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Abstract

Low-latency online services have strict Service Level Ob-

jectives (SLOs) that require datacenter systems to support

high throughput at microsecond-scale tail latency. Dataplane

operating systems have been designed to scale up multi-core

servers with minimal overhead for such SLOs. However, as

application demands continue to increase, scaling up is not

enough, and serving larger demands requires these systems

to scale out to multiple servers in a rack.

We present RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer (i.e., a huge server with hundreds to thousands of

cores) to an external service with network-system co-design.

The core of RackSched is a two-layer scheduling frame-

work that integrates inter-server scheduling in the top-of-rack

(ToR) switch with intra-server scheduling in each server. We

use a combination of analytical results and simulations to

show that it provides near-optimal performance as centralized

scheduling policies, and is robust for both low-dispersion and

high-dispersion workloads. We design a custom switch data

plane for the inter-server scheduler, which realizes power-of-

k-choices, ensures request affinity, and tracks server loads

accurately and efficiently. We implement a RackSched pro-

totype on a cluster of commodity servers connected by a

Barefoot Tofino switch. End-to-end experiments on a twelve-

server testbed show that RackSched improves the throughput

by up to 1.44×, and scales out the throughput near linearly,

while maintaining the same tail latency as one server until the

system is saturated.

1 Introduction

Online services such as search, social networking and e-

commerce have strict end-to-end user-facing Service Level

Objectives (SLOs) [12, 22]. To meet such SLOs, datacen-

ter systems behind these services are expected to provide

high throughput with low tail latency in the range of tens

to hundreds of microseconds [12]. Example systems include

key-value stores [6, 7, 60], transactional databases [9, 64],

search ranking and sorting [13], microservices and function-

as-a-service frameworks [17], and graph stores [43, 67].

With the end of Moore’s law and Dennard’s scaling, ap-

plications can no longer rely on single-threaded code to ex-

ecute faster on newer processors with increased clock rates

and instruction-level parallelism [31]. This leads to the rise

of multi-core machines to scale up computation. Meeting

microsecond-scale tail latency is challenging given that the

request processing times with single-threaded code on bare

metal hardware are already in the same time scale. This means

that the operating system (OS) should impose minimal over-

head when it manages resources and scales up these applica-

tions on multi-core machines.

This calls for new software architectures to efficiently

utilize the resources of multi-core machines. One criti-

cal component of such architectures is scheduling. Data-

plane operating systems have been designed to support low-

latency applications with minimal overhead to meet strict

SLOs [14, 39, 54, 58, 59]. For example, Shinjuku [39] uses

efficient mechanisms to implement preemption and context

switching, in order to realize centralized scheduling policies

to avoid head-of-line blocking and address temporal load

imbalance between multiple cores.

However, as application demands continue to increase, scal-

ing up a single server is not enough. Serving larger demands

requires these systems to scale out to multiple servers in a

rack, which is termed as rack-scale computers, such as Berke-

ley Firebox [1], Intel Rack Scale Architecture [5], and HP

“The Machine” [2]. Though previous efforts have not fully

paned out yet, we believe it is inevitable, as evidenced by

the emerging TPU Pods that pack high-density specialized

hardware into a rack [8]. Even a traditional rack contains

tens of servers and hundreds to thousands of cores, posing a

challenge for scheduling microsecond-scale requests.

While dataplane operating systems address intra-server

scheduling between multiple cores, head-of-line blocking and

temporal load imbalance between multiple servers arise when

the systems scale out. Using a single core for centralized

scheduling and queue management is amenable for one server

with a few to tens of cores [39]. But the core would quickly

become the bottleneck if it were used to queue and schedule

requests for a rack with hundreds to thousands of cores.
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In this paper, we present RackSched, the first rack-level

microsecond-scale scheduler that provides the abstraction

of a rack-scale computer (i.e., a huge server with hundreds

to thousands of cores) to an external service with network-

system co-design. Serving microsecond-scale workloads is

particularly challenging because the scheduler needs to simul-

taneously provide high scheduling speed (i.e., high through-

put and low latency of the scheduler) and high scheduling

quality (i.e., low tail latency to complete requests). Given the

scheduling latency of modern OSes on a single server being a

few microseconds [19, 39], our goal is to design a rack-level

scheduler with comparable scheduling latency that can scale

out to hundreds to thousands of cores in a rack. While there

has been a long line of work on scheduling and load balanc-

ing, existing solutions are not designed for microsecond-scale

workloads: software-based solutions [24, 27, 55, 56] suffer

from low scheduling throughput and high scheduling latency

(at least millisecond-scale); hardware-based ones [25, 51] are

coarse-grained (based on five tuple) and server-agnostic, and

thus suffer from long tail latency.

The core contribution of RackSched is a novel network-

system co-design that simultaneously achieves high schedul-

ing speed and high scheduling quality (§2). We propose a

two-layer scheduling framework that integrates inter-server

scheduling in the top-of-rack (ToR) switch with intra-server

scheduling in each server to approximate centralized schedul-

ing policies. This two-layer design, and the line-rate, on-path

inter-server scheduling in the ToR switch, are critical for the

scheduler to achieve high speed.

To provide high quality scheduling decisions, our key in-

sight is that the two sources of long tail latency—load im-

balance and head-of-line blocking—can be decoupled and

handled by separate mechanisms. The ToR switch tracks

real-time server loads, and schedules requests at per-request

granularity to realize inter-server load balancing (LB). Each

server keeps its own queue, and uses intra-server scheduling

to preempt long requests that block pending short ones. It is

known that centralized first-come-first-serve (cFCFS) is near-

optimal for low-dispersion workloads, and processor sharing

(PS) is near-optimal for heavy-tailed workloads or light-tailed

workloads with high dispersion [39, 59, 69]. We use a com-

bination of analytical results and simulations to show that

our two-layer scheduling framework provides near-optimal

performance as centralized policies, and is robust to different

workloads (Figure 1).

Realizing the inter-server scheduler in the ToR switch re-

quires the switch to schedule requests based on server loads

on per-request granularity (§3). Today’s stateful network load

balancers map connections to servers based the hash of the

five tuple [24, 25, 51, 53, 56], which is static, and cannot dy-

namically adapt the server selection under microsecond-scale

load imbalance. There are three aspects of our approach to

address this challenge. (i) We leverage the switch on-chip

memory to store server loads, and use the multi-stage process-

cFCFS for
low-dispersion workloads

PS for
heavy-tailed or

high-dispersion workloads

ZygOS [59]
cFCFS

Shinjuku [39]
PS

multi-core
server

(scale-up)

RackSched
LB (across-server)

+
cFCFS (per-server)

rack
(scale-out)

RackSched
LB (across-server)

+
PS (per-server)

Figure 1: Key idea of RackSched.

ing pipeline to implement power-of-k-choices and to support

a variety of practical scheduling requirements, such as multi-

queue policies. (ii) We design a request state table for request

affinity, which guarantees the packets of the same request are

sent to the same server. To maintain the dynamic mapping

between requests and servers, the request state table supports

insert (after scheduling the first packet), read (for sending fol-

lowing packets), and remove (when the request is completed)

all in the data plane. (iii) We leverage in-network telemetry

(INT) to monitor server loads with minimal overhead. Servers

piggyback their load information in their normal traffic, and

the switch tracks the latest reported load for each server.

