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Abstract

We establish the consistency of K-medoids
in the context of metric spaces. We start
by proving that K-medoids is asymptoti-
cally equivalent to K-means restricted to the
support of the underlying distribution under
general conditions, including a wide selection
of loss functions. This asymptotic equiva-
lence, in turn, enables us to apply the work of
Pérna (1986) on the consistency of K-means.
This general approach applies also to non-
metric settings where only an ordering of the
dissimilarities is available. We consider two
types of ordinal information: one where all
quadruple comparisons are available; and one
where only triple comparisons are available.
We provide some numerical experiments to
illustrate our theory.

1 INTRODUCTION

Cluster analysis is widely regarded as one of the most
important tasks in unsupervised data analysis (Jain
et al., 1999; Kaufman and Rousseeuw, 2009). In
this paper, we consider several center based clustering
methods. Specifically, we show the asymptotic equiva-
lence of K-means and K-medoids, and use this equiva-
lence to prove the consistency of K-medoids in metric
and non-metric (i.e., ordinal) settings.

1.1 K-means and K-medoids

The problem of K-means can be traced back to the
1960’s to early work of MacQueen (1967). As the prob-
lem is computationally difficult in higher dimensions or
when the number of clusters is large, it is instead most
often approached via iterative methods such as Lloyd’s
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algorithm (Lloyd, 1982). Leaving these computational
challenges aside, assuming the problem is solved ex-
actly, the consistency of K-means as a method has
been thoroughly addressed in the literature. Early in
this line of work, Pollard (1981) established the consis-
tency of K-means in Euclidean spaces. Pirna (1986)
extended the result to separable metric spaces, while
Pérna (1988, 1990, 1992) examined the particular sit-
uation of Hilbert and Banach spaces, where the exis-
tence of an optimal solution had been considered by
Herrndorf (1983) and Cuesta and Matran (1988). For
more recent results on the consistency of variants of
K-means, see for example (Gallegos and Ritter, 2013;
Terada, 2014; Georgogiannis, 2016; Chakraborty et al.,
2020).

The problem of K-medoids dates back to the 1980’s
to work of Kaufman and Rousseeuw (1987), who in
the process proposed the Partition Around Medoids
(PAM) iterative algorithm. Van Der Laan et al. (2003)
discovered that the original PAM has problem with
recognizing rather small clusters, and defined a new
version of PAM based on maximizing average silhou-
ette, as defined by Kaufman and Rousseeuw (1990).
Later Park and Jun (2009) proposed a computation-
ally simpler version of PAM akin to Lloyd’s algorithm
for K-means. See (Kaufman and Rousseeuw, 2009,
Ch 2). In a setting where the goal is the cluster-
ing of data sequences, Wang et al. (2019) established
an exponential consistency result for K-medoids itself
(when solved exactly). To the best of our knowledge,
however, the consistency of K-medoids in the more
standard setting of clustering points in a metric space
has not been previously established.

We establish the consistency of K-medoids
by first showing that K-medoids is asymptot-
ically equivalent to K-means restricted to the
support of the underlying distribution, and
then leveraging the work of Pdrna (1986) on
the consistency of K-means in metric spaces.
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1.2 Ordinal K-medoids

Beyond the more standard setting where the distances
are available to us, we also consider ordinal settings
where only an ordering of the distances is available.
Even when the dissimilarities are available, turning
them into ranks, and thus only working with the un-
derlying ordinal information, can be attractive in sit-
uations where the numerical value of the dissimilari-
ties has little meaning besides providing an ordering.
This is the case, for example, in psychological exper-
iments where human subjects are tasked with rating
some items in order of preference. Working with ranks
also has the advantage of added robustness to outliers.

Statisticians and other data scientists have dealt with
ordinal information for decades. Without going too
far afield into rank-based inference (Hajek and Siddk,
1967) or ranking models (Bradley and Terry, 1952),
there is non-metric scaling, aka ordinal embedding,
which is the problem of embedding a set of items based
on an ordering of their pairwise dissimilarities, with pi-
oneering work in the 1960’s by Shepard (1962a,b) and
Kruskal (1964). The consistency of ordinal embedding
— by which we mean any solution to the problem as-
suming one exists — was already considered by Shep-
ard (1966), and more thoroughly addressed only re-
cently by Kleindessner and Luxburg (2014) and Arias-
Castro (2017).

