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Abstract

How cloud applications should interact with their data re-

mains an active area of research. Over the last decade, many

have suggested relying on a key-value (KV) interface to inter-

act with data stored in remote storage servers, while others

have vouched for the benefits of using remote procedure call

(RPC). Instead of choosing one over the other, in this paper,

we observe that an ideal solution must adaptively combine

both of them in order to maximize throughput while meeting

application latency requirements. To this end, we propose

a new system called Kayak that proactively adjusts the rate

of requests and the fraction of requests to be executed using

RPC or KV, all in a fully decentralized and self-regulated man-

ner. We theoretically prove that Kayak can quickly converge

to the optimal parameters. We implement a system proto-

type of Kayak. Our evaluations show that Kayak achieves

sub-second convergence and improves overall throughput

by 32.5%-63.4% for compute-intensive workloads and up

to 12.2% for non-compute-intensive and transactional work-

loads over the state-of-the-art.

1 Introduction

Two trends stand out amid the rapid changes in the landscape

of cloud infrastructure in recent years:

• First, with cloud networks moving from 1Gbps and a

few hundred µs to 100Gbps and single-digit µs [11, 20,

25], disaggregated storage has become the norm [4, 17,

21, 28, 31, 40, 44]. It decouples compute from storage,

enabling flexible provisioning, elastic scaling, and higher

utilization. As a result, increasingly more applications

now access their storage servers over the network using a

key-value (KV) interface.

• Second, the steady increase in compute granularity, from

virtual machines, to containers, to microservices and

serverless functions, is popularizing storage-side com-

putation using remote procedure calls (RPCs) [23]. Many

databases allow stored procedures and user-defined func-

tions [5–8, 26, 41, 42], and some KV stores allow just-in-

time or pre-compiled runtime extensions [9, 18, 29, 39].

The confluence of these two contradicting trends – the former

moves data to compute, while the latter does the opposite –

highlights a long-standing challenge in distributed systems:

should we ship compute to data, or ship data to compute?

int traverse_sum(Node* n){

int s = n->value;

while (n->next != NULL) {

n = get(n->next);

s += do_compute(n->value);

}

return s;

}

Application Server

App Logic

Storage Server

…

(a) Ship data to compute.

int rpc_traverse_sum(Node* n){

int s = n->value;

while (n->next != NULL) {

n = get(n->next);

s += do_compute(n->value);

}

return s;

}

RPC Endpoint int s = rpc_traverse_sum(head);

Application Server

Storage Server

(b) Ship compute to data.

Figure 1: Graph traversal implemented with (a) disaggregated

storage and (b) storage-side compute. The latter (1b) results in

less network round-trips but exert more load on the storage server.

The answer, in broad strokes, boils down to the ratio of

computation and communication. The benefits of storage

disaggregation, i.e., shipping data to compute, typically holds

when most of the time of a function invocation (hereafter

referred to as a request) is spent in computation. However,

when a single request triggers multiple dependent accesses to

the disaggregated storage, time spent in network traversals and

data (un)marshalling starts to dominate [10]. Figure 1a shows

an example of a simple graph traversal algorithm implemented

on top of disaggregated storage, where “pointer chasing” can

make network traversals the bottleneck.

In contrast, storage-side computation enables applications

to offload part of their application logic to storage servers. The

storage layer is customized to support application-specific

RPC-style APIs [10, 12, 29], which shave off network round-

trips. Figure 1b shows the previous example implemented

with storage-side computing, where only one network round-

trip is sufficient. However, this is not universally viable either;

for compute-intensive workloads, the compute capacity of the

storage servers can become the bottleneck when too much

computation is offloaded to the storage.

In short, there is no one-size-fits-all solution. Existing
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Figure 2: Design space of Kayak.

works have explored different points in the design space (Fig-

ure 2). Arbitrarily forcing a disaggregated storage (i.e., ship

data) or a storage-side computation architecture (i.e., ship

compute) in a workload-agnostic manner leads to poor uti-

lization and low throughput. Our measurements show that

workload-agnostic solution leads to up to 58% lower through-

put and 37% lower utilization when compared to the optimal.

For workload-aware alternatives, one choice is taking a one-

shot static approach, whereby a workload is profiled once

at the beginning. However, statically choosing either KV- or

RPC-based approach falls short even for a single tenant (§2.2).

The alternative, therefore, is taking an adaptive approach

that can dynamically choose between shipping data and ship-

ping compute. Existing adaptive solutions such as ASFP [12]

take a reactive approach: all requests are forwarded using

RPC to the storage server, which can then react by push-

ing some of them back. While this provides a centralized

point of control, each request experiences non-zero server-

side queueing delay, and more importantly, requests that are

pushed back suffer from one extra round-trip time (RTT),

which is detrimental to low-latency applications with strict

latency SLOs. Moreover, throughput-driven designs cannot

proactively throttle exerted load on the storage server w.r.t.

tail latency service-level objectives (SLOs).

We observe that an ideal solution fundamentally calls for a

balanced architecture that can effectively utilize the available

resources and increase overall throughput while satisfying tail

latency SLOs. In this paper, we present Kayak that takes a

proactive adaptive approach to achieve these goals (§3). In

order to maximize throughput without SLO violations, Kayak

proactively decides between shipping compute and shipping

data when executing incoming requests, and it throttles re-

quest rate in order to meet SLO requirements. Specifically,

Kayak takes a latency-driven approach to optimize two pa-

rameters simultaneously: (1) the request rate, and (2) the

RPC fraction, which denotes the proportion of the incoming

requests to be executed using RPC.

Unfortunately, the optimal RPC fraction varies for different

workloads and their SLO requirements. There is no closed-
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Figure 3: Throughput and overall request-level CPU utilization

across both application and storage servers for three different

workloads under different execution schemes, with 200µs SLO.

form expression to precisely capture the relationship between

RPC fraction, request rate, and tail latency either. Finally, we

show that the order in which we optimize request rate and

RPC fraction affects convergence of the optimization algo-

rithm. We address these challenges by designing a dynamic

optimization method using a dual loop control (§4). Kayak

employs a faster control loop to optimize request rate and

a slower one to optimize RPC fraction. Combined together,

Kayak iteratively searches for the optimal parameters, with

a provable convergence guarantee. In addition to increasing

throughput in the single-tenant scenario, Kayak must also

ensure fairness and work conservation of shared server re-

sources in multi-tenant settings. Kayak pins tenants to CPU

cores in a fair manner and employs work stealing to achieve

work conservation.

Our evaluation on a prototype of Kayak shows that: (1)

Kayak achieves sub-second convergence to optimal through-

put and RPC fraction regardless of workloads; (2) Kayak

improves overall throughput by 32.5%-63.4% for compute-

intensive workloads and up to 12.2% for non-compute-

intensive and transactional workloads; and (3) in a multi-

tenant setup, Kayak approximates max-min fair sharing and

scales without sacrificing fairness.

2 Motivation

2.1 Limitations of Existing Designs

Existing solutions either fail to efficiently utilize the available

CPU cores for a large variety of workloads or introduce ad-

ditional overhead to reactively adapt to workload variations,

both of which lead to lower throughput.

Workload-agnostic approaches either use KV-only design

or RPC-only design. The former results in excessive network

round-trips of storage access during execution, while the latter

overloads the storage server CPU and leaves the CPU on the
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Figure 4: Throughput w.r.t. SLO (99%-tile latency) for 3 different workloads under different execution schemes.
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Figure 5: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for

3 different workloads.

application server underutilized. In either case, the overall

CPU utilization is low which hinders the performance.