Recent switch-based solution R2P2 [42] relies on expen-

sive recirculation which does not scale for high request

rate, and its scheduling policy has long tail latency under

heavy-tailed or high-dispersion workloads due to head-of-

line blocking (§4.5). In addition, R2P2 needs an extra round

trip for multi-packet requests to ensure request affinity, while

RackSched can finish in one round trip. RackSched is also

more general in supporting many practical policies (§3.6).

In summary, we make the following contributions.

• We propose RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer to an external service.

• We design a two-layer scheduling framework that inte-

grates inter-server scheduling in the ToR switch and intra-

server scheduling in each server. We use a combination of

analytical results and simulations to show that it provides

near-optimal performance as centralized policies.

• We design a custom switch data plane for the inter-server

scheduler, which realizes power-of-k-choices for near-

optimal load balancing, ensures request affinity, and tracks

server loads accurately and efficiently.

• We implement a RackSched prototype on a cluster of

twelve commodity servers with a Barefoot Tofino switch.

End-to-end experiments show that RackSched improves

the throughput by up to 1.44×, and scales out the through-

put near linearly, while maintaining the same tail latency

as one server until the system is saturated.

The code of RackSched is open-source and available at

https://github.com/netx-repo/RackSched.
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(a) Low-dispersion workload.
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(b) High-dispersion workload.

Figure 2: Simulation results.

2 Design Decisions

In this section, we navigate through the design space of build-

ing a microsecond-scale scheduler for rack-scale computers,

and highlight the design rationale of RackSched.

Scaling out to a rack. Supporting large application demands

requires datacenter systems to scale out to multiple servers

in a rack. While existing solutions like Shinjuku [39] solve

the problem of scheduling requests to multiple cores (i.e.,

intra-server scheduling), they do not address the problem

of scheduling requests to different servers (i.e., inter-server

scheduling). When requests are simply scheduled to the

servers randomly, the load imbalance and head-of-line block-

ing can happen at the server level, causing long tail latency

for the entire system.

To motivate our work, we use simulations on representa-

tive workloads to show the impact of ineffective scheduling

policies. We use the following two request service time distri-

butions: (i) Exp(50) is an exponential distribution with mean

= 50 µs, which is representative for low-dispersion workloads;

(ii) Trimodal(33.3%-5, 33.3%-50, 33.3%-500) is a trimodal

distribution with 33.3% of requests taking 5 µs, 33.3% tak-

ing 50 µs and 33.3% taking 500 µs, which is representative

for high-dispersion workloads. The simulations assume eight

servers and each server has eight workers (cores). The PS

time slice used in the simulations is 25 µs.

We first compare the baseline policies that randomly send

requests to servers and only use cFCFS or PS inside each

server (per-cFCFS and per-PS) with the ideal centralized

policies across all workers (global-cFCFS and global-PS).

Figure 2 shows that the centralized policies perform better

than the baseline policies. The tail latencies of per-cFCFS

and per-PS quickly go up when the system load exceeds 0.75

and 0.5 respectively, while global-cFCFS and global-PS keep

low tail latencies until the system is almost saturated.

Centralized scheduling cannot scale. The policy compari-

son in Figure 2 shows that there is a substantial gap between

the tail latencies of the centralized policies (global-cFCFS

and global-PS) and the baseline policies (per-cFCFS and per-

PS). However, directly implementing the centralized policies

is challenging because they would require a centralized sched-

uler for the entire rack. While a single core is capable of

running a centralized scheduler to handle the requests for a

multi-core server, it is unlikely to scale to a multi-server rack.

Inter-server scheduler

Request 

Intra-server 

scheduler

Intra-server 

scheduler

Intra-server 

scheduler

Queue

Workers

Figure 3: Two-layer scheduling framework.

Indeed, a single scheduler in Shinjuku [39] can scale to up to

11 cores, which falls well short of the demands of a rack with

hundreds to thousands of cores.

Hierarchical scheduling. One natural solution to scale up

the rack-scale scheduler is a two-layer hierarchical scheduler

consisting of an inter-server scheduler at the high level, and

per-server schedulers at the low level (Figure 3). This way,

the inter-server scheduler only needs to schedule requests

across tens of servers, instead of hundreds or thousands of

cores. Each server employs its own intra-server scheduler to

schedule requests across its cores.

Scaling the inter-server scheduler. While the inter-server

scheduler only needs to schedule requests across the servers

in the rack (instead of accross all cores), it still needs to

handle every request. Assuming a rack with 1000 cores and

10 µs requests, the inter-server scheduler must handle up

to 100 millions requests per second (MRPS) to saturate the

rack! Unfortunately, such a scheduler would need to process a

request every 10 ns, which exceeds the capability of a general-

purpose computer.

To address this challenge, in this paper we propose to

leverage emerging programmable switches, and have the ToR

switch implement the inter-server scheduler. This design has

the key benefit that the ToR switch is already on the path of

the requests sent to the rack, and thus can readily process all

these requests at line rate.

JSQ is near optimal and robust. A natural way to approxi-

mate a centralized scheduler with a two-layer scheduler is to

implement the same scheduler at both layers. For example, if

the global scheduler is cFCFS, in the corresponding hierarchi-

cal scheduler all the inter-server and intra-server schedulers

will be cFCFS as well.

Unfortunately, the cFCFS scheduler needs to maintain a

queue, and existing programmable switches have too lim-

ited memory to buffer requests, and are not well equipped to

maintain dynamic data structures, such as queues. The join-

the-shortest-queue (JSQ) scheduler can address the challenge

because it is a bufferless scheduler. Upon a request arrival, it

immediately forwards the request to the server with the short-

est queue. This way, JSQ achieves fine-grained load balancing

across the rack’s servers. Figure 2 confirms that JSQ-cFCFS
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and JSQ-PS can deliver nearly the same performance as the

centralized policies (global-cFCFS and global-PS).

Theoretically, the two-layer scheduling framework imple-

ments the A/S/K/JSQ/P models in queueing theory, where A

is the inter-arrival distribution, S is the service time distribu-

tion, K is the number of servers, JSQ is the join-the-shortest-

queue policy implemented by the inter-server scheduler, and

P is the intra-server scheduling policy which is either cFCFS

or PS in this case. In particular, it is known that JSQ pro-

vides near-optimal load balancing, and importantly, is robust

against request service time distributions. An expanded dis-

cussion is in the technical report [74].

Approximating JSQ. While conceptually simple, JSQ can-

not be implemented in its definite form in practice, because

it requires the switch to know the exact queue length of each

server when scheduling a request. It takes a round trip time

for the switch to ask each server, during which the queue

lengths may have changed for microsecond-scale workloads.

