
Noname manuscript No.
(will be inserted by the editor)

Efficient and Effective ER with Progressive Blocking

Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

the date of receipt and acceptance should be inserted later

Abstract Blocking is a mechanism to improve the effi-
ciency of Entity Resolution (ER) which aims to quickly
prune out all non-matching record pairs. However, de-

pending on the distributions of entity cluster sizes, ex-
isting techniques can be either (a) too aggressive, such
that they help scale but can adversely affect the ER ef-
fectiveness, or (b) too permissive, potentially harming

ER efficiency. In this paper, we propose a new method-
ology of progressive blocking (pBlocking) to enable both
efficient and effective ER, which works seamlessly across

different entity cluster size distributions.

pBlocking is based on the insight that the effectiveness-
efficiency trade-off is revealed only when the output

of ER starts to be available. Hence, pBlocking lever-
ages partial ER output in a feedback loop to refine the
blocking result in a data-driven fashion. Specifically, we
bootstrap pBlocking with traditional blocking meth-
ods and progressively improve the building and scoring
of blocks until we get the desired trade-off, leveraging
a limited amount of ER results as a guidance at every

round. We formally prove that pBlocking converges
efficiently (O(n log2 n) time complexity, where n is the
total number of records). Our experiments show that
incorporating partial ER output in a feedback loop can

S. Galhotra
UMass Amherst
E-mail: sainyam@cs.umass.edu

D. Firmani
Roma Tre University
E-mail: donatella.firmani@uniroma3.it

B. Saha
UC Berkeley
E-mail: barnas@berkeley.edu

D. Srivastava
AT&T Labs – Research
E-mail: divesh@research.att.com

improve the efficiency and effectiveness of blocking by
5× and 60% respectively, improving the overall F-score
of the entire ER process up to 60%.

Keywords Entity Resolution · Blocking · Data

Integration

1 Introduction

Entity Resolution (ER) is the problem of identifying

which records in a data set refer to the same real-world
entity [8]. ER technologies are key for solving complex
tasks (e.g., building a knowledge graph) but compar-
ing all the record pairs to decide which pairs match is

often infeasible. For this reason, the first step of ER
selects sub-quadratic number of record pairs to com-
pare in the subsequent steps. To this end, a commonly
used approach is blocking [27]. Blocking groups simi-
lar records into blocks and then selects pairs from the
“cleanest” blocks – i.e., those with fewer non-matching

pairs – for further comparisons. The literature is rich
with methods for building and processing blocks [27],
but depending on the data set at hand, different tech-
niques can either leave too many matching pairs out-
side, leading to incomplete ER results and low effective-
ness, or include too many non-matching pairs, leading
to low efficiency.

pBlocking. We propose a new progressive block-
ing technique that overcomes the above limitations by
short-circuiting the two operations – blocking and pair
comparisons – that are traditionally solved sequentially.
Our method starts with an aggressive blocking step,
which is efficient but not very effective. Then, it com-
putes a limited amount of ER results on a subset of

pairs selected by the aggressive blocking, and sends
these partial (matching and non-matching) results from

2 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

!"#$#$!%&!'(&)% !"#$%&'(")*
!+,%)')-*./0

1+"23*!+,%)')-*.401+"23*15'+6')-*.70 8%'&*9%:2;')- !+5(:,&')-

!" !"

!" #" !$

%& %&

%&

!" !"

!" #" !$

%& %&

%& !"#$%&
'"($)"*$+',+-(.**.

,/

,0.(1

(a)

!"#$%&'#()*+*+,%#!&%-./
!&%$#((#,)0+0/

12'345)*6+/

!7,)08*/

92$3:2(3&9,);</
!&%$#((#,! !7

=7,)08/

!"#$>)**/

-.
(*
/'
,01
%

-.(*/,
(b)

Fig. 1: (a) Illustration of a standard blocking pipeline. Block building, block cleaning and comparison cleaning
sub-tasks are highlighted in white. The downstream ER algorithm is shown in gray. Description of each record
is reported in Table 1. (b) Block size distribution (standard blocking) for the real cars dataset used in our
experiments.

Table 1: Sample records (we omit schema information)
referring to 4 distinct entities. rei represents the i-th
record referring to entity e. Records in the first two
rows refer to a Chevrolet Corvette C6 (c6) and a Z6
(z6). Records in the last two rows to a Chevrolet Mal-
ibu (ma) and a Citröen C6 (ci) (same model name as
Corvette C6 but different car).

rc61 : ‘chevy corvette c6’ rc62 : ‘chevy corvette c6 navigation’

rc63 : ‘chevrolet corvette c6’ rz61 : ‘corvette z6 navigation’
rma
1 : ‘chevy malibu navigation’ rma

2 : ‘chevrolet chevy malibu’

rma
3 : ‘chevrolet malibu’ rci1 : ‘citroen c6 navigation’

the ER phase back to the blocking phase, creating a
“loop”, to improve blocking effectiveness. In this way,
blocking can progressively self-regulate and adapt to
the properties of each dataset, with no configuration
effort. We illustrate our blocking method, that we call
pBlocking, in the following example.

Example 1 Consider the records in Table 1 from the
cars dataset used in our experiments, and a stan-
dard schema-agnostic blocking strategy S such as [22].
As shown in Figure 1a, we consider three blocking
sub-tasks [27]. First, during block building S creates
a separate block for each text token (we only show
the blocks ‘corvette’, ‘navigation’, ‘malibu’, ’c6’ and
‘chevy’). Then, during block cleaning, S uses a thresh-
old to prune out all the blocks of large size. Depending
on the threshold value (using the block sizes in the en-
tire cars dataset, shown in Figure 1b), we can have
any of the following extreme behaviors. (Note that no
intermediate setting of the threshold can yield a sparse
set of candidates that is at the same time complete.)

– Aggressive blocking: S prunes every block except
the smallest one (‘chevy’) and returns (rc61 , rc62),
(rc61 , rma

1), (rc62 , rma
1) and (rma

1 , rma
2), missing rc63 and

rma
3 .

– Permissive blocking: S prunes only the largest block
(‘chevrolet’) and returns many non-matching pairs.

Finally, during comparison cleaning, S can use an-
other threshold to further prune out pairs sharing few
blocks, e.g. by using meta-blocking [24]. As in block
cleaning, different threshold values can yield aggres-
sive or permissive behaviours. Note that matching pairs
such as (rc62 , rc63) share the same number of blocks
(‘corvette’ and ‘c6’) as non-matching pairs such as
(rc62 , rz61) (‘corvette’ and ‘navigation’). (Even worse, the
block corresponding ‘c6’ is larger than ‘navigation’.)

pBlocking can solve these problems in a few rounds:
the first round does aggressive blocking, the second
round does more effective blocking by making targeted
updates accordingly to partial ER results, and so on.
Examples of such updates to the blocking result are
discussed below.

1. Creation of new blocks that help inclusion of
(rc61 , rc63), (rc62 , rc63): pBlocking creates a new block
‘corvette ∧ c6’ with records present in both blocks
‘corvette’ and ‘c6’. This block is much smaller than
its two constituents and has only Corvette C6 cars.

2. Adaptive cleaning to help inclusion of
(rma

1 , rma
3), (rma

2 , rma
3): pBlocking can discourage

pruning of block ‘malibu’ that contains Chevrolet
Malibu cars, even if it is a large block;

3. Adaptive cleaning to help exclusion of non-matching
pairs: pBlocking can encourage pruning of block
‘navigation’ that contains no matching pairs, even
if it is a small block.

After a few rounds of updates like the above, pBlocking
returns all the matching pairs with very few non-
matching pairs. Note that after the last round, the ER
output can be computed on the resulting pairs as in the
traditional setting. Updates of type (1) are performed
via a new block intersection algorithm, while (2) and (3)
are performed by a new block scoring method. By con-
struction, when the blocking scores converge, the entire
blocking result also converges.

Our contributions. The main contribution of this
paper is a new blocking methodology with both high

Efficient and Effective ER with Progressive Blocking 3

Table 2: Notation Table

V Collection of records
C Collection of clusters
B Block: A subset of records, B ⊆ V

pm(u, v) Similarity between u and v
P = (V,A′) Blocking graph, A′ ⊂ V × V

φ Feedback frequency
p(B) Probability score of a block B
u(B) Uniformity score of block B
H(B) Entropy of block B
H Block Hierarchy
Gt Random Geometric graph
γ Fraction of nodes used for scoring blocks
µg Expected similarity of a matching edge
µr Expected similarity of a non-matching edge

efficiency and effectiveness in a variety of application
scenarios. Since pBlocking can in principle start off
using any blocking strategy, it represents not only a
new approach but also a way to “boost” traditional
ones. pBlocking works seamlessly across different en-
tity cluster size distributions such as:

– small entity clusters where using block intersection,
pBlocking can recover entities such as Corvette C6

consisting of few records sharing large and dirty
blocks.

– large entity clusters where using block scoring,
pBlocking can recover entities such as Chevrolet

Malibu consisting of many records sharing large and
clean blocks.

We prove theoretically and show empirically that, with
a few rounds and a limited amount of partial ER results,

our progressive blocking method can provide a signifi-
cant boost in blocking effectiveness without penalizing
efficiency. Specifically, we (i) demonstrate fast conver-

gence with low space and time complexity (O(n log2 n),
where n is the number of records) of pBlocking; (ii)
report experiments achieving up to 60% increase in re-

call when compared to state-of-the-art blocking [6], and
up to 5x boost in efficiency. Finally, we observe that
pBlocking can yield up to 70% increase on the F-score
of the final ER result, thus confirming substantial ben-
efits of our approach.

Outline. The rest of this paper is organized as follows.
Sections 2 and 3 provide preliminary discussions and a
high-level description of the pBlocking approach. Sec-
tions 4 and 5 explain our block intersection and block
scoring methods, respectively. Section 6 provides the-
oretical analysis of pBlocking’s effectiveness and Sec-
tion 7 provides extensive experimental results and key

takeaways. Section 8 discusses the related work and we
conclude in Section 9.

2 Blocking Preliminaries

Table 2 summarizes the main symbols used through-
out the paper. Let V be the input set of records, with
|V | = n. Consider an (unknown) graph C = (V,E+),
where (u, v) ∈ E+ means that u and v represent the
same entity. C is transitively closed, that is, each of its
connected components C ⊆ V is a clique representing a
distinct entity. We call each clique a cluster of V , and
refer to the partition induced by C as the ER ground
truth.

Definition 1 (Pair Recall) Given a set of matching
record pairs A′ ⊆ V × V , Pair Recall is the fraction
of pairs (u, v) ∈ E+ that can be either (i) matched
directly, because (u, v) ∈ A′, or (ii) indirectly inferred
from other pairs (u,w0), (w0, w1), . . . , (wc, v) ∈ A′ by
connectivity.

A formal definition of the blocking task follows.

Problem 1 (Blocking Task) Given a set of records

V , group records into possibly overlapping blocks B ≡
{B1, B2, . . . }, Bi ⊆ V and compute a graph P =
(V,A′), where A′ ⊆ A, A ≡ {(u, v) : ∃Bi ∈ B s.t. u ∈
Bi ∧ v ∈ Bi}, such that A′ is sparse (|A′| <<

(
n
2

)
) and

A′ has high Pair Recall. We refer to P as the blocking
graph.

The blocking graph P is the final product of block-

ing and contains all the pairs that can be considered
for pair matching. The efficiency and effectiveness of
the blocking method is measured as Pair Recall (PR)

of (the set of edges in) P and the number of edges in it
for a certain PR, respectively. Blocking methods con-
sist of three sub-tasks as defined by [27]: block building,
block cleaning and comparison cleaning. In the follow-

ing, we describe each of these steps and the correspond-
ing methods in the literature.