ASFP [12] presents an alternative to workload-agnostic

solutions by taking a workload-aware approach with runtime

adaptation. In that design, the requests are executed using

RPC by default, and if the storage server gets overloaded

by the exerted computation, a pushback mechanism is trig-

gered to push the exerted computation back to the application

server side. However, the excessive queueing on the storage

server still cannot be prevented, although it can be allevi-

ated by the pushback mechanism. Furthermore, the execution

of pushed-back requests needs to restart on the application

server, wasting CPU cycles on both servers.

To illustrate these issues, we perform an experiment with

the graph traversal application shown in Figure 1. We config-

ure the workload so that the each request triggers two storage

accesses (i.e., two network round-trips) when executed using

the KV scheme. We vary the computation after each access

and refer to them as Light (100ns computation time per ac-

cess), Medium (1µs per access) and Heavy (10µs per access).

For reference, adding one network round-trip incurs 9.2µs

more latency for each request in our testing environment. We

measure the maximum achievable throughput and the CPU

utilization (defined as CPU cycles spent only in executing

the requests). As shown in Figure 3, using only KV or RPC

leads to lower overall CPU utilization and lower through-

put. Although the reactive adaptive design utilizes a higher

amount of CPU on both application and storage servers, its

overheads add up quickly, and its CPU usage for request-level

computation does not increase significantly.

To summarize, existing designs do not efficiently utilize

the CPU resource on both application and storage servers,

which limits their performance. There exists an optimal RPC

fraction that maximizes the throughput (calculated by a com-

prehensive sweep as explained below).

2.2 Need for Dynamically Finding the Optimal Fraction

A key challenge here is that this optimal fraction varies for

different workloads. To highlight this, we perform another

experiment with the same graph traversal workload as before.

We configure the application server to handle a fraction of the

requests using RPC and the rest using the KV approach. We

vary the RPC fraction from 0 to 1 and measure the overall

throughput and end-to-end latency of all requests. In doing

so, we obtain the throughput-latency measurements for all

possible execution configurations, as shown in Figure 4 and

Figure 5. The upper bound in Figure 4 is defined by selecting

the best RPC fraction for each latency SLO to maximize the

throughput, and the selected fraction is plotted in Figure 5.

ASFP is configured as using RPC by default with pushback

enabled.

As shown in Figure 4, workload with less computation

favors RPC over KV, and vice versa. For Medium and Heavy

workloads, the highest throughput is achieved by combining

RPC and KV together. Moreover, we observe that, (1) for

different workloads, the highest throughput is achieved with

different RPC fraction; and (2) for different SLO constraints,

the optimal fraction for highest throughput is also different.

This calls for a proactive design to search for the optimal RPC

fraction. Note that we repeated the same parameter sweep

with the number of storage accesses per request set to 4 and

8, and observe similar trends (please refer to Appendix A).

3 Kayak Overview

Kayak proactively decides between shipping compute and

shipping data in a workload-adaptive manner. It arbitrates
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incoming requests and proactively decides the optimal RPC

fraction (i.e., what fraction of the compute to ship to storage

servers) of executing the requests while meeting end-to-end

tail latency SLO constraints.

3.1 Design Goals

Kayak aims to meet the following design goals.

• Maximize throughput without SLO violations: Applica-

tions have stringent tail latency SLO constraints to ensure

low user-perceived latency. Kayak should maximize the

throughput while not violating these SLO constraints.

• High CPU utilization across all servers: Kayak should

balance the computation imposed by application logic

across the application and storage servers.

• Fair sharing of storage server resources: In a multi-tenant

cloud, multiple applications may be sending requests to

the same storage server, which should be fairly shared.

• Ease of deployment: Applications should be able to use

Kayak with minimal code modification.

3.2 Architectural Overview

At a high level, Kayak adaptively runs application logic on

both the application and storage servers (Figure 6). However,

even though it ships some computation to the storage server,

Kayak’s core control logic runs only on the application server

and the storage server acts as an extended executor. Unlike

existing reactive solutions, Kayak proactively decides the

amount of computation to ship to the storage side.

Key ideas. Essentially, Kayak finds the optimal RPC frac-

tion and maximizes throughput at runtime while meeting tail

latency SLO constraints. The main design challenge is that

the optimal fraction varies in accordance with different work-

loads and their SLO requirements (Figure 5), as well as the

amount of load exerted on the storage server. In a multi-tenant

cloud, all of these change dynamically. In order to keep up

with the changing environment, Kayak proactively adjust the

RPC fraction and the request rate according to realtime tail

latency measurements.

However, the relationship between the request rate, RPC

fraction and latency cannot be easily captured with a closed-

form expression. Thus Kayak adopts a numerical optimiza-

tion method based on a dual loop control algorithm (§4.3) to

search for the optimal parameters iteratively. We notice that

latency measurements in real systems exhibit large variance,

which detrimentally impacts the performance of such iterative

optimization algorithms. Kayak’s algorithm accounts for such

variance and has a provable convergence guarantee.

From an implementation perspective, Kayak faces another

challenge as it has to make adjustments very quickly due to

the high-throughput, low-latency nature of the environment.

Kayak cannot afford to gather global information and make

centralized decisions. Hence, the algorithm for Kayak is fully

decentralized and runs only on the application servers.

Rate Limiter

Request Arbiter

Executor

RPC
Endpoint

Request Handler

App Logic

Tenant

Application Server

Shared Storage Server

2a 2b

3a 3b 

①

④

L
a

te
n

c
y

KV Store

Per-Tenant Queues

Request Handler

App Logic

…

Figure 6: Kayak architecture. Tenant application servers interact

with shared storage servers using Kayak, which proactively de-

cides which requests to run on the application server using KV

operations and which ones to ship to the storage server via RPC.

Application server. The application server consists of three

main components (Figure 6): (i) the Rate Limiter limits the

rate of incoming requests from the tenant to satisfy SLO

constraints; (ii) the Request Arbiter determines the optimal

RPC fraction; and (iii) the Executor handles the requests

according to the scheme decided by the Request Arbiter.

The Rate Limiter interacts with the tenants and 1 receives

incoming requests. It continuously monitors real-time tail

latency of end-to-end request execution, and pushes back to

signal the tenant to slow down. When the servers are over-

loaded and the SLO cannot be met, it drops overflowing re-

quests. We assume that tenants implement mechanism to

handle overflowing, such as resubmit dropped requests, and

increase provisioning so that in the worst case scenario all

requests can still be executed on all application servers within

the SLO.

The Request Arbiter proactively determines the optimal

RPC fraction. It selects the execution scheme for each request

based on that fraction. For each request, the choice of execu-

tion scheme is determined by a Bernoulli distribution B(1,X)
where X is the proportion of requests processed using RPC.

The Executor handles the request in its entirety and reports

the end-to-end completion time back to the Rate Limiter upon

completion. It consists of two parts: (i) the Request Handler

and (ii) the RPC Endpoint. If the request is to be executed

using 2a the KV scheme, the Request Handler is triggered.
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The Request Handler executes the application logic locally

on the application server and keeps track of the states of the

request. Whenever it needs to access data stored in the storage

server, 3a the KV API of the storage server is subsequently

called. In contrast, if the request is to be executed on the

storage side using the RPC scheme, then the request is simply

forwarded to 2b the RPC Endpoint on the application server.