Furthermore, imperfect JSQ based on delayed server status is

prone to herding, where several consecutive requests are sent

to the same server before the server load is updated, and this

can generate micro bursts and degrade system performance.

Note that herding here is not caused by multiple asynchronous

load balancers as there is only one load balancer (the inter-

server scheduler), but from stale server load information in

the load balancer. In addition, the switch can only do a limited

number of operations for each request, and finding the short-

est queue cannot be implemented for many tens of servers.

Thus, we use power-of-k-choices to approximate JSQ, which

samples k servers for each request and chooses the one with

the minimum load. This approximation provides comparable

performance as JSQ in theory [18] (see [74]), and handles

these practical limitations well.

Why not a distributed, client-based solution? An alterna-

tive solution is to implement distributed scheduling at each

client. The clients can use JSQ, power-of-k-choices or more

complicated solutions like C3 [63] to pick workers for their re-

quests. Such a client-based solution has two drawbacks. First,

it needs client modification and increases system complexity.

The clients need to probe server loads and make scheduling

decisions. More importantly, the clients need to be notified

for every system reconfiguration (e.g., adding or removing

servers), because they have to know which set of servers a

request can be sent to. Notifying a large number of clients of

the latest system configuration imposes both a consistency

challenge and high system overhead. Putting these functional-

ities in a scheduler, on the other hand, simplifies the clients

and avoids these system complexities.

Second, a distributed, client-based solution provides a

worse trade-off between performance and probing overhead

than a centralized scheduler for microsecond-scale work-

loads. This is because microsecond-scale workloads are IO-

intensive, and a probing request incurs comparable processing

cost as a normal request at the servers. Thus, probing needs to

be minimized to improve the throughput of processing the ac-

tual requests. No matter whether probing is done proactively

or piggybacked in reply packets, given n clients with the same

sending rate, a centralized scheduler can utilize n times as

much probing data as that of one client in a client-based solu-

tion, resulting in better scheduling quality. Figure 2 confirms

the benefit of the centralized scheduler over a client-based

solution with a piggyback-based probing mechanism (client-

cFCFS and client-PS). The simulation does not model the

client software delay and the network delay to get the server

loads, which favors the client-based solution. The client-based

solution performs worse in real experiments (§4.5). In a multi-

pipeline switch, though states are not shared across pipelines,

RackSched can approximate JSQ within each pipeline. It

works better than the client-based solution because the num-

ber of pipelines (e.g., 4) is far smaller than the number of

clients (e.g., 1000 or more).

Putting it all together. We propose a two-layer scheduling

framework that integrates inter-server scheduling in the ToR

switch and intra-server scheduling in each server. The ToR

switch uses power-of-k-choices to achieve inter-server load

balancing, and each server uses cFCFS or PS to minimize

head-of-line blocking. This solution approximates centralized

scheduling for the entire rack, and provides the abstraction

of a rack-scale computer: the capacity (throughput) of the

rack-scale computer is the sum of that of its servers, and the

tail latency is maintained as that of one server.

Challenges. Translating the two-layer scheduling framework

to a working system implementation presents several techni-

cal challenges:

• What is the system architecture to realize this two-layer

scheduling framework?

• How does the switch schedule requests based on the server

loads, and handle practical scheduling requirements?

• How does the system ensure request affinity (i.e., the pack-

ets of the same request are sent to the same server), when

the switch processes each packet independently?

• How do servers expose their states to the switch so that

the switch can track the real-time loads on the servers

efficiently and accurately?

3 RackSched Design

In this section, we present the design of RackSched to ad-

dress the challenges. We first give an overview of the system

architecture, and then describe each component in detail.

3.1 System Architecture

The core of RackSched is a two-layer scheduling frame-

work that combines inter-server scheduling and intra-server

scheduling. Figure 4(a) shows the RackSched architecture.

Inter-server scheduling. The ToR switch performs inter-

server scheduling at per-request granularity via three modules:
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Figure 4: RackSched overview.

a request scheduling module that selects a server for a new

incoming request based on server loads (§3.3) and scheduling

requirements (§3.6), a request affinity module that forwards

the packets of the same request to the same selected server

(§3.4), and a server tracking module that tracks the real-time

load on each server (§3.5). All three modules are implemented

in the switch data plane that enables the inter-server scheduler

to run at line rate.

Intra-server scheduling. Each multi-core server in the rack

runs multiple worker threads to process requests. Each server

has a centralized scheduler to queue and schedule requests

to its own workers. The scheduler implements centralized

scheduling policies for intra-server scheduling. Each server

also piggybacks its load information in reply messages to

report its load to the ToR switch.

Deployment options. There are two deployment options for

RackSched. (i) The first one is to integrate RackSched with

the ToR switch of a rack-scale computer. This option adds

additional functionalities to the ToR switch, but does not

change any other part of the datacenter network. (ii) The

second option is to treat the switch-based scheduler as a

specialized server with a programmable switching ASIC. This

server can be connected to the same ToR switch as worker

servers. It owns the anycast IP address so all requests would

be first sent to it for scheduling. By properly updating the

addresses, it can also force the reply packets to pass through it

before returning to the clients, in order to clear request states

and update server loads. This option does not even modify

the ToR switch, but has the latency cost of an extra hop by

the detour to the switch-based scheduler.

Client ToR Switch

Insert Read

ReqTable LoadTable

Server

Intra-Server

Scheduler

(a) The first packet of a request.

Client ToR Switch

Read

ReqTable LoadTable

Server

Intra-Server

Scheduler

(b) The following packets of the request.

Client ToR Switch

Remove Update

ReqTable LoadTable

Server

Intra-Server

Scheduler

(c) The reply packets.

Figure 5: Request processing in RackSched.

3.2 Request Processing

Network protocol. RackSched is designed for intra-

datacenter scenarios. It uses an application-layer protocol

which is embedded inside the L4 payload. We reserve an

L4 port to distinguish RackSched packets from other pack-

ets. The network uses existing L2/L3 routing protocols to

forward packets. There are no modifications to the switches

in the network other than the ToR switch. The ToR switch

uses the reserved L4 port to invoke the custom modules

to process RackSched packets. Other switches do not need

to understand the RackSched protocol, nor do they need

to process RackSched packets. RackSched is orthogonal

to and compatible with other network functionalities, such

as flow/congestion control, which is typically implemented

by the transport layer or the RPC layer (e.g., eRPC [41]).

RackSched ensures request affinity under packet loss and

retransmission by maintaining connection state (§3.4).

RackSched only requires the applications to add the

RackSched header between the TCP/UDP header and the pay-

load (Figure 4(b)), so that it can make scheduling decisions

based on the RackSched header. Note that for TCP handshake

packets that do not have any payload, the RackSched header

should be appended after the TCP header to expose necessary

information to the switch. We emphasize that RackSched fo-

cuses on microsecond-scale workloads. It is not intended to

support long-lived TCP connections, which impose unneces-

sary system overhead to maintain connection states, especially

under switch failures (§3.4), and restrict the scheduler from

making per-request scheduling decisions to address temporal

load imbalance. RackSched does support request dependency

for tasks with multiple requests (§3.6).