Block building (BB) takes as input V and returns

a block collection B, by assigning each record in V to
possibly multiple blocks. The popular standard block-
ing [22] strategy creates a separate block Bt for each
token t in the records and assigns to Bt all records that
contain the token t. In order to tolerate spelling errors,
q-grams blocking [12] considers character-level q-grams
instead of entire tokens. Other strategies include canopy
clustering [19] and sorted neighborhood [14]. Canopy
clustering iteratively selects a random seed record r,
and creates a new block Br (or a canopy) with all the
records that have a high similarity with r according
to a given similarity function (e.g., using a subset of
features [19]). We can use different similarity functions

to build different sets of canopies. Sorted neighborhood
sorts all the records according to multiple sort orders

4 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

(e.g., each according to a different attribute [14]) and
then it slides a window w of tokens over each order-
ing, every time creating a new block Bw. Blocks have
the same number of distinct tokens but the number of
records in a block can vary significantly. Multiple block
building strategies can be employed at the same time
to generate the collection of blocks B.

Block cleaning (BC) takes as input the block collec-
tion B and returns a subset B′ ⊆ B by pruning blocks
that may contain too many non-matching record pairs.
Block cleaning is typically performed by assigning each
block a score : B → IR with a block scoring proce-
dure and then pruning blocks with low score. Tradi-
tional scoring strategies include functions of block size
such as TF-IDF [8,23].

Comparison cleaning (CC) takes as input the set A
of all intra-block record pairs in the block collection B′
(which is a subset of the intra-block record pairs in B)
and returns a graph P = (V,A′), with A′ ⊆ A, by prun-
ing pairs that are likely to be non-matching. Compar-
ison cleaning is typically performed by assigning each

pair a weight : A→ IR and then pruning pairs with low
weight. Weighting strategies include meta-blocking [24]
possibly with active learning [32,6]. In classic meta-
blocking, weight(u, v) corresponds to the number of

blocks in which u and v co-occur, based on the as-
sumption that that more blocks a record pair shares,
the more likely it is to be matching.1 The recent BLOSS

strategy [6] employs active learning on top of the pairs
generated by meta-blocking, and learns a classifier using
features extracted from the blocking graph for further

pruning.

We denote with B(X,Y, Z) a blocking strategy that
uses the methods X, Y , and Z, respectively for block
building, block cleaning and comparison cleaning. The
strategy used in our cars example (Example 1) can
be denoted as B(standard blocking, TF-IDF, meta-
blocking).

After blocking. Typical ER algorithms include pair
matching and entity clustering operations. Such oper-

ations label as “matching” the pairs referring to the
same entity and “non-matching” otherwise, and typi-
cally require the use of a classifier [21] or a crowd [37].
Clustering consists of building a possibly noisy clus-
tering C′ according to labels, and can be done with a
variety of techniques, including robust variants of con-
nected components [34] and random graphs [10]. This
noisy clustering is the final product of ER.

1 This assumption holds for block building methods such as
standard blocking, q-grams blocking and sorted neighborhood
with multiple orderings [14], and extends naturally to canopy
clustering by using multiple similarity functions.

3 Overview of pBlocking

Analogous to traditional blocking methods, pBlocking
takes as input a collection V of records and returns
a blocking graph P . A high-level view of the methods
introduced in pBlocking for each of the main blocking
sub-tasks of Section 2 is provided below. Such methods,
unlike previous ones, can leverage a feedback of partial
ER results.

Block building in pBlocking constructs new blocks
arranged in the form of a hierarchy. First level blocks
are initialized with blocks generated by a traditional
method (e.g., standard blocking, sorted neighborhood,
canopy clustering or q-gram blocking). Subsequent lev-
els contain intersections of the blocks in previous levels.
pBlocking can use feedback from the partial ER out-
put to build intersections such as ‘corvette ∧ c6’ that
can lead to new, cleaner blocks, and avoid bad inter-
sections such as ‘corvette ∧ chevrolet’ that would not
improve the fraction of matching pairs in P (Chevrolet

Corvette C6 and Z6 are different entities). We discuss
block intersection in Section 4.

Block cleaning in pBlocking prunes dirty blocks
based on feedback-based scores. First round scores are

initialized with a traditional method (e.g. TF-IDF).
Then, scores are refined based on feedback by combin-
ing two quantities: the fraction p(B) of matching pairs

in a block B, and the block uniformity u(B), which
captures the distribution of entities within the block
(u(B) is the inverse of perplexity [18]). Since the goal of
blocking phase is to identify blocks that have a higher

fraction of matching pairs and fewer entity clusters, we
combine the above values as score(B) = p(B) · u(B).
pBlocking can use feedback from the partial ER out-

put to estimate p(B) and u(B), yielding high scores
for clean blocks such as ‘malibu’ (high p(B) and high
u(B)) and low scores for dirtier blocks such as ‘naviga-
tion’ (low p(B) and low u(B)), and ‘c6’ (low u(B)). We
discuss block scoring in Section 5.

Finally, comparison cleaning in pBlocking is im-
plemented with a traditional method such as meta-
blocking.

Workflow. Algorithm 1 describes the pBlocking

workflow and how the introduced blocking methods can
be used. We denote with pBlocking(X,Y, Z) a progres-
sive blocking strategy that uses the methods X, Y and
Z, respectively for building the first level of the block
hierarchy, initializing the block scores, and performing
comparison cleaning as described in Algorithm 1. In
our cars example, we use pBlocking(standard block-
ing, TF-IDF, meta-blocking).

We first initialize the set of clusters C′, the block hi-
erarchy and the block scores (lines 1–3). The next step

Efficient and Effective ER with Progressive Blocking 5

Algorithm 1 Our blocking method pBlocking

Require: Records V , methods X, Y , Z for each blocking
step, method W for pair matching and clustering. De-
fault: X=standard blocking, Y= TF-IDF, Z=meta-blocking,
W=Eager .

Ensure: Blocking graph P
1: C′ ← ∅
2: B ← build the first level of block hierarchy with method X
3: scores← initialize block scores using method Y
4: P ← block cleaning and comparison cleaning with method Z
5: Pnew ← ∅
6: for round=2; round ≤ 1/φ ∧ P 6= Pnew; round++ do
7: while ER progress is less than φ do
8: C′ ← Execute an incremental step of method W for pair

matching and clustering on P
9: score← update the block scores according to C′ //Feedback

10: B ← update the block hierarchy based on score
11: P ← Pnew
12: Pnew ← block cleaning and comparison cleaning with Z

13: return Pnew

(line 4) consists of computing the first version of the
blocking graph P according to the selected method for
comparison cleaning (e.g., meta-blocking). The graph
P is then progressively updated, round after round

(lines 6–12). In order to activate the feedback mech-
anism, pBlocking needs to interact with an ER algo-
rithm W for pair matching and clustering operations
(line 7–8). Algorithm W is executed over P until it

makes a progress of φ with φ ∈ [0, 1], that is, until
φ · n log2 n record pairs have been processed since the
previous round.2 At that point, the algorithm W is in-

terrupted, C′ is updated (line 8) and sent as feedback
to all of pBlocking’s components. Based on such feed-
back, we update the function score(B) = p(B) · u(B)
(line 9) and construct new blocks in the form of a hi-

erarchy (line 10). Blocks with high score are used to
enumerate the most promising record pairs and gener-
ate the updated blocking graph Pnew (lines 11-12).
When either the maximum number of rounds 1

φ has
been reached (setting φ = 1 is the same as switching
off the feedback) or the blocking result converges (P =
Pnew), pBlocking terminates by returning P .

We present a formal analysis of the effectiveness of
pBlocking in Section 6. We refer to Section 7 for ex-
periments. Due to its robustness to different choices of
the pair matching algorithm W , we do not include W
in pBlocking’s parameters (differently from X, Y , Z).

Natural choices for W include progressive ER strate-
gies that can process P in an online fashion and com-
pute C′ incrementally [35,36,21]. However, traditional
algorithms, such as [8] can be used as well by adding
incremental ER techniques [13,38] on top.

2 For algorithms such as [36], progress can be defined as a
fraction φ · n of processed records since the previous round.

3.1 Computational complexity

For efficiency, it is crucial to ensure that the total time
and space taken to compute P is close to linear in n.
Since every round of pBlocking comes with its own
time and space overhead, we first describe how to bound
the complexity of every round and then discuss how to
set the parameter φ in Algorithm 1 (and thus the maxi-
mum number of rounds) so as to bound the complexity
of the entire workflow.

Round Complexity. pBlocking implements the fol-
lowing strategies to decrease overhead of each round.

Efficient block cleaning. We compute the block
scores by sampling Θ(log n) records from each of the
top O(n) high-score blocks computed in the previous
round.

Efficient comparison cleaning. For simplicity, we
build P by enumerating at most Θ(n log2 n) intra-block
pairs by processing blocks in non-increasing block score.

Based on the above discussion, we have Lemma 1.

Lemma 1 A single round of pBlocking(X,Y, Z),

such as pBlocking(standard blocking, TF-IDF, meta-
blocking) has O(n log2 n) space and time complexity.

Proof We first show that the total feedback is limited
to O(n log2 n) space complexity, even though it consid-
ers all transitively inferred matching and non-matching

edges, which can beΩ(n log2 n). For the matching pairs,
we store all the records with an entity id such that any
pair of records that have been resolved share the same
id. This requires O(n) space in the worst case and cap-

tures all the matching edges that have been identified
in the ER output. For the non-matching pairs, we store
a non-matching edge between their entity ids. Since

the maximum number of pairs returned by pBlocking

is limited to O(n log2 n), the total number of pairs
compared in each round and thus the number of non-
matching edges stored is also O(n log2 n). Then, we ana-
lyze the complexity of using feedback for the BB and BC
tasks. Since the maximum number of blocks considered
in any round for the scoring component is O(n) and the
scoring mechanism samples O(log2 n) pairs from each
block, the total number of edges enumerated for block
scoring and building is O(n log2 n). Since the maximum
number of pairs for inclusion in the graph H is also
O(n log2 n), a single round of pBlocking outputs H in
O(n log2 n) total work.

Workflow Complexity. As discussed in Section 6,
φ can be set to a small constant fraction. Thus, along
with Lemma 1, this guarantees an O(n log2 n) complex-
ity for the entire workflow. Experimentally a smaller
φ value yields higher final recall, thus as a default we

6 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

set φ = 0.01, yielding a maximum of 100 rounds. Al-
though such a φ value gets the best trade-off between
effectiveness and efficiency in our experiments, we also
observe that slight variations of its setting do not affect
the performance much (Section 7), demonstrating the
robustness of pBlocking.

4 Block Building

One of the major challenges of block building (BB)
is that when generating candidate pairs that capture
matches it can also generate a number of non-matching
pairs. This phenomenon is highly prevalent in datasets
with very few matching pairs. To overcome this chal-
lenge, our block building by intersection algorithm takes
a collection of blocks B1, . . . , Bm built by traditional
methods for BB and creates smaller clean blocks out
of large dirty ones, thus contributing to the recall of

the blocking graph without adding extra non-matching
pairs. An intersection block hierarchy H is constructed
as follows. Let the first layer be B1, . . . , Bm. Then

blocks in layer L consist of the intersection of L dis-
tinct blocks in the first layer.

Example 2 Consider our cars example in Section 1,

and the blocks corresponding to tokens ‘corvette’ and
‘c6’, namely Bcorvette, and Bc6. A sample block in the
second level of H is Bcorvette,c6 = Bcorvette∩Bc6. When

we build the new block, we only include records con-
taining the two tokens ‘corvette’ and ‘c6’ (possibly non
consecutively), thus obtaining a cleaner block than the
original ones.

