
Architectural Adversarial Robustness: The Case for Deep Pursuit

George Cazenavette1 Calvin Murdock1 Simon Lucey1,2

1Carnegie Mellon University 2University of Adelaide

{gcazenav,cmurdock,slucey}@cs.cmu.edu

Abstract

Despite their unmatched performance, deep neural net-

works remain susceptible to targeted attacks by nearly im-

perceptible levels of adversarial noise. While the underly-

ing cause of this sensitivity is not well understood, theo-

retical analyses can be simplified by reframing each layer

of a feed-forward network as an approximate solution to a

sparse coding problem. Iterative solutions using basis pur-

suit are theoretically more stable and have improved adver-

sarial robustness. However, cascading layer-wise pursuit

implementations suffer from error accumulation in deeper

networks. In contrast, our new method of deep pursuit ap-

proximates the activations of all layers as a single global

optimization problem, allowing us to consider deeper, real-

world architectures with skip connections such as residual

networks. Experimentally, our approach demonstrates im-

proved robustness to adversarial noise.

1. Introduction

Multilayer sparse approximation has been proposed as

a robust alternative to feed-forward neural networks [17].

While provably less sensitive to noise, recurrent networks

that implement layered basis pursuit accumulate indepen-

dent errors and cannot be applied to modern large-scale

architectures. We propose a new method of deep pursuit,

wherein all activations of the network are synchronously

optimized through a global basis pursuit, circumventing er-

ror accumulation and accounting for the skip connections

commonly found in state-of-the-art network architectures.

We apply this technique to address a major weakness of

deep neural networks: despite unrivaled performance on su-

pervised tasks, they can be highly sensitive to certain types

of data noise. Specifically, adversarial attacks use imper-

ceptible targeted input perturbations to completely change

a network’s predictions [8]. Robustness to such attacks is

mission-critical to many domains, such as security systems

and autonomous vehicles.

Because the generalization properties of deep neural net-

works are not yet thoroughly understood, combating such

Figure 1. (a) Recurrent deep networks that implement layered ba-

sis pursuit have been shown to be provably more robust to adver-

sarial noise than feed-forward alternatives. However, this method

is incompatible with modern architectures. (b) We instead pro-

pose deep pursuit, which jointly infers all network activations as a

single structured sparse coding problem.

adversarial attacks remains an open problem. Current state-

of-the-art methods rely on specialized loss functions or

training techniques. However, these methods do not ex-

plain why some models are more susceptible to attacks than

others or how to create naturally robust architectures. In

this work, we apply techniques from sparse approximation

theory to design deep neural networks that are intrinsically

more robust to adversarial noise.

Previous works have suggested reframing each layer of

a neural network as a sparse coding problem to make their

outputs more robust [17] (Figure 1a). However, as noted by

the authors, this method accumulates error throughout the

layers of the network, potentially leading to poor perfor-

mance in deeper models. Additionally, this method offers

no provisions for handling skip connections between lay-

ers, preventing its use for real-world network architectures.

In order to exploit the natural robustness offered by

deeper networks [19] and skip connections [9], we pro-

pose adapting the layer-wise pursuit algorithm introduced

in [17] to the global view that reframes a neural network

as an approximate solution to a single sparse coding prob-

lem with block-structured parameters (Figure 1 B) [14]. We

7150



optimize the outputs of all layers synchronously [4], which

effectively amounts to adding recurrent feedback connec-

tions on top of a feed-forward network. By relating the en-

tire network to a single structured sparse coding problem,

our method does not suffer from error accumulation as the

network grows deeper. Furthermore, we can even entertain

residual and dense skip connections within our optimiza-

tion, something not possible using layered basis pursuit. We

call this method “deep pursuit.”

Our contributions are:

1. Through connections to sparse approximation theory,

we illustrate how the structure of a global sparse ap-

proximation problem predicts why certain architec-

tures are naturally more robust.