The RackSched header contains three major fields, which

are TYPE, REQ ID, and LOAD. TYPE indicates the type of

the packet, e.g., REQF (the first packet of a request), REQR (a

remaining packet of a request), and REP (a reply packet).
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Algorithm 1 ProcessPacket(pkt)

– ReqTable: on-chip memory for request-server mapping

– LoadTable: on-chip memory for server loads

// first packet of a request

1: if pkt.type == REQF then

2: server ip← LoadTable.select server()
3: ReqTable.insert(pkt.req id,server ip)

// remaining packets of a request

4: else if pkt.type == REQR then

5: server ip← ReqTable.read(pkt.req id)
// reply packets

6: else if pkt.type == REP then

7: ReqTable.remove(pkt.req id)
8: LoadTable.update(pkt.srcip, pkt.load)

9: Update packet header and forward

REQ ID is a unique ID for each request. All packets of

the same request and the corresponding reply use the same

REQ ID. To ensure a REQ ID is globally unique, each client

appends its client ID in front of its locally generated unique

request ID, i.e., a tuple of <client ID, local request ID>.

LOAD indicates the load of the server. The server piggybacks

its current queue length in the LOAD field in reply packets.

LOAD is not used in request packets.

Processing request packets. Clients use an anycast IP ad-

dress as the destination IP to send requests to the rack-scale

computer, and are unaware of the number of servers behind

the ToR switch. Figure 5 illustrates how RackSched processes

packets, and Algorithm 1 shows the high-level pseudo code

of the switch. The switch keeps two essential sets of state in

the switch on-chip memory. One is ReqTable which stores

the mapping from the request IDs to the servers, and the

other is LoadTable which stores the queue lengths of the

servers. As shown in Figure 5(a), when the first packet of a

request arrives at the switch, the switch selects a server based

on LoadTable, and remembers this selection by inserting an

entry to ReqTable (line 1-3). Then in Figure 5(b), when re-

maining packets of the request arrive, the switch checks the

ReqTable to get the selected server (line 4-5), which ensures

request affinity. The switch uses the selected server IP to up-

date the destination IP in the packet header and sends the

packet to the corresponding server (line 9).

Processing reply packets. After a server receives a request,

it uses its local scheduler to schedule and processes the re-

quest. Then the server generates a reply, and sets the LOAD

field with its current queue length. As shown in Figure 5(c),

the switch deletes the mapping from ReqTable, because the

request has completed and the memory space can be freed

for other requests (line 7). The switch also updates the server

load in LoadTable based on the LOAD field (line 8). We do

not distinguish the first and following packets for a reply even

if the reply contains multiple packets (also equivalent to multi-

Match pkt.dstip == 10.0.0.1

Action pkt.dstip = array[h(pkt)]

0 1 2 3

1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4

Register Array

Figure 6: Traditional hash-based random dispatching.

Match pkt.dstip == 10.0.0.1

Action if reg.load < meta.load:

meta.load = reg.load

meta.ip = reg.ip

1.0.0.1

20
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stage 1 stage 2 stage n

server1

server2
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server4

min()

min()

min() m comparisons

each stage

n stages
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(a) Linear computation of minimum server load. 

(b) Tree-based computation of minimum server load. 

Figure 7: Optimal server selection.

ple replies). Because ReqTable checks req id for deletion, if

a slot is reused by another request, the following reply packets

of the previous request would not be applied. The updates

of LoadTable only affect server selection of new requests.

Note that this is compatible with TCP even if the client initi-

ates the termination of the connection, as the mapping of this

request is removed from ReqTable when the server receives

the request and sends the first reply packet back to the client.

The switch control plane periodically checks the data plane to

remove stale mappings from ReqTable, which can be caused

by server failures or lost reply packets. In the end, the switch

updates the source IP to the anycast IP in the packet header,

and sends the packet back to the client (line 9).

3.3 Request Scheduling

The request scheduling module dynamically schedules re-

quests based on server loads. Unfortunately, this is not sup-

ported in today’s switches. Today’s switch-based load bal-

ancers such as SilkRoad [51] only support ECMP-like ran-

dom dispatching based on the five tuple. Figure 6 shows how

hash-based random selection is implemented in the data plane.

The register array stores a set of server IPs for the anycast IP

10.0.0.1. The rule in the match-action table matches packets

with their destination IP being the anycast IP 10.0.0.1, and

the action rewrites the destination IP to an IP in the register

array, which is selected by computing a hash on the packet

header (usually the five tuple). Because the selection is static,

and is purely based on the hash, it can cause load imbalance

and long tail latency as discussed in §2. We now describe how

to realize dynamic request scheduling based on server loads.

Handling practical scheduling requirements is in §3.6.

Optimal server selection. We leverage the register arrays to

store the server loads together with the server IPs and use

the multi-stage packet processing pipeline to compute the

minimum. A naive way is to use multiple stages to scan the
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Match pkt.dstip == 10.0.0.1

Action meta.load_i =

array[rand_i].load

meta.ip_i =

array[rand_i].ip
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Figure 8: Approximate server selection.

server loads linearly, as shown in Figure 7(a). The number

of servers this solution can support is limited to the number

of stages. As a switch typically has 10–20 stages and many

stages need to be used by other switch functionalities, this

solution is not scalable. It can be optimized by computing

the minimum in a tree structure as shown in Figure 7(b). The

comparisons between two servers in each layer of the tree

have no dependencies, and thus can be done in parallel in

the same stage. In the ideal case, given n servers, this tree-

based solution requires log(n) stages, while the naive solution

requires n stages. Let each stage support up to m comparisons.

The comparisons in the first few layers need to be distributed

to multiple stages, if they are larger than m.

Approximate server selection. As discussed in §2, always

choosing the server with the shortest queue is prone to herd-

ing, and due to the limited stages and the need to support other

functionalities, the tree-based approach cannot scale to many

tens of servers. We design an approximate server selection

mechanism based on power-of-k-choices [18], i.e., the switch

samples k servers and chooses the one with the shortest queue

from them. As shown in Figure 8, the sampling can be done

via multiple stages if k is bigger than the number of register

read operations supported by one stage. After the k servers

are sampled, the tree-based mechanism can be applied to get

the one with the shortest queue.

3.4 Request Affinity

Request affinity ensures all packets of the same request are

sent to the same server. This is challenging because the switch

processes each packet independently. In traditional network

load balancers [24, 25, 51, 53, 56], the server selection is

solely based on the hash of the packet header, and the switch

does not need to keep any state for request affinity. But in

RackSched, the selection is dynamic. If the switch performs

a server selection for every packet, the packets of the same

request might be sent to different servers.

Realizing request affinity requires the switch to keep states.