Refined blocks. We refer to the newly created block
as a refined block, and to the intersecting blocks as
parent blocks. Not all the refined blocks are useful. We
need one of the following correlation based conditions
to hold to decide if a refined block Bi,j must be kept in

H.
– score(Bi,j) > score(Bi) · score(Bj), that is the score

of the refined block is higher than the combined score
of the parent blocks.

– The existence of a randomly chosen record r in blocks
Bi and Bj is positively correlated, i.e. Pr[r ∈ Bi,j] =
|Bi,j |/n > Pr(r ∈ Bi) · Pr(r ∈ Bj), which simpli-

fies to |Bi,j | > |Bi||Bj |
n . For example, the number of

common records in blocks corresponding to tokens
‘c6’ and ‘corvette’ is much higher than the common

records in blocks corresponding to ‘navigation’ and
‘c6’.

Suppose the maximum depth of the hierarchy is d which
is a constant. The construction of refined blocks can
take O(nd) time if the number of blocks considered in

Algorithm 2 Block Layers Creation

Require: Set of records V , depth d
Ensure: Layer set {L1, . . . , Ld}
1: for i = 1; i ≤ d; i+ + do
2: Li ← φ
3: processed ← φ
4: for v ∈ V do
5: blockLst← getBlocks(v)
6: for i = 2; i <d; i+ + do
7: for B = {Bj : Bj ∈ blockLst}, |B| = i do
8: B′ = ∩Bj∈BBj
9: if B′ /∈ processed then

10: Li.append(B′)
11: processed.append(B′)
12: blockLst← Li

Algorithm 3 Layer Cleaning

Require: Layer set {L1, . . . , Ld}
Ensure: Cleaned Layer set {L1, . . . , Ld}
1: for i = 2; i < d; i+ + do
2: for block ∈ Li do
3: parentLst ← getParents(block)
4: if

∏
p∈parentLst score(p) < score(block) or∏

p∈parentLst
|Li−1[p]|

n <
|Li[block]|

n then

5: continue
6: else
7: Li.remove(block)

the first layer is O(n). For efficiency, we iterate over
the records (linear scan) and for each record r, we con-

sider all pairs of blocks that contain r as candidates
to generate blocks in the different levels of the hierar-
chy. The following lemma bounds the total number of
refined blocks across the hierarchy.

Lemma 2 The number of blocks present in H is O(n)
if each record r is present in a constant number of
blocks.

Proof Our algorithm considers each record u ∈ V and
generates intersection blocks by performing conjunc-
tion of blocks that contain the record u. Suppose the
record u is present in γu blocks in the first layer.
Then the maximum number of blocks present in H
that contain u is

∑d
i=1

(
γu
i

)
. Assuming γu is a con-

stant, the maximum number of blocks in the hierarchy
is n

∑d
i=1

(
γu
i

)
= O(n).

Refinement algorithm. We are now ready to de-
scribe pBlocking’s intersection method for building the
block hierarchy. Our method has two steps:

– (Alg. 2) The first step creates all possible blocks con-
sidering the intersection search space.

– (Alg. 3) The cleaning phase removes the blocks that
do not satisfy the correlation criterion described
above.

Algorithm 2 describes the creation step, which iterates
over all the records in the corpus and creates all possi-
ble blocks per record. The list of all blocks to which a
record belongs is constructed (denoted by blockLst) and

Efficient and Effective ER with Progressive Blocking 7

the new blocks are added in different layers. The layer
of the new block depends on the number of intersecting
blocks that constitute the new block. Then, the clean-
ing step in Algorithm 3 iterates over the different layers
and keeps only the blocks that satisfy the score or size
requirements. For a block in layer q, getParents() iden-
tifies the two blocks which are in layer (q−1) whose con-
junction generates the block being considered. If these
parents have been removed during the cleaning phase,
then their parents are considered and the process is
continued recursively until we end up at the ancestors
present in the list of blocks.

Block Layers Creation (Alg. 2) constructs all blocks
in the form of a hierarchy and Layer Cleaning (Alg. 3)
deactivates the blocks that do not satisfy the corre-
lation requirements. Since the result of Block Layers
Creation does not change in different pBlocking it-
erations, decoupling the creation component from the
cleaning component (which changes dynamically) al-

lows for more efficient computation.

Time complexity. Assuming the depth of the hi-

erarchy is a constant, Algorithms 2 and 3 operate in
time linear in the number of records n. Block refine-
ment takes 3 minutes for a data set with 1M records in

our experiments.

5 Block Cleaning

Let A′ ⊂ V ×V be the pairs selected by blocking phase

at a given point (we recall that A′ is the edge set of the
blocking graph P = (V,A′)) and each considered pair
(u, v) ∈ A′ has a similarity value denoted by pm(u, v).

A block B ⊆ V refers to a subset of records. Using this
notation, we discuss the different methods for scoring
blocks and how the scores converge with feedback for
effective ER performance.

Block scoring. Block scoring helps to distinguish

informative blocks based on their ability to capture
records from a single cluster. By selecting pairs within
informative blocks, down-stream ER operations can fo-
cus on records pairs that have high probability of being
a match. The most common mechanism used in the lit-
erature is TF-IDF and it assigns block scores inversely
proportional to the block size prioritizing smaller blocks

over larger ones. If the data set has small clusters, such
a simple method can work well. However, if the data set
has a skewed cluster size distribution, some large blocks
are just uninformative (and are rightfully less preferred
by TF-IDF), but others can represent a large cluster
and thus should stand out in the scoring. Distinguish-
ing these blocks before pair matching can be difficult,
but pBlocking provides a way to leverage the feedback.

Specifically, the scoring algorithm of pBlocking pri-
oritizes blocks having (a) high fraction of matching
pairs measured as matching probability within a block
and (b) fewer number of clusters (especially larger clus-
ters) measured as uniformity (a function of entropy of
the cluster distribution within a given block B). Lower
entropy and hence lower diversity values indicate the
representativeness of B towards a particular cluster as
opposed to higher entropy values which refer to the
presence of many fragmented clusters.

More formally, the matching probability score iden-
tifies the probability that a randomly chosen pair
(u, v) | u, v ∈ B refers to the same entity and is de-
fined as follows.

Definition 2 (Matching Probability score p(B))
The value p(B) is defined as the fraction of matching
pairs within a block B.

The block uniformity, u(B) captures perplexity of
cluster distribution within B measured in terms of its
entropy.

Definition 3 (Cluster Entropy H(B)) The clus-

ter entropy of a block, H(B) refers to the entropy
of the cluster distribution when restricted to the
records present in block B. Mathematically, H(B) =

−∑C∈C pC log pC , where pC = |C ∩ B|/|B| refers to
the probability that a randomly chosen node from B
belongs to cluster C.

Using H(B), block uniformity score is defined as fol-

lows.

Definition 4 (Block Uniformity u(B)) The block
uniformity u(B) = e−H(B) is the inverse of perplexity
[18] of the cluster distribution within the block where
perplexity refers to the exponential of cluster distribu-

tion entropy.

Example 3 Suppose that we know that a block B con-
tains records of two clusters C1 and C2 and thus we
can compute the uniformity of B exactly. If the two
clusters are perfectly balanced in B, i.e., |C1 ∩ B| =
0.5 · |B| and |C2 ∩ B| = 0.5 · |B|, the entropy is
H(B) = −0.5 log 0.5 − 0.5 log 0.5 ≈ 0.69 and thus
u(B) = e−H(B) = 0.5. If there is some skew, e.g.
|C1∩B| = 0.7 · |B| and |C2∩B| = 0.3 · |B|, then the en-
tropy is lower H(B) = −0.7 log 0.7 − 0.3 log 0.3 ≈ 0.61
and the uniformity is higher u(B) ≈ 0.54. In the ex-

treme case where C1∩B = B and C2∩B = ∅, H(B) = 0
and u(B) = 1.

Note that when resolving two duplicate-free datasets
where all clusters are of size 2 (also known as Record
Linkage) the entropy increases with block size, thus

8 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

block uniformity yields comparable results to tradi-
tional TF-IDF.

Since the goal of block scoring is to identify blocks
that have high matching probability and high unifor-
mity, we multiply the two values to get a final estimate
of the block score.

Definition 5 (Block Score, score(B)) The score of
a block B, score(B), is defined as the product of match-
ing probability score and uniformity score of B. That
is, score(B) = p(B)u(B).

Next, we describe the algorithm to estimate these com-
ponents of block score. The exact value of matching
probability and block uniformity requires complete ER
results. However, pBlocking estimates these scores ini-
tially with the similarity estimates of every pair of
records and refines these scores with additional feed-
back from partial ER results.

Matching probability score. The matching proba-
bility score is estimated as the average matching simi-
larity of pairs of records within the block, i.e.:

p(B) =

∑
u,v∈B pm(u, v)(|B|

2

)
where pm(u, v) is estimated as follows:

– for pairs declared as matches, we set pm(u, v) = 1;
– for pairs declared as non-matches, we set pm(u, v) =

0;

– for unlabelled pairs, we use the pm values computed
by common similarity metrics (e.g. via jaccard sim-
ilarity or the similarity-to-probability mapping as

in [29]).

Block uniformity estimation. Estimating unifor-

mity score requires the cluster size distribution in B,
which is harder to infer from the prior similarity val-
ues. We next describe a mechanism to estimate en-
tropy H(B) needed to compute the uniformity score.
We consider each record u ∈ B, and consider the clus-
ter Cu that contains u. We are interested in comput-
ing |Cu∩B|

|B| in order to compute entropy H(B). In-

stead, we compute the expected size of |Cu ∩ B| as
Eu = E[|Cu ∩ B|] =

∑
v∈B pm(u, v) based on pm val-

ues of edges incident on u. We compute the expected
cluster size for every record u ∈ B and sort them in
non-increasing order. Let L be the sorted list. Let the
first record in the sorted list L, that is, the node with
highest expected cluster size in B be u. On expecta-

tion u has Eu records in B that belong to Cu. All these
records must have similar expected cluster sizes as well.
We put u and the next bEuc records from L to a set
SU , assuming that they belong to the same cluster Cu.
We recurse on L \ SU until a partition {SU , SV , . . . } of

the block is generated. The size of each partition can
be thought of as a rough estimate of the true cluster
distribution in B and is used to calculate the entropy.

Example 4 Consider a block B, with |B| = 10.
Let [u1, u2 . . . u10] be the corresponding list L
of records sorted in non-increasing Eui values.
If Eu1 =

∑
i∈2...10 pm(u1, ui) = 6.6 we set

SU1 = {u1 . . . u1+bEu1c} = {u1 . . . u7} and then
consider the next node in L which is u8. If
Eu8 =

∑
i∈9,10 pm(u8, ui) = 2 we set SU8 =

{u8 . . . u8+bEu8c} = {u8 . . . u10} and then finish. As
|SU1| = 0.7 · |B| and |SU8| = 0.3 · |B| we estimate
u(B) = e−0.7 log 0.7−0.3 log 0.3 ≈ 0.54.

The value returned by this mechanism is generally
an under-estimate of the true entropy H(B) but in
practice it can approach H(B) quickly with increas-
ing feedback data and turns out to be very efficient.
Section 6.2 discusses this convergence rate in different
application scenarios.

Efficient block cleaning. Traditional scoring strate-
gies such as TF-IDF are based on block size com-

putation and thus operate in linear time. Computing
our score(B) values requires instead to process intra-
block pairs and thus yields potentially quadratic com-

putation. Hence, we sample Θ(log n) records from each
block for its score computation. This strategy operates
in Θ(log2 n) time and takes less than 1 minute for a
data set with 1M records in our experiments. Our sam-

pling strategy gives an approximation within a factor
of (1 + ε) of the matching probability scores estimated
using all the records within each block (Lemma 7).

6 Analysis of pBlocking

In this section we present a theoretical analysis of the
effectiveness of pBlocking. We first analyze the pair

recall of blocking in the absence of feedback by con-
sidering a natural generative model for block creation.
Next we analyze the effect of feedback on block scoring
and final recall.