2. Extending the method of layered basis pursuit to our

global view, we propose a technique for synchronously

inferring all latent activations via block coordinate de-

scent.

3. We show how deep pursuit outperforms layered basis

pursuit by avoiding error accumulation and allowing

for skip connections between layers. Experimentally,

we demonstrate improved robustness to adversarial at-

tacks on the CIFAR-10 dataset.

2. Related Works

2.1. Adversarial Examples

In a white-box setting where an attacker has access to the

model’s parameters, an adversarial example can be crafted

to modify a prediction by explicitly maximizing the model’s

loss within given bounds on the noise. Goodfellow et. al.

introduced the “fast gradient sign method” where additive

perturbations are constructed from the sign of the gradient

of the output with respect to the input [8]. In a purely lin-

ear model, this maximizes the change in the output. They

hypothesized that this attack translates so well to neural net-

works because their components are all quasi-linear, despite

the overall function being technically highly non-linear.

2.2. Adversarial Training

Current state of the art methods for training models ro-

bust to adversarial attacks like these work by creating loss-

maximizing adversarial examples at train time [7, 18, 22].

By doing so, the model learns to correctly classify or embed

such examples. However, one caveat to this method is that

it only directly encourages robustness towards the type of

attack used to generate the adversarial samples.

Additionally, adversarial training takes much longer to

converge. Since the training set is continuously being up-

dated along with the model, the objective function is non-

stationary. This results in the optimization chasing an ever-

moving target, raising questions of when it is an appropriate

time to stop training. Evaluating adversarial training meth-

ods also necessitates testing performance on “seen” versus

“unseen” attacks. Since our proposed deep pursuit method

is purely architectural, we circumvent this requirement.

2.3. Sparse Approximation

Sparse coding techniques are useful in signal represen-

tation tasks in that they are provably robust. In contrast to

feed-forward representations that may amplify input errors,

iterative optimization of a sparsity-inducing objective func-

tion can be provably insensitive to input noise [6]. Building

upon theoretical connections between feed-forward deep

networks and sparse coding [15], recent work has even

shown that using a supervised sparse encoder for classifi-

cation tasks theoretically bounds the adversarial error [20].

The robustness of sparse coding techniques relies on the

redundancy of overcomplete representations. Their effec-

tiveness is determined by the mutual coherence of the re-

construction dictionaries, or the maximum absolute normal-

ized inner product of the atoms used in sparse linear combi-

nations for approximating input data [17, 20]. Small mutual

coherence leads to dictionaries that are closer to orthogo-

nal. Murdock and Lucey [14] developed a method of ana-

lyzing the global mutual coherence of deep neural networks

by viewing the parameters of all layers as a single struc-

tured matrix. Adding more layers with denser connections

between them decreases an architecture-dependent lower

bound on the global mutual coherence. Through correla-

tions with generalization capacity, this provided an explana-

tion for why deeper networks and those with skip connec-

tions are more naturally robust, leading to improved gener-

alization performance without overfitting.

2.4. Low­Rank Representations

Another method of achieving robustness is by exploit-

ing low-rank embeddings of the data [1]. It has even been

shown that dropout, an implicit method of encouraging ro-

bustness with noise, is related to low-rank weight matrix

factorization [3].

3. Architectural Robustness

Shallow iterative sparse approximation with layered ba-

sis pursuit has been shown to be provably more robust than

a feed-forward neural network layer [17]. By adapting this

theory towards a global view of a deep neural network as

a single structured sparse coding problem, we aim to con-

struct neural networks that are even more robust.