Abstractly, the switch should maintain a request state table

to store the mapping from request IDs to server IPs (i.e.,

ReqTable in Algorithm 1). One option is to use a match-

Req.
ID

Server
IP

1 1.0.0.1

3 1.0.0.2

h1(pkt.req_id)

Stage 1 Stage 2 Stage 3

Req.
ID

Server
IP

2 1.0.0.4

5 1.0.0.3

Req.
ID

Server
IP

4 1.0.0.4

7 1.0.0.3

6 1.0.0.2

h2(pkt.req_id) h3(pkt.req_id)

Figure 9: Multi-stage hash table for request affinity.

action table, where the request IDs are stored in the match,

and the servers IPs are stored in the action to update the

destination IP of the packets (e.g., used by SilkRoad [51]).

This option, however, does not work for microsecond-scale

requests at million RPS throughput, because updating the

match-action table (e.g., adding or removing a request) re-

quires the control plane, which can only do about 10K updates

per second [36, 48, 52]. To address this challenge, our design

leverages register arrays to realize a multi-stage hash table

that implements all necessary operations (i.e., insert, read

and remove) for ReqTable in the data plane, as shown in Fig-

ure 9. Unlike match-action tables, register arrays can only

be accessed via an index. We use the hash of the request ID

to find the slot for a request, and the slot stores the request

state, i.e., the request ID and server IP. To handle hash col-

lisions and the limited array size in each stage, we leverage

multiple stages to build a multi-stage hash table. Algorithm 2

shows the pseudo code to implement the three operations on

ReqTable in Algorithm 1. The switch iterates over the stages

to find an empty slot to insert a new request (line 1-5), and to

find a matched slot to read the server IP (line 6-9) or remove a

completed request (line 10-14). RackSched does not decrease

the capability of the system to defend against DoS attacks.

The switch has sufficient memory for ReqTable to support

high throughput (§4.1), and a DoS attack that overwhelms

ReqTable could have overwhelmed the servers first.

Handling switch failure. There is a relevant notion to request

affinity called Per-Connection Consistency (PCC) for stateful

layer-4 load balancers, which requires a TCP connection to

be kept across load balancer failures and system reconfigu-

rations [24, 25, 51, 53, 56]. We emphasize that RackSched

focuses on microsecond-scale requests with strict deadlines

(e.g., a couple of the request execution time). Rebooting a

failed switch or replacing it with a backup switch takes a

few minutes, by the time of which the requests have already

missed their deadlines. Therefore, different from PCC, main-

taining request affinity across switch failures is a non-goal

for RackSched. Because of the fate sharing between the ToR

switch and the rack, it is safe to disregard the ReqTable upon

a switch failure, and the new switch starts with an empty

ReqTable. Note that RackSched does not increase the chance

of switch failures as a normal ToR switch without RackSched

can still fail and make the rack disconnected.
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Algorithm 2 Request affinity

– ReqTable[n][m]: register arrays to store request state, which spans n

stages and has m slots in each stage

1: function INSERT(req id,server ip)

2: for stage i in all stages do

3: if ReqTable[i][h(req id)] == None then

4: ReqTable[i][h(req id)]← (req id,server ip)
5: return

6: function READ(req id)

7: for stage i in all stages do

8: if ReqTable[i][h(req id)].req id == req id then

9: return ReqTable[i][h(req id)].server ip

10: function REMOVE(req id)

11: for stage i in all stages do

12: if ReqTable[i][h(req id)].req id == req id then

13: ReqTable[i][h(req id)]← None

14: return

Handling system reconfiguration. Unlike switch failures,

there is no fate sharing between each server and the rack,

and RackSched does maintain request affinity across system

reconfigurations such as adding or removing servers for an

application. Because RackSched uses ReqTable to store the

mapping, ongoing requests simply check ReqTable to go

to the correct servers. Only the request scheduling module

(§ 3.3) needs to be updated to have the right set of servers to

choose from for new requests. We pre-allocate a large number

of registers for LoadTable at compilation time, and use an-

other register to indicate the number of active servers, which

is dynamically updated for system reconfigurations. For an

unplanned server removal (e.g., a server failure), RackSched

uses the switch control plane to update the ReqTable and

delete the stale entries related to the removed server.

3.5 Server Tracking

The server tracking module updates the server loads (i.e.,

LoadTable in Algorithm 1) for the switch to make schedul-

ing decisions. The challenge is to accurately track the server

loads at real-time with low overhead. A straightforward so-

lution is to let the switch control plane periodically poll the

queue lengths at each server and update the data plane. How-

ever, due to the millisecond-scale delay and the limited rate

of control plane updates [37, 52], this solution does not apply

to the microsecond-scale workloads targeted by RackSched.

To do this in the data plane, a possible solution is to let the

switch proactively track the server loads, i.e., incrementing

and decrementing the counters for queue lengths when pro-

cessing request and reply packets. This solution suffers from

estimation errors due to packet loss and retransmissions, and

fixes like decreasing the counters based on the server pro-

cessing rate [47] cannot handle temporal load imbalance in

high-dispersion microsecond-scale workloads.

RackSched leverages in-network telemetry to accurately

track server loads with minimal overhead. In-network teleme-

try is widely used in network monitoring and diagnosis where

switches put relevant measurement data into packet headers

in the data plane. RackSched applies this mechanism to track

server loads. Then the servers piggyback their loads in the

reply packets to update the counters in the switch, which

does not introduce new packets and thus minimizes system

overhead. A potential problem is the feedback loop delay as

stale information can cause herding, which can degrade the

scheduling performance and make the system unstable (i.e.,

swing between overloading different servers). In RackSched,

the switch and the servers are directly connected in the same

rack, and the server-side data plane implementation bypasses

traditional TCP/IP stack to report its queue length to the

switch quickly, making the feedback loop delay minimal. And

together with power-of-k-choices scheduling, RackSched can

effectively avoid herding. An alternative solution that only

keeps the server with the minimum load in the switch and

updates it based on in-network telemetry cannot leverage

power-of-k-choices to avoid herding. We show the impact of

different ways to track and represent server loads in §4.6.

3.6 Handling Scheduling Requirements

Multi-queue support. By default, RackSched uses a single-

queue policy, i.e., the system does not differentiate a priori

between request types and aims to meet a single SLO for

tail latency (e.g., a photo caching workload with only get re-

quests). RackSched also supports multiple queues if the work-

load has multiple request types that have distinct service time

distributions (e.g., a key-value store workload with both get

and range requests). Applications indicate the request type in

the TYPE field of the packet header. Each server maintains a

separate queue for each type for intra-server scheduling. The

switch maintains the counters for each type in LoadTable,

and schedules requests based on the queue lengths of the

request type. We remark that there is no fundamental limit

on the number of queues on each server, since the queues are

implemented in software and the switch only needs to keep a

counter for each queue on each server.

Locality and placement constraints. RackSched handles

two types of common locality and placement constraints,

which are data locality and request dependency. (i) Data lo-

cality requires a request to be processed on a subset of servers

that hold the input data. To support data locality, applications

set different LOCALITY values to represent different locality

requirements (i.e., different sets of servers that can process

this request), and the switch maintains different mappings,

which map a server ID to a server for different LOCALITY

values. (ii) Request dependency requires multiple requests

to be scheduled to the same server, e.g., a task consists of

multiple requests and the input of one request is the output of

one or more other tasks. Request dependency is supported us-

ing request affinity: relevant requests carry the same REQ ID

in their headers, so that they will be sent to the same server.