6.1 Pair Recall without Feedback

We start by giving the following basic lemma below.

Lemma 3 The blocking graph P = (V,A′) contains a
spanning tree for each clique C of C = (V,E+) iff the
Pair Recall is 1.

Proof If A′ contains a spanning tree for each clique C,
then any pair (u, v) ∈ A′ ∩ E+ contributes directly to

Efficient and Effective ER with Progressive Blocking 9

the recall. All pairs of records (u, v) that refer to the
same entity, (u, v) ∈ E+ and are not present in A′,
(u, v) /∈ A′ can be inferred from the edges in the span-
ning tree using transitivity, ensuring Pair Recall = 1.
For the converse, let us assume that ∃ C ∈ C such that
A′ does not contain any spanning tree over the match-
ing edges. This implies that C is split into multiple com-
ponents (say C1, C2) when restricted to A′∩E+ edges.
In this case, the collection of matching edges joining
these components, {(x, y), ∀x ∈ C1, y ∈ C2} cannot be
inferred as none of these edges are processed by the
mentioned ER operations, yielding pair recall of P less
than 1.

Our probabilistic model for block creation is moti-
vated by the standard blocking [22], sorted neighbor-
hood [14] and canopy clustering [19] algorithms which
aim to generate blocks that capture high similarity can-
didate pairs. This model of block generation is closely
related to Random Geometric Graphs [30] which were

proposed by Gilbert in 1961 and have been used widely
to analyze spatial graphs.

Definition 6 (Random Geometric Graphs) Let
St refer to the surface of a t-dimensional unit sphere,

St ≡ {x ∈ Rt+1 | ||x||2 = 1}. A random geometric
graph Gt(V,E) of n vertices V , has parameters t ∈ Z+

and a real number r ∈ [0, 2]. It assigns each vertex

i ∈ V to a point chosen independently and uniformly
at random within St and any pair of vertices i, j ∈ V
are connected if the distance between their respective

points is less than r.

Now, we define the probabilistic block generation
model.

Definition 7 (Probabilistic Block Generation)
The block generation model places the records u ∈ V
independently and uniformly at random within St. Ev-
ery record u constructs a ball of volume (α log n/n) with
u as the center, where α is a given parameter and all

points within the ball are referred to as block Bu.

The set of points present within a ball Bu can be
seen as high similarity points that would have been cho-
sen as blocking candidates in the absence of feedback.
Our probabilistic block generation model constructs n
blocks, one for each node and every pair of records that
co-occur in a block Bu, u ∈ V , has an edge in the block-
ing graph P g(V,E) (subscript g to emphasize genera-
tive model). Next we analyze pair recall of P g(V,E).

Notation. Let d(u, v) refer to the distance between
records u and v and rε refer to the radius of an ε-volume
ball3 in t dimensions. Under these assumptions we first

3 ε = O(rtε).

show that the expected number of edges in the blocking
graph P g is at least α(n−1) log n

2 and then that P g(V,E)
has recall << 1.

Lemma 4 The blocking graph P g(V,E) contains at

least α (n−1) log n
2 candidate pairs on expectation.

Proof Each record u ∈ V , constructs a spherical ball
of volume α log n/n, with u as the center and all points
within the ball are added as neighbors of u in the block-
ing graph. Hence, the number of expected neighbors of
u within the ball is α(n−1) log n/n. There are a total of
n such blocks (one ball per record) and each of the can-
didate pairs (u, v) is counted twice (once for the block
Bu and once for the block Bv). Hence there are a total of
α(n−1) log n

2 such candidate pairs. Notice that this anal-
ysis ignores the candidate pairs (u, v) which are more
than rα logn/n from each other but are connected in the
blocking graph. This would happen if they are present

together in another block centered at w ∈ V \ {u, v},
that is ∃w | d(u,w) ≤ rα logn/n and d(v, w) ≤ rα logn/n.
This shows that the total number of candidate pairs in

the blocking graph is atleast α(n−1) log n
2 .

Additionally, P g(V,E) has the following property:

Lemma 5 A blocking graph P g is a subgraph of a ran-

dom geometric graph Gt with r = 2rα logn/n

Proof Following the construction of blocking graph, if
the distance between any pair of vertices u, v ∈ V is
less than or equal to rc logn/n, then (u, v) ∈ E. Simi-

larly, any pair of nodes u, v ∈ V such that d(u, v) >
2rc logn/n, then (u, v) /∈ E. However, if rc logn/n <
d(u, v) ≤ 2rc logn/n, the pair (u, v) ∈ Hg only if ∃w ∈ V
such that d(u,w) ≤ rc logn/n and d(v, w) ≤ rc logn/n.
This shows that the blocking graph Hg is a subgraph of
a random geometric graph where a pair of vertices (u,v)
is connected only if the distance d(u, v) ≤ 2rc logn/n is
connected.

This means that if Gt has suboptimal recall then P g
also has poor recall and hence, we analyze the recall
of Gt with r = 2rα logn/n. Lemma 3 shows that the
blocking graph will achieve recall = 1 only if it contains
a spanning tree of each cluster. Hence, we analyze the
formation of spanning trees in G′t = Gt(V,E∩E+) that
refers to Gt restricted to matching edges. We show the

following result,

Lemma 6 The graph Gt restricted to matching edges
in the ground truth, E+ splits a cluster C, where |C| =
o(n/α) into multiple components.

Proof Using the connectivity result from [30], a ran-
dom geometric graph Gt of n nodes is disconnected

10 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

if the expected degree of the nodes is < log n. Addi-
tionally, it splits the graph Gt into many smaller clus-
ters. Therefore, a cluster C ∈ V is disconnected in
G′t = Gt(V,E ∩ E+) if the degree of each vertex is
< log |C|.

The expected degree of a record u ∈ C, restricted to
G′t is O(|C|(α logn

n)) = o(log n) if |C| = o(n/α). Hence,
the expected degree of each node within a cluster C is
o(log |C|), leading to formation of disconnected compo-
nents within C.

Theorem 1 A blocking graph P g(V,E), generated ac-
cording to the probabilistic block model has recall < 1
unless all clusters have size Θ(n) assuming α is a con-
stant.

Proof Lemma 6 shows that the cluster C of size < n/α
is split into various disconnected components when re-
stricted to matching edges. Hence, the blocking graph
P g does not form a spanning tree of C and will have
recall less than 1 (Lemma 3). Since the cluster C is bro-
ken into many small clusters, the drop in recall is also

significant.

Remark. The analysis extends when considering less
noisy data such as when only a constant fraction of
records are placed randomly on the unit sphere, and the

remaining records are grouped together according to
the cluster identity they belong to. Our analysis exposes
the lack of robustness of performing blocking without
feedback.

6.2 Pair Recall with Feedback

In this section we analyze the pair recall of blocking
when employed with pBlocking. For this analysis we

consider the noisy edge similarity model pm(u, v) that
builds on the edge noise model studied in prior work on
ER [9].

Definition 8 (Noisy edge model) Noisy edge model
defines the similarity of a pair of records with param-
eters θ ∈ (0, 1), β = Θ(log n) and β′ = Θ(log n). A
matching edge (u, v) ∈ E+ has a similarity distributed
uniformly at random within [θ, 1] with probability 1− β

n

and remaining edges are distributed uniformly within
[0, θ). A non-matching edge has similar distribution on
similarity values with β′ instead of β.

When β << β′, the matching probability score of a
block with higher fraction of matching edges is much
higher than the one with fewer matching edges and
pBlocking algorithm will consider blocks in the correct
ordering even in the absence of feedback. However, it

is most challenging when non-matching edges are gen-
erated with a distribution similar to matching edges,
that is β and β′ are close. We define a random vari-
able X(u, v) to refer to the edge similarity distributed
according to the noisy edge model. Following this no-
tion, let µg and µr denote the expected similarity of a
matching and non-matching edge respectively.

µg = (1− β/n)
1 + θ

2
+
β

n

θ

2

and µr has the same value with β′ instead of β.

We show that the feedback based block score initial-
ized with TF-IDF weights is able to achieve perfect re-
call with a feedback of Θ(n log2 n) pairs assuming that
the ER phase makes no mistakes on the pairs that it
processes, helping to ensure the correctness of partially
inferred entities. Additionally, the feedback from the
ER phase is distributed randomly across edges within
a block. We also discuss the extension when feedback is

biased towards pairs from large entity clusters and high
similarity pairs. In those scenarios, pBlocking’s scor-
ing mechanism converges quicker leveraging the larger
feedback due to transitivity.

Effect of Sampling. First, we show that sampling
Θ(log n) records from a block gives approximation
within a factor of (1 + ε) of the matching probability

score computed using all the records.

Lemma 7 For a block B with |B| > c log n, the
matching probability score of B estimated by sampling
Θ(log n/ε2) records randomly is within [(1− ε), (1 + ε)]

factor of p(B) with a probability of 1−o(1), where p(B)
is the score using all |B| records.

Proof Consider a block B with more than c log n

records. Let X(u, v) denote the edge similarity of a pair
(u, v) according to the noisy edge model. The match-
ing probability score of B on considering the complete
block is 1

(|B|2)

∑
u,v∈B X(u, v). The expected score of the

block (µB) is

1(|B|
2

)E
 ∑
u,v∈B

X(u, v)

 =
1(|B|
2

) ∑
u,v∈B,

(u,v)∈E+

E[X(u, v)]

+
1(|B|
2

) ∑
u,v∈B,

(u,v)∈E−

E[X(u, v)]

= (1− α)µg + αµr

where α is the fraction of non-matching pairs in the
block B.

Efficient and Effective ER with Progressive Blocking 11

For a sample of S = c log n/ε′2 records, the expected
probability score (µS) is (1 − α)µg + αµr, where ε′ =
ε/(2 + ε)

1(
c logn

2

)E[
∑
u,v∈S

X(u, v)] =
1(

c logn
2

) ∑
u,v∈S,

(u,v)∈E+

E[X(u, v)]

+
1(

c logn
2

) ∑
u,v∈S,

(u,v)∈E−

E[X(u, v)]

= (1− α)µg + αµr

Using Hoeffding’s inequality [15],

Pr

 1(
c logn

2

) ∑
u,v∈S

X(u, v) ≤ (1− ε′)µS


≤ e−2ε′2µ2

S(c log n
2)

≤ e−2 log n =
1

n2

Using the same argument, we can show that

Pr

[
(1− ε′)µS ≤ 1

(c log n
2)

∑
u,v∈S

X(u, v) ≤ (1 + ε′)µS

]
≥

1− 2
n2 This shows that the calculated probability score

on the samples S is within a factor of (1−ε′) and (1+ε′)
of the expected score with a probability of 1 − o(1).
The probability score of B on considering all records,

is also within a factor of (1 − ε′) and (1 + ε′) of the
expected value µS . Therefore, the estimated score on
sampling guarantees approximation within a factor of
1+ε′

1−ε′ = 1 + 2ε′/(1− ε′) = 1 + ε with a high probability.

The above lemma can extend to block uniformity be-
cause pm values are used analogously for expected clus-
ter sizes. In Lemma 8, we show how to set the constant
within the Θ notation based on level of noise in the pm
values.

To prove the convergence of pBlocking, we first es-
timate the lower and upper bound of matching prob-
ability scores of a block B in the presence of feedback
and show that a feedback of Θ(log2 n) is enough to rank

blocks with larger fraction of matching pairs higher
than the blocks with fewer matching pairs. Our analysis
first considers the blocks containing more than γ log n
records (where γ is a large constant say 12) and we
analyze the smaller blocks separately.

