noise across all distance ranges
(See Figure 4(b)) rather than a sharp decline, suggesting that the
probabilistic model is satisfied.

6.2.2 Comparison with pairwise querying mechanisms. To evaluate
the benefit of quadruplet queries, we compare the quality of quadru-
plet comparison oracle answers with the following pairwise oracle
query models. (a) Optimal cluster query: This query asks questions
of type ‘do 𝑢 and 𝑣 refer to same/similar type?’. (b) Distance query:
How similar are the records 𝑥 and 𝑦? In this query, the annotator
scores the similarity of the pair within 1 to 10.
We make the following observations. (i) Optimal cluster queries
are answered correctly only if the ground truth clusters refer to
different entities (each cluster referring to a distinct entity). Crowd
workers tend to answer ‘No’ if the pair of records refer to different
entities. Therefore, we observe high precision (more than 0.90) but
low recall (0.50 on amazon and 0.30 on caltech for 𝑘 = 10) of the
returned labels. (ii) We observed very high variance in the distance
estimation query responses. For all record pairs with identical enti-
ties, the users returned distance estimates that were within 20% of
the correct distances. In all other cases, we observe the estimates
to have errors of upto 50%. We provide more detailed comparison

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

cities caltech
monuments

amazon

D
is

ta
nc

e

Datasets

Tdist
Far

Tour2
Samp

(a) Farthest,higher is better

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

cities caltech
monuments

amazon

D
is

ta
nc

e

Datasets

Tdist
NN

Tour2
Samp

(b) Nearest Neighbor (NN), lower is better

Figure 5: Comparison of farthest and NN techniques for

crowdsourced oracle queries.

Table 1: F-score comparison of k-center clustering. Oq is

marked with ∗ as it was computed on a sample of 150 pair-

wise queries to the crowd
3
. All other techniques were run on

the complete dataset using a classifier.

Technique kC Tour2 Samp Oq*
caltech (𝑘 = 10) 1 0.88 0.91 0.45
caltech (𝑘 = 15) 1 0.89 0.88 0.49
caltech (𝑘 = 20) 0.99 0.93 0.87 0.58
monuments (𝑘 = 5) 1 0.95 0.97 0.77
amazon (𝑘 = 7) 0.96 0.74 0.57 0.48
amazon (𝑘 = 14) 0.92 0.66 0.54 0.72

on the quality of clusters identified by pairwise query responses
along with quadruplet queries in the next section.

6.3 Crowd Oracle: Solution Quality & Query

Complexity

In this section, we compare the quality of our proposed techniques
for the datasets on which we performed the user study. Following
the findings of Section 6.2, we use probabilistic model based algo-
rithm for amazon (with 𝑝 = 0.50) and adversarial noise model based
algorithm for caltech, monuments and cities.
Finding Max and Farthest/Nearest Neighbor. Figure 5 com-
pares the quality of farthest and nearest neighbor (NN) identified by
proposed techniques along with other baselines. The values are nor-
malized according to the maximum value to present all datasets on
the same scale. Across all datasets, the point identified by Far and
NN is closest to the optimal value, TDist. In contrast, the farthest re-
turned by Tour2 is better than that of Samp for cities dataset but
not for caltech, monuments and amazon. We found that this differ-
ence in quality across datasets is due to varied distance distribution
between pairs. The cities dataset has a skewed distribution of
distance between record pairs, leading to a unique optimal solution
to the farthest/NN problem. Due to this reason, the set of records
sampled by Samp does not contain any record that is a good approx-
imation of the optimal farthest. However, ground truth distances
between record pairs in amazon, monuments and caltech are less
skewed with more than log𝑛 records satisfying the optimal farthest
point for all queries. Therefore, Samp performs better than Tour2
on these datasets. We observe Samp performs worse for NN because
our sample does not always contain the closest point.
𝑘-center Clustering. We evaluate the F-score of the clusters gen-
erated by our techniques along with baselines and techniques for
pairwise optimal query mechanism (denoted as Oq) We report the

(a) caltech (b) amazon

Figure 4: Accuracy values (denoted by the color of a cell)

for different distance ranges observed during our user study.

The diagonal entries refer to the quadruplets with similar

distance between the corresponding pairs and the distance

increases as we go further away from the diagonal.

dataset). Each query is answered by three different crowd workers
and a majority vote is taken as the answer to the query.