The RPC Endpoint issues an RPC request 3b to the storage

server for processing the request.

Storage server. The storage server includes an additional

Request Handler to handle RPC requests in addition to a

KV interface. Similar to allocating CPU cores in the appli-

cation server to run application code, in Kayak, computation

resources in the storage server are also allocated to specific

tenants at the CPU core granularity.

Each tenant has a dedicated request queue, from which its

core(s) polls KV and RPC requests. Handling an incoming

KV request in Kayak is the same as what happens in a tradi-

tional KV store: the request is simply forwarded to the KV

store. Upon receiving an RPC request, the Request Handler

is triggered and executes the application logic on the storage

server. The Request Handler calls 4 the local KV API when-

ever data access is needed, interacting with the stored data

without crossing the network.

This static pin-request-to-core allocation scheme of Kayak

makes it easier to enforce fair computation resource sharing

between tenants. However, static allocation of CPU cores

cannot guarantee work conservation of the CPU cores on the

storage server. Kayak uses work stealing to mitigate this issue:

whenever a tenant’s dedicated queue is empty, the correspond-

ing CPU core steals requests from other queues.

4 Kayak Design

Our primary objective is to maximize the total through-

put without violating the tail latency SLO. However, higher

throughput inevitably leads to higher latency in a finite sys-

tem [27], and there exists a fundamental tradeoff between

throughput and latency. Unfortunately, the precise relation-

ship between latency and throughput of a real system, how-

ever, is notoriously difficult to be captured by a closed-form

expression. In this paper, we use an analytical model to high-

light our insights and take a tail latency measurement-driven

approach to design a pragmatic solution.

At the same time, as illustrated in Section 2, a reactive

approach to achieve this can lead to CPU wastage. Hence,

Kayak proactively decides what fraction of the requests to

offload vs. which ones to run in the application server, while

maximizing the total throughput within the SLO constraint.

The need for optimizing both raises a natural question: which

one to optimize first? In this section, we analyze both op-

timization orders and design a dual loop control algorithm

with provable convergence guarantees. Detailed proofs can

be found in the appendix.

Sym. Description

R Total request rate

X Proportion of requests processed using RPC

τ Random variable of request latency

to Latency SLO target

T (X ,R) Latency SLO as a function of X , R

R(X) Function implicitly defined by T (X ,R(X)) = t0
k Index of iterations

Table 1: Key notations in problem formulation.

4.1 Problem Formulation

We denote the proportion of requests to be executed using

RPC by X , the total incoming request rate by R, and we define

τ as the random variable of request latency, thus we have:

τ∼ P(R,X),

where R and X are the parameters of distribution P. Table 1

includes the key notations used in this paper.

We denote T (X ,R) as our SLO statistics metric, which

takes a specific statistical interpretation for the particular SLO

metric. For instance, if the SLO is defined as the 99%-tile

latency then T is the 99%-tile for τ. We denote t0 as the SLO

target under the same statistic metric. Thus the problem can

be formulated as:

max
X

R (1)

s. t. T (X ,R)≤ t0 (2)

R > 0, (3)

X ∈ [0,1]. (4)

Here constraint (2) captures the latency SLO constraint, and

constraints (3) and (4) represents the boundary of R and X ,

respectively.

We make the following observation when solving this opti-

mization problem:

Observation 1. Fixing X, FX (R) := T (X ,R) is monotonic

increasing.

Observation 1 captures the relationship of throughput and

latency from queueing theory [27] for finite systems like

Kayak.

4.2 Strawman: X-R Dual Loop Control

Optimization (1) cannot be directly solved with a closed-form

solution of R and X due to the intractability of the function

T (X ,R). Therefore, we use a numeric optimization method

and try to optimize R and X independently and iteratively. To

put it into our context, we need to design an iterative algorithm

such that in each iteration, we first optimize either R or X ,

and then optimize the other. We also have to prove that this

algorithm would actually converge to ensure optimality and

stability of the system.

Now we are facing a question: which one to optimize first?

In our problem, there is an asymmetry for X and R: X is the
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Figure 7: Instability of throughput and RPC fraction w.r.t time,

with X-R Dual Loop Control.

parameter in Optimization (1) where as R is the objective. A

straightforward solution is to optimize X first, which leads to

the following algorithm.

Algorithm I (X-R Dual Loop Control) For k = 1, . . . ,K,

we alternatively update Xk and Rk by

1. Fix Rk, and find the RPC fraction Xk that minimizes

latency, i.e., Xk = argminX T (X ,Rk);

2. Update Rk according to gradient descent so that T ≈ t0,

i.e.,

Rk+1 = Rk +η(t0−T (Xk,Rk)) ,

where η > 0 is the stepsize.

In this algorithm, the first step is to solve a convex optimiza-

tion problem. Because our assumptions guarantee that Xk is

unique and finite, this iteration is well defined for at least the

first step (and we will show it is also good for the second step).

Moreover, because TRk
(X) := T (X ,Rk) is µ-strongly convex

and L-smooth, Xk can be solved very quickly (or mathemati-

cally, in a linear rate) by iterative algorithms such as gradient

descent. We have the following theorem that characterizes the

convergence of this algorithm. The rigorous statements and

proofs are deferred to Appendix B.2.

Theorem 1. Fixing R, FR(X) := T (X ,R) is strongly convex

and smooth. Suppose for all X, 0 < α ≤ ∂T (X ,R)
∂R

≤ β. Let

0 < η < 1
β

, then under mild additional assumptions1,

|RK−R∗| ≤ (1−ηα)K · |R0−R∗| .

Here R∗ denotes the optimal request throughput, and R0

denotes the initialization. This result shows the iteration of

X-R Dual Loop Control converges to the optimal requests

exponentially fast, i.e., after at most O(log 1
ε ) iterations, the

algorithm outputs a solution that is ε-close to the optimal.

Instability of X-R dual loop control. However, while Al-

gorithm I is theoretically sound, it is not practical to be imple-

mented in a real system. The key obstacle is that the latency

SLO metric cannot be directly obtained in practice. Instead,

1For the sake of presentation, we omit the technical assumptions. For a

complete description on the theorem, please refer to Appendix B.2

we can only measure a set of samples of latency τ, and then

gather statistics to derive the SLO metric. Hence the derived

SLO metric – be it average or 99%-tile – is only an estimate

T̂ based on sampling. While sampling might not be a prob-

lem for many systems by using a high sampling rate, it is

indeed a problem for Kayak. In particular, because of the

microsecond-scale workload and the real-time requirement

of Kayak, the sample size for each estimate is limited. This

leads to large variance in the estimated T̂ , which results in

degraded convergence speed and quality.

To quantify the impact of this variance and show the gap

between theory and practice, we conduct a verification exper-

iment. We run Algorithm I with the Heavy workload from

Section 2 under an SLO constraint of 200µs 99%-tile latency.

Our experiment confirms the aforementioned issue of vari-

ance in SLO estimates. Figure 7 shows poor convergence

quality of both the throughput and the RPC fraction.

4.3 Our Solution: R-X Dual Loop Control

A naive mitigation to counter the SLO variance is to simply

use a metric that is more robust, such as average latency. But

this limits the operators to only one viable SLO metric and

compromises the generality of the system.

