
LaNi_xFe_{1-x}O_{3-δ} as a Robust Redox Catalyst for CO₂-Splitting and Methane Partial Oxidation

Sherafghan Iftikhar¹, Qiongqiong Jiang^{1,2}, Yunfei Gao¹, Junchen Liu¹, Haiming Gu^{1,3}, Luke Neal¹, and Fanxing Li^{1*}

* E-mail: fli5@ncsu.edu

TOC Graphic

¹ Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695-7905, United States.

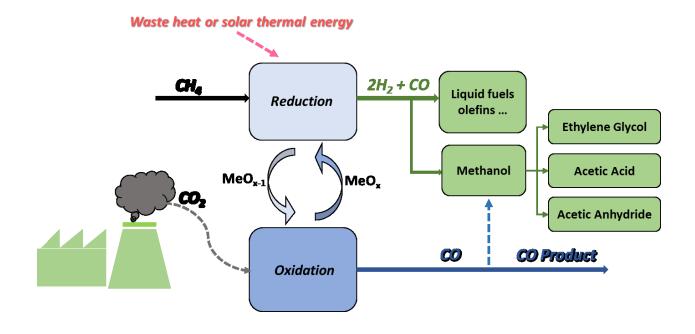
² Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 China.

^{3.}School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

The current study reports LaNi_{0.5}Fe_{0.5}O_{3-δ} as a robust redox catalyst for CO₂-Splitting and methane partial oxidation at relatively low temperatures (~700 °C) in the context of a hybrid redox process (HRP). Specifically, perovskite structured LaNi $_x$ Fe $_{1-x}O_{3-\delta}$ (LNF) with nine different compositions (x = 0.05 – 0.5) were prepared and investigated. Among the samples evaluated, LaNi_{0.4}Fe_{0.6}O_{3- δ} and LaNi_{0.5}Fe_{0.5}O_{3-δ} showed superior redox performance, with ~90% CO₂ and methane conversions and >90% syngas selectivity. The standalone LNFs also demonstrated performance comparable to that of LNF promoted by mixed conductive Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2-δ} (CGCO). Long-term testing of LaNi_{0.5}Fe_{0.5}O_{3-δ} indicated that the redox catalyst gradually loses its activity over repeated redox cycles, amounting to approximately 0.02% activity loss each cycle, averaged over 500 cycles. This gradual deactivation was found to be reversible by deep oxidation with air. Further characterizations indicated that the loss of activity was resulted from a slow accumulation of iron carbide (Fe₃C and Fe₅C₂) phases, which cannot be effectively removed during the CO₂ splitting step. Reoxidation with air removed the carbide phases, increased the availability of Fe for the redox reactions via solid state reactions with La₂O₃, and decreased the average crystallite size of La₂O₃. Reactivating the redox catalyst periodically, e.g. once every 40 cycles, was shown to be highly effective, as confirmed by operating the redox catalyst over 900 cumulative cycles while maintaining satisfactory redox performance.

Key words: Chemical looping, CO₂-splitting, methane partial oxidation, perovskite, redox catalyst


1. Introduction

Carbon dioxide is a major contributor to global climate change. 43 billion metric tons of CO₂ was emitted in 2019, more than twice the target value of 20 billion metric tons/year for 2040.² Most of the emitted CO₂ is resulted from combustion of fossils fuels as energy sources. Specifically, contribution from the industrial sector in GHG emissions was near 23% in United States (2019).³ Although extensive research has been carried out to develop alternative, environment friendly energy sources, fossil fuels are still expected to play an important role, with an estimated annual increase of 1.4% on average through 2035.4 Therefore, efficient and economically viable carbon dioxide capture, storage, and utilization technologies are highly desirable.⁵⁻⁸ In terms of CO₂ utilization, converting CO₂ to CO, an important building block in the chemical industry, offers the opportunity to produce a variety of value-added products. 9 However, breaking the C=O bond in CO₂ is highly energy intensive. ¹⁰ To utilize CO₂, electrochemical and photochemical methods have been considered recently but they face different challenges such as low CO₂ conversion, limited energetic efficiency, slow electron transfer, and/or low photon efficiencies. 11 Thermochemical conversion of CO₂ to CO is another alternative that utilizes an oxygen carrier, also known as a redox catalyst, in which the oxygen carrier is first reduced by thermal decomposition and followed by CO₂ splitting to replenish the lattice oxygen released in the thermal decomposition step. 12-15 Although the thermochemical approach is attractive, high operating temperature (>1100 °C) and limited CO₂ conversion remains as key challenges. ^{16,17} Methane has this ability to reduce the metal oxide at relatively low temperatures 18-20 which can be advantageous for CO₂ splitting. Once such example is the dry reforming of methane which offers an opportunity to utilize CO₂ by producing syngas with a hydrogen to CO ratio of around one.^{21–25} However, the low H₂/CO ratio limits its potential applications unless a fraction of CO is separated from the syngas stream. To address this challenge, we proposed an open-loop Hybrid Redox Process (HRP) concept for thermochemical reduction of CO₂ and methane partial oxidation.^{26,27} HRP works in two steps as shown in the Figure 1. In the first step, a redox catalyst reacts with methane to yield synthesis gas (R1) with a H₂: CO ratio near 2:1, which is suitable for methanol and Fischer-Tropsch synthesis.²⁸ The reduced redox catalyst then reacts with an oxidizing agent such as CO₂ to yield CO (R2). The system further offers the flexibility for downstream carbonylation chemistry, for