3.1. Neural Networks as Sparse Coding

To view a neural network as an approximate solution to

a sparse coding problem, we must first see the link between

proximal operators and non-linear activation functions. Be-

7151



Figure 2. A feed-forward neural network can be reframed as a cas-

cade of sparse coding problems with solutions approximated via

layered thresholding pursuit.

cause its trust region encourages sparsity in the trained pa-

rameters, the ℓ1 regularizer is often used as a surrogate for

minimizing the (intractable) ℓ0 norm [5]. The proximal op-

erator, a generalization of projection onto constraints, is a

tool used in convex optimization to optimize objectives with

non-differentiable penalty functions [16]. The proximal op-

erator of the ℓ1 norm with weight λ > 0 yields the elemen-

twise soft thresholding operator:

φλ(x) =











x− λ x > λ

0 −λ ≤ x ≤ λ

x+ λ x < −λ

(1)

Papayan et. al. [15] showed that if we also apply a non-

negative constraint, the resulting proximal operator φ̃λ in

Eq. 2 is equivalent to the Rectified Linear Unit (ReLU), a

nonlinearity commonly used in many state-of-the art deep

networks, with a negative bias of λ.

φ̃λ(x) = argmin
w≥0

1
2‖x−w‖22 + λ‖w‖1 = ReLU(x−λ) (2)

As such, we can then reframe a single layer of a neural

network as the approximate solution of the following non-

negative sparse coding problem (non-negative LASSO [21])

solved via soft-thresholding pursuit:

min
w≥0

1
2‖x−Bw‖22 + λ‖w‖1 (3)

A feed-forward chain network (without skip connec-

tions) with ReLU activations can then be interpreted as lay-

ered soft-thresholding pursuit, a cascade of approximate so-

lutions to sparse-coding problems (Figure 2):

f(x) = φ̃λl
(BT

l . . . φ̃λ2
(BT

2 φ̃λ1
(BT

1 x)) . . .) (4)

Here, x is an input vector and Bi are (dense or convolu-

tional) parameter dictionaries.

In this setting, the parameters are learned as

argmin
A,{Bj},{λj}

n
∑

i=1

J(AT f(xi), yi) (5)

where J is a loss function (e.g. cross-entropy), A contains

the parameters of a linear classifier, and yi is the target for

sample xi. One drawback of this classic feed-forward de-

sign is that small perturbations in the input x can be ampli-

fied through the layers leading to large changes in the output

f(x) for increased sensitivity to adversarial noise.

Figure 3. Instead of thresholding pursuit, Romano et. al. [17] pro-

posed solving each layer’s sparse coding problem with an iterative

algorithm. However, this method of layered basis pursuit suffers

from error accumulation and cannot account for skip connections.

By expressing neural networks as cascades of approx-

imate sparse coding problems, we can create more robust

models by reducing the noise sensitivity of each individual

layer in the network.

3.2. Local Iterations

One of the most popular algorithms used to solve the

LASSO problem is the Iterative Shrinking and Threshold-

ing Algorithm (ISTA) [2]. ISTA’s iterative update takes

the following form by first taking a negative (reconstruc-

tion loss) gradient step then applying the proximal operator

defined in Eq. 1:

w
[t+1] = φλ(w

[t] −B
T (Bw

[t] − x)) (6)

When considering non-negative ISTA, we simply replace

the soft thresholding operator φλ with the non-negative soft

thresholding operator φ̃λ.

Adopting a sparse-coding view of deep learning, Ro-

mano et. al. [17] re-framed a deep neural network as a

cascade of sparse approximation problems solved with an

iterative basis pursuit algorithm. Specifically, for an l-layer

neural network f such that f(x) = wl, for each layer j, we

have that

wj := argmin
w≥0

1
2‖wj−1 −Bjw‖22 + λj‖w‖1 (7)

where wj−1 is the output of the previous layer, w0 = x,

and w ≥ 0 constrains all values of w to be non-negative.

Semantically, w are coefficients used to reconstruct the co-

efficients of the previous layer, just as ISTA optimizes coef-

ficients to reconstruct a signal given a dictionary.