6.2.1 Qualitative Analysis of Oracle. In Figure 4, for every pair of
buckets, using a heat map, we plot the accuracy of answers obtained
from the crowd workers for quadruplet queries. For all datasets,
average accuracy of quadruplet queries is more than 0.83 and the
accuracy is minimum whenever both pairs of records belong to the
same bucket (as low as 0.5). However, we observe varied behavior
across datasets as the distance between considered pairs increases.

For the caltech dataset, we observe that when the ratio of the
distances is more than 1.45 (indicated by a black line in the Fig-
ure 4(a)) , there is no noise (or close to zero noise) observed in the
query responses. As we observe a sharp decline in noise as the
distance between the pairs increases, it suggests that adversarial
noise is satisfied for this dataset. We observe a similar pattern for
the cities and monuments datasets. For the amazon dataset, we
observe that there is substantial noise across all distance ranges
(See Figure 4(b)) rather than a sharp decline, suggesting that the
probabilistic model is satisfied.

6.2.2 Comparison with pairwise querying mechanisms. To evaluate
the benefit of quadruplet queries, we compare the quality of quadru-
plet comparison oracle answers with the following pairwise oracle
query models. (a) Optimal cluster query: This query asks questions
of type ‘do � and � refer to same/similar type?’. (b) Distance query:
How similar are the records � and �? In this query, the annotator
scores the similarity of the pair within 1 to 10.
We make the following observations. (i) Optimal cluster queries
are answered correctly only if the ground truth clusters refer to
different entities (each cluster referring to a distinct entity). Crowd
workers tend to answer ‘No’ if the pair of records refer to different
entities. Therefore, we observe high precision (more than 0.90) but
low recall (0.50 on amazon and 0.30 on caltech for � = 10) of the
returned labels. (ii) We observed very high variance in the distance
estimation query responses. For all record pairs with identical enti-
ties, the users returned distance estimates that were within 20% of
the correct distances. In all other cases, we observe the estimates
to have errors of upto 50%. We provide more detailed comparison

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

cities caltech
monuments

amazon

D
is

ta
nc

e

Datasets

Tdist
Far

Tour2
Samp

(a) Farthest,higher is better

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

cities caltech
monuments

amazon

D
is

ta
nc

e

Datasets

Tdist
NN

Tour2
Samp

(b) Nearest Neighbor (NN), lower is better

Figure 5: Comparison of farthest and NN techniques for

crowdsourced oracle queries.

Table 1: F-score comparison of k-center clustering. Oq is

marked with ∗ as it was computed on a sample of 150 pair-

wise queries to the crowd
3
. All other techniques were run on

the complete dataset using a classifier.

Technique kC Tour2 Samp Oq*
caltech (� = 10) 1 0.88 0.91 0.45
caltech (� = 15) 1 0.89 0.88 0.49
caltech (� = 20) 0.99 0.93 0.87 0.58
monuments (� = 5) 1 0.95 0.97 0.77
amazon (� = 7) 0.96 0.74 0.57 0.48
amazon (� = 14) 0.92 0.66 0.54 0.72

on the quality of clusters identified by pairwise query responses
along with quadruplet queries in the next section.

6.3 Crowd Oracle: Solution Quality & Query

Complexity

In this section, we compare the quality of our proposed techniques
for the datasets on which we performed the user study. Following
the findings of Section 6.2, we use probabilistic model based algo-
rithm for amazon (with � = 0.50) and adversarial noise model based
algorithm for caltech, monuments and cities.
Finding Max and Farthest/Nearest Neighbor. Figure 5 com-
pares the quality of farthest and nearest neighbor (NN) identified by
proposed techniques along with other baselines. The values are nor-
malized according to the maximum value to present all datasets on
the same scale. Across all datasets, the point identified by Far and
NN is closest to the optimal value, TDist. In contrast, the farthest re-
turned by Tour2 is better than that of Samp for cities dataset but
not for caltech, monuments and amazon. We found that this differ-
ence in quality across datasets is due to varied distance distribution
between pairs. The cities dataset has a skewed distribution of
distance between record pairs, leading to a unique optimal solution
to the farthest/NN problem. Due to this reason, the set of records
sampled by Samp does not contain any record that is a good approx-
imation of the optimal farthest. However, ground truth distances
between record pairs in amazon, monuments and caltech are less
skewed with more than log� records satisfying the optimal farthest
point for all queries. Therefore, Samp performs better than Tour2
on these datasets. We observe Samp performs worse for NN because
our sample does not always contain the closest point.
�-center Clustering. We evaluate the F-score of the clusters gen-
erated by our techniques along with baselines and techniques for
pairwise optimal query mechanism (denoted as Oq) We report the