Additional information is included in the RackSched header

for the number of subsequent requests to expect. The server

can send replies to each request separately and independently.
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RackSched only requires the server to set TYPE to be reply

in replies after it has received all requests in the set in order

to safely delete the state in the switch. Note that applications

can still use different request IDs for different requests and

receive replies as soon as some requests are completed, by

adding application-specific metadata in the payload.

Resource allocation policies. The scheduler is responsible

for allocating resources when the demand exceeds the capac-

ity of the rack-scale computer. RackSched supports two types

of common resource allocation policies, which are strict pri-

ority and weighted fair sharing. (i) To support strict priority,

each server maintains a separate queue for each priority. Sim-

ilar to the multi-queue support, the switch tracks the queue

lengths, and balances the server loads for each priority. Each

server uses intra-server scheduling to preempt low-priority re-

quests when high-priority requests arrive, which can be done

in 5 µs in our implementation based on Shinjuku [39]. (ii)
Supporting weighted fair sharing is similar. Each server main-

tains a separate queue for each client, and performs weighted

fair queueing [23] for intra-server scheduling on the granu-

larity of slice in PS. The switch tracks the queue lengths and

balances the server loads for each client.

4 Evaluation

In this section, we evaluate RackSched with a variety of syn-

thetic and real application workloads. We provide additional

experiment results, including locality constraints, priority poli-

cies and multiple applications, in the technical report [74].

4.1 Methodology

Testbed. The experiments are conducted on a testbed of

twelve server machines connected by a 6.5Tbps Barefoot

Tofino switch. Each server has an 8-core CPU (Intel Xeon

E5-2620 @ 2.1GHz), 64GB memory, and one 40G NIC (Intel

XL710). Eight servers are used as workers to process requests,

and they run Shinjuku [39] with our extension. Four servers

are used as clients to generate requests. The bottleneck of the

system is at the workers.

Implementation. We have implemented a RackSched pro-

totype and integrated it with Shinjuku [39]. (i) The switch

data plane is written in P4 [16] and compiled to Barefoot

Tofino ASIC [11] with P4 Studio [10]. The request state table

contains a hash table with 64K slots. The default implementa-

tion uses power-of-2-choices. (ii) The worker server is based

on Shinjuku [39]. We have extended Shinjuku to support the

RackSched packet header, maintain a counter and update the

counter upon request arrival and reply departure to track the

queue length and append the queue length in reply packets.

Both RackSched and Shinjuku preempt requests that exceed

250 µs in our experiments. (iii) The client is open-loop and

implemented in C using Intel DPDK 16.11.1 [4]. It can gener-

ate requests at high request rate based on synthetic workloads

and the RocksDB application, and measure the throughput

and latency of RackSched.

Resource consumption. Our prototype uses 13.12% SRAM,

9.96% Match Input Crossbar, 12.5% Hash Unit and 25%

Stateful ALUs of the Tofino ASIC resources. We provide an

analysis and a back-of-the-envelop calculation to show that

RackSched consumes little switch memory. RackSched has

two sets of state on the switch, i.e., LoadTable and ReqTable.

(i) LoadTable maintains a counter for each queue of each

server. Let the counter be 4 bytes, the number of queues in

each server be 3 and the number of servers be 32. It only con-

sumes 384 bytes. (ii) ReqTable maintains the selected server

IPs for the ongoing requests, not all requests the system have

received and processed. Each slot can be reused by many

times each second because the requests are microsecond-

scale. Given an average request processing latency of 50 µs,

a slot can support 20 KRPS throughput, and a table with 64K

slots can support 1.28 BRPS throughput. Let the request ID

and server IP both be 4 bytes. A table with 64K slots (our im-

plementation) consumes 256 KB, which is only a few percent

of the on-chip memory (tens of MB). Overflowed requests can

fall back to hash-based random dispatching which preserves

request affinity.

Workloads. We use a combination of synthetic and applica-

tion workloads. They include the following workloads. By

default, the workloads use one-packet requests.

• Exp(50) is an exponential distribution with mean = 50 µs,

which represents common query and storage workloads,

such as get requests in photo caching.

• Bimodal(90%-50, 10%-500) is a bimodal distribution with

90% of requests taking 50 µs and 10% taking 500 µs,

which represents workloads with a mix of simple requests

and complex requests, such as get and range requests in

key-value stores.

• Bimodal(50%-50, 50%-500) is a bimodal distribution with

50% of requests taking 50 µs and 50% taking 500 µs,

which represents workloads with half simple requests and

half complex requests.

• Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) is a trimodal

distribution with a third of requests taking 50 µs, 500 µs

and 5000 µs, respectively, which represents workloads

with more diverse request types, such as point, range and

complex join requests in databases.

We also use RocksDB 5.13 [60], an open-source production-

quality key-value store, as a real application workload to

evaluate RackSched. RocksDB is configured to store data in

DRAM to avoid blocking behavior and achieve low latency.

4.2 Synthetic Workloads

We evaluate the system on synthetic workloads that cover

large application space. We compare RackSched with that

directly runs Shinjuku in the cluster, i.e., the requests are

randomly sent to the servers.

Figure 10(a) and Figure 10(b) compare RackSched and

Shinjuku under Exp(50) and Bimodal(90%-50, 10%-500)

workloads, respectively. In these two figures, both RackSched

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    1233



0 200 400 600 800 1000
Load (KRPS)

0

200

400

600

800

1000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(a) Exp(50).

0 250 500 750
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(b) Bimodal(90%-50, 10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(c) Bimodal(50%-50, 50%-500).

0 30 60 90
Load (KRPS)

0

5000

10000

15000

20000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(d) Trimodal(33.3%-50, 33.3%-500,

33.3%-5000).

Figure 10: Experimental results for synthetic workloads with homogeneous servers.
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Figure 11: Experimental results for synthetic workloads with heterogeneous servers.

and Shinjuku use a single-queue policy. Under Exp(50), the

99% latencies of RackSched and Shinjuku are similar at low

load. But the 99% latency of Shinjuku quickly goes up after

800 KRPS, while that of RackSched can support the system

load up to 950 KRPS. Under Bimodal(90%-50, 10%-500), the

99% latency of Shinjuku quickly increases after 500 KRPS,

while that of RackSched stays stable until 650 KRPS. In both

workloads, RackSched supports larger request load with lower

tail latency, because its inter-server scheduling addresses tem-

poral load imbalance between servers, while Shinjuku experi-

ences short bursts and long queues in individual servers under

high request load.

Figure 10(c) and Figure 10(d) show the results for

Bimodal(50%-50, 50%-500) and Trimodal(33.3%-50, 33.3%-

500, 33.3%-5000) workloads, respectively. In these two

figures, both RackSched and Shinjuku have a separate

queue for each request type. Again, RackSched significantly

outperforms Shinjuku. The improvement of RackSched is

larger in Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) than

Bimodal(50%-50, 50%-500), because Trimodal(33.3%-50,

33.3%-500, 33.3%-5000) has more diverse service times and

can benefit more from effective inter-server scheduling.

