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Abstract

Low-latency online services have strict Service Level Ob-
jectives (SLOs) that require datacenter systems to support
high throughput at microsecond-scale tail latency. Dataplane
operating systems have been designed to scale up multi-core
servers with minimal overhead for such SLOs. However, as
application demands continue to increase, scaling up is not
enough, and serving larger demands requires these systems
to scale out to multiple servers in a rack.

We present RackSched, the first rack-level microsecond-
scale scheduler that provides the abstraction of a rack-scale
computer (i.e., a huge server with hundreds to thousands of
cores) to an external service with network-system co-design.
The core of RackSched is a two-layer scheduling frame-
work that integrates inter-server scheduling in the top-of-rack
(ToR) switch with intra-server scheduling in each server. We
use a combination of analytical results and simulations to
show that it provides near-optimal performance as centralized
scheduling policies, and is robust for both low-dispersion and
high-dispersion workloads. We design a custom switch data
plane for the inter-server scheduler, which realizes power-of-
k-choices, ensures request affinity, and tracks server loads
accurately and efficiently. We implement a RackSched pro-
totype on a cluster of commodity servers connected by a
Barefoot Tofino switch. End-to-end experiments on a twelve-
server testbed show that RackSched improves the throughput
by up to 1.44x, and scales out the throughput near linearly,
while maintaining the same tail latency as one server until the
system is saturated.

1 Introduction

Online services such as search, social networking and e-
commerce have strict end-to-end user-facing Service Level
Objectives (SLOs) [12, 22]. To meet such SLOs, datacen-
ter systems behind these services are expected to provide
high throughput with low fail latency in the range of tens
to hundreds of microseconds [12]. Example systems include
key-value stores [6, 7, 60], transactional databases [9, 64],
search ranking and sorting [13], microservices and function-
as-a-service frameworks [17], and graph stores [43, 67].
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With the end of Moore’s law and Dennard’s scaling, ap-
plications can no longer rely on single-threaded code to ex-
ecute faster on newer processors with increased clock rates
and instruction-level parallelism [31]. This leads to the rise
of multi-core machines to scale up computation. Meeting
microsecond-scale tail latency is challenging given that the
request processing times with single-threaded code on bare
metal hardware are already in the same time scale. This means
that the operating system (OS) should impose minimal over-
head when it manages resources and scales up these applica-
tions on multi-core machines.

This calls for new software architectures to efficiently
utilize the resources of multi-core machines. One criti-
cal component of such architectures is scheduling. Data-
plane operating systems have been designed to support low-
latency applications with minimal overhead to meet strict
SLOs [14, 39, 54, 58, 59]. For example, Shinjuku [39] uses
efficient mechanisms to implement preemption and context
switching, in order to realize centralized scheduling policies
to avoid head-of-line blocking and address temporal load
imbalance between multiple cores.

However, as application demands continue to increase, scal-
ing up a single server is not enough. Serving larger demands
requires these systems to scale out to multiple servers in a
rack, which is termed as rack-scale computers, such as Berke-
ley Firebox [1], Intel Rack Scale Architecture [5], and HP
“The Machine” [2]. Though previous efforts have not fully
paned out yet, we believe it is inevitable, as evidenced by
the emerging TPU Pods that pack high-density specialized
hardware into a rack [8]. Even a traditional rack contains
tens of servers and hundreds to thousands of cores, posing a
challenge for scheduling microsecond-scale requests.

While dataplane operating systems address intra-server
scheduling between multiple cores, head-of-line blocking and
temporal load imbalance between multiple servers arise when
the systems scale out. Using a single core for centralized
scheduling and queue management is amenable for one server
with a few to tens of cores [39]. But the core would quickly
become the bottleneck if it were used to queue and schedule
requests for a rack with hundreds to thousands of cores.
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In this paper, we present RackSched, the first rack-level
microsecond-scale scheduler that provides the abstraction
of a rack-scale computer (i.e., a huge server with hundreds
to thousands of cores) to an external service with network-
system co-design. Serving microsecond-scale workloads is
particularly challenging because the scheduler needs to simul-
taneously provide high scheduling speed (i.e., high through-
put and low latency of the scheduler) and high scheduling
quality (i.e., low tail latency to complete requests). Given the
scheduling latency of modern OSes on a single server being a
few microseconds [19, 39], our goal is to design a rack-level
scheduler with comparable scheduling latency that can scale
out to hundreds to thousands of cores in a rack. While there
has been a long line of work on scheduling and load balanc-
ing, existing solutions are not designed for microsecond-scale
workloads: software-based solutions [24, 27, 55, 56] suffer
from low scheduling throughput and high scheduling latency
(at least millisecond-scale); hardware-based ones [25, 51] are
coarse-grained (based on five tuple) and server-agnostic, and
thus suffer from long tail latency.

The core contribution of RackSched is a novel network-
system co-design that simultaneously achieves high schedul-
ing speed and high scheduling quality (§2). We propose a
two-layer scheduling framework that integrates inter-server
scheduling in the top-of-rack (ToR) switch with intra-server
scheduling in each server to approximate centralized schedul-
ing policies. This two-layer design, and the line-rate, on-path
inter-server scheduling in the ToR switch, are critical for the
scheduler to achieve high speed.

To provide high quality scheduling decisions, our key in-
sight is that the two sources of long tail latency—Iload im-
balance and head-of-line blocking—can be decoupled and
handled by separate mechanisms. The ToR switch tracks
real-time server loads, and schedules requests at per-request
granularity to realize inter-server load balancing (LB). Each
server keeps its own queue, and uses intra-server scheduling
to preempt long requests that block pending short ones. It is
known that centralized first-come-first-serve (CFCFS) is near-
optimal for low-dispersion workloads, and processor sharing
(PS) is near-optimal for heavy-tailed workloads or light-tailed
workloads with high dispersion [39, 59, 69]. We use a com-
bination of analytical results and simulations to show that
our two-layer scheduling framework provides near-optimal
performance as centralized policies, and is robust to different
workloads (Figure 1).