 0
 0.5

 1
 1.5

 2
 2.5

 3

cities caltech
monuments

amazon

D
is

ta
nc

e

Datasets

Tdist
HC

Tour2
Samp

(a) Single Linkage

 0
 0.5

 1
 1.5

 2
 2.5

 3

cities caltech
monuments

amazon

D
is

ta
nc

e
Datasets

Tdist
HC

Tour2
Samp

(b) Complete Linkage

Figure 6: Comparison of Hierarchical clustering techniques

with crowdsourced oracle.

results on the sample of queries asked to the crowd as opposed
to training a classifier because the classifier generates noisier re-
sults and has poorer F-score than the quality of labels generated
by crowdsourcing. Optimal clusters are identified from the orig-
inal source of the datasets (amazon and caltech) and manually
for monuments. Table 1 presents the summary of our results for
different values of 𝑘 . Across all datasets, our technique achieves
more than 0.90 F-score. On the other hand, Tour2 and Samp do not
identify the ground truth clusters correctly, leading to low F-score.
Similarly, Oq achieves poor recall (and hence low F-score) as it labels
many record pairs to belong to separate clusters. For example, a
frog and a butterfly belong to the same optimal cluster for caltech
(k=10) but the two records are assigned to different clusters by Oq.
Hierarchical Clustering. Figure 6 compares the average distance
of the merged clusters across different iterations of the agglomer-
ative clustering algorithm. Tour2 has 𝑂 (𝑛3) complexity and does
not run for cities dataset in less than 48 hrs. The objective value
of different techniques are normalized by the optimal value with
Tdist denoting 1. For all datasets, HC performs better than Samp
and Tour2. Among datasets, the quality of hierarchies generated
for monuments is similar for all techniques due to low noise.
Query Complexity. To ensure scalability, we trained active learn-
ing based classifier for all the aforementioned experiments. In total,
amazon, cities, and caltech required 540 (cost: $32.40), 220 (cost:
$13.20) and 280 (cost: $16.80) queries to the crowd respectively.

6.4 Simulated Oracle: Solution Quality

In this section, we compare the robustness of the techniques where
the query response is simulated synthetically for given 𝜇 and 𝑝 .
Finding Max and Farthest/Nearest Neighbor. In Figure 7(a),
𝜇 = 0 denotes the setting where the oracle answers all queries
correctly. In this case, Far and Tour2 identify the optimal solution
but Samp does not identify the optimal solution for cities. In both
datasets, Far identifies the correct farthest point for 𝜇 < 1. Even
with an increase in noise (𝜇), we observe that the farthest is always
at a distance within 4 times the optimal distance (See Fig 7(a)). We
observe that the quality of farthest identified by Tour2 is close to
that of Far for smaller 𝜇 because the optimal farthest point 𝑣max
has only a few points in the confusion region 𝐶 (See Section 3)
that contains the points that are close to 𝑣max. For e.g., less than
10% are present in 𝐶 when 𝜇 = 1 for cities dataset, i.e., less than
10% points return erroneous answer when compared with 𝑣max. In
Figure 7(b), we compare the true distance of the identified farthest

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

0 0.5 1 2

D
is

ta
nc

e

µ

Tdist
Far

Tour2
Samp

(a) cities–Adversarial

 3000

 4000

 5000

 6000

 7000

0 0.1 0.3

D
is

ta
nc

e

p

Tdist
Far

Tour2
Samp

(b) cities–Probabilistic

Figure 7: Comparison of farthest identification techniques

for adversarial and probabilistic noise models.