Even closer to our situation, in the area of clustering,
we know that hierarchical clustering with either single
or complete linkage (or the less popular median link-
age) only use the ordinal information, as can be seen
from the fact that the output grouping remains the
same if the dissimilarities are transformed by the ap-
plication of a monotonically increasing function. The
well-known clustering method DBSCAN of Ester et al.
(1996) can be seen as a robust variant of single link-
age, in its nearest-neighbor formulation, only relies on
ordinal information as well. On the other hand, hierar-
chical clustering with either average linkage or Ward’s
criterion does not have that property. The use of K-
medoids in ordinal settings does not seem nearly as
widespread. In fact, we could only find a few references
where the idea was proposed, scattered across various
fields such as computer vision (Zhu et al., 2011) and
data mining (Zadegan et al., 2013). In the context of
an application to the clustering of pictures of human
faces, Zhu et al. (2011) proposed a rank order distance
(ROD) based on a sum of individual ranks, acquired
from triple comparisons, and then applied single link-
age hierarchical clustering with this distance. They
argued that this distance was more appropriate for
their particular application than the more standard L
distance. In a followup work, Huang et al. (2020) pro-
posed a kernel variant of ROD. With the intention of

making the clustering result less sensitive to initializa-
tion and potential outliers, Zadegan et al. (2013) pro-
posed the concept of hostility index based on a sum of
ranks obtained from triple comparisons. Aside from
these, Achtert et al. (2006) proposed a dissimilarity
based on the distance to the ¢-th nearest neighbor,
which can therefore be implemented based solely on
ordinal information.

Besides putting ordinal K-medoids in the
context of ordinal data, as we just did, we
establish its consistency for two types of ordi-
nal information: quadruple comparisons giv-
ing an overall ranking of all pairwise dissimi-
larities; and triple comparisons giving a rank-
ing relative to each sample point.

1.3 Setting and Content

We consider the problem of clustering some data
points in a metric space into k clusters, where k is
given. The metric space is denoted (X, d) and assumed
to be a locally compact Polish space. The sample is
denoted x1,...,x, and assumed to have been drawn
from a Borel probability measure ) assumed to have
bounded support! containing at least k points. We
will let @,, denote the empirical distribution, namely,
Qn(B) = %Z?:l Liz,epy for any set B c X. For two
sets A, B c X, define

H(A|B) :=sup inf d(a, b), (1)
acA beB

so that the Hausdorff distance between A and B is
max{H(A|B),H(B|A)}.

The organization of the paper will be as follows. In
Section 2, we prove the asymptotic equivalence of K-
means and K-medoids, and deduce from that the con-
sistency of K-medoids in the metric setting. In Sec-
tion 3, we consider two ordinal settings, based on
quadruple and triple comparisons respectively, and es-
tablish the consistency of K-medoids in each case us-
ing the equivalence result from Section 2. We provide
numerical experiments along the way to illustrate our
theoretical results. Our work is greatly inspired by
that of Péarna (1986), and we will refer to his work
often.

Remark 1. We want to mention that all our results
apply when X is a finite dimensional Banach space and
Q has a density with respect to the Lebesgue measure
which is bounded and has compact support.

'This is for convenience. See (Pirna, 1986).
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2 EQUIVALENCE OF K-MEANS
AND K-MEDOIDS, AND THE
CONSISTENCY OF K-MEDOIDS

For a k-tuple A c X, consider the risk
LA,Q) = [ ming(d(z.a)dQ(),  (2)

where ¢ : [0,00) — [0, 00) is a loss function assumed to
be non-decreasing, continuous, and such that ¢(d) =0
if and only if d = 0 — all these assumptions being
rather standard. By K-means we mean the result of
the following optimization problem:

minimize L(A,Q,) over Ac X, |[Al=k. (3)
And by K-medoids we mean the same optimization

problem but restricted to k-tuples made of sample
points:

minimize L(A,Q,) over Ac X, |[A|=k, (4)

where X, := {z1,...,2,}. Note that

A.Q) = | Smino(ra). (9

It is well-known that, as formulated, (3) and (4) can
behave quite differently. Take for example the case
of the real line with @ the uniform distribution on
[-2,-1]u[1,2]. When k =1, in the large-sample limit,
the origin is the unique solution to K-means problem,
while -1 and 1 are the solutions to the K-medoids
problem. Instead, we consider the following restricted
form of K-means:

minimize L(A,Q,) over Acsupp(Q), |A|=k, (6)

where supp(Q) denotes the support of ). The analyst
cannot consider this problem when the support of @
is unknown, which is typically the case. But this op-
timization problem is only used as a device to analyze
the asymptotic behavior of K-medoids.