Realizing the inter-server scheduler in the ToR switch re-
quires the switch to schedule requests based on server loads
on per-request granularity (§3). Today’s stateful network load
balancers map connections to servers based the hash of the
five tuple [24, 25, 51, 53, 56], which is static, and cannot dy-
namically adapt the server selection under microsecond-scale
load imbalance. There are three aspects of our approach to
address this challenge. (i) We leverage the switch on-chip
memory to store server loads, and use the multi-stage process-

PS for
~ GFCFS for heavy-tailed or
low-dispersion workloads  hjgh-dispersion workloads

r _______ = r _______ =
| L '
multi-core | Zygos [59] | |  Shinjuku [39] |
server | cFCFS | I PS |
(scale-up) | | I |
l |
' | i
| Racksched | | Racksched |

| LB (across-server) | LB (across-server)
rack | o l | ¥ I
(scale-out) : cFCFS (per-server) : : PS (per-server) :
I

Figure 1: Key idea of RackSched.

ing pipeline to implement power-of-k-choices and to support

a variety of practical scheduling requirements, such as multi-

queue policies. (i) We design a request state table for request

affinity, which guarantees the packets of the same request are
sent to the same server. To maintain the dynamic mapping
between requests and servers, the request state table supports
insert (after scheduling the first packet), read (for sending fol-
lowing packets), and remove (when the request is completed)
all in the data plane. (iii) We leverage in-network telemetry
(INT) to monitor server loads with minimal overhead. Servers
piggyback their load information in their normal traffic, and
the switch tracks the latest reported load for each server.
Recent switch-based solution R2P2 [42] relies on expen-
sive recirculation which does not scale for high request
rate, and its scheduling policy has long tail latency under
heavy-tailed or high-dispersion workloads due to head-of-
line blocking (§4.5). In addition, R2P2 needs an extra round
trip for multi-packet requests to ensure request affinity, while

RackSched can finish in one round trip. RackSched is also

more general in supporting many practical policies (§3.6).
In summary, we make the following contributions.

e We propose RackSched, the first rack-level microsecond-
scale scheduler that provides the abstraction of a rack-scale
computer to an external service.

e We design a two-layer scheduling framework that inte-
grates inter-server scheduling in the ToR switch and intra-
server scheduling in each server. We use a combination of
analytical results and simulations to show that it provides
near-optimal performance as centralized policies.

e We design a custom switch data plane for the inter-server
scheduler, which realizes power-of-k-choices for near-
optimal load balancing, ensures request affinity, and tracks
server loads accurately and efficiently.

e We implement a RackSched prototype on a cluster of
twelve commodity servers with a Barefoot Tofino switch.
End-to-end experiments show that RackSched improves
the throughput by up to 1.44x, and scales out the through-
put near linearly, while maintaining the same tail latency
as one server until the system is saturated.

The code of RackSched is open-source and available at
https://github.com/netx—-repo/RackSched.
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(a) Low-dispersion workload.

Figure 2: Simulation results.

(b) High-dispersion workload.

2 Design Decisions

In this section, we navigate through the design space of build-
ing a microsecond-scale scheduler for rack-scale computers,
and highlight the design rationale of RackSched.

Scaling out to a rack. Supporting large application demands
requires datacenter systems to scale out to multiple servers
in a rack. While existing solutions like Shinjuku [39] solve
the problem of scheduling requests to multiple cores (i.e.,
intra-server scheduling), they do not address the problem
of scheduling requests to different servers (i.e., inter-server
scheduling). When requests are simply scheduled to the
servers randomly, the load imbalance and head-of-line block-
ing can happen at the server level, causing long tail latency
for the entire system.

To motivate our work, we use simulations on representa-
tive workloads to show the impact of ineffective scheduling
policies. We use the following two request service time distri-
butions: (i) Exp(50) is an exponential distribution with mean
=50 us, which is representative for low-dispersion workloads;
(if) Trimodal(33.3%-5, 33.3%-50, 33.3%-500) is a trimodal
distribution with 33.3% of requests taking 5 us, 33.3% tak-
ing 50 s and 33.3% taking 500 ws, which is representative
for high-dispersion workloads. The simulations assume eight
servers and each server has eight workers (cores). The PS
time slice used in the simulations is 25 us.

We first compare the baseline policies that randomly send
requests to servers and only use cFCFS or PS inside each
server (per-cFCFS and per-PS) with the ideal centralized
policies across all workers (global-cFCFS and global-PS).
Figure 2 shows that the centralized policies perform better
than the baseline policies. The tail latencies of per-cFCFS
and per-PS quickly go up when the system load exceeds 0.75
and 0.5 respectively, while global-cFCFES and global-PS keep
low tail latencies until the system is almost saturated.

Centralized scheduling cannot scale. The policy compari-
son in Figure 2 shows that there is a substantial gap between
the tail latencies of the centralized policies (global-cFCFS
and global-PS) and the baseline policies (per-cFCFS and per-
PS). However, directly implementing the centralized policies
is challenging because they would require a centralized sched-
uler for the entire rack. While a single core is capable of
running a centralized scheduler to handle the requests for a
multi-core server, it is unlikely to scale to a multi-server rack.

Request []
!l

Inter-server scheduler
Queue ]
g~ B =

Intra-server Intra-server Intra-server
scheduler scheduler eee scheduler

Figure 3: Two-layer scheduling framework.

Indeed, a single scheduler in Shinjuku [39] can scale to up to
11 cores, which falls well short of the demands of a rack with
hundreds to thousands of cores.

Hierarchical scheduling. One natural solution to scale up
the rack-scale scheduler is a two-layer hierarchical scheduler
consisting of an inter-server scheduler at the high level, and
per-server schedulers at the low level (Figure 3). This way,
the inter-server scheduler only needs to schedule requests
across tens of servers, instead of hundreds or thousands of
cores. Each server employs its own intra-server scheduler to
schedule requests across its cores.

Scaling the inter-server scheduler. While the inter-server
scheduler only needs to schedule requests across the servers
in the rack (instead of accross all cores), it still needs to
handle every request. Assuming a rack with 1000 cores and
10 us requests, the inter-server scheduler must handle up
to 100 millions requests per second (MRPS) to saturate the
rack! Unfortunately, such a scheduler would need to process a
request every 10 ns, which exceeds the capability of a general-
purpose computer.

To address this challenge, in this paper we propose to
leverage emerging programmable switches, and have the ToR
switch implement the inter-server scheduler. This design has
the key benefit that the ToR switch is already on the path of
the requests sent to the rack, and thus can readily process all
these requests at line rate.

JSQ is near optimal and robust. A natural way to approxi-
mate a centralized scheduler with a two-layer scheduler is to
implement the same scheduler at both layers. For example, if
the global scheduler is cFCFS, in the corresponding hierarchi-
cal scheduler all the inter-server and intra-server schedulers
will be cFCFS as well.

Unfortunately, the cFCFS scheduler needs to maintain a
queue, and existing programmable switches have too lim-
ited memory to buffer requests, and are not well equipped to
maintain dynamic data structures, such as queues. The join-
the-shortest-queue (JSQ) scheduler can address the challenge
because it is a bufferless scheduler. Upon a request arrival, it
immediately forwards the request to the server with the short-
est queue. This way, JSQ achieves fine-grained load balancing
across the rack’s servers. Figure 2 confirms that JSQ-cFCFS
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and JSQ-PS can deliver nearly the same performance as the
centralized policies (global-cFCFS and global-PS).