Figure 11 shows the results with heterogeneous servers. In

this case, four servers have four workers and the other four

servers have seven workers (one core used by the scheduler).

This evaluates the cases when some servers are slower or some

cores of these servers are grabbed for other purposes [15, 54].

We compare RackSched with Shinjuku under the same four

distributions in Figure 10. RackSched is load-aware and tends

to send requests to the servers with shorter queue lengths,

while Shinjuku distributes the requests to the servers uni-

formly, disregarding the heterogeneity. RackSched can im-

prove the performance further with heterogeneous servers.
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Figure 12: Scalability results.

4.3 Scalability

The key benefit of RackSched is that it enables the system to

scale out by adding servers, while achieving low tail latency

at high throughput. Figure 12 shows the 99% latency under

different request load with one, two, four and eight servers,

respectively. This figure uses Bimodal(90%-50, 10%-500)

workload, and the results for other workloads are similar.

With one server, the two systems, i.e., RackSched (1) and

Shinjuku(1), have the same performance, as there is no need

for inter-server scheduling. With two servers, load imbalance

can happen, but the variability is small. With four servers,

micro bursts can cause bigger temporal load imbalance, and

the improvement of inter-server scheduling is also bigger.

When there are eight servers, there is more variability between

the loads on the servers, and inter-server scheduling has more

opportunities to improve performance. Shinjuku(8) can only

maintain low tail latency until 500 KRPS, while RackSched

(8) can maintain low tail latency until 650 KRPS. We expect

the improvement of RackSched over Shinjuku would be larger

with more servers, because there would be more variabilities

with more servers.
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Figure 13: Experimental results for RocksDB.

Overall, RackSched scales out the total throughput of the

system near linearly with the number of servers in the rack.

And the throughput improvement is achieved without increas-

ing the tail latency. Even with more servers, RackSched is

still able to maintain the same tail latency as one server until

the system is saturated.

4.4 Application: RocksDB

We use RocksDB [60] to demonstrate the benefits of

RackSched on real applications. RocksDB is an open-source

production-quality storage system that is widely deployed to

support many online services such as Facebook. In the experi-

ments, RocksDB is configured with an in-memory file system

(/tmpfs/) for microsecond-scale request processing. We use

two request types. One is GET which gets 60 objects with

a median request service time of 50 µs. The other is SCAN

which scans 5000 objects with a median service processing

time of 740 µs. Only 326 lines of code are needed to port

RocksDB to RackSched and Shinjuku. Figure 13(a) shows

the results for the workload that contains 90% GET requests

and 10% SCAN requests. In this experiment, the system

uses a single-queue policy. At low request load, RackSched

and Shinjuku have comparable 99% latency. But Shinjuku

can only maintain low tail latency until 300 KRPS, while

RackSched is able to keep low tail latency until 500 KRPS.

Figure 13(b) shows the results for the workload that con-

tains 50% GET requests and 50% SCAN requests. In this

experiment, the system uses a multi-queue policy. RackSched

is able to maintain low tail latency at a higher request load

than Shinjuku. We further break down the results for each

request type for this workload. Figure 13(c) and Figure 13(d)

show the 99% latency for GET and SCAN under different

total request load, respectively. Because RackSched uses the

switch to balance the load of each request type between the
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Figure 14: Comparison with other solutions.

servers, the improvement of RackSched over all requests does

not come at the cost of sacrificing any individual request type.

For both request types, RackSched is able to deliver compa-

rable tail latency at low load, achieve significantly lower tail

latency at high load, and support higher total request load.

4.5 Comparison with Other Solutions

R2P2 [42] is a recent solution that proposes a join-bounded-

shortest-queue (JBSQ) policy for request scheduling, and

the solution can be implemented on programmable switches.

R2P2 does not have preemptive intra-server scheduling and

has head-of-line blocking. Thus, it suffers from long tail la-

tency, especially under high-dispersion workloads. Client-

based solutions are lack of global view and use power-of-k-

choices scheduling based on stale server load information,

and thus they suffer from inaccurate scheduling decisions.

We emulate 100 clients that generate requests with the same

rate in the machines. Each client performs the same policy as

RackSched and tracks server queue lengths via piggybacking

by its own. The performance of Client(10) (which emulates

10 clients) and Client(1000) (which emulates 1000 clients)

are nearly the same as that of Client(100). Figure 14 shows

the performance of RackSched, Shinjuku, the client-based

solution and R2P2 under Bimodal(90%-50, 10%-500) and

Bimodal(50%-50, 50%-500) workloads. In both workloads,

RackSched outperforms others by maintaining low latency at

higher request rate, and Client(100) has nearly the same per-

formance as Shinjuku. More importantly, R2P2 is not robust

to service time distributions. It is close to RackSched under

Bimodal(50%-50, 50%-500), and the gap between R2P2 and

RackSched is significantly larger under Bimodal(90%-50,

10%-500).

4.6 Analysis of RackSched

We analyze RackSched and show the impact of different

design choices, including different scheduling policies of the

switch-based inter-server scheduler and different mechanisms

to track the server loads.

Impact of switch scheduling policies. Figure 15 eval-

uates the impact of different scheduling policies under

Bimodal(90%-50, 10%-500) and Bimodal(50%-50, 50%-500)

workloads. We compare four scheduling policies: RR (which
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Figure 15: Impact of switch scheduling policies.
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Figure 16: Impact of server load tracking mechanisms.

schedules requests to server with round-robin), Shortest

(which chooses the server with the smallest queue length),

Sampling-2 (which samples two servers and chooses the one

with the smaller queue length), and Sampling-4 (which sam-

ples four servers and chooses the one with the smallest queue

length). RR sends an even number of requests to each server,

without considering the variability of request service times.

Thus, it suffers from long tail latency at high request load.

Theoretically, Shortest can provide effective load balancing,

but it incurs high tail latency in practice, even at low re-

quest load. As discussed in §2, the reason is that there is

a delay to update the queue lengths in the switch from the

servers. When a server becomes the one with the smallest

queue length, multiple consecutive requests would all choose

this server, causing a micro herding behavior. And the queue

length of this server has to wait to be updated until the new

queue length is piggybacked in the first reply packet to update

in the switch. As discussed in §2, this herding behavior can be

handled by adding randomization to the scheduling process.

The results in the figure confirm the effectiveness of sampling.

For the scale of the evaluated scenario, sampling two and

four servers have similar performance, because sampling two

servers already provides enough choices to avoid hotspots

and enough randomization to avoid herding.