Theorem 1. In the present context, K-medoids (4)
is asymptotically equivalent to K-means (6), which in
turn is asymptotically equivalent to population version
of the same problem, namely

minimize L(A,Q) over A csupp(Q), |Al=k. (7)
We conclude that, if A is a solution to (4), then in
probability,

n—oo

Remark 2. As discussed in (Cuesta and Matran,
1988; Pdrna, 1990, 1992), a K-means problem may
not have a solution. In our situation, however, we
are assuming that the space is a locally compact Polish
space, and a solution can be shown to exist by a simple
compactness arqument together with our assumptions
on ¢ (and the fact that the distance function is always

continuous in any metric space it equips). This applies
to (3), (6) and (7).

Proof. Since everything happens within the support
of @, we may assume without loss of generality that
@ is supported on the entire space, meaning that
supp(Q) = X. And since we assume supp(Q) to
be bounded, we are effectively assuming that X is
bounded, and therefore compact since it is assumed
to be locally compact.

The asymptotic equivalence of (6) and (7) is the con-
sistency result of Péarna (1986). It can be deduced eas-
ily from the arguments we present below, which them-
selves are by-and-large adapted from (Pérna, 1986).
So all we are left to do is prove that (4) is asymptot-
ically equivalent to (6). To be sure, by this we mean
that, if A} is a solution to the former and A,, a solution
to the latter, then

in probability. Because by definition L(A},Q,) >
L(A,,Q,), all we need to show is that

limsup L(A), Q) — L(A,,Q,) <0. (10)

n?
n— 00

The remaining of the proof consists of three steps. We
first show in Lemma 2 below that L(A,Q,) - L(A4,Q)
as n — oo, uniformly over A. We then show in
Lemma 4 further down that A — L(A, Q) is uniformly
continuous. The last step consists in using these re-
sults in conjunction with the ‘squeeze theorem’.

By the uniform convergence established in Lemma 2,
we have

Tim [L(43, Q) - (45, Q) =0, (11)
as well as

Tim [L(A, Q) - L(4, Q)| =0, (12)
Therefore, all we need to show is that

limsup L(A},Q) - L(A,,Q) <0. (13)

For every point in A, find the closest sample point,
and gather all these in B}. Note that by Lemma 1,

ha 1= H(An|By) = max min d(a,b) == 0, (14)

n
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in probability. Hence, by Lemma 4, we have

limsup L(B},Q)-L(A,,Q) <limsupw(h,) =0. (15)
n—00 n—oo
With the fact that L(A},Qn) < L(B,:,Q,) by defini-
tion of A}, together with the uniform convergence also
giving

we thus conclude that (13) holds. O

Lemma 1. Assuming that X is compact and that
supp(Q) = X, in probability,

H(X|X,) = supmind(z,z;) - 0,

n — oo. 17
zeX i€[n] ( )

Proof. The arguments are standard and follow from
the definition of supp(Q). Indeed, supp(Q) is the
complement of the largest open set D in X such that
Q(D) =0. Since supp(Q) = X by assumption, it must
be that Q(B(z,r)) > 0 for all z € X and all r > 0,
where B(z,r) is defined as the closed ball centered at
x with radius r. Fix r > 0. Because X is compact
there is y1,...,ym € & such that X = U, B(y;,r). By
the triangle inequality,

H(X|X,) > 2r

< Jz:mind(z,z;) > 2r
K3
= 3j:mind(y;,z;) >,
and by the union bound, this implies that
P(H(X|X,) > 2r)
< Y P(mind(y;,z;) >7)
j 1
- Y- QB )"
J
<m(1 - minQ(B(y;,1))"
j
-0,

n — oo,

Since r > 0 is arbitrary, the claim is established. O

2.1 Uniform Convergence Lemma

Lemma 2. Assuming that X is compact, we have, in
probability,

limsup sup |L(A,Q,) - L(A,Q)| =0. (18)

n—>00 ‘A‘Sk

The rest of this subsection is devoted to proving this
lemma. It is enough to prove the variant where |4 <
k is replaced by |A|] = k. The proof is very similar
to the proof of (Pérna, 1986, Lemma 1), with some

differences. We provide a full proof for the sake of
completeness.

