
RainBlock: Faster Transaction Processing in Public Blockchains

Soujanya Ponnapalli1, Aashaka Shah1, Souvik Banerjee1,

Dahlia Malkhi2, Amy Tai3, Vijay Chidambaram1,3, and Michael Wei3

1University of Texas at Austin, 2Diem Association and Novi Financial, 3VMware Research

Abstract

We present RAINBLOCK, a public blockchain that achieves

high transaction throughput without modifying the proof-of-

work consensus. The chief insight behind RAINBLOCK is that

while consensus controls the rate at which new blocks are

added to the blockchain, the number of transactions in each

block is limited by I/O bottlenecks. Public blockchains like

Ethereum keep the number of transactions in each block low

so that all participating servers (miners) have enough time to

process a block before the next block is created. By removing

the I/O bottlenecks in transaction processing, RAINBLOCK al-

lows miners to process more transactions in the same amount

of time. RAINBLOCK makes two novel contributions: the RAIN-

BLOCK architecture that removes I/O from the critical path

of processing transactions (txs), and the distributed, multi-

versioned DSM-TREE data structure that stores the system

state efficiently. We evaluate RAINBLOCK using workloads

based on public Ethereum traces (including smart contracts).

We show that a single RAINBLOCK miner processes 27.4K txs

per second (27× higher than a single Ethereum miner). In a

geo-distributed setting with four regions spread across three

continents, RAINBLOCK miners process 20K txs per second.

1 Introduction

Blockchains maintain the history of transactions as an im-

mutable chain of blocks; each block has an ordered list of

transactions, and is processed after its parent or previous block.

Blockchains can be public, allowing untrusted servers to pro-

cess transactions [1,2], or private, allowing only a few specific

servers [17]. With their decentralized nature, fault tolerance,

transparency, and auditability, public blockchains have led to

several applications in a wide range of domains like crypto-

currencies [1, 2, 19], games [29], and healthcare [43].

In general, public blockchains work in the following man-

ner. Servers participating in the blockchain, termed miners, re-

ceive transactions from users. Miners execute the transactions

and package them up into blocks. A consensus protocol, like

proof-of-work (PoW) [34], decides the next block to be added

to the blockchain. With PoW, miners release a new block at a

regular cadence (e.g., every 10–12 seconds in Ethereum [2]).

Problem: Low throughput. Public blockchains suffer from

low transaction throughput. Two popular public blockchains,

Metric No state State: 10M Ratio

Time taken to mine txs (s) 1047 6340 6× ↑
Txs per block 2150 833 2.5× ↓
Tx throughput (txs/s) 28.6 4.7 6× ↓

Table 1: Impact of system state on blockchain throughput.

This table shows the throughput of Ethereum with proof-of-

work consensus when 30K txs are mined using three miners,

in two scenarios: first, there are no accounts on the blockchain,

and in the second, 10M accounts have been added. Despite

no other difference, tx throughput is 6× lower in the second

scenario; we trace this to the I/O involved in processing txs.

Bitcoin [1] and Ethereum, process only tens of transactions

per second, limiting their applications [33, 65].

Prior work traces back the low throughput of blockchains

to their proof-of-work (PoW) consensus. PoW limits the

block creation rate so that miners have enough time to re-

ceive and process the previous block before the next block

is created [59]. This ensures that most of the miners are

building on the same previous block, preventing forks in the

blockchain. Researchers have proposed new consensus proto-

cols [5, 30, 31, 42, 46] to increase the transaction throughput.

Insight. We observe that while PoW limits the block creation

rate, it does not limit the block size (number of transactions

in each block). The block size is limited by the rate at which

miners can process transactions (§2). Processing transactions

involves executing a transaction and modifying the system

state accordingly; this becomes more expensive as the state

grows. Table 1 experimentally shows that when the number

of accounts increases, block size reduces in Ethereum even

with PoW consensus (only among three miners). The chief

insight in this paper is that if we could increase the rate at

which transactions are processed, we could increase the block

size safely, without modifying the PoW consensus protocol.

How can we increase the block size safely? Miners will

continue to release a block every 10–12s after proof-of-work;

however, miners can pack more transactions into each block

due to faster processing. Typically, increasing the block size

increases the time taken to transmit that block, and time taken

by miners to process the block. Previously, when Ethereum

tralization. Thus, tackling I/O bottlenecks is crucial to safely

increasing block size, and maintaining decentralization.

Alternative consensus protocols. Faster consensus protocol-

s would result in blocks being released quicker, increasing

the overall throughput. The goal in this work is to increase

throughput without changing the consensus, and thus is or-

thogonal to the work on new consensus protocols. Researchers

have noticed that even with faster consensus, blockchains ul-

timately run into the I/O bottlenecks in tx processing [67].

Thus, we need a mechanism to reduce the I/O bottlenecks

in transaction processing. RAINBLOCK achieves this goal with

a new architecture and a novel authenticated data structure, the

DSM-TREE. With faster transaction processing, RAINBLOCK

enables larger blocks and maintains decentralization, without

changing the PoW consensus or the block creation rate.

3 RainBlock

RAINBLOCK is a public blockchain based on Ethereum that

increases overall throughput with faster transaction process-

ing. RAINBLOCK minimizes the I/O bottlenecks in transaction

processing, allows miners to safely pack more transactions

into each block, and thereby increases the overall throughput.

3.1 Overview

RAINBLOCK minimizes I/O bottlenecks using two techniques.

First, it makes each I/O operation cheaper by storing system

state in the novel DSM-TREE. In contrast to Ethereum, which

accesses data from the RocksDB key-value store on SSDs

(where each RocksDB get operation takes between a few hun-

dred microseconds to a few milliseconds), RAINBLOCK stores

the system state in memory using the DSM-TREE. DSM-TREE

is a sharded, multi-versioned, in-memory authenticated data

structure. Second, RAINBLOCK introduces a new architecture

that removes I/O from the critical path. RAINBLOCK decon-

structs miners into three entities: storage nodes, miners, and

I/O-Helpers that read data from storage and submit to miners.