To solve this layer-wise optimization problem, we im-

plement proximal gradient descent where the gradient of the

smooth reconstruction loss, g
[t]
j , is

g
[t]
j =

∂

∂wj

‖wj−1 −Bjwj‖
2
2 = B

T
j (Bjw

[t−1]
j −wj−1)

(8)

and the algorithm is initialized with the feed-forward soft-

thresholding pursuit approximation

w
[0]
j = φ̃λj

(BT
j w

[0]
j−1) = ReLU(BT

j w
[0]
j−1 − λj) (9)

7152



Figure 4. In deep pursuit, all layers are updated synchronously and

take feedback from all adjacent layers. This method eliminates er-

ror accumulation and accounts for skip connections (as seen be-

tween layers 1 and 3).

which is iteratively updated by step size γj as

w
[t]
j = φ̃λj

(w
[t−1]
j − γjB

T
j (Bjw

[t−1]
j −wj−1)) (10)

Here, γj is initialized to 1
Lj

where Lj is the conservative

Lipschitz bound for guaranteed convergence as derived in

[4]. However, since we do not iterate until convergence,

we introduce a trainable parameter βj ∈ (0, 1] that allows

the network to automatically learn a larger step size such

that γj =
1

βjLj
. Our implementation of the full algorithm is

shown in Algorithm 1. In practice, it can be implemented as

a recurrent network where each layer is unrolled to a fixed

number of iterations (Figure 3.)

It was hypothesized in [17] that explicitly solving a

sparse coding problem makes the representation at each

layer more stable, and our empirical results corroborate this

theory. However, as noted in [17], any error remaining is

compounded through the subsequent layers of the network,

making this method less effective for sufficiently deep net-

works. Furthermore, it is not clear how local iterations (lay-

ered basis pursuit) could be adapted to network architec-

tures with skip connections, making this method infeasible

for modern architectures.

Algorithm 1: Inference with layered thresholding

pursuit [17]. See Eq. 8 for a definition of g.

w0 ← x

for j ← 1 to l do

for t ← 1 to T do

w
[t]
j ← φ̃λj

(w
[t−1]
j − 1

Ljβj
g
[t]
j )

end

end

3.3. Deep Pursuit

As shown in Eq. 4, a neural network can be expressed

as a cascade of multiple sparse coding problem. Alterna-

tively, we can view the activations of an entire network as

an approximate solution to a single sparse coding problem.

In this case, we can take our global loss as the sum of each

layer’s loss and infer all coefficients synchronously.

In this case, the global multi-layer non-negative LASSO

objective is:

argmin
{wj≥0}

1
2

l
∑

j=1

‖wj−1 −Bjwj‖
2
2 + λj‖wj‖1 (11)

Viewed with a single structured parameter matrix [14], this

can be equivalently expressed as

argmin
{wj≥0}

1
2

∥

∥

∥

∥

∥

∥

∥

∥

∥











x

0

...

0











−











B1 0

−I B2

. . .
. . .

0 −I Bl





















w1

w2

...

wl











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

+
l

∑

j=1

λj‖wj‖ (12)

Now, instead of relying on a cascading composition of solu-

tions, we can infer all coefficients jointly by solving a single

shallow sparse coding problem.

Structure-agnostic algorithms for shallow solutions (like

soft thresholding pursuit) will not work in this case since

there is no way for information to propagate from the in-

put x to the output f(x). Instead, we can now group the

variables and apply the block coordinate descent algorithm

introduced in [23] and applied in [4]. This optimization is

similar to that of local iterations, except that it incorporates

feedback from connected layers, and every layer is updated

in sequence during each iteration.