Note that, like L(A, @), L(A, Q) can be expressed as
an integral:

L(A,Qu) = [ ming(d(z.a)dQu().  (19)

To each finite set A, we associate the following function
Fa(r) = min 6(d(z,a). (20)

Define the following class of functions
F={fa:AcX,|A =k} (21)

Lemma 3 (Theorem 3.2 of (Rao, 1962)). Let F be a
family of continuous functions on a separable metric
space X which is equicontinuous and admits a contin-
uous envelope (there is g continuous such that |f(x)| <
g(x) for all f € F). In this context, suppose that ()
is a sequence of measures on X converging weakly to
W, another measure on X with [ gdp, — [ gdp < .

Then we have:
f Fpin — f fd,u,‘ -0, (22)

We apply this result with p, = Q, and p = @, for
which the weak convergence is satisfied with proba-
bility 1 (Varadarajan, 1958). The existence of an en-
velope function g satisfying the requirements for the
function class of interest, F above, is here immediate
since for any A,

0 < falx) < $(diam(X)) < oo, (23)

lim sup sup
n—>oo feF

where diam(X’) denotes the diameter of X, so that we
may take g = ¢(diam(X’)). It only remains to show F
is equicontinuous. This amounts to showing that, for
any yo € X and any € > 0, there exists a 6 > 0, such
that |fa(yo) — fa(y)| < € for any k-tuple A and any

y € B(yo,¢e).
For the given yg and y, we denote a(yo) and a(y) clos-
est points in A to them so that

mind(yo, a) ~mind(y, a) = d(yo, a(yo)) - d(y. a(y))-
By definition and the triangle inequality,

d(yo,a(yo)) - d(y,a(y))
<d(yo,a(y)) —d(y,a(y))
< d(y()vy)v

and similarly,

d(yo,a(yo)) - d(y,a(y))
> d(yo,a(yo)) — d(y, a(yo))
> =d(yo, ).
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We thus deduce that

[mind(yo.0) - mind(y. )| <d(uo.).  24)

Since ¢ is assumed to be continuous, it is uniformly
continuous on [0, diam(X’)]. Let w denote its modulus
of continuity on that interval so that

lo(d) - ¢(d")| <w(|d-d'|), Vd,d e[0,diam(X)].

We then have

£ = Fa(v) (25)
min o(d(yo. a)) - mino(d(y. )| (20

- |o(mind(.0)) - o mind(z. )| @7)
<w(d(yo,9)), (28)

using the monotonicity of ¢ along the way. We have
proved that F is indeed equicontinuous. Therefore the
proof of Lemma 2 is complete.

2.2 Uniform Continuity Lemma
Lemma 4. For any two sets A, B c X, we have
L(B,Q) < L(A,Q) +w(H(A|B)), (29)

where w is the modulus of continuity of ¢ on
[0, diam(X)].

The rest of this subsection is devoted to proving this
lemma. Fix two sets A, B c X, and let h := H(A|B).
For any a € A, define b, as the closest point in B to a.
Notice that by definition:

d(a,by) < h, (30)

and thus with the triangle inequality, for any point z
we have:

d(z,a) >d(z,b,) —d(a,b,) >d(x,b,) — h. (31)
Taking minimums we get:

zneljld(x,a) > Zrtljxld(x,ba) -h> Ilgléld(m, b) —h. (32)

Using the fact that ¢ is non-decreasing, we then have:

min ¢(d(z,a)) - min ¢(d(x, b)) (33)
=o(mipdtro) —o(pipdeen) 6
> —w(h). (35)

Therefore, by integrating with respect to ), we obtain:

L(AaQ) - L(BaQ)
- [ mino(d(z,a))dQx) - [ miné(d(x,)dQ()

= [ [min (4w, ) - min (d(2,)) |dQ(x)
> -w(h).

2.3 Simulations

We report on a simple experiment illustrating the
asymptotic equivalence established in Theorem 1. To
keep a balance between the necessity to probe an
asymptotic result (n large enough) and computational
feasibility (n not too large), we choose to work with
a sample of size n = 2000. We generate data from
two equally weighted Gaussian distributions in R?,
centered at (—0.5,0) and (0.5,0), each with covari-
ance 0.05 x I5, and apply Lloyd’s K-means algorithm
(Lloyd, 1982) and the PAM algorithm (Kaufman and
Rousseeuw, 1987) . Each setting is repeated 50 times.
The result of this experiment is summarized in Table 1.
As can be seen from this experiment, although varying
according to different metrics and loss functions, the
performance of K-means and K-medoids are indeed
very similar.