In the common case, miners can process txs without perform-

ing I/O. Neither miners, nor storage nodes, nor I/O-Helpers

trust each other: all data supplied by other entities is verified

using Merkle witnesses before use.

RAINBLOCK differs from Ethereum in exactly two aspects:

1) miners are replaced by storage nodes, miners, and I/O-

Helpers, and 2) the RocksDB-based storage is replaced with

DSM-Tree. Everything else, like the proof-of-work consensus

and the block creation rate, remains the same.

3.2 Building up the design step by step

In this section, we start with the problems that our study on

Ethereum highlights. We discuss how RAINBLOCK solves

these problems and addresses the resulting challenges.

Problem-I: storing authenticated state in key-value stores

leads to expensive I/O. Ethereum stores system state in a

Merkle tree [11], which is stored in the RocksDB [10] key-

value store. Traversing such a Merkle tree requires looking

up nodes using their hashes. Hashing is computationally ex-

pensive and results in the nodes of the tree being distributed

to random locations on storage. As a result, traversing the

Merkle tree to read a leaf value requires several random read

operations. Further, the log-structured merge tree [47] that

underlies RocksDB results in high I/O amplification [52, 53].

Solution: store state in an optimized in-memory represen-

tation. RAINBLOCK introduces an in-memory version of the

Merkle tree. Persisting the data is done via a write-ahead

log and checkpoints. Traversing the Merkle tree is decoupled

from hashing; obtaining the next node in the tree is a simple

pointer dereference (§4). Note that simply running RocksDB

in memory would not be effective, as serializing and hashing

Merkle nodes would still add significant overhead.

Resulting challenge: scalability and decentralization. As

the blockchain grows, the amount of state in the Merkle tree

will increase; soon, a single server’s DRAM will not be suffi-

cient. Furthermore, for maintaining decentralization, we can-

not require miners participating in the blockchain to have

significant amounts of DRAM.

Solution: decouple storage from miners and shard the

state. RAINBLOCK solves this problem using separate stor-

age nodes, each of which is a commodity server. RAINBLOCK

shards the Merkle tree into subtrees such that each subtree fits

in the memory of a storage node. As the amount of data in the

state increases, RAINBLOCK increases the number of shards.

In this manner, RAINBLOCK scales with commodity miners

and storage nodes without reducing the decentralization.

Problem-II: Miners perform slow I/O in the critical path.

Transaction processing in Ethereum includes performing slow

I/O operations in the critical path, and these transactions are

processed one at a time.

Solution: decouple I/O and transaction execution. RAIN-

BLOCK solves this problem by removing the burden of doing

I/O from the miners. RAINBLOCK introduces I/O-Helpers

that prefetch data and witnesses from the storage nodes and

submit them to the miners. Miners use this information to exe-

cute transactions without performing I/O and asynchronously

update the storage nodes. This architecture also increases

parallelism as multiple I/O-Helpers can be prefetching data

for different transactions at the same time.

Resulting challenge: Prefetching I/O for smart contracts.

One challenge with I/O-Helpers prefetching data is that

some transactions invoke smart contracts. Smart contracts are

Turing-complete programs that may execute arbitrary code.

Thus, how does the I/O-Helper know what data to prefetch?

Solution: pre-execute transactions to get their read and

write sets. RAINBLOCK solves this problem by having the

I/O-Helpers pre-execute txs. As part of this pre-execution, I/O-

Helpers read data and witnesses from the storage nodes. One

challenge is that the pre-execution may have different results

than when the miner executes the tx (e.g., the smart contract

number of the block in which they appear, during their execu-

tion at the miner. These values are not yet known during their

pre-execution at the I/O-Helpers. I/O-Helpers speculatively

return an estimated value while pre-executing the contract.

Our analysis of Ethereum contracts shows that despite

providing estimated values, I/O-Helpers still successfully

prefetch the correct witnesses and node bags. For example,

the CryptoKitties mixGenes function references the current

block number and its hash. Since these numbers only affect

written values (and not the read set), substituting approximate

values does not affect the witnesses that are prefetched.

We observe that I/O-Helpers can pre-execute with stale

data and still prefetch the correct witnesses. For example,

many contracts are fixed-address contracts: their behavior de-

pends only on call inputs. To deal with rare variable-address

contracts, the miner may asynchronously read from storage

nodes after the transaction is submitted. Even in these cases,

the I/O-Helper will have retrieved some of the correct wit-

nesses required for the tx (e.g., the to and from accounts).

3.5 Life of a Transaction in RAINBLOCK

We outline the various actions that take place from the time a

tx is submitted, to when it becomes a part of the blockchain.

1. I/O-Helper pre-executes the transaction by fetching data

and witnesses from the storage nodes

2. I/O-Helper batches and deduplicates Merkle nodes across

multiple witnesses and sends these optimized witnesses

(termed node bags), txs, and data, to the miner

3. Miner verifies the node bags and advertises them to others.

4. Miner executes the tx using its top layer and the node bags,

without any I/O; miner caches all Merkle nodes it reads or

revises from these node bags in its top layer

5. Miner, on solving PoW, creates and advertises a new block

to other miners; miner also sends the block (with a new

Merkle root) and the logical updates to the storage nodes

6. Storage nodes first validate the block (check if PoW solu-

tion in the block solves the puzzle), and then persist the

logical updates and return successful to the miner.

7. Storage nodes apply the updates asynchronously, and

check if their Merkle root matches the root in the block

8. Other miners validate the block and gossip it to others.

Then miners execute its txs using node bags, and accept

the block by mining new blocks on top of this block

9. Once a majority of the miners receive, validate, and accept

the block, the tx becomes part of the blockchain

10. Once ten or more blocks are mined on this block, the tx

is confirmed; storage nodes garbage collect the associated

versions from the unconfirmed, competing blocks

3.6 Discussion

We note that RAINBLOCK differs from Ethereum in only two

aspects: its architecture and its storage. We discuss how these

affect trust, incentives, and security, and discuss the trade-offs.