Theoretically, the two-layer scheduling framework imple-
ments the A/S/K/JSQ/P models in queueing theory, where A
is the inter-arrival distribution, S is the service time distribu-
tion, K is the number of servers, JSQ is the join-the-shortest-
queue policy implemented by the inter-server scheduler, and
P is the intra-server scheduling policy which is either cFCFS
or PS in this case. In particular, it is known that JSQ pro-
vides near-optimal load balancing, and importantly, is robust
against request service time distributions. An expanded dis-
cussion is in the technical report [74].

Approximating JSQ. While conceptually simple, JSQ can-
not be implemented in its definite form in practice, because
it requires the switch to know the exact queue length of each
server when scheduling a request. It takes a round trip time
for the switch to ask each server, during which the queue
lengths may have changed for microsecond-scale workloads.
Furthermore, imperfect JSQ based on delayed server status is
prone to herding, where several consecutive requests are sent
to the same server before the server load is updated, and this
can generate micro bursts and degrade system performance.
Note that herding here is not caused by multiple asynchronous
load balancers as there is only one load balancer (the inter-
server scheduler), but from stale server load information in
the load balancer. In addition, the switch can only do a limited
number of operations for each request, and finding the short-
est queue cannot be implemented for many tens of servers.
Thus, we use power-of-k-choices to approximate JSQ, which
samples k servers for each request and chooses the one with
the minimum load. This approximation provides comparable
performance as JSQ in theory [18] (see [74]), and handles
these practical limitations well.

Why not a distributed, client-based solution? An alterna-
tive solution is to implement distributed scheduling at each
client. The clients can use JSQ, power-of-k-choices or more
complicated solutions like C3 [63] to pick workers for their re-
quests. Such a client-based solution has two drawbacks. First,
it needs client modification and increases system complexity.
The clients need to probe server loads and make scheduling
decisions. More importantly, the clients need to be notified
for every system reconfiguration (e.g., adding or removing
servers), because they have to know which set of servers a
request can be sent to. Notifying a large number of clients of
the latest system configuration imposes both a consistency
challenge and high system overhead. Putting these functional-
ities in a scheduler, on the other hand, simplifies the clients
and avoids these system complexities.

Second, a distributed, client-based solution provides a
worse trade-off between performance and probing overhead
than a centralized scheduler for microsecond-scale work-
loads. This is because microsecond-scale workloads are I0-
intensive, and a probing request incurs comparable processing

cost as a normal request at the servers. Thus, probing needs to
be minimized to improve the throughput of processing the ac-
tual requests. No matter whether probing is done proactively
or piggybacked in reply packets, given n clients with the same
sending rate, a centralized scheduler can utilize n times as
much probing data as that of one client in a client-based solu-
tion, resulting in better scheduling quality. Figure 2 confirms
the benefit of the centralized scheduler over a client-based
solution with a piggyback-based probing mechanism (client-
cFCFS and client-PS). The simulation does not model the
client software delay and the network delay to get the server
loads, which favors the client-based solution. The client-based
solution performs worse in real experiments (§4.5). In a multi-
pipeline switch, though states are not shared across pipelines,
RackSched can approximate JSQ within each pipeline. It
works better than the client-based solution because the num-
ber of pipelines (e.g., 4) is far smaller than the number of
clients (e.g., 1000 or more).

Putting it all together. We propose a two-layer scheduling
framework that integrates inter-server scheduling in the ToR
switch and intra-server scheduling in each server. The ToR
switch uses power-of-k-choices to achieve inter-server load
balancing, and each server uses cFCFS or PS to minimize
head-of-line blocking. This solution approximates centralized
scheduling for the entire rack, and provides the abstraction
of a rack-scale computer: the capacity (throughput) of the
rack-scale computer is the sum of that of its servers, and the
tail latency is maintained as that of one server.

Challenges. Translating the two-layer scheduling framework
to a working system implementation presents several techni-
cal challenges:

e What is the system architecture to realize this two-layer
scheduling framework?

e How does the switch schedule requests based on the server
loads, and handle practical scheduling requirements?

e How does the system ensure request affinity (i.e., the pack-
ets of the same request are sent to the same server), when
the switch processes each packet independently?

e How do servers expose their states to the switch so that
the switch can track the real-time loads on the servers
efficiently and accurately?

3 RackSched Design

In this section, we present the design of RackSched to ad-
dress the challenges. We first give an overview of the system
architecture, and then describe each component in detail.

3.1 System Architecture

The core of RackSched is a two-layer scheduling frame-
work that combines inter-server scheduling and intra-server
scheduling. Figure 4(a) shows the RackSched architecture.

Inter-server scheduling. The ToR switch performs inter-
server scheduling at per-request granularity via three modules:
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Figure 4: RackSched overview.

a request scheduling module that selects a server for a new
incoming request based on server loads (§3.3) and scheduling
requirements (§3.6), a request affinity module that forwards
the packets of the same request to the same selected server
(8§3.4), and a server tracking module that tracks the real-time
load on each server (§3.5). All three modules are implemented
in the switch data plane that enables the inter-server scheduler
to run at line rate.

Intra-server scheduling. Each multi-core server in the rack
runs multiple worker threads to process requests. Each server
has a centralized scheduler to queue and schedule requests
to its own workers. The scheduler implements centralized
scheduling policies for intra-server scheduling. Each server
also piggybacks its load information in reply messages to
report its load to the ToR switch.

Deployment options. There are two deployment options for
RackSched. (i) The first one is to integrate RackSched with
the ToR switch of a rack-scale computer. This option adds
additional functionalities to the ToR switch, but does not
change any other part of the datacenter network. (if) The
second option is to treat the switch-based scheduler as a
specialized server with a programmable switching ASIC. This
server can be connected to the same ToR switch as worker
servers. It owns the anycast IP address so all requests would
be first sent to it for scheduling. By properly updating the
addresses, it can also force the reply packets to pass through it
before returning to the clients, in order to clear request states
and update server loads. This option does not even modify
the ToR switch, but has the latency cost of an extra hop by
the detour to the switch-based scheduler.

Intra-Server

—_— Insert Read . Scheduler
RegTable LoadTable ooe
Client ToR Switch Server

(a) The first packet of a request.

Intra-Server

. Read —_— Scheduler
RegTable LoadTable ooe
Client ToR Switch Server

(b) The following packets of the request.

Intra-Server

< Remove Update < Scheduler
ReqTable LoadTable oo
Client ToR Switch Server

(c) The reply packets.
Figure 5: Request processing in RackSched.