In order to solve the challenge of unstable SLO estimates,

we must design an algorithm that is not sensitive to the vari-

ance of T̂ . Compared with the RPC fraction X , the request

rate R has a more intuitive and better-studied interaction with

latency T from extensive study in queueing theory. Specifi-

cally, we take inspiration from recent works [19, 30] showing

that even with variance in latency measurements, one can still

achieve rate control (i.e., optimization of the throughput) in

a stable manner. From the starting point of latency-driven

rate control, we design a dual loop control algorithm that first

optimizes R and then optimizes X to numerically solve the

optimization problem. The algorithm is shown as follows.

The first part is latency-driven rate control, and the second is

gradient ascent.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . ,K,

we respectively update Xk and Rk by

1. Apply rate control so that the latency approximates SLO,

i.e., Rk be such that T (Xk,Rk)≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,

Xk+1 = Xk +η dRk
dX

, where T (X ,Rk) = t0, and η is a posi-

tive stepsize.

R loop: rate control. In order to satisfy the SLO require-

ment (T ≤ t0), we need to carefully control the request rate

R. Intuitively, too high an R leads to excessive queueing on

the server side, causing SLO violations; at the same time, too

low an R leads to low overall throughput and low resource

utilization.
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Input: Current throughput R, latency t, SLO target t0
Output: Updated throughput R

/* Initialize global variables. */

1 T← 0; R← 0 ⊲ Last involved latency and throughput.

/* Update R for each round. */

2 Procedure UpdateR()
/* Calculate ∆R according to Newton’s method. */

3 ∆R← (R−R)(t0−T )
T−T

/* Bounds checking, throughput should be positive. */

4 if R+∆R < 0 then ⊲ Unlikely. Violates (3).

5 R← R
M

⊲ Discard ∆R and divide R by half.

6 else

7 R← ∆R +R

Pseudocode. 1: Dynamic search of optimal R.

Let R(X) be a function implicitly determined by the bound-

ary constraint Eq. (2), i.e.,

T (X ,R(X)) = t0.

The implicit function R(X) is indeed well defined, since for

any X , T (X ,R) is monotonically increasing,2 implying there

exists an unique request throughput R(X) that satisfies the

boundary constraint, i.e., the maximum throughput is achieved

when the latency is equal to the SLO target.

Essentially, we have to design a dynamic algorithm that

actuates R(X) in real-time (via Rk(X) in step 1). This problem

can be solved with a root-finding algorithm such as the classic

Newton’s method. However, if we apply this method directly,

we may encounter situations where the updated throughput

R is negative, which violates constraint (3). This happens

when the throughput is too high and needs to be significantly

reduced. In this case, we divide R by M instead of updating

it using Newton’s method. This ensures that (i) the updated

throughput is positive; and (ii) the updated throughput is

still significantly lower than before. We note that this out-of-

bound scenario does not happen frequently. For simplicity,

we choose M = 2. Our algorithm of searching for the optimal

R is shown in Pseudocode 1.

X loop: RPC fraction control. For any given RPC fraction,

the rate control of Kayak essentially maximizes throughput

within the allowance of SLO requirement. With rate control,

we effectively get the throughput as a function of the given

RPC fraction (R(X)). In this part, we focus on the comple-

mentary and optimize the RPC fraction to maximize R(X).
We use a gradient ascent algorithm to achieve that. When the

updated RPC fraction falls out of the range of [0,1], we apply

2We assume that T (X ,R) is continuous, and for any X , there exist R1 and

R2 such that T (X ,R1)≤ t0 ≤ T (X ,R2). This assumption pluses monotonicity

yields the existence and uniqueness of the implicit function R(X).

Input: Current throughput R, RPC propotion X ,

Output: Updated RPC propotion X

/* Initialize global variables. */

1 R← 0; X← 0 ⊲ Last involved throughput and RPC fraction.

/* Update X for each round. */

2 Procedure UpdateX()
/* Calculate ∆X according to Gradient Ascent. */

3 ∆X ←−η R−R
X−X

/* Bounds checking, X should be within constraints. */

4 if X +∆X /∈ [0,1] then ⊲ Unlikely. Violates (4).

5 X ←max{min{X +∆X ,1},0}
6 else

7 X ← ∆X +X

Pseudocode. 2: Dynamic search of optimal X .

( , )

+=
0 −

+= −0

Latency Feedback

Fast loop
Slow loop

Figure 8: Nested control loops of Kayak.

rounding to ensure it is within the boundary. Our algorithm

of searching the RPC fraction is shown in Pseudocode 2.

Putting them together. Combing the rate control and the

RPC fraction control, our algorithm (Algorithm II) naturally

forms a bi-level (nested) control loops [15], with two actuators

X and R and only one feedback signal t. We adopt a single

control loop (the inner/fast loop), called R loop, to implement

the rate control, i.e., finding the maximum throughput R while

not violating the SLO t0. The input of this control loop is the

measured latency SLO metric T̂ and the output is request rate

R which is the input for our request arbiter. We then adopt

another control loop (the outer/slow loop), called X loop, to

implement our request arbiter, i.e., choosing the best X that

maximizes R0.

Although this dual loop control design decouples the two

actuators X and R, the resulting two feedback loops may be

coupled. The coupling between two feedback loops may cause

oscillation, which can be mitigated by choosing different sam-

pling frequencies [15]. The exact two values can be tuned

by the operator according to different workloads and system

configurations. However, because the functioning of the sec-

ond loop is dependent on the output of the first loop (R) to

have converged to a stable point, it is best practice to choose a

lower frequency for the second loop. Theoretically, we show

that this dual loop control algorithm is guaranteed to converge

in Section 4.4. Empirically, in our experiments, we let the
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sampling rates of the first and second loops to be 200Hz and

20Hz respectively, and we show that the system converges

fast to near optimal throughput in Section 6. We evaluate the

impact of frequency selection in detail in Section 6.5.

4.4 Perfomance Guarantee

From the R loop, we obtain an estimation Rk(x) at each itera-

tion k, which approximately satisfies T (X ,Rk(X))≈ t0. In the

X loop, we optimize X for our request arbiter such that R0 is

maximized. This is done by stochastic gradient ascent (SGA,

or online gradient ascent) on X . There is a rich literature in

online learning theory for SGA when Rk(x) is concave, e.g.,

see [36]. Applying related theoretical results to our problem,

we have the following performance guarantee for our system.

The proof of Theorem 2 is deferred to Appendix B.3.

Theorem 2. Suppose for all k = 1, . . . ,K, Rk(X) is concave,

and ‖∇Rk(X)‖2 ≤ L. Consider the iterates of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following regret bound

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (5)

where C := L‖X1−X∗‖2 is a constant depends on initializa-

tion and gradient bound, and X∗ can be any fixed number.

Note that the regret bound holds even Rk(X) is chosen adver-

sarially based on the algorithm history.

Inteperation of Theorem 2. The sublinear regret bound

implies SAG behaviors nearly optimal on average: we see

this by setting X∗ = argmaxX ∑K
k=1 Rk(X), and noticing that

1

K

K

∑
k=1

Rk(X∗)−
1

K

K

∑
k=1

Rk(Xk)≤ O

(
1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit

function R(X) — even so the theorem guarantees a sublin-

ear regret bound, which implies that our algorithm behaviors

nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-

tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and

noticing that

E [R(X∗)−R(X̄)]≤ 1

K

K

∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K

∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

The above convergence result does not require any assump-

tions on the randomness of Rk, as long as Rk(X) is an unbi-

ased estimator of R(X). This means our algorithm can tolerate

variance in the measured latency which causes variance in

estimated Rk. The convergence is empirically validated by

our experiments in Section 6.1.