Trust assumptions. RAINBLOCK does not require trust be-

tween any of its components. Miners operate without trusting

I/O-Helpers or the storage nodes, as miners re-execute trans-

actions and verify the data they receive from I/O-Helpers;

I/O-Helpers verify the data they read from storage nodes; and

storage nodes verify new blocks and updates from miners.

Incentives. RAINBLOCK shares elements of its architecture

with the Ethereum stateless clients proposal [24] that received

community support. The central question is how are the stor-

age nodes incentivized to store and serve the latest system

state? We propose a model where I/O-Helpers or users pay

storage nodes; stateless clients proposal had a similar solution

where users pay storage nodes for access to state via state

channels. I/O-Helpers or users can always detect if the data

served by storage nodes is incorrect or stale, and penalize any

malicious shards. We also believe an ecosystem will develop

around RAINBLOCK architecture, with commercial entities of-

fering active storage backups; market economics drives these

backups to provide and maintain the latest system state with

high availability. Note that I/O-Helpers are an optimization

and users can prefetch data themselves if required, or pay

the I/O-Helpers. Finally, RAINBLOCK miners behave similar

to the miners in Ethereum, and are incentivized to process

txs via block rewards. Miners are incentivized to broadcast

correct updates to storage nodes to aid the acceptance of their

fork. Thus, we outline a few ways to incentivize RAINBLOCK

components and leave the full solution to future work.

Security. RAINBLOCK provides similar security guarantees

as Ethereum, as it does not change the proof-of-work con-

sensus or trust assumptions between participating servers.

RAINBLOCK does not impact the block creation rate, as it

packs more transactions per block without changing the total

time taken to process a block of transactions.

Availability and DDoS attacks. RAINBLOCK decouples stor-

age from miners and has separate storage nodes. RAINBLOCK

requires only one replica of each storage shard to be available

for making progress. While DDoS attacks can be mounted

on storage nodes in RAINBLOCK, they are not new, cannot

tamper with the data, and do not impact the correctness of

RAINBLOCK; DDoS attacks are also possible on Ethereum

and have been successfully executed in the past [60, 64].

Trade-offs. RAINBLOCK introduces new storage nodes and

I/O-Helpers; while this adds more complexity into the system,

Ethereum was already considering adding storage nodes and

stateless clients. Thus, we believe the additional complexity

of RAINBLOCK is a good trade-off for its scalability and per-

formance benefits. RAINBLOCK trades off local storage I/O

for accessing memory over network, so the network may be-

Caching and Pruning. The top layer acts as an in-memory

cache of witnesses for the miner. By design, the top layer

stores the recently used and the frequently changing parts

of the Merkle tree. When the miner receives witness from

I/O-Helpers, the top layer uses the witnesses to reconstruct a

partial Merkle tree that allows miners to execute transactions,

typically without performing I/O. The top layer also supports

pruning the partial Merkle tree to help miners reclaim memory.

Pruning replaces the nodes at the retention level (r + 1) with

Hash nodes. Hash nodes are placeholders that help miners to

identify the DSM-TREE shard which has the pruned nodes.

Witness Revision. The bottom layer of the DSM-TREE is up-

dated asynchronously by miners. As a result, the top layer

(miner) may receive stale witnesses from the bottom layer (via

I/O-Helpers). We introduce a new technique termed witness

revision to tolerate stale witnesses. A witness is determined

to be stale or incorrect because the Merkle root in the witness

doesn’t match the top layer’s Merkle root. However, this could

happen because of an unrelated update to another part of the

Merkle tree. For example, the top layer might contain one ver-

tical path; a different vertical path might have been updated.

The top layer detects when this happens, and revises the wit-

ness to make it current by applying updates to the witness that

are known to the miner. If the Merkle root matches now, then

the witness is accepted. Witness revision is similar to doing

git push (trying to upload your changes), finding out some-

thing else in the repository has changed, doing a git pull

(obtaining the changes in the repository) to merge changes,

and then doing a git push. With witness revision, the top

layer tolerates stale data from the bottom layer and allows

miners to execute non-conflicting transactions that would oth-

erwise get rejected. Note that, witness revision cannot revise

every potential stale witnesses. If the top layers are pruned

aggressively, they may have insufficient information to detect

if the changes are from an unrelated part of the Merkle tree.

4.3 Synergy between the layers

The top and bottom layers collaborate to reduce network traf-

fic. We also briefly discuss the potential DSM-TREE configu-

rations with r (retention at the top layer) and c (compaction

level at the bottom layer), and the tradeoffs involved.

Witness compaction. As the top layer of the DSM-TREE

stores the top levels of the Merkle tree, the storage nodes

need not send a full witness. Like the configurable retention

level at the top layer r, the bottom layer has a configurable

compaction level, c. If witnesses are larger than c, witnesses

are compacted by removing the top few Merkle nodes, and

are sent over the network. In addition, multiple witnesses are

batched and Merkle nodes are deduplicated (node bagging),

further reducing the network burden of transmitting witnesses.

Configurations. The DSM-TREE can be configured to operate

entirely from local memory without any network overhead, or

just from remote memory with high network utilization. For

example, if the top layer of the DSM-TREE has r = ∞, then

the top layer caches the entire Merkle tree and is fully served

from local memory. Similarly, if the bottom layer has c = n or

c = ∞, then un-compacted witnesses are sent over the network

and accessed entirely from remote memory, as shown in the

Figure 4. These parameters (r and c) can be tuned based on

the available memory and network capacity.

Tradeoffs. In a Merkle tree that has n levels, any DSM-TREE

configuration that satisfies c >= (n− r) allows the top layer

to use compacted witnesses from the bottom layer. Note that

having a higher r results in a lower number of transaction

aborts, as the top layer has more information to detect non-

conflicting updates and perform witness revision. The top

layers should therefore set r based on the amount of memory

available. Pruning the top layer should only be done under

memory pressure.

4.4 Summary

The DSM-TREE is a novel variant of the Merkle tree, modi-

fied for faster transaction processing in public blockchains.