Table 1: Mean values and standard deviations of the Av-
erage Center Error (error) and the Adjusted Rand Index
(ARI) of K-means and K-medoids for various metrics and
loss functions.

K-means K-medoids

Ly error [x107%] 1.2 (0.4) 1.8 (0.7)
ARI 0.780 (0.017)  0.778 (0.016)

VI:  error [x107%] 8.9 (1.7) 11.7 (2.5)
ARI 0.784 (0.020)  0.782 (0.022)

Lo error [x107%] 9.4 (3.2) 12.3 (4.3)
ARI 0.789 (0.017)  0.789 (0.017)

Ly? error [x107%] 1.1 (0.9) 2.3 (1.7)
ARI 0.785 (0.016)  0.785 (0.016)

Lo error [x107°] 8.9 (3.4) 12.0 (4.2)

ARI

0.785 (0.021)

0.783 (0.020)

3 ORDINAL K-MEDOIDS

In this section we consider the problem of clustering
with only an ordering of the dissimilarities. We con-
sider two such orderings, one based on quadruple com-
parisons and another based on triple comparisons. We
apply the results from Section 2 to show that, in both
cases, K-medoids is consistent.
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3.1 Quadruple Comparisons

First we consider a situation in which all quadruple
comparisons of the form ‘Is d(z;,x;) larger or smaller
than d(z;,x,,)? are available. Equivalently, this is a
situation in which a complete ordering of the pairwise
dissimilarities is available.

For i € [n], let R;(a) denote the rank of d(z;,a) among
{d(zy,z) : 1 <m}, and for a k-tuple A, define

Stanic(A,Qn) = = S min R;(a)

n,;3 acA ”("2_1) ’

(36)

By ordinal K-medoids we mean the following opti-
mization problem:

minimize Syank(A4,Qn) over Ac X, |Al=k. (37)

This problem can be posed with the available informa-
tion, and thus in principle can be solved. The equiva-
lent restricted variant of ordinal K-means corresponds
the following optimization problem:

over A csupp(Q), |A|=k.

(38)
As before, the latter is used as a bridge to show that
the former is asymptotically equivalent to the popula-
tion version of this K-means problem, which is given
by

minimize Syank (A, Qn)

minimize S(A4,Q) over A csupp(Q), |4 =k, (39)

where
S(A,Q) = [ min G(d(z,0))dQ(x),  (40)
with
G(t) =P(d(X,X") <t), (41)
X, X' being independent with distribution Q.
Here is the missing link between S;..k and S.
Lemma 5. The following holds in probability:
limsup sup |Srank(Aa Qn) - S(Aa Qn)| =0. (42)

n—oo  |Alk

Proof. Let G, denote the empirical distribution func-
tion of all the pairwise distances between sample
points, meaning,

A 2
Gn(t) = ——— 1 .
n( ) n(n— 1) l;n {d(z,xm )<t}
By the law of large numbers for U-statistics, in prob-
ability, G, (t) > G(t) as n - oo for every fixed ¢t. The
Glivenko—Cantelli lemma does not quite apply as the
pairwise distances are not an iid sample, but the two

ingredients are there (Van Der Vaart, 1998): pointwise
convergence as just stated, and the fact that Gy and
G are both distribution functions in that they both are
non-decreasing from 0 to 1 on [0, o). Hence,

€n = SUD |G (t) - G(1)] —= 0,
in probability. We then have:

Ri(a) = > Ld(ay,om)<d(zs,a)}
l<m

-6 @G 0)
=D ) < O,

giving
1 n
Srank(A7 Qn) = Z minG(d(a:i,a)) tén
n ;2 acA

= S(Ain) :I:E’ﬂv

for any finite A, which establishes the result. O

Establishing the consistency of ordinal K-medoids is
now a straightforward consequence of Theorem 1. We
need to assume that G defined above is continuous,
which is the case in the canonical situation of Re-
mark 1.