 0

 5

 10

 15

 20

 25

0 0.5 1 2

D
is

ta
nc

e

µ

Tdist
NN

Tour2

(a) cities–Adversarial

 0
 20
 40
 60
 80

 100
 120
 140

0 0.1 0.3

D
is

ta
nc

e

p

Tdist
NN

Tour2

(b) cities–Probabilistic

Figure 8: Comparison of nearest neighbor techniques for

adversarial and probabilistic noise model (lower is better).

points for the case of probabilistic noise with error probability 𝑝 .
We observe that Far𝑝 identifies points with distance values very
close to the farthest distance Tdist, across all data sets and error
values. This shows that Far performs significantly better than the
theoretical approximation presented in Section 3. On the other
hand, the solution returned by Samp is more than 4× smaller than
the value returned by Far𝑝 for an error probability of 0.3. Tour2 has
a similar performance as that of Far𝑝 for 𝑝 ≤ 0.1, but we observe
a decline in solution quality for higher noise (𝑝) values.

Figures 8(a), 8(b) compare the true distance of the identified
nearest neighbor with different baselines. NN shows superior perfor-
mance as compared to Tour2 across all error values. The solution
quality of NN does not worsen with increase in error. We omit Samp
from the plots because the returned points had very poor perfor-
mance (as bad as 700 even in the absence of error). We observed
similar behavior for other datasets. We present a detailed analysis
with the simulated oracle in the full version [3].

7 CONCLUSION

In this paper, we show how algorithms for various basic tasks
such as finding maximum, nearest neighbor, 𝑘-center clustering,
and agglomerative hierarchical clustering can be designed using
distance based comparison oracle in presence of noise. We believe
our techniques can be useful for other clustering tasks such as
𝑘-means and 𝑘-median, and we leave those as future work.

ACKNOWLEDGEMENTS

We thank Anirudh Sabnis for many insightful discussions and help
conducting the user study. This work is supported partly by NSF
grants 1652303, 1909046, 1908849, 1637536, HDR TRIPODS 1934846,
and an Alfred P. Sloan Fellowship.

REFERENCES

[1] [n.d.]. Google Vision API https://cloud.google.com/vision.
[2] https://simplemaps.com/data/us-cities. United States Cities Database. (https:

//simplemaps.com/data/us-cities).
[3] Raghavendra Addanki, Sainyam Galhotra, and Barna Saha. 2021. How to

Design Robust Algorithms using Noisy Comparison Oracles. arXiv preprint

arXiv:2105.05782 (2021).
[4] Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. 2018. Approx-

imate Clustering with Same-Cluster Queries. In 9th Innovations in Theoretical

Computer Science Conference (ITCS 2018), Vol. 94. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 40.

[5] Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. 2009. Sort-
ing and selection with imprecise comparisons. In International Colloquium on

Automata, Languages, and Programming. Springer, 37–48.
[6] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-

index: pushing the scalability-accuracy boundary for approximate kNN search
in high-dimensional spaces. PVLDB 11, 8 (2018), 906–919.

[7] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. 2016. Clustering with
same-cluster queries. In Advances in neural information processing systems. 3216–
3224.

[8] Shai Ben-David. 2018. Clustering-what both theoreticians and practitioners are
doing wrong. In Thirty-Second AAAI Conference on Artificial Intelligence.

[9] Mark Braverman, Jieming Mao, and S Matthew Weinberg. 2016. Parallel algo-
rithms for select and partition with noisy comparisons. In Proceedings of the

forty-eighth annual ACM symposium on Theory of Computing. 851–862.
[10] Mark Braverman and Elchanan Mossel. 2008. Noisy sorting without resam-

pling. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 268–276.
[11] Marco Bressan, Nicolò Cesa-Bianchi, Andrea Paudice, and Fabio Vitale. 2019.

Correlation Clustering with Adaptive Similarity Queries. In Advances in Neural

Information Processing Systems. 12510–12519.
[12] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar. 2018. Hierarchical

clustering with structural constraints. arXiv preprint arXiv:1805.09476 (2018).
[13] I Chien, Chao Pan, and Olgica Milenkovic. 2018. Query k-means clustering

and the double dixie cup problem. In Advances in Neural Information Processing

Systems. 6649–6658.
[14] Tuhinangshu Choudhury, Dhruti Shah, and Nikhil Karamchandani. 2019. Top-m

Clustering with a Noisy Oracle. In 2019 National Conference on Communications

(NCC). IEEE, 1–6.
[15] Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi.