3.2 Request Processing

Network protocol. RackSched is designed for intra-
datacenter scenarios. It uses an application-layer protocol
which is embedded inside the L4 payload. We reserve an
L4 port to distinguish RackSched packets from other pack-
ets. The network uses existing L.2/L.3 routing protocols to
forward packets. There are no modifications to the switches
in the network other than the ToR switch. The ToR switch
uses the reserved L4 port to invoke the custom modules
to process RackSched packets. Other switches do not need
to understand the RackSched protocol, nor do they need
to process RackSched packets. RackSched is orthogonal
to and compatible with other network functionalities, such
as flow/congestion control, which is typically implemented
by the transport layer or the RPC layer (e.g., eRPC [41]).
RackSched ensures request affinity under packet loss and
retransmission by maintaining connection state (§3.4).

RackSched only requires the applications to add the
RackSched header between the TCP/UDP header and the pay-
load (Figure 4(b)), so that it can make scheduling decisions
based on the RackSched header. Note that for TCP handshake
packets that do not have any payload, the RackSched header
should be appended after the TCP header to expose necessary
information to the switch. We emphasize that RackSched fo-
cuses on microsecond-scale workloads. It is not intended to
support long-lived TCP connections, which impose unneces-
sary system overhead to maintain connection states, especially
under switch failures (§3.4), and restrict the scheduler from
making per-request scheduling decisions to address temporal
load imbalance. RackSched does support request dependency
for tasks with multiple requests (§3.6).

The RackSched header contains three major fields, which
are TYPE, REQ_ID, and LOAD. TYPE indicates the type of
the packet, e.g., REQF (the first packet of a request), REQR (a
remaining packet of a request), and REP (a reply packet).
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Algorithm 1 ProcessPacket(pkt)
— RegTable: on-chip memory for request-server mapping
— LoadTable: on-chip memory for server loads

/! first packet of a request
1: if pkt.type == REQF then
2: server_ip < LoadTable.select server()
3: ReqTable.insert(pkt.req_id,server_ip)
// remaining packets of a request
. else if pkt.type == REQR then
server_ip < ReqTable.read(pkt.req_id)
// reply packets
else if pkt.type == REP then
ReqTable.remove(pkt.req_id)
LoadTable.update(pkt.srcip, pkt load)

Update packet header and forward

v A

L ® R

REQ_ID is a unique ID for each request. All packets of
the same request and the corresponding reply use the same
REQ_ID. To ensure a REQ_ID is globally unique, each client
appends its client ID in front of its locally generated unique
request ID, i.e., a tuple of <client ID, local request ID>.
LOAD indicates the load of the server. The server piggybacks
its current queue length in the LOAD field in reply packets.
LOAD is not used in request packets.

Processing request packets. Clients use an anycast IP ad-
dress as the destination IP to send requests to the rack-scale
computer, and are unaware of the number of servers behind
the ToR switch. Figure 5 illustrates how RackSched processes
packets, and Algorithm 1 shows the high-level pseudo code
of the switch. The switch keeps two essential sets of state in
the switch on-chip memory. One is ReqTable which stores
the mapping from the request IDs to the servers, and the
other is LoadTable which stores the queue lengths of the
servers. As shown in Figure 5(a), when the first packet of a
request arrives at the switch, the switch selects a server based
on LoadTable, and remembers this selection by inserting an
entry to ReqTable (line 1-3). Then in Figure 5(b), when re-
maining packets of the request arrive, the switch checks the
ReqTable to get the selected server (line 4-5), which ensures
request affinity. The switch uses the selected server IP to up-
date the destination IP in the packet header and sends the
packet to the corresponding server (line 9).

Processing reply packets. After a server receives a request,
it uses its local scheduler to schedule and processes the re-
quest. Then the server generates a reply, and sets the LOAD
field with its current queue length. As shown in Figure 5(c),
the switch deletes the mapping from ReqTable, because the
request has completed and the memory space can be freed
for other requests (line 7). The switch also updates the server
load in LoadTable based on the LOAD field (line 8). We do
not distinguish the first and following packets for a reply even
if the reply contains multiple packets (also equivalent to multi-

0 1 2 3
Mateh | pkt.dstip == 10.0.0.1
=L PAOsTP — [1.001]1.002[1.003]1.004]
Action | pkt.dstip = array[h(pkt)] Register Array

Figure 6: Traditional hash-based random dispatching.

Match | pkt.dstip == 10.0.0.1

Action | if reg.load < meta.load: | — 1001 P
meta.load = reg.load 20 |Load
meta.ip =reg.ip Register

stage 1 stage 2 stage n
(a) Linear computation of minimum server load.

1
server > min)

e min() - m comparisons

server3 - each stage
> min()

server4

tree-based parallel —

computation of min() n stages

(b) Tree-based computation of minimum server load.
Figure 7: Optimal server selection.

ple replies). Because ReqTable checks req_id for deletion, if
a slot is reused by another request, the following reply packets
of the previous request would not be applied. The updates
of LoadTable only affect server selection of new requests.
Note that this is compatible with TCP even if the client initi-
ates the termination of the connection, as the mapping of this
request is removed from RegTable when the server receives
the request and sends the first reply packet back to the client.
The switch control plane periodically checks the data plane to
remove stale mappings from ReqTable, which can be caused
by server failures or lost reply packets. In the end, the switch
updates the source IP to the anycast IP in the packet header,
and sends the packet back to the client (line 9).

3.3 Request Scheduling

The request scheduling module dynamically schedules re-
quests based on server loads. Unfortunately, this is not sup-
ported in today’s switches. Today’s switch-based load bal-
ancers such as SilkRoad [51] only support ECMP-like ran-
dom dispatching based on the five tuple. Figure 6 shows how
hash-based random selection is implemented in the data plane.
The register array stores a set of server IPs for the anycast IP
10.0.0.1. The rule in the match-action table matches packets
with their destination IP being the anycast IP 10.0.0.1, and
the action rewrites the destination IP to an IP in the register
array, which is selected by computing a hash on the packet
header (usually the five tuple). Because the selection is static,
and is purely based on the hash, it can cause load imbalance
and long tail latency as discussed in §2. We now describe how
to realize dynamic request scheduling based on server loads.
Handling practical scheduling requirements is in §3.6.

Optimal server selection. We leverage the register arrays to
store the server loads together with the server IPs and use
the multi-stage packet processing pipeline to compute the
minimum. A naive way is to use multiple stages to scan the
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Figure 8: Approximate server selection.

server loads linearly, as shown in Figure 7(a). The number
of servers this solution can support is limited to the number
of stages. As a switch typically has 10-20 stages and many
stages need to be used by other switch functionalities, this
solution is not scalable. It can be optimized by computing
the minimum in a tree structure as shown in Figure 7(b). The
comparisons between two servers in each layer of the tree
have no dependencies, and thus can be done in parallel in
the same stage. In the ideal case, given n servers, this tree-
based solution requires log(n) stages, while the naive solution
requires n stages. Let each stage support up to m comparisons.
The comparisons in the first few layers need to be distributed
to multiple stages, if they are larger than m.