Convergence for large blocks. First, we evaluate
the converged block scores with a feedback F and eval-
uate the condition that the block scores are in the cor-
rect order. For this analysis, we consider the fraction of

matching edges for block score computation but similar
lemmas extend for the uniformity score calculation.

Lemma 8 For all blocks B, with more than γ log n
records, the matching probability score of B, p(B) af-
ter a feedback of F = O(log2 n) randomly chosen pairs
is at most (1 − α)|F |/

(
γ logn

2

)
+ 1.5p′(1 − |F |/

(
γ logn

2

)
)

with a probability of 1 − 1/n3, where α is the frac-
tion of non-matching pairs in B, γ is a constant and
p′ = µg(1− α) + µrα.

Proof For block scoring, pBlocking considers a sample
of S = γ log n records (where γ is a large constant) and
considers the sample ensuring that feedback F ⊆ S×S
belongs to this sample. The total number of matching
edges which have been identified with feedback over
randomly chosen pairs is (1 − α)|F |. Let X(u, v) be a
random variable that refers to the similarity of the pair
(u, v) and µ(u, v) to its expected value. For S = γ log n,
the expected similarity of non-feedback edges within C
is∑
u,v∈S,

(u,v)/∈F

µ(u, v) =
∑

(u,v)∈E+

E[X(u, v)] +
∑

(u,v)/∈E+

E[X(u, v)]

=
∑

(u,v)∈E+

µg +
∑

(u,v)/∈E+

µr

=

((
γ log n

2

)
− |F |

)
(µg(1− α) + µrα)

We use the Hoeffding inequality to bound the total

similarity,
∑
X(u, v) of T edges which do not have feed-

back where T =
((
γ logn

2

)
− |F |

)
= γ′

(
logn

2

)
, for some

constant γ′.∑
u,v∈S,(u,v)/∈F

X(u, v) ≤ (1 + δ)
∑

u,v∈S,(u,v)/∈F

µ(u, v)

with a probability of 1− e−2δ2µ2
T /|T | which can be sim-

plified as 1−e−δ2µT , since µr, µg > 1/2 Hence, the prob-
ability of success simplifies to > 1−1/n3 after substitut-
ing δ = 0.5. Therefore, the similarity score of the block

B is atmost

(
|F |

(γ log n
2)

(1− α) + 1.5p′(1− |F |/
(
γ logn

2

)
)

)
with a high probability.

Similarly, we prove a lower bound on block score.

Lemma 9 For all blocks B with |B| ≥ γ log n,
the matching probability score after a feedback F =
O(log2 n) record pairs in B is at least (1 −
α)|F |/

(
γ logn

2

)
+ 0.5p′(1− |F |/

(
γ logn

2

)
) with a probabil-

ity of 1− 1/n3, where p′ = µg(1− α) + µrα and γ is a
constant.

Now, we analyze different scenarios of edge noise to

understand the trade-off between required feedback and
noise.

12 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

Lemma 10 For every pair of blocks, Bc, Bd with more
than γ log n records, the matching probability score es-
timate of Bc with 1 − α fraction of matching edges is
greater than the score of Bd with 1 − β (with α < β)
fraction of matching edges with a probability of 1 − 2

n

if ((1− α)µg + αµr) > 3 ((1− β)µg + βµr) even in the
absence of feedback.

Proof Using Lemma 8 and 9, we can evaluate the con-
dition that score(Bc) > score(Bd) with a probability
of 1− 2

n3 , in the absence of feedback. In order to guar-
antee this for all blocks, we perform a union bound over
Θ(n2) pairs of blocks, guaranteeing the success rate to
1− o(1).

The previous lemma shows a scenario where the
noise is not high and the prior based estimation of
matching probability scores give a correct ordering of
blocks. Now, we consider the more challenging noisy
scenario and show that Θ(log2 n) feedback per block is
enough for correct ordering.

Lemma 11 For every pairs of blocks, Bc, Bd with more

than γ log n records, the matching probability score es-
timate of Bc with 1 − α fraction of matching edges is
greater than the score of Bd with 1 − β (where α < β)

fraction of matching edges with a probability of 1 − 2
n

whenever the ER phase provides overall feedback of
Θ(n log2 n) randomly chosen edges.

Proof Using Lemma 9, score(Bc) ≥ |F |/
(
γ logn

2

)
(1 −

α) + 0.5(µg(1 − α) + αµr)(1 − |F |/
(
γ logn

2

)
) and using

Lemma 8, score(Bd) ≤ |F |/
(
γ logn

2

)
(1−β) + 1.5(µg(1−

β)+βµr)(1−|F |/
(
γ logn

2

)
) with a probability of 1− 2

n3 .

Hence, score(Bc) > score(Bd) holds if F = c log2 n,
where c is a large constant. With a union bound over

(
n
2

)
pairs of blocks, the score of any block Bc (with higher
fraction of matches) is higher than that of any block Bd
(with lower fraction of matches) with a probability of
1− 2

n . The total feedback to ensure Θ(log2 n) feedback
on each block is Θ(n log2 n) as we consider Θ(n) blocks
for scoring.

Convergence for small blocks. The above analy-
sis does not extend to blocks of size less than γ log n.
However, all these blocks are ranked higher than the
large blocks by TF-IDF. Hence, when pBlocking is ini-
tialized, the initial set of candidates generated will con-
sider all these blocks before any of the larger blocks.
In the worst case, there can be δn such blocks, for
some constant δ because our approach constructs a con-
stant number of blocks per record (say δ). Thus, the
maximum number of candidates considered from small

blocks is δn
(
γ logn

2

)
and all these candidates are consid-

ered in the first iteration of pBlocking. Following the

discussion on small and large blocks, we prove the main
result of the convergence of pBlocking.

Theorem 2 pBlocking pipeline achieves perfect recall
with a feedback of O(n log2 n) spread randomly across
blocks.

Proof For blocks with more than γ log n records, Lem-
mas 10 and 11 show that a block with higher fraction
of matching pairs is ranked higher than a block with
fewer matching pairs, if provided with a feedback of
Θ(n log2 n). Blocks with less than γ log n records have
not been considered above but in the worst case, these
blocks generate O(n log2 n) candidates as the maximum
number of blocks considered is Θ(n). This ensures that
a feedback of Θ(n log2 n) is sufficient to ensure the
stated result.

Discussion. Lemma 11 considers the convergence of

block scores when the feedback is provided randomly
over Θ(log2 n) edges within a block. If the feedback
is biased towards Θ(log2 n) non-matching edges, the

scores of noisier blocks will drop quicker and pBlocking

will converge faster. Similarly, if the ER algorithm
queries pairs with higher similarity (e.g. edge ordering

[37]) or grows clusters by processing nodes (e.g. node
ordering [36]), providing larger feedback due to transi-
tivity, this will only facilitate the growth (reduction) in
score of blocks with higher (lower) fraction of matching

pairs leading to faster convergence.

Finally, for the presented analysis, we assumed that
oracle answers are correct. Nonetheless, (i) for small
amount of oracle errors (∼ 5%), we can leverage meth-

ods such as [10,34] to correct them, and (ii) in more
challenging applications with up to 20% erroneous an-
swers, we show experimentally (see Section 7) that

pBlocking keeps converging, only at a slightly slower
rate and demonstrates robustness.

7 Experiments

In this section we empirically demonstrate the ability
of pBlocking to boost the efficiency and effectiveness

of blocking and thus to improve the performance of ER.
We also demonstrate the fast convergence of pBlocking
thus confirming our theoretical analysis in Section 6,
and the robustness of pBlocking in different scenarios,
including errors in ER results. This section is structured
as follows.

– Section 7.2. We compare the efficiency and effective-

ness of pBlocking to prior work showing higher pair
recall and faster running time in all the data sets.

Efficient and Effective ER with Progressive Blocking 13

Table 3: Number of nodes n (i.e., records), number of clusters k (i.e., entities), size of the largest cluster |C1|, the
total number of matches in the data set |E+| and the reference to the paper where they appeared first.

dataset n k |C1|
∣∣E+

∣∣ ref. description

songs 1M 1M 0.99M 2 146K [7] Self-join of songs with very few matches.
citations 1.8M 2.5M 3.8M 2 558K [7] Bibliographic records from DBLP and CiteSeer.
products 2554 22K 23.5K 2 1154 [11] A collection of products from retail companies website.
cora 1.9K 191 236 62.9K [1] Title, author, venue, and date of scientific papers.
cars 16.5K 48 1799 5.9M Partially

from [17] Descriptions of cars with make and model.
camera 29.7K 26K 91 102K [5] A collection of cameras from over 25 retail companies.
febrl1 100M 99.5M 2 500K [4] A collection of hospital patients data, including name, address
febrl2 100M 50M 100 2500M [4] and phone number, that we produced using the data set

generator of the Febrl system.

– Section 7.3. We analyze pBlocking when used
in conjunction with different ER methods show-
ing higher F-score (up to 60%) irrespective of the
method of choice.

– Section 7.4. We study the dynamic performance of
pBlocking and show its ability to converge mono-
tonically to high effectiveness without compromising
on efficiency in different scenarios including errors in
ER results.

7.1 Setup

Before showing results we describe our experimental
setup and the methods considered in our experiments.

Experimental set-up. We implemented the algo-
rithms in Java and machine learning tools in Python.
The code runs on a server with 500GB RAM and 64
cores. We consider six real-world data sets (see Table

3) of various sizes and diverse cluster distributions. All
the datasets are publicly available and come with their
own manually curated ground truth. We use publicly

available pre-trained deep learning models4 to generate
text descriptions of the image data (cars). febrl1 and
febrl2 were constructed with uniform and zipfian dis-

tributions of cluster sizes. For more details about these
parameters, please refer to [4]. For implementing the
hierarchy we observed that we can trim at a depth of 10
without any significant drop in the performance. The
implementation of blocking strategies is adapted from
[27]5.

Blocking methods. We consider 10 strategies for the
blocking sub-tasks described in Section 2 and combine
such strategies into 20 different pipelines. We study

such pipelines with and without our pBlocking ap-
proach on top.

BB) We consider five methods for Block Building (BB)
and follow the suggestions of [28] for their configura-

4 https://cloud.google.com/vision, https://www.ibm.com/

watson/services/visual-recognition/
5 http://sourceforge.net/projects/erframework/

tion. Standard blocking [22] (StBl) generates a new
block for each text token in the dataset. Q-grams
blocking [12] (QGBL) generates a new block for each 3-
gram of characters. Sorted neighborhood [14] (SoNE)
sorts the tokens for each attribute and generates a
new block for every sliding window of size 3 over these
sort orders. Dynamic Blocking [20] (DyBl) generates
a new block for each token and constructs a hier-
archy containing intersections of these large blocks.

All blocks of size more than 20 are considered for hi-
erarchy construction6 Canopy clustering [19] (CaCl)
generates a new block for each cluster of high simi-

larity records (calculated as unweighted Jaccard sim-
ilarity). We construct multiple instances of canopies
(blocks), one for each attribute (i.e., based on the
similarity of record pairs with respect to that at-

tribute) and one based on all attributes together.
BC) We consider 2 traditional block scoring methods

for Block Cleaning (BC), dubbed TF-IDF [31] and

uniform scoring (Unif). For comparison purposes, we
process blocks in non-increasing score order until the
number of intra-block pairs equals to a parameter M
and then prune the remaining blocks. We set default
M to 500 million for febrl and 10 million for all
other datasets.7

CC) We consider 2 popular methods for Comparison

Cleaning (CC), dubbed meta-blocking [24] (MB) and
BLOSS [6], and follow the suggestions of [24] for their
configuration. Weights of record pairs are set to their
Jaccard similarity weighted with the block scores
from the BC sub-task. We consider the top 100 high-
weight pairs for each record and prune the remaining
record pairs.