4.5 Scalability and Fault Tolerance

Scalability. Kayak is fully decentralized, and its control

logic (e.g., rate and RPC fraction determination) is decoupled

from the request execution in the dataplane. Throughput of a

tenant is limited by its total available resources in application

and storage servers; one can increase throughput by adding

more application servers or by ensuring more resource share

in the storage servers.

Fault tolerance. Kayak does not introduce additional sys-

tems components beyond what traditional KV- or RPC-based

or hybrid systems do. As such, it does not introduce novel

fault tolerance challenges. The consistency and fault tolerance

of the KV store is orthogonal to our problem and out of the

scope of this paper.

5 Implementation

We build a prototype of Kayak with about 1500 lines of code

and integrate it with the in-memory kernel-bypassing key-

value store Splinter [29]. The code is available at: https:

//github.com/SymbioticLab/Kayak

Kayak interface. Users of Kayak provide their custom de-

fined storage functions (App Logic in Figure 6), which are

compiled with Kayak and deployed onto both the application

server and storage server. At runtime, users connect to Kayak

and set the desired SLO target. Users then submit request in

the format of storage function invocations to Kayak.

Application server. The core control logic of Kayak is im-

plemented in the application server. One challenge we face

during implementation is to optimize the code to reduce

overhead, which is especially important because of the high

throughput low latency requirement. For instance, the inner

control loop constantly measures request latency and calcu-

late the 99%-tile. One naive way is to measure the quantile is

using selection algorithm to calculate the k-th order statistics

of n samples, with has at least O(n) complexity. Instead, we

apply DDSketch [32] to estimate the quantile in real time

with bounded error.

Storage server. The main challenge of implementing the

storage server is supporting multi-tenancy and ensuring fair-

ness and work conservation. We pin requests from different

tenants to different CPU cores to ensure fairness. And we

adopt work stealing to ensure work conservation: CPU cores

with no requests to process steal requests from the queues of

other cores. Specifically, similar to ZygOS [38], each CPU

core of Kayak steals from all other CPU cores, which is dif-

ferent from Splinter’s work stealing from only neighboring
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CPU Intel E5-2640v4 2.4 GHz

RAM 64GB ECC Memory DDR4 2400MHz

NIC Mellanox ConnectX-4 25 GB NIC

OS Ubuntu 16.04, Linux 4.4.0-142

Table 2: Server configurations for our testbed in CloudLab.

cores. This further improves overall CPU utilization.

6 Evaluation

In this section we empirically evaluate Kayak with a focus on:

(i) verification of convergence; (ii) performance improvement

against state of the art [12]; and (iii) fairness and scalability

with multiple tenants. Our key results are as follows.

• Kayak achieves sub-second convergence to optimal

throughput and RPC fraction regardless of workloads.

It can proactively adjust to dynamic workload change as

well (§6.1).

• Kayak improves overall throughput by 32.5%-63.4% for

compute-intensive workloads and up to 12.2% for non-

compute-intensive and transactional workloads (§6.2).

• In a multi-tenant setup, Kayak approximates max-min fair

sharing, with a Jain’s Fairness Index [22] of 0.9996 (§6.3)

and scales without sacrificing fairness (§6.4).

• We also evaluate Kayak’s sensitivity to its different pa-

rameters (§6.5).

Methodology. We run our experiments on CloudLab [3]

HPE ProLiant XL170r machines (Table 2). Unless specified

otherwise, we configure Kayak to use 8 CPU cores across all

servers. The fast control loop algorithm is configured to run

every 5ms and the slow control loop runs every 50ms. The

initial RPC fraction is set at 100%, and we define SLO as the

99%-tile latency.

Workloads. We use the workload described in Section 2.

Unless otherwise specified, we configure the workload with

a traversal depth of two so that each request issues two data

accesses to the storage. We vary the amount of computation

that takes place after each access and refer to them as Light

(100ns computation time per access), Medium (1µs per ac-

cess) and Heavy (10µs per access). This workload emulates a

variety of workloads with different computational load in a

non-transactional environment.

We extend this workload and create a Bimodal workload.

We denote by Bimodal(1us, 100ns, 50%, 5s), a work-

load that consists of 50% Medium (1µs/RTT) and 50% Light

(100ns/RTT) with an interval of 5 seconds.

We also run YCSB-T [14] as a transactional workload. This

workload is not computationally intensive.

Unless otherwise specified, for all workloads, we set our

latency SLO target as: 99%-tile request latency lower than or

equal to 200µs.

Baseline. Our primary baseline is ASFP [12], which is

available at https://github.com/utah-scs/splinter/

releases/tag/ATC’20 and also built on top of Splinter [29].

6.1 Convergence

In this section, we validate that Kayak’s fast loop can converge

to a stable throughput R while satisfying SLO constraint and

when running together with fast loop, the slow loop can also

converge to the optimal RPC fraction.

Fast loop only. We first disable the slow loop and run

Kayak with a fixed RPC fraction (100%), to show that the fast

loop (rate control) can converge to optimal throughput with

different workloads.

We run Light, Medium and Heavy workloads with one

application server and one storage server, and measure how

the throughput and 99%-tile latency changes with time. As

shown in Figure 9, Kayak ramps up the throughput quickly

when the measured 99%-tile request latency is below the SLO

threshold of 200µs. Along with the increase of throughput, the

latency also increases, as observed from the rise of red line.

The entire converging process happens within 0.2 seconds.

After approaching the SLO limit, both the throughput and

latency remains stable with minor fluctuations, confirming

the convergence of our fast loop. We note that the converged

throughput are the same as the measurements of the RPC-

only configuration in Figure 4. This means that our fast loop

indeed converges to the optimal throughput.

Dual loop control. Now we move on to verifying the con-

vergence of both loops combined. We repeat the previous

experiments, but with both control loops enabled. Figure 10

shows the dynamics of throughput and RPC fraction and how

they change with time. We highlight three observations.

• Similar to Figure 9, throughput increases rapidly within

the first 0.2 seconds; this is due to the fast loop.

• With the Medium and Heavy workloads, the throughput in-

crease slows down after 0.2 seconds. This increase comes

from the slow loop, as we can see a change in RPC frac-

tion. Note that the Light workload does not show this

trend, because in this setup the initial RPC fraction (100%)

is already the optimal for it.

• After 1 second since the start, the throughput converges

to a stable value with only minor fluctuations.

Comparing the RPC fraction in Figure 10 against Figure 5,

we observe that our algorithm converges to the optimal RPC

fraction. Comparing the throughput in Figure 10 against the

Optimal configuration in Figure 4, we observe that the con-

verged throughput is the optimal throughput.

Convergence under dynamic workloads. One advantage

of Kayak is that it can proactively adjust to changing work-

load. To verify this, we run Kayak with the Bimodal(1us,

100ns, 50%, 5s) workload. Figure 11 shows the dynamics

of throughput and RPC fraction. As we can see, Kayak adapts

to the changing workload, and adjusts both the throughput

and RPC fraction accordingly in a timely fashion.
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Figure 9: Throughput and 99%-tile latency w.r.t time, with only the fast loop of Kayak and fixed RPC fraction of 100%.