Approximate server selection. As discussed in §2, always
choosing the server with the shortest queue is prone to herd-
ing, and due to the limited stages and the need to support other
functionalities, the tree-based approach cannot scale to many
tens of servers. We design an approximate server selection
mechanism based on power-of-k-choices [18], i.e., the switch
samples k servers and chooses the one with the shortest queue
from them. As shown in Figure 8, the sampling can be done
via multiple stages if k is bigger than the number of register
read operations supported by one stage. After the k servers
are sampled, the tree-based mechanism can be applied to get
the one with the shortest queue.

3.4 Request Affinity

Request affinity ensures all packets of the same request are
sent to the same server. This is challenging because the switch
processes each packet independently. In traditional network
load balancers [24, 25, 51, 53, 56], the server selection is
solely based on the hash of the packet header, and the switch
does not need to keep any state for request affinity. But in
RackSched, the selection is dynamic. If the switch performs
a server selection for every packet, the packets of the same
request might be sent to different servers.

Realizing request affinity requires the switch to keep states.
Abstractly, the switch should maintain a request state table
to store the mapping from request IDs to server IPs (i.e.,
ReqTable in Algorithm 1). One option is to use a match-

Stage 1 Stage 2 Stage 3
Req. | Server Req. | Server Req. | Server
ID P ID P ID 1P
1 ]1.0.0.1 4 11.0.04

2 [1.0.04
3 |1.0.0.2 1.0.0.3 7 [1.0.03
6 |[1.0.0.2

hy(pkt.req_id) hy(pkt.req_id) hs(pkt.req_id)

Figure 9: Multi-stage hash table for request affinity.

action table, where the request IDs are stored in the match,
and the servers IPs are stored in the action to update the
destination IP of the packets (e.g., used by SilkRoad [51]).
This option, however, does not work for microsecond-scale
requests at million RPS throughput, because updating the
match-action table (e.g., adding or removing a request) re-
quires the control plane, which can only do about 10K updates
per second [36, 48, 52]. To address this challenge, our design
leverages register arrays to realize a multi-stage hash table
that implements all necessary operations (i.e., insert, read
and remove) for ReqTable in the data plane, as shown in Fig-
ure 9. Unlike match-action tables, register arrays can only
be accessed via an index. We use the hash of the request ID
to find the slot for a request, and the slot stores the request
state, i.e., the request ID and server IP. To handle hash col-
lisions and the limited array size in each stage, we leverage
multiple stages to build a multi-stage hash table. Algorithm 2
shows the pseudo code to implement the three operations on
ReqTable in Algorithm 1. The switch iterates over the stages
to find an empty slot to insert a new request (line 1-5), and to
find a matched slot to read the server IP (line 6-9) or remove a
completed request (line 10-14). RackSched does not decrease
the capability of the system to defend against DoS attacks.
The switch has sufficient memory for RegTable to support
high throughput (§4.1), and a DoS attack that overwhelms
ReqTable could have overwhelmed the servers first.

Handling switch failure. There is a relevant notion to request
affinity called Per-Connection Consistency (PCC) for stateful
layer-4 load balancers, which requires a TCP connection to
be kept across load balancer failures and system reconfigu-
rations [24, 25, 51, 53, 56]. We emphasize that RackSched
focuses on microsecond-scale requests with strict deadlines
(e.g., a couple of the request execution time). Rebooting a
failed switch or replacing it with a backup switch takes a
few minutes, by the time of which the requests have already
missed their deadlines. Therefore, different from PCC, main-
taining request affinity across switch failures is a non-goal
for RackSched. Because of the fate sharing between the ToR
switch and the rack, it is safe to disregard the ReqTable upon
a switch failure, and the new switch starts with an empty
ReqTable. Note that RackSched does not increase the chance
of switch failures as a normal ToR switch without RackSched
can still fail and make the rack disconnected.
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Algorithm 2 Request affinity

— ReqTable[n][m]: register arrays to store request state, which spans n
stages and has m slots in each stage
1: function INSERT(req_id, server_ip)
2 for stage i in all stages do
3 if ReqTableli][h(req-id)] == None then
4 ReqTableli|[h(req-id)] < (req-id,server_ip)
5: return
6: function READ(req_id)
7 for stage i in all stages do
8 if ReqTableli][h(req-id)).req_id == req_id then

9: return RegTableli|(h(req_id)|.server_ip

10: function REMOVE(req_id)

11: for stage i in all stages do

12: if ReqTableli|[h(req-id)].req-id == req_id then
13: ReqTableli]|h(req-id)] < None

14: return

Handling system reconfiguration. Unlike switch failures,
there is no fate sharing between each server and the rack,
and RackSched does maintain request affinity across system
reconfigurations such as adding or removing servers for an
application. Because RackSched uses RegTable to store the
mapping, ongoing requests simply check ReqTable to go
to the correct servers. Only the request scheduling module
(§ 3.3) needs to be updated to have the right set of servers to
choose from for new requests. We pre-allocate a large number
of registers for LoadTable at compilation time, and use an-
other register to indicate the number of active servers, which
is dynamically updated for system reconfigurations. For an
unplanned server removal (e.g., a server failure), RackSched
uses the switch control plane to update the ReqTable and
delete the stale entries related to the removed server.

3.5 Server Tracking

The server tracking module updates the server loads (i.e.,
LoadTable in Algorithm 1) for the switch to make schedul-
ing decisions. The challenge is to accurately track the server
loads at real-time with low overhead. A straightforward so-
lution is to let the switch control plane periodically poll the
queue lengths at each server and update the data plane. How-
ever, due to the millisecond-scale delay and the limited rate
of control plane updates [37, 52], this solution does not apply
to the microsecond-scale workloads targeted by RackSched.
To do this in the data plane, a possible solution is to let the
switch proactively track the server loads, i.e., incrementing
and decrementing the counters for queue lengths when pro-
cessing request and reply packets. This solution suffers from
estimation errors due to packet loss and retransmissions, and
fixes like decreasing the counters based on the server pro-
cessing rate [47] cannot handle temporal load imbalance in
high-dispersion microsecond-scale workloads.

RackSched leverages in-network telemetry to accurately
track server loads with minimal overhead. In-network teleme-
try is widely used in network monitoring and diagnosis where
switches put relevant measurement data into packet headers

in the data plane. RackSched applies this mechanism to track
server loads. Then the servers piggyback their loads in the
reply packets to update the counters in the switch, which
does not introduce new packets and thus minimizes system
overhead. A potential problem is the feedback loop delay as
stale information can cause herding, which can degrade the
scheduling performance and make the system unstable (i.e.,
swing between overloading different servers). In RackSched,
the switch and the servers are directly connected in the same
rack, and the server-side data plane implementation bypasses
traditional TCP/IP stack to report its queue length to the
switch quickly, making the feedback loop delay minimal. And
together with power-of-k-choices scheduling, RackSched can
effectively avoid herding. An alternative solution that only
keeps the server with the minimum load in the switch and
updates it based on in-network telemetry cannot leverage
power-of-k-choices to avoid herding. We show the impact of
different ways to track and represent server loads in §4.6.