Theorem 2. In the present context, if A, is a solu-
tion to ordinal K -medoids in the form of (37), then in
probability,

n—o00

Proof. By Lemma 5, we have that ordinal K-medoids
(37) is asymptotically equivalent to the following prob-
lem:

minimize S(A4,Q,) over AcX,, [A=k.  (44)

But S is exactly as L in Section 2, with G replacing
¢ there, and since G satisfies the same properties as-
sumed of ¢, Theorem 1 applies to yield the claim. [

3.2 Triple Comparisons

We turn to a situation in which only triple compar-
isons of the form ‘Is d(z;,z;) larger or smaller than
d(z;, ;)7 are available. We do assume that all of
these comparisons are on hand. Equivalently, this is a
situation in which an ordering of the pairwise dissim-
ilarities involving a particular point are available.

Hence, we work here with the ranks (re)defined as fol-
lows. For i € [n], let R;(a) denote the rank of d(z;,a)
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among {d(z;,z;):j # i}, and for a k-tuple A, define
1 i
Srank(Aa Qn) = - Z min M

45
n i aeA n-1 (45)

Ordinal K-medoids and (restricted) ordinal K-means
are otherwise defined as before. The population equiv-
alent to ordinal K-means is now given by

minimize S(A,Q) over A csupp(Q), |A| =k, (46)

where
S(4,Q) = [ minG*(d(,a)dQ(x),  (47)
ae
with
G*(t) =P(d(z, X") <), (48)
X’ having distribution Q.
Lemma 6. The following holds in probability:

limsup sup |Srank(Aa Qn) - S(A7 Qn)| =0. (49)

n—00 |A‘§k

Proof. Define
~ ) 1
Gn,i(t) = r 1 Z ]‘{d(ll/‘i7wj)st}'
j#i
By the Dvoretzky—Kiefer—Wolfowitz (DKW) inequal-
ity, for each ¢ and any € > 0, we have:

P ( sup |Gi (1) = G ()] > e) < 2exp(-2(n - 1)€?).

With this, and the union bound, we obtain:
n—>00

£, 1= maxsup |G, 5 (t) — G (t))| > 0,
i

in probability. We then have:
Ri(a) = ) Ld(a, z,)<d(zi0))
VE)
= (n-1)Gni(d(z;,a))
=(n-1)G%(d(xs,a)) £ (n—1)ey,,

giving
1 n
Srank(A7 Qn) = Zmin Gml(d(zua)) +é&p
n ;2 acA

= S(AaQn) +éEn,

for any finite A, which establishes the result. O

The following is our consistency result for K-medoids
based on triple comparisons. It is not an immediate
consequence of Theorem 1, but the proof arguments
are parallel. We need to make additional assumption
that (x,t) » Q(B(x,t)) is continuous on X x (0, c0).
This is the case in the canonical situation of Remark 1.

Theorem 3. In the present context, if A is a solu-
tion to ordinal K-medoids based on triple comparisons,
then in probability,

n—00

now with S defined as in (47).

Proof. By Lemma 6, we have that ordinal K-medoids
is asymptotically equivalent to the following problem:

minimize S(A,Q,) over AcX,, |Al=k. (51)

But unlike the situation in Theorem 2, now S is not
exactly as L in Section 2, complicating matters a little
bit. Nevertheless, the proof arguments are parallel to
those underlying Theorem 1. As we did there, we need
to establish uniform convergence and uniform continu-
ity. As before, we may assume without loss of general-
ity that X is compact and that supp(Q) = X. In that
case, (z,t) » Q(B(x,t)) is uniformly continuous, and
we let 2 denote its modulus of continuity so that

Q(B(z,5)) - Q(B(y,1)| < (d(x,y),|s ~ 1),
for all z,y € X and all s,¢> 0.

For the uniform convergence, the proof of Lemma 2
proceeds as before until the very end where instead

|fa(yo) = fa(w)l (52)
= [min G*(d(yo, a)) -~ min G*(d(y, a)) (53)
=]G* (d(yo, A)) - G¥(d(y, 4))| (54)
< Q(d(yo, ), [d(yo, A) —d(y, A)[) (55)
< Q(d(yo,y).d(yo,y)) (56)
-0, when d(yo,y) - 0. (57)

For the uniform continuity, the proof of Lemma 4 pro-
ceeds as before except that

min G*(d(z, a)) - min G*(d(z, b)) (58)
=G"(d(z,A)) - G*(d(z, B)) (59)
2 _Q(Ov h)v (60)
with h := H(A|B) as in that proof, so that the state-

ment of that lemma continues to hold but with w(t) :=
Q(0,1).