In this setting, the update for each layer j during global

iteration t is given as

w
[t]
j = φ̃λj

(ŵ
[t−1]
j − 1

βjLj
ĝ
[t]
j−1) (13)

where ŵ is the previous iteration’s result extrapolated with

0 ≤ αj < 1 as in [4] for improved convergence speed:

ŵ
[t−1]
j = w

[t−1]
j + αj(w

[t−1]
j −w

[t−2]
j ) (14)

The gradient of the global reconstruction error with re-

spect to block j is defined as

ĝ
[t]
j =















B
T
j (Bjŵ

[t−1]
j −w

[t]
j−1)

+(ŵ
[t−1]
j −Bj+1w

[t−1]
j+1 )

j < l

B
T
j (Bjŵ

[t−1]
j −w

[t]
j−1) j = l

(15)

We see that the gradient for the global update shown in

Eq. 15 is similar for the gradient in the layer-wise update

shown in Eq. 10. The key distinction is that the global

7153



update takes into account feedback from the subsequent

layer’s result from the previous iteration because there are

now two terms that include wj since the following layer is

trying to reconstruct it.

Since all parameters are updated synchronously, we no

longer have the problem of error accumulation present in

layered basis pursuit [17]. This allows us to entertain deeper

networks without fear of exploding error in cascading solu-

tions. While the robustness of layered basis pursuit is de-

termined by the mutual coherence of each layer [17], the

robustness of global deep pursuit is instead determined by

the mutual coherence of the global structured dictionary.

We give an outline of our deep pursuit algorithm in Al-

gorithm 2. Note that the inner and outer loops are reversed

so that the output of each layer is now updated at each itera-

tion. In contrast to the layered pursuit algorithm in Figure 3,

observe that the deep pursuit algorithm in Figure 4 allows

for skip connections. The feedback connections between

layers alleviate the information bottleneck between layers,

facilitating more effective backpropogation in deeper net-

works and inducing a less coherent global dictionary.

Algorithm 2: Inference with deep pursuit. See

Eqs. 15 and 18 for definitions of ĝ.

w0 ← x

for j ← 1 to l do

w
[0]
j ← φ̃λj

(BT
j w

[0]
j−1)

end

for t ← 1 to T do

for j ← 1 to l do

w
[t]
j ← φ̃λj

(ŵ
[t−1]
j − 1

βjLj
ĝ
[t]
j−1)

end

end

3.4. Global Iterations with Skip Connections

Skip connections between layers have become key com-

ponents of nearly all state-of-the-art architectures [10, 11].

From the perspective of sparse approximation, denser skip

connections between layers induce global dictionary struc-

tures with lower mutual coherence [14], leading to im-

proved robustness even with feed-forward approximations.

While the method of layered basis pursuit [17] gives no

clear way to incorporate these skip connections, deep pur-

suit can be naturally adapted to support skip connections

between layers.

To accomplish this, we can modify the global structured

dictionary matrix in Eq. 12 to account for general skip con-

nections by including additional off-diagonal blocks of pa-

rameters Bjk connecting layers j and k:

B =











B1 0

−B
T
21 B2

...
. . .

. . .

−B
T
l1 · · · −B

T
l(l−1) Bl











(16)

Taking advantage of the block lower-diagonal structure, ap-

proximate feed-forward inference for sparse coding prob-

lems with dictionaries like these can proceed incrementally

through the network [14]. Specifically, the output wj of

layer j can be found given all previous outputs as:

wj = φ̃λj

(

B
T
j

j−1
∑

k=1

B
T
jkwk

)

(17)

≈ argmin
wj

∥

∥

∥
Bjwj −

j−1
∑

k=1

B
T

jkwk

∥

∥

∥

2

2
+ λj‖wj‖1

This equation gives the general case for dense connec-

tions between every layer. For example, a residual connec-

tion between non-adjacent layers j and k is represented by

Bjk = I since the coefficients of layer k are simply added

to the pre-activations of layer j. Further details on these

structured dictionary matrices can be found in [14].