0 1 2 3 4
Time (s)

1

2

3

Th
ro

ug
hp

ut
 (M

Op
s)

0.00

0.25

0.50

0.75

1.00

RP
C 

Fr
ac

tio
n

Throughput
RPC%

(a) Light (100ns/RTT)

0 1 2 3 4
Time (s)

1

2

Th
ro

ug
hp

ut
 (M

Op
s)

0.00

0.25

0.50

0.75

1.00

RP
C 

Fr
ac

tio
nThroughput

RPC%

(b) Medium (1µs/RTT)

0 1 2 3 4
Time (s)

0.2

0.4

Th
ro

ug
hp

ut
 (M

Op
s)

0.00

0.25

0.50

0.75

1.00

RP
C 

Fr
ac

tio
nThroughput

RPC%

(c) Heavy (10µs/RTT)

Figure 10: Dynamics of throughput and RPC fraction w.r.t time, with nested control loops of Kayak.

SLO
YCSB-T Light Medium Heavy Bimodal

Kayak ASFP Kayak ASFP Kayak ASFP Kayak ASFP Kayak ASFP

50µs 2.63 2.58 3.05 3.05 1.71 1.06 N/A N/A 2.13 1.43

100µs 3.12 2.78 3.36 3.36 2.37 1.45 0.37 N/A 2.74 2.16

200µs 3.35 3.01 3.59 3.52 2.54 1.64 0.48 0.33 2.98 2.37

400µs 3.35 3.02 3.70 3.61 2.61 1.68 0.57 0.40 3.03 2.48

Table 3: Throughput (MOps) of Kayak and ASFP under different workloads and SLO targets. “N/A” means the SLO target is infeasible.
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Figure 11: Dynamics of throughput and RPC fraction w.r.t time

under Bimodal workload.

6.2 Performance

Performance improvement. We compare the performance

of Kayak against the state of the art ASFP [12]. We use all the

workloads: (i) Light/Medium/Heavy computational workload;

(ii) Bimodal workload; and (iii) YCSB-T workload. We use

one application server and one storage server, and vary the

SLO target from 50µs to 400µs. The results are shown in

Table 3, which we summarize as follows.

• For non-compute-intensive workloads (Light and YCSB-

T), Kayak achieves up to 12.2% throughput improvement.

In this case, most of the requests are handled via RPC and

Kayak’s opportunity for improvement is lower.

• For compute-intensive workloads, Kayak achieves 32.5%-

63.4% throughput improvement. In this case, the RPC

Workload YCSB-T Light Medium Heavy Bimodal

Gap 5.4% 11.8% 6.7% 3.5% 10.6%

Table 4: Kayak’s performance gap from the upper bound for dif-

ferent workloads.

fraction decreases, and ASFP’s pushback mechanism

kicks in; the overhead of pushing requests back in com-

parison to Kayak’s proactive placement increases the gap.

Overall, Kayak outperforms ASFP because its proactive

design is more efficient in using both application- and storage-

side CPUs.

Gap between Kayak and upper bound. We set the SLO

target to be 200µs and compare the achieved throughput be-

tween using Kayak and the upper bound obtained by the

parameter sweep method (§2.2). We define the gap between

Kayak and the upper bound as follows:

Gap =
T hroughputmax

T hroughputmax,Kayak

−1

Intuitively, the lower the gap is, the closer Kayak is to the opti-

mal. As shown in Table 4, Kayak has a slowdown of 11.8% for

computationally light workload and 3.5% for computationally

heavy workload.

6.3 Fairness

In this section, we show that Kayak can enforce max-min

fairness when multiple tenants contend for server resources.
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(b) Tenant B

Figure 12: Dynamics of throughput and RPC fraction w.r.t time

of tenant A and B in the multi-tenant experiment.

We run two tenants with the same setup and configure each

to use four CPU cores instead of eight, while the server is

still configured with eight CPU cores. Tenant A is started first,

and after 20 seconds, tenant B is started. Figure 12a shows

the dynamics of tenant A. During the first 20 seconds, tenant

A quickly converges to the optimal throughput of around

1.82MOps. After 20 seconds when tenant B is started, the

throughput achieved by tenant A drops to around 1.21MOps.

Note that in this process, the optimal RPC fraction also shifts

from 60% to 40%. This is because after tenant B joins, the

server has less CPU resource to process tenant A’s requests.

After 40 seconds, tenant A stops sending requests.

Figure 12b shows the dynamics of tenant B, and we can see

that when the two tenants are running together the achieved

throughput is 1.21MOps and 1.24MOps, respectively. The

gap between the two tenants is only 2.4%, which indicates that

the server resources are fairly shared. After 40 seconds, the

throughput and RPC fraction of tenant B increases because

the storage server has more available CPU resources after

tenant A stops.

Then we increase to four tenants and start the tenants one

after one, with ten seconds in between. Each tenant is con-

figured with one CPU core, and runs a different workload.

Tenant {1, 2, 3, 4} runs {Light,Medium,Heavy,Bimodal}, re-

spectively. We plot the occupied CPU cycles on the storage

server for each tenant in Figure 13. When the 4 tenants are

running together, we measure the Jain’s Fairness Index [22]

to be 0.9996.
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Figure 13: Fair-sharing of throughput for 4 applications sharing

one storage server.
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Figure 14: Throughput and RPC Fraction of Kayak with different

server configurations.

6.4 Scalability

In this section, we verify that the Kayak control loops are de-

coupled from data plane and do not limit Kayak’s scalability.

To do so, we run experiments with Heavy workload, and vary

the number of application and storage servers. For simplicity,

we make sure a single request does not access data from more

than one storage servers. We measure the total throughput

and the converged average RPC fraction. As shown in Fig-

ure 14a, throughput increases with both adding a storage and

an application server. This is because adding either essen-

tially adds more CPU cores to the system. Note that the RPC

fraction increases with the increment of the storage servers

but decreases with the increment of the application servers

(Figure 14b). This is because Kayak can judiciously arbitrate

the requests and balance the load between the application and

storage servers, by choosing the optimal RPC fraction.

6.5 Sensitivity Analysis

Initial state. First we evaluate whether Kayak is sensitive

to its initial state. We run four experiments using the Heavy

workload, and vary the starting value for RPC fraction X

from {0, 0.25, 0.75, 0.100}. As shown in Figure 15, Kayak

converges to the optimal request throughput and RPC fraction

regardless of the initial RPC fraction in all four scenarios.

Choice of loop frequencies. In Section 4 we argue that in

order for the dual loop control to work, we need to choose

appropriate sampling frequencies for both loops. Here we an-

alyze how different sampling frequencies affect the dynamics

of our system.

We run two experiments using the Medium workload, and
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(d) Initial X = 1

Figure 15: Throughput and RPC fraction during the converging

process, with different starting RPC fraction.

plot our results in Figure 16. In the first experiment we set the

interval for both loop to be 200Hz; in the second experiment

we invert the loop frequency so that the inner control loop

runs slower than outer control loop. As shown in Figure 16a

and 16b, the convergence quality degrades significantly in

both cases. Hence, it is important to choose proper sampling

frequencies to ensure that the inner control loop runs faster

than the outer.