DSM-TREE presents a new point in the design space of au-

thenticated data structures. DSM-TREE highlights the benefits

of in-memory pointer-based tree traversals in comparison to

using node hashes and RocksDB lookups. The top layer ex-

ploits the cache-friendliness of the Merkle tree (top nodes

are frequently read and updated), while the sharded bottom

layer relies on the fact that witness creation only requires a

vertical slice of the tree. DSM-TREE top layer uses witness

revision to handle stale data from concurrent updates. While

the DSM-TREE supports transactions and is exclusively used

with RAINBLOCK in this paper, it can be easily modified to

work with other blockchains and applications.

5 Implementation

We implement RAINBLOCK and DSM-TREE in Typescript, tar-

geting node.js. Miners and storage nodes use the DSM-TREE

library1. The performance critical portions of the code, such

as secp256kp1 key functions for signing transactions and

generating keccak hashes, are written as C++ node.js bind-

ings. To execute smart contracts, we implement bindings for

the Ethereum Virtual Machine Connector interface (EVMC)

and use Hera (v0.2.2). Hera can run contracts implemented

using Ethereum flavored WebAssembly (ewasm) or EVMC1

bytecode through transcompilation. The I/O-Helper is imple-

mented in C++. DSM-TREE and RAINBLOCK, together 15K

lines of code, are open source and available on Github2. RAIN-

BLOCK assumes 16 shards by default; this is configurable.

6 Evaluation

We seek to answer the following questions:

• What is the performance of a single miner? (§6.1)

1www.npmjs.com/package/@rainblock/merkle-patricia-tree
2https://github.com/RainBlock

System/optimization Get Put

In-memory Ethereum MPT 1x 1x

Pointer-based traversal 2.7× 2.3×
Batching and Lazy hash resolution 56× 69×

All optimizations 150× 160 ×

Table 2: Performance breakdown. The table shows the

throughput of DSM-TREE (relative to in-memory Ethereum

merkle tree) on gets and puts with different optimizations.

• What is the end-to-end performance of RAINBLOCK in a

geo-distributed setting? (§6.2)

• How is performance affected by tunable parameters? (§6.3)

• What are the overheads of RAINBLOCK? (§6.4)

Our technical report [50] contains more details for these

experiments, along with additional experimental results.

Experimental setup. We run the experiments in a cloud en-

vironment on instances which are similar to the m4.2xlarge

instance available on Amazon EC2 with 32GB of RAM and

48 threads per node. We use Ubuntu 18.04.02 LTS, and node.js

v11.14.0. For the end-to-end benchmarks, each storage node,

miner, and I/O-Helper is deployed on its own instance.

Workloads. We evaluate the performance of RAINBLOCK

against synthetically generated workloads that mirror trans-

actions on the Ethereum public mainnet blockchain. Since

Ethereum transactions are signed, they cannot be used in ex-

periments: we cannot change transaction data or the source

accounts, because we do not have the secp256k1 private key.

To tackle this challenge, we analyze the public blockchain to

extract salient features, and develop a synthetic workload gen-

erator which generates accounts with private keys we control

so our I/O-Helpers can run and submit signed transactions.

Synthetic Workload Generator. We analyze the transac-

tions in the Ethereum mainnet blockchain to build a synthetic

workload generator. We analyzed 100K recent (since block

7M) and 100K older blocks (between blocks 4M and 5M)

in the Ethereum blockchain to determine: 1) the distribution

of accounts involved in transactions, and 2) the fraction of

all transactions that invoke smart contracts. We observe that

10-15% of Ethereum transactions are contract calls and the

rest are simple transactions. This is true of both recent blocks

and older blocks. It is also the case that a small percentage of

accounts are involved in most of the transactions. Based the

analyzed data, we generate workloads where 90% of accounts

are called 10% of the time, and 10% of the accounts are called

90% of the time. Smart contracts are invoked 15% of the time.

6.1 Performance of a single miner

The performance of a single miner depends on three things:

the DSM-TREE data structure, the I/O-Helpers, and the top-

layer cache at the miner. We first evaluate the performance

of the DSM-TREE data structure, and then measure overall tx

processing performance on a single node varying the number

of I/O-Helpers. We then show the performance of the miner

when varying the retention level of the top-layer cache.

DSM-TREE performance. For a fair comparison, we config-

ure Ethereum to use an in-memory key-value store for storage.

Ethereum uses the in-memory Merkle Patricia-Trie (MPT) [6]

implemented using the memdown red-black tree [7]. We use

put operations to recreate the system state corresponding

to four million blocks on the Ethereum public chain. This

results in 1.19M accounts. We read all accounts sequentially

using get operations. Put operation creates or updates user

account with 160-bit Ethereum address; get operation returns

the RLP-encoded [9] Ethereum account at the address, along

with its witness containing RLP-encoded Merkle nodes. We

also compare the memory used.

Performance breakdown. DSM-TREE outperforms Ethe-

reum’s in-memory Merkle tree significantly in both gets and

puts, as shown in Table 2. Note that both data structures are

in memory, so the performance difference comes from other

optimizations. Eth MPT has to use node hashes to traverse

the Merkle Tree; in contrast, DSM-TREE uses pointers for

constructing the tree, and eliminates hashing. This feature im-

proves performance by 2.7×. Eth MPT has to hash and serial-

ize, or deserialize each node in the Merkle tree while writing

or reading them; DSM-TREE optimizes this with memoization

and batching. Memoization allows remembering the hashes

and RLP-encodings of unmodified Merkle nodes. Memoizing

RLP-encoded nodes in DSM-TREE increases get performance

by reducing redundant node de-serializations. Further, with

batching, common nodes in the upper part of the Merkle Tree

are only deserialized once, increasing the get performance

by 56× relative to MPT, bringing the overall performance

difference between DSM-TREE and Eth MPT to be 150×. A

good overall intuition for these performance improvements is

the difference between a linked list in memory versus a linked

list where each node is serialized and stored in an in-memory

key-value store using the node’s hash as its key.

The performance difference for puts is similar (160×). The

efficient memory representation of DSM-TREE contributes to

2.3× of this performance difference; the rest of the difference

is due to lazy hash resolution. Lazy hash resolution defers

recomputing the hashes of inner tree nodes until they are read.

As a result, only the leaf nodes are updated in the critical path.