We recall that variants of our approach are denoted as
pBlocking(,,) while traditional blocking pipelines with-
out feedback are denoted as B(,,) where the parameters

6 This threshold on block size was shown to have best block-
ing quality in [20].
7 We note that setting a score threshold rather than a limit

on the number of pairs would not take into account different
scores distributions fairly.

14 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

correspond to techniques for BB, BC and CC sub-tasks,
respectively. Default methods are StBl for BB, TF-IDF
for BC and MB for CC. Default φ for pBlocking is 0.01.

Pair matching and Clustering methods. We con-
sider the following 3 strategies that leverage the notion
of an oracle to answer pairwise queries of the form “does
u match with v?” (a) Edge [37] with default parameter
setting. (b) Eager [10], the state-of-the-art technique to
solve ER in the presence of erroneous oracle answers.
(c) Node is the ER mechanism derived from [36] and
was proposed as an improvement over Edge. The Eager
algorithm handles noise for data sets with matching
pairs much larger than n and performs similar to Edge

for data sets that have fewer matching pairs [9], so we
use it as default. Each of these techniques recalculate
the prioritization of the updated set of blocked pairs in
each feedback round. We implement the abstract oracle
tool with a classifier using scikit learn8 in Python. We
consider two variants, Random forests (default) and a

Neural Network. The random forest classifier is trained
with default settings of scikit learn. The neural net-
work is implemented with a 3-layer convolutional neu-
ral network followed by two fully connected layers. We

used word2vec word-embeddings for each token in the
records. In structured data sets, we extract similarity
features for each attribute as in [7]. For cars we use the

text descriptions to calculate text-based features along
with image-based features. Given the unstructured na-
ture of text descriptions for some data sets we extracted

POS tags using Spacy9. All the considered classifiers are
trained offline with less than 1, 000 labelled pairs, con-
taining a similar amount of matching and non-matching
pairs. These labelled record pairs are the ones pro-

vided by the respective source for citations, songs,
products and camera (the papers mentioned in Ta-
ble 3, column “ref.”). For cars and cora we perform
active learning (following the guidelines of [7]) to iden-
tify a small set of labelled examples for training, which
are excluded from the evaluation of blocking quality.

7.2 Benefits of Progressive Blocking

In this experiment we evaluate the empirical benefit of
pBlocking compared to previous blocking strategies.

Blocking effectiveness. Figures 2 and 4 compare
the Pair Recall (PR) of pBlocking and of a tradi-
tional blocking pipeline B for different choices of the
block building and comparison cleaning techniques. We
use default block cleaning technique with TF-IDF and
default M value. pBlocking achieves more than 0.90

8 https://scikit-learn.org/stable/
9 https://spacy.io/

recall for all data sets and with all the block build-
ing strategies, demonstrating its robustness to different
cluster distributions and properties of the data. Con-
versely, most of the considered block building strategies
(StBl, QGBL, SoNE and DyBl) have significantly lower
recall even when used together with BLOSS for select-
ing the pairs wisely. QGBL and SoNE help to improve
recall in data sets with spelling errors but due to very
few spelling mistakes in our data sets, StBl has slightly
higher recall. DyBl creates blocks of moderate size that
are expected to capture matching pairs. This technique
performs better than StBl but the constructed smaller
blocks contain a lot of non-matching pairs that affect
pair recall.

In terms of the data sets, the no-feedback blocking
approach B has varied behavior. products and camera

yield the best performance due to the presence of rela-
tively cleaner blocks that help to easily identify match-
ing pairs even without feedback. songs and citations

have higher noise in records and cars has a skewed

distribution of clusters thereby making it harder for
previous techniques. Even though cars and febrl2

have low noise, large blocks that contain majority of

the records referring to same entity are partitioned by
DyBl and ranked lower by TF-IDF weighting of blocks.
Across all datasets and blocking strategies, the com-
parison between pBlocking and B is statistically sig-

nificant (p < 0.01) using the students paired t-test. For
this analysis, we do not consider cora (the smallest
data set) as it has less than 2M pairs and hence, all

techniques achieve perfect recall.

Figure 3 performs the same comparison with the

pipelines initialized using Unif weights in place of
TF-IDF. Since, all blocks are assigned equal weight, we
consider the block cleaning threshold of 100 along with
default value of M. pBlocking performs substantially
better than B for different settings of block building
techniques across various datasets. With comparison to
TF-IDF weighting scheme, Unif performs slightly worse
but the difference is not substantial. The no-feedback
pipeline B has varied performance across different data
sets with the best performance on products and cora

while poorest performance on citations and songs.
We observed similar behavior for cora, camera and
febrl datasets.

This experiment demonstrates that pBlocking

helps to improve the pair recall of all blocking tech-
niques (for same set of parameters) and datasets. Note
that increasing the block cleaning threshold M im-
proves pair recall further but worsens the efficiency of
the pipeline. As an example, [25] enumerates more than
1010 candidates for million scale datasets (where max-
imum possible candidates ≈ 1012), as opposed to 10M

Efficient and Effective ER with Progressive Blocking 15

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(a) songs

P
ai

r R
ec

al
l

B

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(b) citations

P
ai

r R
ec

al
l

pBlocking

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(c) products

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(d) cars

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(e) songs

P
ai

r R
ec

al
l

B

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(f) citations

P
ai

r R
ec

al
l

pBlocking

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(g) products

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(h) cars

P
ai

r R
ec

al
l

Fig. 2: Pair recall of B and pBlocking with TF-IDF for BC and varying BB and CC. (a-d) use MB and (e-h) use
BLOSS for CC. CaCl did not finish within 24 hrs on songs and citations data set.

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(a) songs

P
ai

r R
ec

al
l

B

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(b) citations

P
ai

r R
ec

al
l

pBlocking

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(c) products

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(d) cars

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(e) songs

P
ai

r R
ec

al
l

B

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE DyBl
(f) citations

P
ai

r R
ec

al
l

pBlocking

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(g) products

P
ai

r R
ec

al
l

 0

 0.2

 0.4

 0.6

 0.8

 1

StBl QGBL SoNE CaCl DyBl
(h) cars

P
ai

r R
ec

al
l

Fig. 3: Pair recall of B and pBlocking with Unif for BC and varying BB and CC. (a-d) use MB and (e-h) use BLOSS

for CC. CaCl did not finish within 24 hrs on songs and citations data set.

candidates in Figure 2. As reported in [25], the pipeline
with 1010 candidates requires more than 14.5 hours per

dataset to achieve 0.82. For a fair comparison of block-
ing efficiency, we compare the pair recall within a time
budget of 1hr and time taken to achieve 0.95 pair recall
in ‘Blocking efficiency’ paragraph and Table 4.

Multiple blocking methods. Figure 5 demonstrates
the effectiveness of considering feedback in pipelines
where multiple block building procedures are used to
initialize the pipeline. B has lower than 0.6 pair re-

call even when we consider different combinations of
block building strategies. Using DyBl along with QGBL

achieves the highest pair recall among the considered
combinations, due to the ability of DyBl to construct

smaller blocks that capture matching record pairs.
However, pBlocking achieves more than 0.90 pair recall
for all combinations of block building strategies.

Blocking efficiency. In this experiment, we consider
two different settings to compare (i) the time required
to achieve more than 0.95 pair recall (ii) the pair recall
when the pipeline is allowed to run for a fixed amount
of time (1 hour). We run each technique for various

values of M and choose the best value that satisfies
the required constraints. In the case of fixed budget of

16 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

Table 4: Running time comparison of B and pBlocking with StBl and DyBl for BB, TF-IDF for BC and MB for CC.
The ‘blocking’ column denotes the time taken to perform blocking and ‘ER’ denotes the time taken to identify
matches over blocked pairs.

StBl

Dataset 0.95 Pair recall Time budget: 1 hr
pBlocking(StBl,TF-IDF,MB) B(StBl,TF-IDF,MB) Pair Recall

Blocking ER Total Blocking ER Total pBlocking B
songs 4.5 min 24.5 min 29 min 3min 180 min 3hrs 3min 0.96 0.78
citations 12 min 43 min 55 min Did not finish in 24 hrs 0.97 0.64
cars 3hr 20min 50 min 4hr 10min 25 min 11hr 30 min 11hr 55min 0.78 0.54
febrl1 55 min 2hr 35 min 3hr 30min Did not finish in 24 hrs 0.64 0.21
febrl2 95 min 4 hr 15 min 5hr 50min Did not finish in 24 hrs 0.34 0.15
products 35 sec 5min 55 sec 6min 30sec 27 sec 5 min 46 sec 6min 13sec 0.99 0.98
camera 42 sec 11min 38 sec 12min 20sec 33 sec 12 min 30 sec 13min 3sec 0.97 0.96
cora 30 sec 4 min 50 sec 5min 20 sec 27 sec 4min 48sec 5min 15sec 1 1

DyBl

pBlocking(DyBl,TF-IDF,MB) B(DyBl,TF-IDF,MB) Pair Recall
Blocking ER Total Blocking ER Total pBlocking B

songs 6.5 min 24.5 min 31 min 5 min 180 min 3hrs 5min 0.96 0.84
citations 15 min 43 min 58 min 15 min 10 hrs 10 hrs 15 min 0.97 0.67
cars 3hr 30min 50 min 4hr 20min 30 min 11hr 25 min 11hr 55min 0.78 0.64
febrl1 58 min 2hr 35 min 3hr 33min 1hr 7min 15hr 16hr 7min 0.64 0.21
febrl2 100 min 4 hr 15 min 5hr 55min 1hr 7min 15hr 20min 16 hr 27min 0.34 0.15
products 38 sec 5min 55 sec 6min 33sec 32 sec 5 min 46 sec 6min 18sec 0.99 0.98
camera 45 sec 11min 38 sec 12min 23 sec 37 sec 12 min 30 sec 13min 7 sec 0.97 0.96
cora 36 sec 4 min 50 sec 5min 26 sec 32 sec 4min 48sec 5min 20sec 1 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl QGBL SoNE CaCl DyBl

P
ai

r R
ec

al
l

B
pBlocking

(a) cora

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl QGBLSoNE CaCl DyBl

P
ai

r R
ec

al
l

B
pBlocking

(b) camera

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl QGBL SoNE DyBl

P
ai

r R
ec

al
l

B
pBlocking

(c) febrl1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl QGBL SoNE DyBl

P
ai

r R
ec

al
l

B
pBlocking

(d) febrl2

Fig. 4: Pair recall of B and pBlocking with varying BB,
TF-IDF for BC and MB for CC. CaCl did not finish within
24 hrs on febrl datasets. We observed similar results
with BLOSS for CC.

running time = 1hour, we run pBlocking’s feedback
loop for the most iterations that allow the pipeline to
process all records in the required time limit.

Table 4 compares the total time required to achieve
0.95 pair recall for each dataset (‘Blocking’ column de-
notes the time taken to perform blocking and ‘ER’
column denotes the time taken in pair matching and
clustering phases of the pipeline). The time taken by

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl+QGBL StBl+SoNE DyBl+QGBL

P
ai

r R
ec

al
l

B
pBlocking

(a) songs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

StBl+QGBL StBl+SoNE QGBL+DyBl

P
ai

r R
ec

al
l

B
pBlocking

(b) citations

Fig. 5: Pair recall of B and pBlocking with combination

of two block building strategies and TF-IDF for BC and
MB for CC.

the blocking component of the pipeline is higher for
pBlocking as compared to B due to the extra ef-
fort spent in incorporating feedback, constructing new
blocks and ranking based on their quality. However,
pBlocking’s blocking component is highly effective and
substantially reduces the time taken to process the
candidates generated by the blocking phase to iden-

tify matches. Overall, pBlocking provides more than
3 times reduction in running time for most large scale
datasets in this setting. In terms of total number of
pairs enumerated, pBlocking considers around M=10
million to achieve 0.95 recall for citations as opposed
to more than 200 million for B. We observed similar re-
sults for other block building (SoNE, QGBL, CaCl and
DyBl) and cleaning strategies with a difference that
DyBl runs for febrl datasets in around 16 hrs.