With this denser global dictionary, our gradients now in-

clude feedback using the most recent updates from all con-

nected layers (Figure 4):

ĝj = B
T
j (Bjwj −

j−1
∑

k=1

B
T
jkwk)

+

l
∑

j′=j+1

Bj′j(

j′−1
∑

k′=1

B
T
j′k′wk′ −Bj′wj′)

(18)

In addition to the well-known benefits of skip con-

nections to generalization and trainability, the addition of

more feedback connections between layers in our gradients

permits information to propagate throughout the network

faster, allowing for improved adversarial robustness with

fewer iterations.

4. Methods and Results

Our results highlight the improved adversarial robust-

ness of deep pursuit over layered basis pursuit and provide

theoretical insights through analysis of several sparse cod-

ing metrics, including frame potential, mutual coherence,

and reconstruction error.

For the following experiments, we train networks on

the CIFAR-10 dataset [13] and use the fast gradient sign

method [8] with appropriate values of ǫ to generate our ad-

versarial noise. Adversarial examples are constructed as

x̃ = x+ ǫ · sign
(∂J(x, y)

∂x

)

(19)

7154



Figure 5. In the feed-forward case, deeper networks with skip connections are, in general, naturally more adversarially robust than shallow

networks and those without skip connections. We propose the deep pursuit method to exploit this natural robustness since layered basis

pursuit cannot.

by moving each pixel in the direction that would cause

the loss to increase the most. We constrain our adversar-

ial perturbations to the ℓ∞ ball of radius ǫ. On our itera-

tive networks, the adversarial noise is calculated by back-

propagating through all the iterations.

We use the modified ResNet architectures from [14]

adapted to smaller input resolutions. These are compared

against chain networks with residual connections removed,

which have the same number of total learned parameters.

We also use batch normalization [12] adapted for our re-

current architectures by fixing the scale and offset from

the feed-forward initialization for all subsequent iterations.

Note that the bias corresponds to the weight of the ℓ1
penalty λ in Eq. 11, so we constrain it to be non-negative

to ensure convexity. All our models in Figure 6 had an ac-

curacy of around 90% on the clean validation set with any

variation being negligible.

In our figures, “L-TP” refers to layered thresholding pur-

suit (feed-forward), “L-BP” refers to layered basis pursuit

(local iterations), “DP” refers to deep pursuit (global iter-

ations), and “DP-res” refers to deep pursuit with residual

connections. In Figures 6, 9, and 10, each data point rep-

resents a unique model trained on T iterations where one

iteration indicates a baseline feed-forward network.

4.1. Depth, Skip Connections, and Robustness

From the perspective of sparse approximation, network

architectures that can induce global dictionary structures

with lower mutual coherence–which is limited by the Welch

bound–are less sensitive to input perturbations [14]. Two

simple ways of decreasing the Welch bound of an archi-

tecture are by making the network deeper or adding skip

connections. Figure 5 shows that skip connections improve

the adversarial robustness of sufficiently deep feed-forward

networks. Furthermore, the residual networks become more

robust as we add more layers. These two results moti-

vate developing a new pursuit algorithm that can entertain

deeper networks with residual connections.

4.2. Recurrence by Iterative Optimization

Figure 7 shows a sample training curve from a depth-1

residual network with 10 iterations. In all our deep pur-

suit experiments, we found that most of the improvement

in adversarial accuracy came right around when the train-

ing accuracy converged. More interestingly, the adversarial

accuracy continues to improve well after both training and

validation error have converged.

Before moving on to deeper networks with skip connec-

tions, we will establish a baseline showing that deep pursuit

(global iterations) performs just as well as layered thresh-

olding pursuit (local iterations). Observe in Figure 6 that

once we use enough global iterations, we achieve perfor-

mance comparable to local iterations. We hypothesize that

deep pursuit (without skip connections) requires a baseline

number of iterations to achieve the full benefit of adversar-

ial robustness because it takes an iteration for information

to propagate through a layer before moving to the next.

4.3. Effect of Residual Connections

As neural networks become deeper, skip connections

become necessary to achieve state-of-the-art performance

[10]. While local layered pursuit could not account for these

skip connections, our global deep pursuit incorporates them

into the optimization. Figure 6 highlights the benefits of

skip connections on adversarial robustness in iterative net-

works.