2015. Crowdsourcing for top-k query processing over uncertain data. IEEE

Transactions on Knowledge and Data Engineering 28, 1 (2015), 41–53.
[16] Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. 2015. Top-k and

Clustering with Noisy Comparisons. ACM Trans. Database Syst. 39, 4, Article 35
(Dec. 2015), 39 pages. https://doi.org/10.1145/2684066

[17] Eyal Dushkin and TovaMilo. 2018. Top-k Sorting Under Partial Order Information.
In Proceedings of the 2018 International Conference on Management of Data. 1007–
1019.

[18] Ehsan Emamjomeh-Zadeh and David Kempe. 2018. Adaptive hierarchical cluster-
ing using ordinal queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms. SIAM, 415–429.
[19] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. 1994. Computing

with noisy information. SIAM J. Comput. 23, 5 (1994), 1001–1018.
[20] Donatella Firmani, Barna Saha, and Divesh Srivastava. 2016. Online Entity

Resolution Using an Oracle. PVLDB 9, 5 (2016), 384–395. https://doi.org/10.
14778/2876473.2876474

[21] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2018.
Robust entity resolution using random graphs. In Proceedings of the 2018 Interna-

tional Conference on Management of Data. 3–18.
[22] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. 2017.

Sorting with Recurrent Comparison Errors. In 28th International Symposium on

Algorithms and Computation (ISAAC 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[23] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. 2019.
Optimal Sorting with Persistent Comparison Errors. In 27th Annual European

Symposium on Algorithms (ESA 2019), Vol. 144. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 49.

[24] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. 2020. Opti-
mal dislocation with persistent errors in subquadratic time. Theory of Computing

Systems 64, 3 (2020), 508–521.
[25] Debarghya Ghoshdastidar, Michaël Perrot, and Ulrike von Luxburg. 2019. Foun-

dations of Comparison-Based Hierarchical Clustering. In Advances in Neural

Information Processing Systems. 7454–7464.
[26] Yogesh Girdhar and Gregory Dudek. 2012. Efficient on-line data summarization

using extremum summaries. In 2012 IEEE International Conference on Robotics

and Automation. IEEE, 3490–3496.
[27] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan

Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-off crowdsourc-
ing for entity matching. In Proceedings of the 2014 ACM SIGMOD international

conference on Management of data. 601–612.
[28] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster

distance. Theoretical Computer Science 38 (1985), 293–306.
[29] Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis.

2020. Clustering with a Faulty Oracle. In Proceedings of The Web Conference

2020 (WWW ’20). Association for Computing Machinery, New York, NY, USA,
2831–2834. https://doi.org/10.1145/3366423.3380045

[30] Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256 object category
dataset. (2007).

[31] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. 2012. So who
won? Dynamic max discovery with the crowd. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data. 385–396.
[32] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings

of the 25th international conference on world wide web. 507–517.
[33] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. 2020. Noise-

tolerant, reliable active classification with comparison queries. arXiv preprint
arXiv:2001.05497 (2020).

[34] Wasim Huleihel, Arya Mazumdar, Muriel Médard, and Soumyabrata Pal. 2019.
Same-Cluster Querying for Overlapping Clusters. In Advances in Neural Infor-

mation Processing Systems. 10485–10495.
[35] Christina Ilvento. 2019. Metric learning for individual fairness. arXiv preprint

arXiv:1906.00250 (2019).
[36] Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, and Amin Karbasi. 2018. Comparison

based learning from weak oracles. arXiv preprint arXiv:1802.06942 (2018).
[37] Taewan Kim and Joydeep Ghosh. 2017. Relaxed oracles for semi-supervised

clustering. arXiv preprint arXiv:1711.07433 (2017).
[38] Taewan Kim and Joydeep Ghosh. 2017. Semi-supervised active clustering with

weak oracles. arXiv preprint arXiv:1709.03202 (2017).
[39] Rolf Klein, Rainer Penninger, Christian Sohler, and David P Woodruff. 2011.

Tolerant algorithms. In European Symposium on Algorithms. Springer, 736–747.
[40] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. 2019. Fair

k-Center Clustering for Data Summarization. In International Conference on

Machine Learning. 3448–3457.
[41] Ngai Meng Kou, Yan Li, HaoWang, Leong Hou U, and Zhiguo Gong. 2017. Crowd-

sourced Top-k Queries by Confidence-Aware Pairwise Judgments. In Proceedings

of the 2017 ACM International Conference on Management of Data. 1415–1430.
[42] Blake Mason, Ardhendu Tripathy, and Robert Nowak. 2019. Learning Nearest

Neighbor Graphs fromNoisy Distance Samples. InAdvances in Neural Information

Processing Systems. 9586–9596.
[43] AryaMazumdar and Barna Saha. 2017. Clustering with noisy queries. InAdvances

in Neural Information Processing Systems. 5788–5799.
[44] Arya Mazumdar and Barna Saha. 2017. Query complexity of clustering with side

information. In Advances in Neural Information Processing Systems. 4682–4693.
[45] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.