If we force all the Merkle nodes to be updated and rehashed

after every thousand updates, the performance difference with

Eth MPT drops to 5× overall for puts.

Memory consumption. For the same system state with

1.19M accounts, DSM-TREE consumes 34× lower memory

(775 MB) than Ethereum MPT (25 GB). This results from

Eth MPT storing each node as a key-value pair. The reduced

memory consumption of DSM-TREE is important since we

Optimizations Config Txs/s

Baseline Ethereum, 1 miner 1K (1×)

RAINBLOCK 1 miner, 1 helper, r=0 2.6 K (2.6×)

Prefetch in parallel 1 miner; 4 helpers, r=0 7.7K (7×)

DSM-TREE tuning 1 miner; 4 helpers, r=7 27.4 K (27×)

Geo-distributed 4 miners; 16 helpers, r=8 20K (20×)

Table 3: Performance breakdown. The table shows the

throughput of RAINBLOCK with different optimizations. All

configs use 16 storage shards. Helpers indicate I/O-Helpers.

While parallel prefetching increases RAINBLOCK throughput

by 2.9× from 2.6K to 7.7K tps, the DSM-TREE top layer

caching and witness compaction further increase throughput

by 3.5×, from 7.7K to 27.4K tps.

want each shard to fit in the memory of a commodity server.

Overall performance. An Ethereum miner can process 1000

txs per second, if its system state is stored in an in-memory

key-value store. We measured the performance of a single

RAINBLOCK miner with one I/O-Helper when the top-layer

caching is disabled; the miner is accessing system state from

remote in-memory shards. In this setting, RAINBLOCK pro-

cesses 2600 txs per second (2.6× higher than Ethereum).

Performance with multiple I/O-Helpers. Increasing the

number of I/O-Helpers, increases the performance of RAIN-

BLOCK, till up to four I/O-Helpers per miner. With four I/O-

Helpers, parallel prefetching increases performance to 7700

txs per second (2.9× higher). Thus, RAINBLOCK miner (with

four I/O-Helpers) outperforms an Ethereum miner by 7.7×.

Performance with DSM-TREE tuning. When we configure

the top layer of the DSM-TREE to retain the first seven levels

(r = 7, c = n− 7), the miner can process 27400 tps (3.5×
higher than when top layer caching and witness compaction

was disabled, and 27× higher than a single Ethereum miner).

6.2 End-to-End Geo-distributed Experiment

We run a geo-distributed experiment, with varying numbers

of regions across three continents. Each region has four I/O-

Helpers, one miner, and 16 storage nodes, caching eight levels

of the DSM-TREE tree (r = 8, c = n−8).

RAINBLOCK in a single region has a throughput of 25000

txs per second; this is slightly reduced from the 27400 tps

in the previous section since the storage nodes are being

accessed over a wide-area network. When we scale to four

regions, the throughput drops to 20000 txs per second, thus

retaining 80% of the single-region performance. When we

ran a workload consisting purely of smart contracts (OmiseGO

Token), RAINBLOCK achieved 17900 tps. Table 3 captures

RAINBLOCK performance in various settings, from a single

miner with one I/O-Helper to the geo-distributed experiment.

Tx confirmation latency remains the same as in Ethereum,

as RAINBLOCK and Ethereum share the same block creation

and confirmation logic (confirmed after ten blocks build on the

block containing the tx). As more txs are present in each block,

more txs are confirmed per second. These experiments use the

same PoW consensus in Ethereum, thus demonstrating that

RAINBLOCK achieves higher tx throughput without modifying

the consensus protocol.

6.3 Perf impact of tunable parameters

We discuss the impact of varying two configuration parame-

ters: the retention level r (number of Merkle tree levels stored

at the top layer), and the compaction level c (bottom c levels

of the witnesses are sent over the network by the shards).

Impact of tuning retention level. Increasing the retention

level at miners increases overall tx throughput, but also in-

creases the memory requirements at the miners. Pruning the

cache to a certain retention level (r) helps reclaim the mem-

ory consumed by miners. For the Merkle tree constructed in

the geo-distributed experiment described previously, miners

caching till a tree depth of five (r = 5) consumes only 40%

of the memory consumed by storing the full DSM-TREE in

memory. As we increase the number of I/O-Helpers, the im-

pact of higher r decreases. For example, in the geo-distributed

experiment in a single region, there was no performance dif-

ference between r = 7 and r = 8 with four I/O-Helpers, but

performance improved by 35% between r = 7 and r = 8 with

two I/O-Helpers.

Retention Level and Tx Abort rate. If the top layer doesn’t

cache enough levels, stale witnesses cannot be revised, lead-

ing to tx aborts. We evaluate RAINBLOCK with 16 storage

shards, 1 miner, and 4 clients, with various r and c config-

urations to measure the transaction abort rate. Increasing r

reduces the transaction abort rate. Further, when there are

a large number of accounts, the contention on Merkle tree

nodes reduces, increasing the number of witnesses that can

be revised and thus, reducing the abort rate for a fixed r. With

1M accounts and r=6, RAINBLOCK aborts less than two txs

per second. In cases where the txs get aborted, I/O-Helpers or

users themselves can fetch up-to-date witnesses from storage

nodes and resubmit transactions to miners.

Tuning compaction level. A lower compaction level c in-

creases the DSM-TREE shard throughput for I/O-Helpers (as

it reduces the size of witnesses transmitted over network);

with 10M accounts in state and c = n, shards process ac-

count reads at 1.36K ops/sec and with c = n−6, they process

9.4K ops/sec (7× increase in throughput per shard). The com-

paction level should be tuned alongside the retention level,

with c >= (n− r) for a Merkle tree with n levels.

6.4 Overheads

RAINBLOCK has two main sources of overhead. First, it trades

local storage I/O for network I/O, hence resulting in more

network traffic. Second, it requires the participation of more

commodity servers as I/O-Helpers and storage nodes. We

discuss these overheads and how RAINBLOCK mitigates them.