3.6 Handling Scheduling Requirements

Multi-queue support. By default, RackSched uses a single-
queue policy, i.e., the system does not differentiate a priori
between request types and aims to meet a single SLO for
tail latency (e.g., a photo caching workload with only get re-
quests). RackSched also supports multiple queues if the work-
load has multiple request types that have distinct service time
distributions (e.g., a key-value store workload with both ger
and range requests). Applications indicate the request type in
the TYPE field of the packet header. Each server maintains a
separate queue for each type for intra-server scheduling. The
switch maintains the counters for each type in LoadTable,
and schedules requests based on the queue lengths of the
request type. We remark that there is no fundamental limit
on the number of queues on each server, since the queues are
implemented in software and the switch only needs to keep a
counter for each queue on each server.

Locality and placement constraints. RackSched handles
two types of common locality and placement constraints,
which are data locality and request dependency. (i) Data lo-
cality requires a request to be processed on a subset of servers
that hold the input data. To support data locality, applications
set different LOCALITY values to represent different locality
requirements (i.e., different sets of servers that can process
this request), and the switch maintains different mappings,
which map a server ID to a server for different LOCALITY
values. (if) Request dependency requires multiple requests
to be scheduled to the same server, e.g., a task consists of
multiple requests and the input of one request is the output of
one or more other tasks. Request dependency is supported us-
ing request affinity: relevant requests carry the same REQ_ID
in their headers, so that they will be sent to the same server.
Additional information is included in the RackSched header
for the number of subsequent requests to expect. The server
can send replies to each request separately and independently.
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RackSched only requires the server to set TYPE to be reply
in replies after it has received all requests in the set in order
to safely delete the state in the switch. Note that applications
can still use different request IDs for different requests and
receive replies as soon as some requests are completed, by
adding application-specific metadata in the payload.

Resource allocation policies. The scheduler is responsible
for allocating resources when the demand exceeds the capac-
ity of the rack-scale computer. RackSched supports two types
of common resource allocation policies, which are strict pri-
ority and weighted fair sharing. (i) To support strict priority,
each server maintains a separate queue for each priority. Sim-
ilar to the multi-queue support, the switch tracks the queue
lengths, and balances the server loads for each priority. Each
server uses intra-server scheduling to preempt low-priority re-
quests when high-priority requests arrive, which can be done
in 5 ws in our implementation based on Shinjuku [39]. (i)
Supporting weighted fair sharing is similar. Each server main-
tains a separate queue for each client, and performs weighted
fair queueing [23] for intra-server scheduling on the granu-
larity of slice in PS. The switch tracks the queue lengths and
balances the server loads for each client.

4 Evaluation

In this section, we evaluate RackSched with a variety of syn-
thetic and real application workloads. We provide additional
experiment results, including locality constraints, priority poli-
cies and multiple applications, in the technical report [74].

4.1 Methodology

Testbed. The experiments are conducted on a testbed of
twelve server machines connected by a 6.5Tbps Barefoot
Tofino switch. Each server has an 8-core CPU (Intel Xeon
E5-2620 @ 2.1GHz), 64GB memory, and one 40G NIC (Intel
XL710). Eight servers are used as workers to process requests,
and they run Shinjuku [39] with our extension. Four servers
are used as clients to generate requests. The bottleneck of the
system is at the workers.

Implementation. We have implemented a RackSched pro-
totype and integrated it with Shinjuku [39]. (i) The switch
data plane is written in P4 [16] and compiled to Barefoot
Tofino ASIC [11] with P4 Studio [10]. The request state table
contains a hash table with 64K slots. The default implementa-
tion uses power-of-2-choices. (ii) The worker server is based
on Shinjuku [39]. We have extended Shinjuku to support the
RackSched packet header, maintain a counter and update the
counter upon request arrival and reply departure to track the
queue length and append the queue length in reply packets.
Both RackSched and Shinjuku preempt requests that exceed
250 ws in our experiments. (iii) The client is open-loop and
implemented in C using Intel DPDK 16.11.1 [4]. It can gener-
ate requests at high request rate based on synthetic workloads
and the RocksDB application, and measure the throughput
and latency of RackSched.

Resource consumption. Our prototype uses 13.12% SRAM,
9.96% Match Input Crossbar, 12.5% Hash Unit and 25%
Stateful ALUs of the Tofino ASIC resources. We provide an
analysis and a back-of-the-envelop calculation to show that
RackSched consumes little switch memory. RackSched has
two sets of state on the switch, i.e., LoadTable and ReqTable.
(i) LoadTable maintains a counter for each queue of each
server. Let the counter be 4 bytes, the number of queues in
each server be 3 and the number of servers be 32. It only con-
sumes 384 bytes. (i) ReqTable maintains the selected server
IPs for the ongoing requests, not all requests the system have
received and processed. Each slot can be reused by many
times each second because the requests are microsecond-
scale. Given an average request processing latency of 50 s,
a slot can support 20 KRPS throughput, and a table with 64K
slots can support 1.28 BRPS throughput. Let the request ID
and server IP both be 4 bytes. A table with 64K slots (our im-
plementation) consumes 256 KB, which is only a few percent
of the on-chip memory (tens of MB). Overflowed requests can
fall back to hash-based random dispatching which preserves
request affinity.

Workloads. We use a combination of synthetic and applica-
tion workloads. They include the following workloads. By
default, the workloads use one-packet requests.

e Exp(50) is an exponential distribution with mean = 50 s,
which represents common query and storage workloads,
such as get requests in photo caching.

e Bimodal(90%-50, 10%-500) is a bimodal distribution with
90% of requests taking 50 us and 10% taking 500 s,
which represents workloads with a mix of simple requests
and complex requests, such as get and range requests in
key-value stores.

e Bimodal(50%-50, 50%-500) is a bimodal distribution with
50% of requests taking 50 us and 50% taking 500 s,
which represents workloads with half simple requests and
half complex requests.

e Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) is a trimodal
distribution with a third of requests taking 50 s, 500 s
and 5000 us, respectively, which represents workloads
with more diverse request types, such as point, range and
complex join requests in databases.

We also use RocksDB 5.13 [60], an open-source production-

quality key-value store, as a real application workload to

evaluate RackSched. RocksDB is configured to store data in

DRAM to avoid blocking behavior and achieve low latency.