3.3 Simulations

We again report on a numerical experiment showcasing
the results derived in this section in the context of ordi-
nal clustering. We chose to work with a sample of size
n = 750. We generate data from three equally weighted
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Table 2: Mean values and standard deviations of the Av-
erage Center Error (error) and the Adjusted Rand Index
(ARI) for various metrics and loss functions for K-medoids
based on triple-comparisons (TC), quadruple-comparisons
(QC), and the actual distances (KM).

TC QC KM

Ly error [x107%] 4.4 3.6 3.7
(1.3) (1.3) (1.2)

ARI 0.924 0.924 0.925
(0.014)  (0.014)  (0.014)

VLz error [x107'] 1.8 1.6 1.7
(0.3) (0.2) (0.3)

ARI 0.928 0.929 0.929
(0.016)  (0.015)  (0.016)

L  error [x107%] 3.2 2.7 2.7
(0.8) (0.9) (0.9)

ARI 0.934 0.933 0.933
(0.016)  (0.016)  (0.016)

Ly?  error [x107%] 1.4 0.9 0.8
(0.7) (0.5) (0.5)

ARI 0.931 0.931 0.930
(0.020)  (0.019)  (0.020)

Lo error [x107%] 3.0 2.6 2.7
(1.1) (1.0) (1.0)

ARI 0.918 0.917 0.918
(0.017)  (0.017)  (0.017)

Gaussian distributions in two dimensions, centered at
(-0.5,0), (0.5,0) and (0,/3/2), each with covariance
0.05x 15 , and apply the PAM algorithm with either the
actual distances, the triple comparison ranks, or the
quadruple comparison ranks. Each setting is repeated
50 times. The result of our experiment is summarized
in Table 2. As can be seen from this experiment, K-
medoids based on ordinal information performs nearly
as well as K-medoids based on the full dissimilarity
information.

4 DISCUSSION

In this paper, we have shown the asymptotic equiva-
lence of K-means and K-medoids, and used this equiv-
alence to prove the consistency of K-medoids in metric
and non-metric situations.

4.1 Consistency of the Solution

Our consistency results are on the value of the op-
timization problem defining K-medoids in the various
settings we considered. Specifically, we showed in each
case that T(AF,Q) —n-oe ming T(A,Q), in probabil-
ity, where T is an appropriate criterion (either L or
one of the two variants of S) and A} is the solution to
K-medoids. What about the behavior of the solution

Ay itself?

Here the situation is completely generic: if the so-
lution to the population problem, namely Aope =
argminy T'(A4,Q), is unique, then A} —, .0 Aopt,
again in probability. This is simply due to the fact that
in our setting we can reduce the situation to when X is
compact, and in all cases we considered A » T'(A,Q)
is continuous.

4.2 Clustering After Embedding?

It might be possible to establish the consistency of
ordinal K-medoids building on the consistency of or-
dinal embedding. This route appears unnecessarily so-
phisticated, however, in particular in light of a more
straightforward approach that we built on the work of
Pérna (1986). And from a computational standpoint,
performing K-medoids in the ordinal setting has es-
sentially the same complexity as in the regular (i.e.,
metric) setting, while methods for ordinal embedding
tend to be much more demanding in computational
resources.

4.3 A ‘Bad’ Variant of K-Medoids

In the setting where triple comparisons are available,
instead of defining the ranks as we did, we could have
worked with the following definition. For i € [n], let
R;(a) denote the rank of d(z;,a) among {d(z;,a):j€
[n]}. Although the resulting method can be analyzed
in very much the same way, it turns out to not be
useful for the purpose of clustering. This is due to
the fact that the corresponding optimization problem
accepts a large range of solutions. To see this, consider
the case k = 1. With the corresponding definition of
Srank, we have that

1+2+---+n

Srank(a7Qn) = n(n_ 1) )

(61)

for all a € {x1,....,2,}. And the problem persists
for other values of k. For another example, consider
clustering points distributed uniformly between [-1,1]
into k = 2 clusters. It is clear that the correct popula-
tion centers for K-means here are {-1/2,1/2}. How-
ever, it can be seen that for any 1/2<c<1, A= {-c,c}
also achieves the optimal population risk.
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