Network bandwidth requirements. RAINBLOCK can be con-

figured to produce blocks of a given size. For example, if the

network can only handle 1 MB blocks, RAINBLOCK can be

configured to produce blocks of this size. In our experiments,

we do not constrain RAINBLOCK, and see that RAINBLOCK

can pack about 240K transactions into each block (480×
higher than Ethereum), on average, with the same proof-of-

work consensus and block creation time. RAINBLOCK blocks

are about 24MB in size, compared to the recent Ethereum

blocks that are 40-60 KB. Our geo-distributed experiment

used 24 MB blocks over the wide-area-network without run-

ning into network bottlenecks. The second source of network

traffic is gossiping witnesses between miners. Using witness

compaction, and node bagging (batching and deduplication),

RAINBLOCK reduces witness sizes by 95%, allowing miners

to advertise witnesses with commodity network bandwidths.

Our witnesses sent over the network were a few KB in size.

Additional resources. RAINBLOCK requires I/O-Helpers and

storage nodes. While storage nodes keep all state in memory,

the state is sharded so that each shard fits in the DRAM of a

commodity server. Storage nodes are shared among all miners,

and hence they do not significantly increase the overall cluster

requirements; I/O-Helpers can also be shared by miners.

7 Related Work

In this section, we place our contributions RAINBLOCK and

DSM-TREE in the context of prior research.

Stateless Clients. The Stateless Clients [24] proposal seeks

to insert witnesses into blocks, allowing miners to process

a block without I/O. Despite active discussions [3, 25, 27],

this proposal has not been implemented due to large witness

sizes [57]; a single, simple transaction can have 4-6KB wit-

ness sizes, resulting in 40-60× the network overhead. In con-

trast, DSM-TREE reduces witness sizes by 95%; RAINBLOCK

does not insert witnesses in blocks, and uses I/O-Helpers to

reduce the I/O burden on miners.

Hyperledger Fabric. Fabric [17] is private while RAIN-

BLOCK is public, resulting in significant differences. Fabric

introduces a new execute-order-validate architecture where

txs are executed only on a subset of servers. In RAINBLOCK

all miners execute every transaction. While Fabric relies on

signatures from trusted nodes (which can become the bottle-

neck), RAINBLOCK uses witnesses from untrusted servers to

authenticate data. Peers in Fabric store the entire state, while

RAINBLOCK storage nodes store partitions of the system state.

RAINBLOCK improves performance with I/O-efficient transac-

tion processing, while Fabric derives high performance from

optimistic execution and efficient consensus.

Sharding. Sharding the blockchain into independent parallel

chains that operate on subsets of state [36, 39, 41, 61, 62, 70]

reduces I/O overheads; however, requires syncing the inde-

pendent chains for consistency, is less resilient to failures or

attacks [51, 55, 69], and require complex cross-shard transac-

tions protocols. In contrast, RAINBLOCK does not shard the

blockchain; the storage is sharded, but all miners add to a sin-

gle chain. RAINBLOCK does not require locking or additional

communication for executing transactions across multiple

storage shards. Payment channels [4, 32, 35, 38, 40, 45] that

offload work to side chains are complementary to our work.

Dynamic accumulators. Merkle trees belong to a general

family of dynamic accumulators [20, 26]. Merkle trees, al-

low fast processing but, proofs grow with the underlying

state. Constant-size dynamic accumulators based on RSA

signatures [20, 26] have fixed size proofs but, have low

processing rates; improving their performance is an ongo-

ing effort [23]. DSM-TREE provides a practical solution to

achieve high processing rates and small witness sizes. Re-

cent work has proposed many new authenticated data struc-

tures [18, 28, 37, 53, 54, 58, 66, 68]. In contrast to these works,

DSM-TREE scales Ethereum’s Merkle Patricia trie [11] with-

out changing its core structure, or how proofs are generated.

Transaction execution. RAINBLOCK adopts a design similar

to Solar [71] and vCorfu [63], where transactions are executed

based on data from sharded storage. RAINBLOCK modifies

the design for decentralized applications and authenticated

data structures. This allows RAINBLOCK to execute transac-

tions on sharded state without requiring locking or additional

coordination among miners. Similar to RAMCloud [48], the

DSM-TREE design argues that large random-access data struc-

tures can get higher throughput and scalability when served

from memory over the network.

8 Conclusion

We have presented RAINBLOCK, a public blockchain architec-

ture that increases transaction throughput without changing

the proof-of-work consensus protocol. RAINBLOCK achieves

this by tackling the I/O bottleneck in transaction processing,

allowing miners to pack more transactions into each block.

RAINBLOCK introduces a novel architecture that moves I/O off

the critical path, and the DSM-TREE, a new authenticated data

structure that provides cheap access to system state. Please

refer to our technical report [50] for more details about RAIN-

BLOCK and the DSM-TREE. The RAINBLOCK prototype is

publicly available at https://github.com/RainBlock and

we welcome working with the community on its adoption.

Acknowledgements

We thank our shepherd, Abhinav Duggal, and the anonymous

reviewers at ATC’21, VLDB’21, NSDI’20, and SOSP’19 for

their insightful comments and suggestions. This work was

supported by NSF CAREER #1751277, and donations from

VMware, Google, and Facebook.

References

[1] Bitcoin. https://bitcoin.org/en/, 2019.

[2] Ethereum. https://github.com/ethereum/, 2019.

[3] Ethereum improvement proposals repository. https:

//github.com/ethereum/EIPs, 2019.

[4] Fast, cheap, scalable token transfers for ethereum.

https://raiden.network/, 2019.

[5] Hybrid casper ffg. https://github.com/ethereum/

EIPs/blob/master/EIPS/eip-1011.md, 2019.

[6] Implementation of the modified merkle patricia tree as

specified in the Ethereum’s yellow paper. https://

github.com/ethereumjs/merkle-patricia-tree,

2019.

[7] In-memory abstract-leveldown store for node.js and

browsers. https://github.com/Level/memdown,

2019.

[8] Parity ethereum 2.2.11-stable. https://github.com/

paritytech/parity-ethereum/releases/tag/v2.

2.11, 2019.

[9] Recursive Length Prefix Encoding. https://github.

com/ethereum/wiki/wiki/RLP, 2019.