In addition to subverting the problem of error accumula-

tion present in layered thresholding pursuit [17], deep pur-

suit’s compatibility with skip connections are possibly our

largest contribution. Not only can we entertain larger, real-

7155



Figure 6. Deep pursuit with residual connections (DP-res) starts to outperform layered basis pursuit (L-BP) almost immediately. Without

skip connections, deep pursuit (DP) requires more iterations to propagate information through the layers, so it takes longer to see noticeable

improvement. (results from a depth-1 network)

Figure 7. Most of the improvement in adversarial robustness in

both layered basis pursuit (L-BP) and deep pursuit (DP) comes

after the training error has converged (black vertical line). In

the feed-forward case (L-TP), adversarial robustness degrades as

training continues.

world networks, but the addition of skip connections actu-

ally makes our algorithm achieve better performance with

fewer iterations than on a traditional chain network. We

We hypothesize that this is because the skip connections al-

low information to propagate to more layers per iteration,

speeding up the internal optimization.

4.4. Reconstruction Error

As the main objective of sparse approximation algo-

rithms is reconstructing a signal, the reconstruction error

of our algorithms should give insight as to why one outper-

forms another. In our experiments, deep pursuit had, on av-

erage, lower reconstruction error per iteration than layered

basis pursuit (Figure 8). Adding skip connections further

reduced the reconstruction error per iteration.

Figure 8. If we analyze the average reconstruction error of each

layer per iteration (of a 10 iteration model), we observe that deep

pursuit (with and without skip connections) induces more robust

embeddings.

We also saw that for all three models, the reconstruction

error increased over the last few iterations, regardless of the

total number. If we only used the conservative Lipschitz

constant [4] as the internal step-size for our pursuit algo-

rithms, we would see reconstruction error strictly decrease

over the iterations. However, our step size is learned based

on the loss of the classification task, explaining the increase

in reconstruction error over the last few iterations.

4.5. Deep Welch Bound

As described in [14], mutual coherence (maximum ab-

solute inner product of columns) and frame potential (mean

absolute inner product of columns) are measures of the

sensitivity of a linear system. Layered basis pursuit and

global deep pursuit (without skip connections) have the

same global dictionary structure and, therefore, the same

7156



Figure 9. Deep frame potential as described in [14]. As we add

more iterations, the deep frame potential of deep pursuit model

(with residual connections) decreases, indicating a more robust so-

lution.

Figure 10. Deep mutual coherence as described in [14]. While a

less stable metric than frame potential, we still see that the addition

of skip connections (DP-res) induces a lower mutual coherence in

our model.

Welch bound. However, since deep pursuit optimizes the

whole global dictionary synchronously, the deep frame po-

tential is typically lower than that of layered basis pur-

suit (Figure 9). Furthermore, we know that skip connec-

tions lower the Welch bound, allowing global deep pursuit

to have an even smaller deep frame potential and mutual co-

herence. By comparing Figures 9 and 10 with Figure 6 we

see that the deep frame potential and mutual coherence are

good predictors of the adversarial robustness of a network.

5. Conclusions

In this work, we extend provably robust sparse approx-

imation techniques to deep neural networks to make them

more resistant to adversarial attacks. Previous work re-

framed each network as a separate sparse coding problem

[17], but this technique of layered basis pursuit is prone to

error accumulation and cannot entertain modern architec-

tures with skip connections. In contrast, our new method

of deep pursuit treats the entire network as a single sparse

coding problem to be solved synchronously. As such, our

method avoids the issue of error accumulation. Further-

more, by viewing all network parameters as a single struc-

tured matrix, our method is easily extended to account for

skip connections. Deep pursuit with skip connections con-

sistently out-performs layered basis pursuit and induces a

lower deep mutual coherence, which is theoretically tied to

adversarial robustness.