7 Discussion and Future Work

Rate Limiting. In Kayak, we consider rate limiting and ad-

mission control because simply moving up the latency curve

cannot push the servers beyond their physical capacity, and

we consider that if a tenant specifies a strict SLO target, re-

quests that miss this target are essentially failed requests. As

such, we assume that the tenants will implement a mechanism

such as resubmitting requests which are dropped due to rate

limiting, after adapting to a slower rate. At a slower timescale,

tenants should also increase provisioning to avoid having to

slow down, so that in the worst case scenario all requests can

still be executed on all application servers within the SLO

target.

Storage Function Differentiation. Kayak does not inspect

individual storage functions, which reduces overhead and

aligns with our design goal to be non-intrusive to applications.

Therefore, Kayak can not distinguish between individual stor-

age functions. We would like to explore how to differentiate

individual storage functions without changing application

code, which would allow us to implement more fine-grained

control policy.

Developing Storage Functions. Currently, developers us-

ing Kayak and Splinter [29] have to code the same application

logic again in the storage function which run inside the stor-
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Figure 16: Dynamics of throughput and RPC fraction w.r.t time,

with different loop frequencies: (a) both loops run at 200Hz; (b)

inner loop at 20Hz, outer loop at 200Hz.

age server. This duplication complicates the development

process and increases the chance of human errors and bugs.

Automatically generating server-side storage functions from

code written using traditional KV API can alleviate this prob-

lem. This would be an interesting avenue for future work.

8 Related Work

Key-Value Stores. A recent line of research on key-value

store has been focusing on utilizing RDMA to boost key-

value store performance. Stuedi et al. [43] have achieved a

20% reduction in GET CPU load for Memcached using soft-

iWARP without Infiniband hardware. Pilaf [33] uses only

one-sided RDMA read to reduce CPU overhead of key-value

store. In addition, it uses a verifiable data structure to detect

read-write races. FaRM [16] proposes a new main memory

key-value store built on top of RDMA. FaRM comes with

transaction support but still support lock-free RDMA reads.

HERD [24] further improves the performance of RDMA-

based key-value store by focusing on reducing network round

trips while using efficient RDMA primitives. FaSST [25]

generalizes HERD and used two-sided RPC to reduce the

number of QPs used in symmetric settings such as distributed

transaction processing, improving scalability.

While there have been many research works focusing on im-

proving raw performance of key-value stores, few investigates

real performance implications on the application. TAO [13]

is an application-aware key-value store by Facebook that op-

timizes for social graph processing. Kayak builds on top of

this concept and focuses on application-level objectives such

as SLO constraint.

Storage-side computation. Storage-side computation (i.e.

shipping compute to data) has made its way from latency-

insensitive big data systems such as MapReduce [1, 37, 45]

and SQL databases [5–8, 26, 41, 42] into latency-critical KV

stores [9, 18, 29, 39]. Comet [18] supports sandboxed Lua

extensions to allow user-defined extensions to customize the

storage by enabling application-specific operations. Malacol-

ogy [39] utilizes Lua extensions contributed by users of the

Ceph storage system [2], allowing installing and updating new

object interfaces at runtime. Splinter [29] pushes bare-metal
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extension to storage server to allow RPC-like operations in ad-

dition to traditional key-value operations. These works breaks

the assumption of dissagregated storage and necessitates the

need for proactive arbitration provided by Kayak.

Adaptive compute placement. An emerging line of re-

search aims at adaptively balancing between client-side pro-

cessing and server-side processing. ASFP [12] extends Splin-

ter by reactively pushing back requests to the client side if

the server gets overloaded, but at the cost of wasting CPU

and network resource.Instead, Kayak proactively balances the

load exerted on both application and storage server. Cell [34]

implements a B-tree store on RDMA supporting both client-

side (RDMA-based) and server-side (RPC-based) search. Cell

determines between these two schemes by tracking RDMA

operation latency. This requires instrumentation into the ap-

plication, which Kayak avoids by measuring end-to-end re-

quest latency instead. A recent work called Storm [35] uses a

reactive-adaptive approach similar to that of ASFP [12] but

with a different policy, where for each request it will try the

traditional KV API first, and switch to RPC API if it detects

that the application is trying to chase the pointers.

9 Conclusion

In this paper, we show that by proactively and adaptively com-

bining RPC and KV together, overall throughput and CPU

utilization can be improved. We propose an algorithm that

dynamically adjusts the rate of requests and the RPC fraction

to improve overall request throughput while meeting latency

SLO requirements. We then prove that our algorithm can

converge to the optimal parameters. We design and imple-

ment a system called Kayak. Our system implementation en-

sures work conservation and fairness across multiple tenants.

Our evaluations show that Kayak achieves sub-second con-

vergence and improves overall throughput by 32.5%-63.4%

for compute-intensive workloads and up to 12.2% for non-

compute-intensive and transactional workloads.
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A Supplemental Measurements for Graph

Traversal Workload
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Figure 17: Throughput w.r.t. SLO (99%-tile latency) for graph

traversal with four storage accesses per request.
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Figure 18: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for

graph traversal with four storage accesses per request.

We repeat the same parameter sweep as in §2.2 but with the

number of storage accesses per request set to 4 and 8. We vary

the RPC fraction from 0 to 1 and measure the overall through-

put and end-to-end latency of all requests. In doing so, we

obtain the throughput-latency measurements for all possible

execution configurations, as shown in Figure 17 and Figure 19.

The optimal RPC fraction during these sweeps are shown in
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Figure 19: Throughput w.r.t. SLO (99%-tile latency) for graph

traversal with eight storage accesses per request.
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Figure 20: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for

for graph traversal with eight storage accesses per request.

Figure 18 and Figure 20. We note that the observation we

make in §2.2 still holds in these measurements.
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B Analysis of Algorithms

B.1 Problem Formulation

We aim to solve the following optimization problem

max
X

R

s. t. T (X ,R)≤ t0

(P)

where we assume:

Assumption 1. Fix X, FX (R) := T (X ,R) is monotonic in-

creasing and twice differentiable.

Assumption 2. For any X, there exist R1 and R2 such that

minX T (X ,R1)≤ t0 ≤minX T (X ,R2).

B.2 Algorithm I: X-R Dual Loop Control

We adopt the following iterative algorithm to solve the prob-

lem:

Algorithm I (X-R Dual Loop Control) For k = 1, . . . ,K,

we alternatively update Xk and Rk by

• Xk = argminX T (X ,Rk);

• Rk+1 = Rk +η(t0−T (Xk,Rk)).

We have the following theorem to characterize the conver-

gence of the above algorithm.

Theorem 1. Suppose in addition we have,

1. T (X ,R) is twice differentiable and lower bounded.

2. Fix R, FR(X) := T (X ,R) is µ-strongly convex3, L-

smooth4 and coercive.5

3. For all X, we have 0 < α≤ ∂T (X ,R)
∂R

≤ β.

If we set 0 < η < 1
β

, then

|RK−R∗| ≤ (1−ηα)K · |R0−R∗| .

In the following we elaborate the proof for Theorem 1. We

begin with introducing a series of lemmas. Let us denote

H(R) = min
X

T (X ,R).

Lemma 1. For all R 6= S,

0 < α≤ H(R)−H(S)

R−S
≤ β.

Moreover, the above inequality implies H(R) is monotonic

increasing and continuous.