[10] RocksDB | A persistent key-value store. http://

rocksdb.org, 2019.

[11] The modified Merkle Patricia tree. https://github.

com/ethereum/wiki/wiki/Patricia-Tree, 2019.

[12] Full Node sync with Default Settings. https://

etherscan.io/chartsync/chaindefault, 2020.

[13] Geth ethereum 1.9.25-stable. https://github.com/

ethereum/go-ethereum/tree/v1.9.25, 2020.

[14] Ethereum average gas limit chart. https://

etherscan.io/chart/gaslimit, 2021.

[15] Number of unique addresses in ethereum. https://

etherscan.io/chart/address, 2021.

[16] Uncles per day. daily count of uncles generated by the

ethereum network. https://www.etherchain.org/

charts/unclesPerDay, 2021.

[17] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-

tian Cachin, Konstantinos Christidis, Angelo De Caro,

David Enyeart, Christopher Ferris, Gennady Laventman,

Yacov Manevich, et al. Hyperledger fabric: a distributed

operating system for permissioned blockchains. In Pro-

ceedings of the Thirteenth EuroSys Conference, page 30.

ACM, 2018.

[18] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia,

Christof Fetzer, Michio Honda, and Kapil Vaswani.

{SPEICHER}: Securing lsm-based key-value stores us-

ing shielded execution. In 17th {USENIX} Conference

on File and Storage Technologies ({FAST} 19), pages

173–190, 2019.

[19] BCNext. The nxt cryptocurrency. https://nxt.org,

November, 2013.

[20] Josh Benaloh and Michael De Mare. One-way accumu-

lators: A decentralized alternative to digital signatures.

In Workshop on the Theory and Application of of Cryp-

tographic Techniques, pages 274–285. Springer, 1993.

[21] The block. Ethereum miners are in-

creasing the network’s gas limit by 25 =

https://www.theblockcrypto.com/linked/69053/ethereum-

miners-vote-for-25-gas-limit-increase„ June 20, 2020.

[22] bloXroute Labs. Increasing eth’s gas limit: What we can

safely do today. = https://ethresear.ch/t/increasing-eth-s-

gas-limit-what-we-can-safely-do-today/8121„ October

2020.

[23] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching

techniques for accumulators with applications to iops

and stateless blockchains. In Annual International Cryp-

tology Conference, pages 561–586. Springer, 2019.

[24] Vitalik Buterin. The Stateless Clients Con-

cept. https://ethresear.ch/t/the-stateless-\

client-concept/172, 2017.

[25] Vitalik Buterin. Detailed analysis of stateless

client witness size, and gains from batching and

multi-state roots. https://ethresear.ch/t/

detailed-analysis-of-stateless-client-\

witness-size-and-gains-from-batching-and-\

multi-state-roots/862, 2019.

[26] Jan Camenisch and Anna Lysyanskaya. Dynamic ac-

cumulators and application to efficient revocation of

anonymous credentials. In Annual International Cryp-

tology Conference, pages 61–76. Springer, 2002.

[27] Alexander Chepurnoy. A possible solution to stateless

clients. https://ethresear.ch/t/a-possible-\

solution-to-stateless-clients/4094, 2019.

[28] Alexander Chepurnoy, Charalampos Papamanthou, and

Yupeng Zhang. Edrax: A cryptocurrency with stateless

transaction validation. 2018.

[29] Tonya M Evans. Cryptokitties, cryptography, and copy-

right. AIPLA QUARTERLY JOURNAL, 47(2):219, 2019.

[30] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Rob-

bert Van Renesse. Bitcoin-ng: A scalable blockchain

protocol. In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16), pages

45–59, Santa Clara, CA, 2016. USENIX Association.

[31] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-

chos, and Nickolai Zeldovich. Algorand: Scaling byzan-

tine agreements for cryptocurrencies. In Proceedings of

the 26th Symposium on Operating Systems Principles,

SOSP ’17, pages 51–68, New York, NY, USA, 2017.

ACM.

[32] Matthew Green and Ian Miers. Bolt: Anonymous pay-

ment channels for decentralized currencies. In Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 473–489, 2017.

[33] Zane Huffman. CryptoKitties is Clogging the Ethereum

Network. https://themerkle.com/cryptokitt\

ies-is-clogging-the-ethereum-network/, 2019.

[34] Markus Jakobsson and Ari Juels. Proofs of work and

bread pudding protocols. In Communications and Mul-

timedia Security, 1999.

[35] Thaddeus Dryja Joseph Poon. The bitcoin

lightning network: Scalable off-chain instant pay-

ments. https://lightning.network/lightning-\

network-paper.pdf, 2019.

[36] Vitalik Buterin Joseph Poon. Plasma: Scalable au-

tonomous smart contracts. https://plasma.io/

plasma.pdf, 2019.

[37] Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera,

and Cibi Pari. Angela: A sparse, distributed, and highly

concurrent merkle tree. 2018.

[38] Rami Khalil and Arthur Gervais. Revive: Rebalancing

off-blockchain payment networks. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 439–453, 2017.

[39] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,

E. Syta, and B. Ford. Omniledger: A secure, scale-

out, decentralized ledger via sharding. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 583–

598, May 2018.

[40] Marta Lokhava, Giuliano Losa, David Mazières, Gray-

don Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove,

Rafał Malinowsky, and Jed McCaleb. Fast and secure

global payments with stellar. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,

pages 80–96, 2019.

[41] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal

Baweja, Seth Gilbert, and Prateek Saxena. A secure

sharding protocol for open blockchains. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, pages 17–30, New

York, NY, USA, 2016. ACM.

[42] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Sax-

ena. Smartpool: Practical decentralized pooled mining.

In 26th USENIX Security Symposium (USENIX Security

17), pages 1409–1426, Vancouver, BC, 2017. USENIX

Association.

[43] Thomas McGhin, Kim-Kwang Raymond Choo,

Charles Zhechao Liu, and Debiao He. Blockchain

in healthcare applications: Research challenges and

opportunities. Journal of Network and Computer

Applications, 135:62–75, 2019.