Comparative analysis of approximate blocking techniques for entity resolution.
PVLDB 9, 9 (2016), 684–695.

[46] Vassilis Polychronopoulos, Luca De Alfaro, James Davis, Hector Garcia-Molina,
and Neoklis Polyzotis. 2013. Human-Powered Top-k Lists.. InWebDB. 25–30.

[47] Dražen Prelec, H Sebastian Seung, and John McCoy. 2017. A solution to the
single-question crowd wisdom problem. Nature 541, 7638 (2017), 532–535.

[48] Robin Sibson. 1973. SLINK: an optimally efficient algorithm for the single-link
cluster method. The computer journal 16, 1 (1973), 30–34.

[49] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and AdamTauman Kalai. 2011.
Adaptively learning the crowd kernel. In Proceedings of the 28th International

Conference on International Conference on Machine Learning. 673–680.
[50] Antti Ukkonen. 2017. Crowdsourced correlation clustering with relative distance

comparisons. In 2017 IEEE International Conference on Data Mining (ICDM). IEEE,
1117–1122.

[51] https://modal-python.readthedocs.io/en/latest/. [n.d.]. modAL library.
[52] https://scikit-learn.org/stable/. [n.d.]. Scikit-learn.
[53] Vijay V Vazirani. 2013. Approximation algorithms. Springer Science & Business

Media.
[54] Petros Venetis, Hector Garcia-Molina, Kerui Huang, and Neoklis Polyzotis. 2012.

Max algorithms in crowdsourcing environments. In Proceedings of the 21st inter-

national conference on World Wide Web. 989–998.
[55] Victor Verdugo. [n.d.]. Skyline Computation with Noisy Comparisons. In Combi-

natorial Algorithms: 31st International Workshop, IWOCA 2020, Bordeaux, France,

June 8–10, 2020, Proceedings. Springer, 289.
[56] Vasilis Verroios and Hector Garcia-Molina. 2015. Entity resolution with crowd

errors. In 2015 IEEE 31st International Conference on Data Engineering. IEEE,
219–230.

[57] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. 2014. Crowdsourcing algo-
rithms for entity resolution. PVLDB 7, 12 (2014), 1071–1082.

[58] Ramya Korlakai Vinayak and Babak Hassibi. 2016. Crowdsourced clustering:
Querying edges vs triangles. InAdvances in Neural Information Processing Systems.
1316–1324.

https://cloud.google.com/vision
https://simplemaps.com/data/us-cities
https://simplemaps.com/data/us-cities
https://simplemaps.com/data/us-cities
https://doi.org/10.1145/2684066
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.1145/3366423.3380045
https://modal-python.readthedocs.io/en/latest/
https://scikit-learn.org/stable/

[59] JiannanWang, Tim Kraska, Michael J Franklin, and Jianhua Feng. 2012. CrowdER:
Crowdsourcing Entity Resolution. PVLDB 5, 11 (2012).

[60] David P Williamson and David B Shmoys. 2011. The design of approximation

algorithms. Cambridge university press.

[61] Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler,
Michelle Vanni, and Jiawei Han. 2018. Taxogen: Unsupervised topic taxonomy
construction by adaptive term embedding and clustering. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 2701–2709.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work

	2 Preliminaries
	2.1 Quadruplet Oracle Comparison Query
	2.2 Noise Models

	3 Finding maximum
	3.1 Adversarial Noise
	3.2 Probabilistic Noise
	3.3 Extension to Farthest and Nearest Neighbor

	4 k-center clustering
	4.1 Adversarial Noise
	4.2 Probabilistic Noise

	5 Hierarchical Clustering
	6 Experiments
	6.1 Experimental Setup
	6.2 User study
	6.3 Crowd Oracle: Solution Quality & Query Complexity
	6.4 Simulated Oracle: Solution Quality

	7 Conclusion
	References