4.2 Synthetic Workloads

We evaluate the system on synthetic workloads that cover
large application space. We compare RackSched with that
directly runs Shinjuku in the cluster, i.e., the requests are
randomly sent to the servers.

Figure 10(a) and Figure 10(b) compare RackSched and
Shinjuku under Exp(50) and Bimodal(90%-50, 10%-500)
workloads, respectively. In these two figures, both RackSched
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Figure 11: Experimental results for synthetic workloads with heterogeneous servers.

and Shinjuku use a single-queue policy. Under Exp(50), the
99% latencies of RackSched and Shinjuku are similar at low
load. But the 99% latency of Shinjuku quickly goes up after
800 KRPS, while that of RackSched can support the system
load up to 950 KRPS. Under Bimodal(90%-50, 10%-500), the
99% latency of Shinjuku quickly increases after 500 KRPS,
while that of RackSched stays stable until 650 KRPS. In both
workloads, RackSched supports larger request load with lower
tail latency, because its inter-server scheduling addresses tem-
poral load imbalance between servers, while Shinjuku experi-
ences short bursts and long queues in individual servers under
high request load.

Figure 10(c) and Figure 10(d) show the results for
Bimodal(50%-50, 50%-500) and Trimodal(33.3%-50, 33.3%-
500, 33.3%-5000) workloads, respectively. In these two
figures, both RackSched and Shinjuku have a separate
queue for each request type. Again, RackSched significantly
outperforms Shinjuku. The improvement of RackSched is
larger in Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) than
Bimodal(50%-50, 50%-500), because Trimodal(33.3%-50,
33.3%-500, 33.3%-5000) has more diverse service times and
can benefit more from effective inter-server scheduling.

Figure 11 shows the results with heterogeneous servers. In
this case, four servers have four workers and the other four
servers have seven workers (one core used by the scheduler).
This evaluates the cases when some servers are slower or some
cores of these servers are grabbed for other purposes [15, 54].
We compare RackSched with Shinjuku under the same four
distributions in Figure 10. RackSched is load-aware and tends
to send requests to the servers with shorter queue lengths,
while Shinjuku distributes the requests to the servers uni-
formly, disregarding the heterogeneity. RackSched can im-
prove the performance further with heterogeneous servers.
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Figure 12: Scalability results.

4.3 Scalability

The key benefit of RackSched is that it enables the system to
scale out by adding servers, while achieving low tail latency
at high throughput. Figure 12 shows the 99% latency under
different request load with one, two, four and eight servers,
respectively. This figure uses Bimodal(90%-50, 10%-500)
workload, and the results for other workloads are similar.
With one server, the two systems, i.e., RackSched (1) and
Shinjuku(1), have the same performance, as there is no need
for inter-server scheduling. With two servers, load imbalance
can happen, but the variability is small. With four servers,
micro bursts can cause bigger temporal load imbalance, and
the improvement of inter-server scheduling is also bigger.
When there are eight servers, there is more variability between
the loads on the servers, and inter-server scheduling has more
opportunities to improve performance. Shinjuku(8) can only
maintain low tail latency until 500 KRPS, while RackSched
(8) can maintain low tail latency until 650 KRPS. We expect
the improvement of RackSched over Shinjuku would be larger
with more servers, because there would be more variabilities
with more servers.
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Figure 13: Experimental results for RocksDB.

Overall, RackSched scales out the total throughput of the
system near linearly with the number of servers in the rack.
And the throughput improvement is achieved without increas-
ing the tail latency. Even with more servers, RackSched is
still able to maintain the same tail latency as one server until
the system is saturated.

4.4 Application: RocksDB

We use RocksDB [60] to demonstrate the benefits of
RackSched on real applications. RocksDB is an open-source
production-quality storage system that is widely deployed to
support many online services such as Facebook. In the experi-
ments, RocksDB is configured with an in-memory file system
(/tmpfs/) for microsecond-scale request processing. We use
two request types. One is GET which gets 60 objects with
a median request service time of 50 us. The other is SCAN
which scans 5000 objects with a median service processing
time of 740 us. Only 326 lines of code are needed to port
RocksDB to RackSched and Shinjuku. Figure 13(a) shows
the results for the workload that contains 90% GET requests
and 10% SCAN requests. In this experiment, the system
uses a single-queue policy. At low request load, RackSched
and Shinjuku have comparable 99% latency. But Shinjuku
can only maintain low tail latency until 300 KRPS, while
RackSched is able to keep low tail latency until 500 KRPS.

Figure 13(b) shows the results for the workload that con-
tains 50% GET requests and 50% SCAN requests. In this
experiment, the system uses a multi-queue policy. RackSched
is able to maintain low tail latency at a higher request load
than Shinjuku. We further break down the results for each
request type for this workload. Figure 13(c) and Figure 13(d)
show the 99% latency for GET and SCAN under different
total request load, respectively. Because RackSched uses the
switch to balance the load of each request type between the
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Figure 14: Comparison with other solutions.

servers, the improvement of RackSched over all requests does
not come at the cost of sacrificing any individual request type.
For both request types, RackSched is able to deliver compa-
rable tail latency at low load, achieve significantly lower tail
latency at high load, and support higher total request load.

4.5 Comparison with Other Solutions

R2P2 [42] is a recent solution that proposes a join-bounded-
shortest-queue (JBSQ) policy for request scheduling, and
the solution can be implemented on programmable switches.
R2P2 does not have preemptive intra-server scheduling and
has head-of-line blocking. Thus, it suffers from long tail la-
tency, especially under high-dispersion workloads. Client-
based solutions are lack of global view and use power-of-k-
choices scheduling based on stale server load information,
and thus they suffer from inaccurate scheduling decisions.
We emulate 100 clients that generate requests with the same
rate in the machines. Each client performs the same policy as
RackSched and tracks server queue lengths via piggybacking
by its own. The performance of Client(10) (which emulates
10 clients) and Client(1000) (which emulates 1000 clients)
are nearly the same as that of Client(100). Figure 14 shows
the performance of RackSched, Shinjuku, the client-based
solution and R2P2 under Bimodal(90%-50, 10%-500) and
Bimodal(50%-50, 50%-500) workloads. In both workloads,
RackSched outperforms others by maintaining low latency at
higher request rate, and Client(100) has nearly the same per-
formance as Shinjuku. More importantly, R2P2 is not robust
to service time distributions. It is close to RackSched under
Bimodal(50%-50, 50%-500), and the gap between R2P2 and
RackSched is significantly larger under Bimodal(90%-50,
10%-500).

4.6 Analysis of RackSched

We analyze RackSched and show the impact of different
design choices, including different scheduling policies of the
switch-based inter-server scheduler and different mechanisms
to track the server loads.