[44] Ralph C Merkle. A digital signature based on a conven-

tional encryption function. In Conference on the theory

and application of cryptographic techniques, pages 369–

378. Springer, 1987.

[45] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and

Patrick McCorry. Sprites: Payment channels that go

faster than lightning. CoRR abs/1702.05812, 306, 2017.

[46] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and

Dawn Song. The honey badger of bft protocols. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’16, pages

31–42, New York, NY, USA, 2016. ACM.

[47] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-

abeth O’Neil. The log-structured merge-tree (lsm-tree).

Acta Informatica, 33(4):351–385, 1996.

[48] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,

Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego

Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,

Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.

The ramcloud storage system. ACM Trans. Comput.

Syst., 33(3):7:1–7:55, 2015.

[49] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-

abeth O’Neil. The log-structured merge-tree (lsm-tree).

Acta Informatica, 33(4):351–385, 1996.

[50] Soujanya Ponnapalli, Aashaka Shah, Amy Tai, Sou-

vik Banerjee, Vijay Chidambaram, Dahlia Malkhi, and

Michael Wei. Rainblock: Faster transaction processing

in public blockchains, 2020.

[51] Tayebeh Rajab, Mohammad Hossein Manshaei, Mo-

hammad Dakhilalian, Murtuza Jadliwala, and Moham-

mad Ashiqur Rahman. On the feasibility of sybil at-

tacks in shard-based permissionless blockchains. arXiv

preprint arXiv:2002.06531, 2020.

[52] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. PebblesDB: Building Key-Value

Stores using Fragmented Log-Structured Merge Trees.

In Proceedings of the 26th ACM Symposium on Oper-

ating Systems Principles (SOSP ’17), Shanghai, China,

October 2017.

[53] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,

Gilad Oved, Zachary Keener, Vijay Chidambaram, and

Ittai Abraham. mLSM: Making Authenticated Storage

Faster in Ethereum. In 10th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage 18),

Boston, MA, 2018. USENIX Association.

[54] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy,

and Sasha Ivanov. Improving authenticated dynamic

dictionaries, with applications to cryptocurrencies. In

International Conference on Financial Cryptography

and Data Security, pages 376–392. Springer, 2017.

[55] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and

George Danezis. Replay attacks and defenses against

cross-shard consensus in sharded distributed ledgers.

arXiv preprint arXiv:1901.11218, 2019.

[56] Nick Szabo. Smart contracts. Unpublished manuscript,

1994.

[57] Peter Szilagyi. Are stateless clients a dead end?

https://www.reddit.com/r/ethereum/comments/

e8ujfy/are_stateless_clients_a_dead_end/,

December, 10, 2019.

[58] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin

Drake, Dankrad Feist, and Dmitry Khovratovich. Ag-

gregatable subvector commitments for stateless cryp-

tocurrencies. IACR Cryptol. ePrint Arch., 2020:527,

2020.

[59] Vitalik Buterin. Toward a 12-second Block

Time. https://blog.ethereum.org/2014/07/11/

toward-a-12-second-block-time/, 2014.

[60] Vitalik Buterin. Transaction spam attack: Next

Steps. https://blog.ethereum.org/2016/09/22/

transaction-spam-attack-next-steps/, 2016.

[61] Marko Vukolić. The quest for scalable blockchain fab-

ric: Proof-of-work vs. bft replication. In International

workshop on open problems in network security, pages

112–125. Springer, 2015.

[62] Jiaping Wang and Hao Wang. Monoxide: Scale out

blockchains with asynchronous consensus zones. In

16th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19), pages 95–112, Boston,

MA, February 2019. USENIX Association.

[63] Michael Wei, Amy Tai, Christopher J Rossbach, Ittai

Abraham, Maithem Munshed, Medhavi Dhawan, Jim

Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,

et al. vcorfu: A cloud-scale object store on a shared log.

In 14th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 17), pages 35–49,

2017.

[64] Jeffrey Wilcke. The Ethereum network is

currently undergoing a DoS attack. https:

//ethereum.github.io/blog/2016/09/22/

ethereum-network-currently-undergoing-\

dos-attack/, 2016.

[65] JI Wong. Cryptokitties is causing ethereum network

congestion (2017).

[66] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: En-

abling verifiable boolean range queries over blockchain

databases. In Proceedings of the 2019 international con-

ference on management of data, pages 141–158, 2019.

[67] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Al-

izadeh, David Tse, Giulia Fanti, and Pramod Viswanath.

Prism: Scaling bitcoin by 10,000 x. arXiv preprint

arXiv:1909.11261, 2019.

[68] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Aves-

timehr, Sreeram Kannan, and Pramod Viswanath. Coded

merkle tree: Solving data availability attacks in

blockchains. arXiv preprint arXiv:1910.01247, 2019.

[69] Jusik Yun, Yunyeong Goh, and Jong-Moon Chung.

Trust-based shard distribution scheme for fault-tolerant

shard blockchain networks. IEEE Access, 7:135164–

135175, 2019.

[70] Mahdi Zamani, Mahnush Movahedi, and Mariana

Raykova. Rapidchain: Scaling blockchain via full shard-

ing. In Proceedings of the 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS

’18, pages 931–948, New York, NY, USA, 2018. ACM.

[71] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian,

Aoying Zhou, Dong Xie, Ryan Stutsman, Haining

Li, and Huiqi Hu. Solar: towards a shared-

everything database on distributed log-structured stor-

age. In 2018 {USENIX} Annual Technical Conference

({USENIX}{ATC} 18), pages 795–807, 2018.

	Introduction
	Background and Motivation
	Public Blockchains and Ethereum
	Problem: Low throughput
	Straw-man solutions

	RainBlock
	Overview
	Building up the design step by step
	Architecture
	Speculative Pre-Execution
	Life of a Transaction in RainBlock
	Discussion

	DSM-Tree
	Bottom Layer
	Top Layer
	Synergy between the layers
	Summary

	Implementation
	Evaluation
	Performance of a single miner
	End-to-End Geo-distributed Experiment
	Perf impact of tunable parameters
	Overheads

	Related Work
	Conclusion