3 f (x) is µ-strongly convex, if for all x and y, it holds that f (x)≥ f (y)+

〈∇ f (y),x− y〉+ µ
2
‖y− x‖2

2.
4 f (x) is L-smooth, if for all x and y, it holds that f (x) ≤ f (y) +

〈∇ f (y),x− y〉+ L
2
‖y− x‖2

2. In general, if f (x) is twice-differentiable and x

is restricted in a bounded domain, then f (x) is L-smooth in that domain, for

some finite L.
5 f (x) is coercive if f (x)→ +∞ as ‖x‖ → +∞. A strongly convex and

coercive function admits an unique and finite minimum point.

Proof. Without loss of generality let R > S. Let X =
argminX T (X ,R) and Y = argminX T (X ,S). Then

H(R)−H(S)

R−S
=

T (X ,R)−T (Y,S)

R−S{
≤ T (Y,R)−T (Y,S)

R−S
= ∂T (Y,P)

∂R
≤ β,

≥ T (X ,R)−T (X ,S)
R−S

= ∂T (X ,Q)
∂R

≥ α > 0.

Here P,Q ∈ (S,R) are given by mean-value theorem.

Lemma 2. There exists an unique R∗ such that H(R∗) = t0.

Moreover, this R∗ gives the maximum of the original optimiza-

tion problem.

Proof. We have already shown that H(R) is monotonic and

continuous. Recall that there exists R1 and R2 such that

H(R1) ≤ t0 ≤ H(R2), thus there exists an unique R∗ such

that H(R∗) = t0.

For any R so that R > R∗, we have H(R)> H(R∗) = t0 by

monotonicity, thus R does not meet the constraint. Therefore

R∗ is the maximum of the optimization problem.

Proof of Theorem 1. With H(R) := minX T (X ,R), we can

rephrase Algorithm I as

Rk+1 = Rk +η(H(R∗)−H(Rk)) .

Let R0 be the initialization. We next show the convergence of

this iteration.

Case I: R0 < R∗. If Rk < R∗, then

R∗−Rk+1 = R∗−Rk−η(H(R∗)−H(Rk)){
≤ R∗−Rk−ηα(R∗−Rk) = (1−ηα)(R∗−Rk)

≥ R∗−Rk−ηβ(R∗−Rk) = (1−ηβ)(R∗−Rk)

that is 0≤ (1−ηβ)(R∗−Rk)≤ R∗−Rk+1 ≤ (1−ηα)(R∗−
Rk). Using this recursion, if R0 < R∗, we have

0≤ (1−ηβ)K (R∗−R0)≤ R∗−RK ≤ (1−ηα)K (R∗−R0).

Case II: R0 > R∗. If Rk > R∗, then

Rk+1−R∗
= Rk +η(H(R∗)−H(Rk))−R∗
= Rk−R∗−η(H(Rk)−H(R∗)){
≤ Rk−R∗−ηα(Rk−R∗) = (1−ηα)(Rk−R∗)

≥ Rk−R∗−ηβ(Rk−R∗) = (1−ηβ)(Rk−R∗)

that is 0≤ (1−ηβ)(Rk−R∗)≤ Rk+1−R∗ ≤ (1−ηα)(Rk−
R∗). Using this recursion, if R0 > R∗, we have

0≤ (1−ηβ)K (R0−R∗)≤ RK−R∗ ≤ (1−ηα)K (R0−R∗).

To sum up, when η < 1
β

(hence smaller than 1
α ), we have

|RK−R∗| ≤ O
(
(1−ηα)K

)
.
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B.3 Algorithm II: R-X Dual Loop Control

Let us take a closer look at the optimization problem (P)

under Assumption 1 and Assumption 2. First we observe the

maximal must be attended at the boundary

T (X ,R) = t0. (6)

Second the boundary constraint Eq. (6) implicitly defines a

function R(X), where

T (X ,R(X)) = t0.

We highlight that R(X) is indeed well defined, since under

Assumption 1 and Assumption 2, for any X , there exists an

unique R(X) that satisfies the boundary constraint.

With the above observations, we may rephrase the opti-

mization problem (P) as

max
X

R(X) (P’)

where R(X) is implicitly defined by the boundary constraint.

In the following we discussion algorithms that solve prob-

lem (P’).

Our challenge it that we do not have direct access to R(X);
instead at each fast loop step, we have an estimation to R(X),
denoted as Rk(x), which approximately satisfies

T (X ,Rk(X))≈ t0.

In this set up we can perform stochastic gradient ascent (SGA,

or online gradient ascent) for Rk(X). We summarize the algo-

rithm in the following.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . ,K,

we respectively update Xk and Rk by

1. Apply rate control so that the latency approximates SLO,

i.e.,

Rk be such that T (Xk,Rk)≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,

Xk+1 = Xk +η dRk
dX

, where T (X ,Rk) = t0, and η is a posi-

tive stepsize.

There is a rich literature for the theory of online learning

when Rk(X) is concave, e.g., see [36]. For completeness, we

introduce the following theorem to characterize the behavior

of the above algorithm.

Theorem 2. Suppose Rk(X) is concave. Consider the iterates

of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following bound for the regret

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
‖X1−X∗‖2

2

2η
+

η

2

K

∑
k=1

‖∇Rk(Xk)‖2
2 .

If in addition we assume ‖∇Rk(X)‖2 ≤ L, and set

η =
‖X1−X∗‖2

L
√

K
,

then

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (7)

where C := L‖X1−X∗‖2 is a constant depends on initializa-

tion and gradient bound.

Remark. The sublinear regret bound implies SAG behav-

iors nearly optimal on average: we see this by setting X∗ =
argmaxX ∑K

k=1 Rk(X), and noticing that

1

K

K

∑
k=1

Rk(X∗)−
1

K

K

∑
k=1

Rk(Xk)≤ O

(
1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit

function R(X) — even so the theorem guarantees a sublin-

ear regret bound, which implies that our algorithm behaviors

nearly as good as one can ever expect under the estimations,

no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-

tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and

noticing that

E [R(X∗)−R(X̄)]≤ 1

K

K

∑
k=1

E [R(X∗)−R(Xk)]

=
1

K

K

∑
k=1

E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

Proof of Theorem 2. We first notice the following ascent

lemma

‖Xk+1−X∗‖2
2

= ‖Xk +η∇Rk(Xk)−X∗‖2
2

= ‖Xk−X∗‖2
2 +η2 ‖∇Rk(Xk)‖2

2 +2η〈∇Rk(Xk),Xk−X∗〉
≤ ‖Xk−X∗‖2

2 +η2 ‖∇Rk(Xk)‖2
2 +2η(Rk(Xk)−Rk(X∗)) ,

where the last inequality is due to the assumption that Rk(X)
is concave. Next we re-arrange the terms and take telescope
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summation,

K

∑
k=1

(Rk(X∗)−Rk(Xk))

≤
K

∑
k=1

1

2η

(
‖Xk−X∗‖2

2−‖Xk+1−X∗‖2
2

)
+

K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2

=
1

2η

(
‖X1−X∗‖2

2−‖XK+1−X∗‖2
2

)
+

T

∑
t=1

η

2
‖∇Rk(Xk)‖2

2

≤ 1

2η
‖X1−X∗‖2

2 +
K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2 ,

which gives the first regret bound.

If further we have ‖∇Rk(X)‖2 ≤ L, then

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K,

by setting η =
‖X1−X∗‖2

L
√

K
we obtain

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K

≤ L‖X1−X∗‖2 ·
√

K.
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