Overall, we introduce a strictly architectural method of

inducing adversarial robustness in modern neural networks

and provide theoretical reasoning for its effectiveness. A

theoretical understanding of robust architectures is a sig-

nificant step towards solving the ever-changing problem of

adversarial attacks. As more of modern society continues to

rely on computer vision and machine learning, it is critical

that we ensure the safety and robustness of these techniques.

6. Acknowledgements

This material is based upon work supported by the Na-

tional Science Foundation Graduate Research Fellowship

under Grant No. DGE1745016 and by the National Science

Foundation under Grant No.1925281 along with the CMU

Argo AI Center for Autonomous Vehicle Research.

References

[1] Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, and Ar-

avindan Vijayaraghavan. Adversarial robustness via robust

low rank representations. Advances in Neural Information

Processing Systems, 33, 2020.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM

journal on imaging sciences, 2(1):183–202, 2009.

[3] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor

Lane, Vittorio Murino, and Rene Vidal. Dropout as a low-

rank regularizer for matrix factorization. In International

Conference on Artificial Intelligence and Statistics, pages

435–444. PMLR, 2018.

[4] Nathaniel Chodosh and Simon Lucey. When to use convolu-

tional neural networks for inverse problems. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 8226–8235, 2020.

[5] David L. Donoho and Michael Elad. Optimally sparse repre-

sentation in general (nonorthogonal) dictionaries via l1 mini-

mization. Proceedings of the National Academy of Sciences,

100(5):2197–2202, 2003.

[6] David L. Donoho, Michael Elad, and Vladimir N.

Temlyakov. Stable recovery of sparse overcomplete repre-

sentations in the presence of noise. IEEE Transactions on

Information Theory, 52(1), 2005.

[7] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng,

and Jingjing Liu. Large-scale adversarial training for

7157



vision-and-language representation learning. arXiv preprint

arXiv:2006.06195, 2020.

[8] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations, 2015.

[9] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua

Lin. When nas meets robustness: In search of robust ar-

chitectures against adversarial attacks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 631–640, 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[13] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009.

[14] Calvin Murdock and Simon Lucey. Dataless model se-

lection with the deep frame potential. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11257–11265, 2020.

[15] Vardan Papyan, Yaniv Romano, and Michael Elad. Convo-

lutional neural networks analyzed via convolutional sparse

coding. The Journal of Machine Learning Research,

18(1):2887–2938, 2017.

[16] Neal Parikh and Stephen Boyd. Proximal algorithms. Foun-

dations and Trends in optimization, 1(3):127–239, 2014.

[17] Yaniv Romano, Aviad Aberdam, Jeremias Sulam, and

Michael Elad. Adversarial noise attacks of deep learning

architectures: Stability analysis via sparse-modeled signals.

Journal of Mathematical Imaging and Vision, pages 1–15,

2019.

[18] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. Ad-

versarial training is a form of data-dependent operator norm

regularization. arXiv preprint arXiv:1906.01527, 2019.

[19] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu

Chen, and Yupeng Gao. Is robustness the cost of accuracy?–

a comprehensive study on the robustness of 18 deep image

classification models. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 631–648, 2018.

[20] Jeremias Sulam, Ramchandran Muthukumar, and Raman

Arora. Adversarial robustness of supervised sparse cod-

ing. Advances in Neural Information Processing Systems,

33, 2020.

[21] Robert Tibshirani. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996.

[22] Yuanhao Xiong and Cho-Jui Hsieh. Improved adver-

sarial training via learned optimizer. arXiv preprint

arXiv:2004.12227, 2020.

[23] Yangyang Xu and Wotao Yin. A block coordinate descent

method for regularized multiconvex optimization with appli-

cations to nonnegative tensor factorization and completion.

SIAM Journal on imaging sciences, 6(3):1758–1789, 2013.

7158