Impact of server load tracking mechanisms. Figure 16

evaluates the impact of different mechanisms to track

server loads, under both Bimodal(90%-50, 10%-500) and

Bimodal(50%-50, 50%-500) workloads. We compare three

tracking mechanisms discussed in §3.5: INT 1 (which tracks
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Figure 17: Handling failures and reconfigurations.

the number of outstanding requests for each server and com-

putes the minimum), INT 2 (which only tracks the minimum

number of outstanding requests and updates on reply pack-

ets), INT 3 (which tracks the total service time of outstanding

requests for each server) and Proactive (which increments

and decrements the counters by the switch). Proactive cannot

precisely maintain the queue length for each server as packet

loss and retransmissions can introduce errors on the coun-

ters, and as a result, it does not work well as others. INT 2

performs worse than INT 1 because it only keeps one server

with the minimum load, resulting in herding. INT 3 is com-

parable to INT 1. However, it presumes that the service times

are known as a priori, which is normally not the case in prac-

tice. INT 1 works the best because it accurately tracks server

loads, enables randomization to avoid herding for effective

load balancing, and does not require any priori knowledge.

4.7 Request Affinity

Handling switch failures. To simulate a switch failure, we

first stop the switch manually, then reactivate the switch after

several seconds. Figure 17(a) shows the total throughput dur-

ing this period under Exp(50) workload. At 10 s, the switch is

stopped and the total throughput drops to 0. We reactivate the

switch after 5 seconds and the total throughput recovers to

the initial level. The microsecond-scale requests have already

timed out after 5 seconds. So it is safe to start with an empty

ReqTable after the reactivation, as discussed in §3.4.

Handling system reconfigurations. RackSched maintains

request affinity during system reconfigurations. Figure 17(b)

shows the 99% latency under system reconfigurations. We use

two-packet requests under Exp(50) workload, and start with

500 KRPS load and seven machines as the servers. At time 8

s, we increase the request sending rate, and the 99% latency

goes up to around 380 µs. At time 14 s, we add another server

to serve the requests, and the 99% latency drops to 310 µs. At
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time 28 s, we set the request sending rate back to 500 KRPS.

And the 99% latency drops to 280 µs further. At time 39 s,

we remove a server from the rack. Since seven servers are

enough for such workload, the 99% latency remains the same.

As discussed in § 3.4, the request affinity is maintained by the

ReqTable in the above process.

5 Discussion

Target workloads. RackSched supports both stateless and

replicated stateful services. Examples include microservices,

function-as-a-service, stream processing, replicated caches

and storage, and replicated machine learning models for high-

throughput inference. It is unlikely for a stateful service to be

replicated to all servers in a rack. We expect a more practi-

cal scenario is that a rack would run multiple such services,

where each service is provided by a subset of (overlapping)

servers, i.e., locality constraints. The evaluation shows that

RackSched can provide significant improvements for a ser-

vice hosted on just 8 servers (§4). And we provide additional

results to show the benefits for multiple services with locality

constraints in the technical report [74]. These results demon-

strate that RackSched provides significant benefits even when

the service is replicated on just a couple of servers.

Going beyond a rack. We focus on a single rack in this paper.

A modern rack can already pack hundreds of cores, and a

future rack is expected to pack thousands of cores [1, 2, 5],

which is sufficient for many services. For planetary-scale

services, a single microservice may span multiple racks. In

this scenario, there is no central place like the ToR switch in

a rack that can see and process all traffic. Yet, the abstraction

of a rack-scale computer provided by RackSched provides

a useful building block for distributed inter-rack scheduling.

This would be an interesting direction for future work.

6 Related Work

Dataplane designs for low latency. Conventional network-

ing stacks and operating systems usually sacrifice low latency

for generality. To address the need for low latency, various

dataplane designs have been proposed, including optimized

networking stacks [4, 21, 34] and dataplane operating sys-

tems [14, 20, 32, 39, 54, 58, 59]. RackSched leverages such

dataplane designs and enhances them with an inter-server

scheduler, realizing low latency in a rack-scale computer.

Scheduling and resource management. There is a long line

of research on job scheduling and resource management [26,

28, 29, 32, 38, 40, 42, 55, 57, 65, 66, 71]. Many systems focus

on large jobs that can run from seconds to hours, and they can

afford running sophisticated scheduling algorithms to make

effective decisions. RackSched works at microsecond scale

and optimizes the tail latency with network-system co-design.

Programmable switches. Programmable switches bring new

opportunities to improve datacenter networks and systems,

such as key-value stores [36, 48, 49, 50], coordination and

consensus [35, 45, 46, 70, 73], network telemetry [3, 33],

machine learning acceleration [61, 62] and query processing

offload [44]. There are also proposals for managing systems

built with programmable switches [30, 68, 72]. RackSched

is a new solution that leverages the programmable switch as

an inter-rack scheduler to optimize microsecond-scale tail

latency for rack-scale computers.

7 Conclusion

We present RackSched, a rack-level microsecond-scale sched-

uler that provides the abstraction of a rack-scale computer to

an external service. RackSched leverages a two-layer schedul-

ing framework to achieve scalability and low tail latency. We

hope that with the end of Moore’s law and Dennard’s scal-

ing, RackSched will inspire a new generation of datacenter

systems enabled by domain-specific hardware and hardware-

software co-design.
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and P. Richtárik. Scaling distributed machine learning

with in-network aggregation. arXiv, 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    1239



[63] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:

Cutting tail latency in cloud data stores via adaptive

replica selection. In USENIX NSDI, 2015.

[64] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In ACM SOSP, 2013.

[65] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,

M. Harchol-Balter, and G. R. Ganger. Tetrisched: global

rescheduling with adaptive plan-ahead in dynamic het-

erogeneous clusters. In EuroSys, 2016.

[66] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-

wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, et al. Apache Hadoop YARN: Yet another

resource negotiator. In ACM Symposium on Cloud Com-

puting, 2013.

[67] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabr-

era III, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, J. Hoon, S. Kulkarni, N. Lawrence,

M. Marchukov, D. Petrov, and L. Puzar. TAO: How

Facebook serves the social graph. In ACM SIGMOD,

May 2012.

[68] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, July 2020.

[69] A. Wierman and B. Zwart. Is tail-optimal scheduling

possible? Operations research, 60(5):1249–1257, 2012.

[70] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and

X. Jin. Netlock: Fast, centralized lock management

using programmable switches. In ACM SIGCOMM,

2020.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,

and I. Stoica. Improving mapreduce performance in

heterogeneous environments. In USENIX OSDI, 2008.

[72] P. Zheng, T. Benson, and C. Hu. P4Visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[73] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. Ports, I. Sto-

ica, and X. Jin. Harmonia: Near-linear scalability for

replicated storage with in-network conflict detection.

Proceedings of the VLDB Endowment, 2019.

[74] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Sto-

ica, and X. Jin. RackSched: A microsecond-scale sched-

uler for rack-scale computers (technical report). In

arXiv, 2020.

1240    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


	Introduction
	Design Decisions
	RackSched Design
	System Architecture
	Request Processing
	Request Scheduling
	Request Affinity
	Server Tracking
	Handling Scheduling Requirements

	Evaluation
	Methodology
	Synthetic Workloads
	Scalability
	Application: RocksDB
	Comparison with Other Solutions
	Analysis of RackSched
	Request Affinity

	Discussion
	Related Work
	Conclusion