Impact of switch scheduling policies. Figure 15 eval-
uates the impact of different scheduling policies under
Bimodal(90%-50, 10%-500) and Bimodal(50%-50, 50%-500)
workloads. We compare four scheduling policies: RR (which
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Figure 15: Impact of switch scheduling policies.
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Figure 16: Impact of server load tracking mechanisms.

schedules requests to server with round-robin), Shortest
(which chooses the server with the smallest queue length),
Sampling-2 (which samples two servers and chooses the one
with the smaller queue length), and Sampling-4 (which sam-
ples four servers and chooses the one with the smallest queue
length). RR sends an even number of requests to each server,
without considering the variability of request service times.
Thus, it suffers from long tail latency at high request load.
Theoretically, Shortest can provide effective load balancing,
but it incurs high tail latency in practice, even at low re-
quest load. As discussed in §2, the reason is that there is
a delay to update the queue lengths in the switch from the
servers. When a server becomes the one with the smallest
queue length, multiple consecutive requests would all choose
this server, causing a micro herding behavior. And the queue
length of this server has to wait to be updated until the new
queue length is piggybacked in the first reply packet to update
in the switch. As discussed in §2, this herding behavior can be

handled by adding randomization to the scheduling process.
The results in the figure confirm the effectiveness of sampling.

For the scale of the evaluated scenario, sampling two and
four servers have similar performance, because sampling two
servers already provides enough choices to avoid hotspots
and enough randomization to avoid herding.

Impact of server load tracking mechanisms. Figure 16
evaluates the impact of different mechanisms to track
server loads, under both Bimodal(90%-50, 10%-500) and
Bimodal(50%-50, 50%-500) workloads. We compare three
tracking mechanisms discussed in §3.5: INT'1 (which tracks
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Figure 17: Handling failures and reconfigurations.

the number of outstanding requests for each server and com-
putes the minimum), IN7T2 (which only tracks the minimum
number of outstanding requests and updates on reply pack-
ets), INT3 (which tracks the total service time of outstanding
requests for each server) and Proactive (which increments
and decrements the counters by the switch). Proactive cannot
precisely maintain the queue length for each server as packet
loss and retransmissions can introduce errors on the coun-
ters, and as a result, it does not work well as others. INT2
performs worse than INT 1 because it only keeps one server
with the minimum load, resulting in herding. INT 3 is com-
parable to INT 1. However, it presumes that the service times
are known as a priori, which is normally not the case in prac-
tice. INT'1 works the best because it accurately tracks server
loads, enables randomization to avoid herding for effective
load balancing, and does not require any priori knowledge.

4.7 Request Affinity

Handling switch failures. To simulate a switch failure, we
first stop the switch manually, then reactivate the switch after
several seconds. Figure 17(a) shows the total throughput dur-
ing this period under Exp(50) workload. At 10 s, the switch is
stopped and the total throughput drops to 0. We reactivate the
switch after 5 seconds and the total throughput recovers to
the initial level. The microsecond-scale requests have already
timed out after 5 seconds. So it is safe to start with an empty
ReqTable after the reactivation, as discussed in §3.4.

Handling system reconfigurations. RackSched maintains
request affinity during system reconfigurations. Figure 17(b)
shows the 99% latency under system reconfigurations. We use
two-packet requests under Exp(50) workload, and start with
500 KRPS load and seven machines as the servers. At time 8
s, we increase the request sending rate, and the 99% latency
goes up to around 380 ws. At time 14 s, we add another server
to serve the requests, and the 99% latency drops to 310 ps. At
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time 28 s, we set the request sending rate back to 500 KRPS.
And the 99% latency drops to 280 ws further. At time 39 s,
we remove a server from the rack. Since seven servers are
enough for such workload, the 99% latency remains the same.
As discussed in § 3.4, the request affinity is maintained by the
ReqTable in the above process.

5 Discussion

Target workloads. RackSched supports both stateless and
replicated stateful services. Examples include microservices,
function-as-a-service, stream processing, replicated caches
and storage, and replicated machine learning models for high-
throughput inference. It is unlikely for a stateful service to be
replicated to all servers in a rack. We expect a more practi-
cal scenario is that a rack would run multiple such services,
where each service is provided by a subset of (overlapping)
servers, i.e., locality constraints. The evaluation shows that
RackSched can provide significant improvements for a ser-
vice hosted on just 8 servers (§4). And we provide additional
results to show the benefits for multiple services with locality
constraints in the technical report [74]. These results demon-
strate that RackSched provides significant benefits even when
the service is replicated on just a couple of servers.

Going beyond a rack. We focus on a single rack in this paper.
A modern rack can already pack hundreds of cores, and a
future rack is expected to pack thousands of cores [1, 2, 5],
which is sufficient for many services. For planetary-scale
services, a single microservice may span multiple racks. In
this scenario, there is no central place like the ToR switch in
a rack that can see and process all traffic. Yet, the abstraction
of a rack-scale computer provided by RackSched provides
a useful building block for distributed inter-rack scheduling.
This would be an interesting direction for future work.

6 Related Work

Dataplane designs for low latency. Conventional network-
ing stacks and operating systems usually sacrifice low latency
for generality. To address the need for low latency, various
dataplane designs have been proposed, including optimized
networking stacks [4, 21, 34] and dataplane operating sys-
tems [14, 20, 32, 39, 54, 58, 59]. RackSched leverages such
dataplane designs and enhances them with an inter-server
scheduler, realizing low latency in a rack-scale computer.

Scheduling and resource management. There is a long line
of research on job scheduling and resource management [26,
28,29,32, 38, 40,42, 55,57, 65, 66, 71]. Many systems focus
on large jobs that can run from seconds to hours, and they can
afford running sophisticated scheduling algorithms to make
effective decisions. RackSched works at microsecond scale
and optimizes the tail latency with network-system co-design.

Programmable switches. Programmable switches bring new
opportunities to improve datacenter networks and systems,
such as key-value stores [36, 48, 49, 50], coordination and

consensus [35, 45, 46, 70, 73], network telemetry [3, 33],
machine learning acceleration [61, 62] and query processing
offload [44]. There are also proposals for managing systems
built with programmable switches [30, 68, 72]. RackSched
is a new solution that leverages the programmable switch as
an inter-rack scheduler to optimize microsecond-scale tail
latency for rack-scale computers.

7 Conclusion

We present RackSched, a rack-level microsecond-scale sched-
uler that provides the abstraction of a rack-scale computer to
an external service. RackSched leverages a two-layer schedul-
ing framework to achieve scalability and low tail latency. We
hope that with the end of Moore’s law and Dennard’s scal-
ing, RackSched will inspire a new generation of datacenter
systems enabled by domain-specific hardware and hardware-
software co-design.
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