The last two columns of Table 4 compare the pair
recall of the generated candidates when the technique

Efficient and Effective ER with Progressive Blocking 17

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Ti
m

e
(m

in
s)

Dataset size (in millions)

pBlocking-MB
pBlocking-BLOSS

B-MB
B-BLOSS

(a) febrl1

 0
 200
 400
 600
 800

 1000
 1200

 0 20 40 60 80 100

Ti
m

e
(m

in
s)

Dataset size (in millions)

pBlocking-MB
pBlocking-BLOSS

B-MB
B-BLOSS

(b) febrl2

Fig. 6: Time taken by pBlocking and B with StBl for
BB and TF-IDF for BC for varying dataset size.

is allowed to run for 1 hour. pBlocking achieves better
pair recall as compared to B across all datasets. The
gain in recall is higher for larger datasets. The per-
formance of pBlocking for cars is lower than that of
pBlocking in Figure 2d because the feedback loop does
not converge completely in 1hr. The pipeline runs for
8 rounds of feedback in this duration. This is consis-

tent with the performance of pBlocking in Figure 9a,
where the feedback is turned off after 10 iterations. The
performance of pBlocking and B is similar for small

datasets of low noise like products, cora and camera

as opposed to songs, citations and cars.

Scalability. Figure 6 compares the time taken by

pBlocking on different sub-samples of febrl dataset to
reach 0.95 pair recall10. The time taken by pBlocking

increases linearly with increase in dataset size and the

pipeline identifies a majority of the matching records in
less than 6 hrs. Since the number of matching pairs in
the ground truth increases linearly with dataset size
and low noise in records, the size of blocking graph
and the time taken by the pair matching and clustering
components scales linearly. The time taken by BLOSS is
slightly lower than the time taken by MB because BLOSS

processes the meta-blocking graph to further prune out
non-matching record pairs. This optimization increases
the time taken by blocking phase of the pipeline but
significantly reduces the number of pairs compared by
the pair matching phase, thereby improving the overall
efficiency. On the other hand, B does not run for more
than 20M records in less than 24 hrs. This experiment

demonstrates scalability of pBlocking to achieve high
recall over large scale datasets in a reasonable time.

Progressive behavior. Figure 7 compares the F-
score of different pipelines with respect to the progress
of ER phase. F-score of the entities identified by
pBlocking grows faster than B, demonstrating its ef-
fectiveness to maintain better progressive behavior.

10 Each sub-sample was generated by using Febrl dataset
generator with smaller value of n, the number of records.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100

F-
sc

or
e

% progress

pBlocking
B

(a) songs

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100

F-
sc

or
e

% progress

pBlocking
B

(b) citations

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100
F-

sc
or

e
% progress

pBlocking
B

(c) products

 0
 0.2
 0.4
 0.6
 0.8

 1

 20 40 60 80 100

F-
sc

or
e

% progress

pBlocking
B

(d) cars

Fig. 7: Comparison of F-score of B(DyBl,TF-IDF,MB)

and pBlocking(DyBl,TF-IDF,MB) with respect to ER
progress.

Table 5: (a) Pair recall of pBlocking on varying ER
strategies. (b) Comparison of the final F-score of the

Eager method. The blocking graph is computed with
pBlocking(StBl, TF-IDF, MB) and B(StBl, TF-IDF, MB)
(both with default settings).

(a)

Dataset B pBlocking
Edge Node Eager

songs 0.53 0.9 0.9 0.9
citations 0.42 0.90 0.87 0.95
cars 0.54 0.98 0.99 0.98
febrl1 0.32 0.98 0.98 0.98
febrl2 0.41 0.97 0.99 0.98
products 0.95 0.98 0.98 0.98
camera 0.92 0.97 0.97 0.97
cora 1 1 1 1

(b)

Dataset B pBlocking

songs 0.65 0.92
citations 0.56 0.92
cars 0.64 0.94
febrl1 0.48 0.98
febrl2 0.58 0.98
products 0.71 0.72
camera 0.92 0.95
cora 0.99 0.99

pBlocking achieves more than 0.9 F-score across all
datasets but B converges at a lower F-score due to
the loss in pair recall of the blocking phase. In terms
of datasets, pBlocking and B achieve similar progres-
sive F-score throughout the ER progress for products

dataset. products has around 0.72 final F-score due to
low precision of pair matching and clustering phase. We
observed similar behavior for other blocking pipelines.

7.3 Robustness of Progressive Blocking

In this section, we evaluate the performance of

pBlocking with varying strategies for pair matching
and clustering in Algorithm 1 (referred to as W in the

18 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

pseudo-code). For this analysis, we use the default set-
ting for M as in Figure 2.

Varying ER methods. We recall that pBlocking

can be used in conjunction with a variety of techniques
for pair matching and clustering. Table 5a compares
the Pair Recall of the blocking graph, when using the
different progressive ER methods mentioned in Sec-
tion 7.1. The final Pair Recall of pBlocking is more
than 0.90 in all data sets and matching algorithms ex-
cept citations for node ER and more than 0.85 in all
cases. This observation confirms our theoretical analy-
sis in Section 6.2, demonstrating that the feedback loop
can improve the blocking, irrespective of the ER algo-
rithm under consideration (which is a desirable prop-
erty for a blocking algorithm). The above comparison of
ER performance considers the algorithms with a default
choice of Random Forest classifier as the oracle. We ob-
served that the feedback from the ER phase when using
a Neural Network classifier contains slightly more errors
but the blocking phase with pBlocking shows similar

recall. We provide more discussion on ER errors in Sec-
tion 7.4.

Benefit on the final ER result. Table 5b com-

pares the F-score of the final ER results when blocking
is performed with and without pBlocking. In this ex-
periment we use the state-of-the-art algorithm, Eager

as the pair matching algorithm with default parameter
values. Final F-score achieved with feedback is more
than 0.9 for all data sets except products. For songs,
citations and cars the F-score of pBlocking is 1.5

times more than that of traditional blocking pipeline
without feedback, thus demonstrating the effects of bet-
ter effectiveness and efficiency of blocking.

7.4 Progressive Behavior

This section studies the performance of pBlocking dy-
namically, in terms of (i) effect of feedback frequency

φ, (ii) effect of error on convergence, and (iii) conver-
gence of the blocking result in the maximum number of
rounds.

Feedback frequency. The φ parameter represents
the fraction of newly processed record pairs after which
feedback is sent from the partial ER results back to the
blocking phase. Therefore, the parameter φ can con-
trol the maximum number of rounds of pBlocking and
how often the blocking graph is updated. In order to

describe the effect of varying φ, Figure 8a shows the
F-score of ER results as a function of the percentage
of rounds completed, that we refer to as the blocking
progress. In the figure, different curves correspond to
different feedback frequencies, including the default one

 0
 0.2
 0.4
 0.6
 0.8

 1

 20 40 60 80 100

F-
sc

or
e

% progress

0.005
0.01
0.02
0.04
0.08

(a) Feedback Frequency

 0
 0.2
 0.4
 0.6
 0.8

 1

 20 40 60 80 100

F-
sc

or
e

% progress

0.05
0.1
0.2

(b) Oracle error

Fig. 8: Progressive behavior of pBlocking with varying
feedback frequency and errors in the feedback (cars).

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5 10 50 100

(a) Pair Recall comparison

P
ai

r R
ec

al
l

Feedback round

B

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5 10 50 100

(b) F-score comparison

F-
sc

or
e

Feedback round

pBlocking

Fig. 9: Effect of feedback loop in cars dataset.

(in blue). This plot shows that by updating the blocking
graph more frequently (and thus increasing the num-
ber of rounds), the F-score increases faster when φ is
reduced from 0.08 to 0.01. The plot also shows that

the F-score corresponding to smaller values of φ (up to
0.01) is consistently higher or equal as compared to the
F-score corresponding to larger values of φ. Given that

the running time of the pipeline increases with more
frequent updates (smaller values of φ), there appears
to be limited value in decreasing φ below 0.01, thus

justifying our choice for its default setting.

Effect of ER errors. As in the previous experiment,
Figure 8b shows the effect of synthetic error in the ER
results by varying the fraction of erroneous oracle an-
swers. To this end, we corrupted the oracle answers ran-
domly so as to get the desired amount of noise. We note
that even when 1 out of 5 answers are wrong, the final
F-score is almost 0.8, growing monotonically from the

beginning to the end at the cost of a few extra pairs
compared. pBlocking converges slower with higher er-
ror but the error does not accumulate and it performs
much better than any other baseline. Additionally, we
observed that even with 20% error, the pair recall of
pBlocking is as high as 0.98 even though the F-score
is close to 0.8 due to mistakes made by pair matching
and clustering phase. This confirms that pBlocking is
robust to errors in ER results and maintains high effec-
tiveness to produce ER results with high F-score.

Score Convergence. Figure 9a compares
the Pair Recall (PR) of the blocking phase of

Efficient and Effective ER with Progressive Blocking 19

pBlocking(StBl,TF-IDF,MB) after every round of
feedback with the recall of B(StBl,TF-IDF,MB). Both B
and pBlocking start with PR value close to 0.52 and
pBlocking consistently improves with more feedback
achieving PR close to 0.9 in less than 18 rounds.
This shows the convergence of pBlocking’s score
assignment strategy to achieve high PR values even
with minimal feedback. Figure 9b compares the final
F-score achieved by our method if the feedback loop is
stopped after a few rounds. It shows that pBlocking

achieves more than 0.8 F-score even when stopped
after 10 rounds of feedback. This experiment validates
that the convergence of block scoring leads to the
convergence of the entire ER workflow.

7.5 Key takeaways

The empirical analysis in the previous sections has
demonstrated pBlocking’s benefit on final F-score and
its ability to boost effectiveness of blocking techniques

across all data sets without compromising on efficiency.
The key takeaways from our analysis are summarized
below.

– pBlocking improves Pair Recall irrespective of the

technique used for block building, block cleaning or
comparison cleaning (Figure 2), thus demonstrating
its flexibility.

– Feedback based scoring helps in particular to
boost blocking efficiency and effectiveness for noisy
datasets with many matching pairs (i.e. containing
large clusters) such as cars, by enabling accurate se-

lection of cleanest blocks.
– The block intersection algorithm helps in particular

with data sets having fewer matching pairs (i.e. with

mainly small clusters) such as citations and songs,
by providing a way to build small focused blocks with
high fraction of matching pairs. Block intersection
can also help in data sets like products and camera

but the benefit is not as high as that in songs, be-
cause many records in such data sets have unique
identifiers (e.g. product model IDs) and thus initial
blocks are reasonably clean.

8 Related work

Blocking has been used to scale Entity Resolution (ER)
for a very long time. However, all techniques in the liter-
ature have considered blocking as a preprocessing step
and suffered from the trade-off between effectiveness
and efficiency/scalability. We divide the related work
into two parts: advanced blocking methods which we
improve upon, and progressive ER methods which can

be used to generate a limited amount of matching/non-
matching pairs to send as a feedback to our blocking
computation.

Advanced blocking methods. There are many
blocking methods in the literature with different in-
ternal functionalities and solving different blocking
sub-tasks. In this paper, we considered four repre-
sentative block building strategies, namely standard
blocking [22], canopy clustering [19], sorted neighbor-
hood [14] and q-grams blocking [12]. It is well-known
that such techniques can yield a fairly dense blocking
graph when used alone. We refer the reader to [27] for
an extensive survey of various blocking techniques and
their shortcomings. Such block building strategies can
be used as the method X in our Algorithm 1.

One of the prior blocking techniques, Dynamic
Blocking [20] considers conjunctions of large blocks
to construct a hierarchy of smaller co-occurring sub-
blocks. This approach assumes apriori knowledge of

the attributes that are used to whittle down over-
sized blocks to an acceptable size and was primarily
designed for datasets with small clusters (e.g., of size

2), where smaller blocks are correlated with matching
pairs. On the other hand, pBlocking uses the block
scores as a guidance to construct the hierarchy and

rank the blocks. Following the score based hierarchy
construction procedure, pBlocking does not partition
large blocks that contain a lot of matching pairs and
partitions all blocks that contain fewer matching pairs

irrespective of their size.

Recent works have proposed advanced methods
that can be used in combination with the mentioned

block building techniques by focusing on the compar-
ison cleaning sub-task (thus improving on efficiency).
The first technique in this space is meta-blocking [24].
Meta-blocking aims to extract the most similar pairs
of records by leveraging block-to-record relationships
and can be very efficient in reducing the number of un-
necessary pairs produced by traditional blocking tech-
niques, but it is not always easy to configure. To this
end, follow-up works such Blast [32] use “loose” schema
information to distinguish promising pairs, while [3] and
SNB [26] rely on a sample of labeled pairs for learning
accurate blocking functions and classification models
respectively. Finally, the most recent strategy BLOSS [6]
uses active learning to select such a sample and config-

ure the meta-blocking. The goal of traditional meta-
blocking [24] and its follow-up techniques like BLOSS [6]
prune out low similarity candidates from the blocking
graph generated using various block building strate-
gies discussed above. Their performance is highly de-
pendent on the effectiveness of block building tech-

niques and the quality of blocking graph. On the other

20 Sainyam Galhotra, Donatella Firmani, Barna Saha and Divesh Srivastava

hand, pBlocking constructs meaningful blocks that ef-
fectively capture majority of the matching pairs and
scores each block based on their quality to generate
fewer non-matching pairs in the blocking graph. Meta-
blocking techniques compute the blocking graph stati-
cally, prior to ER, and thus can be used as the Z method
in our Algorithm 1. In Figure 2 we compare with classic
meta-blocking and BLOSS, as the latter shows its supe-
riority over Blast and SNB.

Progressive ER. Many applications need to resolve
data sets efficiently but do not require the ER result
to be complete. Recent literature described methods to
compute the best possible partial solution. Such tech-
niques include pay-as-you-go ER [39] that use “hints”
on records that are likely to refer to the same entity
and more generally progressive ER such as the schema-
agnostic method in [33] and the strategies in [2,29]
that consider a limit on the execution time. In our dis-
cussion, we considered oracle-based techniques, namely

Edge [37], Node [36] and Eager [10]. Edge processes
record pairs in non-increasing probability of referring
to same entity. In each round of pBlocking pipeline, it
reorders the set of newly blocked pairs based on their

probability. On the other hand, Node sorts records in
non-increasing order of expected size of their clusters
and processes sequentially to identify entities. In each

iteration, it queries the considered record with the set
of clusters formed by records processed in previous iter-
ations. Edge and Node were not designed to optimize for

progressiveness of ER. Eager optimizes for progressive
F-score of the resolved entities by calculating a bene-
fit metric for all unprocessed records (by leveraging the
hybrid algorithm in [9]). The benefit metric of a record
v is shown to be a robust estimate of the marginal gain
in recall if v is processed. Additionally, it corrects or-
acle errors with an expander graph based error cor-

rection toolkit [10]. Differently from other progressive
techniques, oracle-based methods consider a limit on
the number of pairs that are examined by the oracle
for matching/non-matching response. Such techniques
were originally designed for dealing with the crowd but
they can also be used with a variety of classifiers due
to their flexibility. All these techniques naturally work

in combination with pBlocking by sending as feed-
back their partial results and using the updated set of
blocked pairs to regenerate ranking of pairwise compar-
isons to resolve entities.

Other ER methods. In addition to the above meth-
ods, we mention works on ER architectures that can
help users to debug and tune parameters for the dif-
ferent components of ER [11,7,16,28]. Specifically, the
approaches in [11,7] show how to leverage the crowd

in this setting. All of these techniques are orthogo-

nal to the scope of our work and we do not consider
them in our analysis. The previous work in [40] pro-
poses to greedily merge records as they are matched by
ER, while processing the blocks one at a time. Each
merged record (containing tokens from the component
records) is added to the unprocessed blocks, permitting
its participation in the subsequent matching and merg-
ing by their iterative algorithm. Limitations of process-
ing blocks one at a time has been shown in more recent
blocking works [24].

9 Conclusions and Future Work

We have proposed a new blocking algorithm,
pBlocking that progressively updates the relative
scores of blocks and constructs new blocks by lever-
aging a novel feedback mechanism from partial ER re-
sults. Most of the techniques in the literature perform
blocking as a preprocessing step to prune out redundant

non-matching record pairs. However, these techniques
are sensitive to the distribution wof cluster sizes and
the amount of noise in the data set and thus are either

highly efficient with poor recall or have high recall with
poor efficiency. pBlocking can boost the effectiveness
and efficiency of blocking across all data sets by jump-
starting blocking with any of the standard techniques

and then using new robust feedback-based methods for
solving blocking sub-tasks in a data-driven way. To the
best of our knowledge, pBlocking is the first frame-

work where blocking and pair matching components of
ER can help each other and produce high quality results
in synergy.

Limitations and future work. One limitation of

pBlocking is due to the initial set of seed blocks it
considers to construct new blocks that prune out non-
matching pairs. Any record pair that does not share

any of the seed blocks would never be identified as a
candidate even after running pBlocking. We believe
that considering feedback from partial ER results can
be helpful to explore other blocking strategies and is an
interesting problem for future work.

Acknowledgements

This work is supported partly by NSF 1652303,
1909046, and HDR TRIPODS 1934846 grants, and an
Alfred P. Sloan Fellowship.

References

1. www.cs.umass.edu/~mccallum/data/cora-refs.tar.gz.

Efficient and Effective ER with Progressive Blocking 21

2. Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Pro-
gressive approach to relational entity resolution. PVLDB,
7(11):999–1010, 2014.

3. M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. In ICDM,
2006.

4. P. Christen, T. Churches, and M. Hegland. Febrl–a paral-
lel open source data linkage system. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages
638–647. Springer, 2004.

5. V. Crescenzi, A. D. Angelis, D. Firmani, M. Mazzei,
P. Merialdo, F. Piai, and D. Srivastava. Alaska: A flexible
benchmark for data integration tasks, 2021.

6. G. dal Bianco, M. A. Gonçalves, and D. Duarte. Bloss:
Effective meta-blocking with almost no effort. Informa-

tion Systems, 75, 2018.
7. S. Das, P. S. GC, A. Doan, J. F. Naughton, G. Krishnan,

R. Deep, E. Arcaute, V. Raghavendra, and Y. Park. Fal-
con: Scaling up hands-off crowdsourced entity matching
to build cloud services. In SIGMOD, 2017.

8. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.

Data Eng., 19(1), 2007.
9. D. Firmani, B. Saha, and D. Srivastava. Online entity

resolution using an oracle. PVLDB, 9(5), 2016.
10. S. Galhotra, D. Firmani, B. Saha, and D. Srivastava. Ro-

bust entity resolution using random graphs. In SIGMOD,
2018.

11. C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Ram-
palli, J. Shavlik, and X. Zhu. Corleone: hands-off crowd-
sourcing for entity matching. In SIGMOD, 2014.

12. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In VLDB,
pages 491–500, 2001.

13. A. Gruenheid, X. L. Dong, and D. Srivastava. Incremen-
tal record linkage. PVLDB, 7(9), 2014.

14. M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In ACM Sigmod Record, vol-
ume 24, pages 127–138. ACM, 1995.

15. W. Hoeffding. Probability inequalities for sums of
bounded random variables. In The Collected Works of
Wassily Hoeffding, pages 409–426. Springer, 1994.

16. P. Konda, S. Das, P. Suganthan GC, A. Doan,
A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang,
J. Naughton, et al. Magellan: Toward building entity
matching management systems. PVLDB, 9(12):1197–
1208, 2016.

17. J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d ob-
ject representations for fine-grained categorization. In 4th
International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), 2013.
18. C. D. Manning, C. D. Manning, and H. Schütze. Foun-

dations of statistical natural language processing. 1999.
19. A. McCallum, K. Nigam, and L. H. Ungar. Efficient clus-

tering of high-dimensional data sets with application to
reference matching. In Proceedings of ACM SIGKDD inter-
national conference on Knowledge discovery and data min-

ing, pages 169–178, 2000.
20. N. McNeill, H. Kardes, and A. Borthwick. Dynamic

record blocking: efficient linking of massive databases in
mapreduce. Citeseer, 2012.

21. S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Kr-
ishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
learning for entity matching: A design space exploration.
In SIGMOD, 2018.

22. G. Papadakis, G. Alexiou, G. Papastefanatos, and
G. Koutrika. Schema-agnostic vs schema-based config-
urations for blocking methods on homogeneous data.
PVLDB, 9(4):312–323, 2015.

23. G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, and
W. Nejdl. A blocking framework for entity resolution in
highly heterogeneous information spaces. IEEE Trans-
actions on Knowledge and Data Engineering, 25(12):2665–
2682, 2012.

24. G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl.
Meta-blocking: Taking entity resolutionto the next level.
TKDE, 26, 2014.

25. G. Papadakis, G. Mandilaras, L. Gagliardelli, G. Si-
monini, E. Thanos, G. Giannakopoulos, S. Bergamaschi,
T. Palpanas, and M. Koubarakis. Three-dimensional
entity resolution with jedai. Information Systems,
93:101565, 2020.

26. G. Papadakis, G. Papastefanatos, and G. Koutrika. Su-
pervised meta-blocking. PVLDB, 7(14):1929–1940, 2014.

27. G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Com-
parative analysis of approximate blocking techniques for
entity resolution. PVLDB, 9(9):684–695, 2016.

28. G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopou-
los, T. Palpanas, and M. Koubarakis. The return of
jedai: end-to-end entity resolution for structured and
semi-structured data. PVLDB, 11(12):1950–1953, 2018.

29. T. Papenbrock, A. Heise, and F. Naumann. Progressive
duplicate detection. TKDE, 27(5), 2015.

30. M. Penrose et al. Random geometric graphs, volume 5.
Oxford university press, 2003.

31. H. Schütze, C. D. Manning, and P. Raghavan. Intro-
duction to information retrieval. In Proceedings of the
international communication of association for computing

machinery conference, page 260, 2008.
32. G. Simonini, S. Bergamaschi, and H. Jagadish. Blast: a

loosely schema-aware meta-blocking approach for entity
resolution. PVLDB, 9(12), 2016.

33. G. Simonini, G. Papadakis, T. Palpanas, and S. Berga-
maschi. Schema-agnostic progressive entity resolution.
IEEE Transactions on Knowledge and Data Engineering,
31(6):1208–1221, 2018.

34. V. Verroios and H. Garcia-Molina. Entity resolution with
crowd errors. In ICDE, pages 219–230, 2015.

35. V. Verroios, H. Garcia-Molina, and Y. Papakonstantinou.
Waldo: An adaptive human interface for crowd entity res-
olution. In SIGMOD, 2017.

36. N. Vesdapunt, K. Bellare, and N. Dalvi. Crowdsourc-
ing algorithms for entity resolution. PVLDB, 7(12):1071–
1082, 2014.

37. J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

38. S. E. Whang and H. Garcia-Molina. Incremental entity
resolution on rules and data. The VLDB Journal, 23(1),
Feb. 2014.

39. S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-
as-you-go entity resolution. TKDE, 25(5), 2013.

40. S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald,
and H. Garcia-Molina. Entity resolution with iterative
blocking. In SIGMOD, 2009.