example, to produce acetic acid using methanol and CO products without the needs for syngas separation.²⁹ Compared to conventional thermochemical CO₂ splitting approaches, the use of methane as the reducing agent in HRP can significantly lower the operating temperature for CO₂-splitting.²⁶

$$CO_2 + MeO_{x-1} = MeO_x + CO$$
 (R1)

$$CH_4 + MeO_x = MeO_{x-1} + CO + 2H_2$$
 (R2)

Figure 1. A simplified schematic of the hybrid redox process.

Besides the ability to effectively split CO₂, an ideal redox catalyst for HRP should have high CO selectivity in the methane partial oxidation (POx) step and avoid the side reactions such as complete combustion and methane decomposition³⁰. In addition, the redox catalyst should be stable over repeated redox cycles. Previous studies have shown that the oxides and mixed oxides of iron, cobalt, and/or nickel with various supports are potentially suitable candidates for

methane POx and thermochemical CO₂-splitting.^{7,20,31,32} For example, nanostructured Fe@SiO₂ and Fe-BHA (barium hexa-aluminate) were investigated by Veser et al.²¹ in a chemical looping dry reforming (CLDR) scheme within a temperature range of 500-800 °C. Fe-supported on BHA showed better redox kinetics and stability compared to Fe@SiO2 at 800 °C. The formation of silicates and partial distortion of the core-shell structure, caused by the poor hydrothermal stability of SiO₂ at the high temperatures, was found to be the main reason for the catalyst deactivation in the nanostructured Fe@SiO₂. In another study, the redox performance of ironbased oxygen carriers were enhanced by synthesising iron-nickel mixed oxides and the results indicated high methane and CO₂ conversions, both above 90% for CLDR at near 1000°C. The product selectivities were approximately 95%³³. Ceria-based oxides have also been investigated as the oxygen carriers, reporting near 95% CO₂ conversion in CLDR at 800°C. However, syngas yield was limited (~38%) due to the low selectivity. 34,35 Recent experimental and density functional theory (DFT) studies have also shown that perovskites, with a general formula ABO₃₋₆, are suitable for redox reactions.^{36–38} For example, Michalsky et al.³⁹ synthesized La_{0.6}Sr_{0.4}Co_{0.2}Fe0.8O_{3-δ} (LSCF) to carry out the dry reforming of methane (DRM) in a membrane reactor and found that the results were promising in a temperature range of 840 -1030 °C. Zhang et al.⁴⁰ reported nanocomposites of Sr₃Fe₂O_{7-δ} and (Ca/Mn)O which showed near 100 % conversion for CO₂ and ~96% syngas selectivity at 950°C.

The above-mentioned studies required high temperatures to achieve reasonable CO_2 conversions and syngas yields (≥ 800 °C). However, high temperatures would increase the overall cost of operation and can lead to side reactions such as coke formation.³⁴ To improve the redox performance at low temperatures, the use of platinum group metals (PGMs) to enhance the catalytic activity of perovskite-based redox catalysts was proposed.^{22,26} The primary role of PGMs is to activate CH₄. Haribal et al²⁶ demonstrated that Rh promoted, lanthanum doped cerium oxide can achieve near-complete CO_2 conversion with 83% syngas yield at 650°C. However, PGMs would add significant cost to the catalyst. To address this, we reported a PGM free LaNi_{0.35}Fe_{0.65}O₃ (LNF)/Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2-δ} (CGCO) composite, which achieved >90% conversion for both the CO_2 splitting and methane partial oxidation (POx) steps at 750°C, along

with >90% syngas selectivity in the methane POx step. 27 Although the synergy and compatibility between LNF and CGCO are highly beneficial for the activity of the redox catalyst, preparation of the composite oxides involves complex procedures. It is therefore desirable to further simplify the PGM-free redox catalyst to lower the cost while maintaining its activity at intermediate temperatures. Another common limitation in the previous studies is that the stability of redox catalysts was demonstrated for a maximum of 100 cycles, and more typically 10 - 20 cycles. Verification of oxide stability over a larger number of cycles is important for potential industrial applications.

In this study, perovskite structured LaNi_xFe_{1-x}O₃, with nine different compositions (x = 0.05 - 0.5), were synthesized with an aim to simplify the redox catalyst formulation while maintaining its low temperature performance. In addition, rock salt structured Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2- δ} (CGCO) was also composited with the optimal LNF compositions to compare their performance. We also investigated the long-term stability of a LaNi_{0.5}Fe_{0.5}O₃ redox catalyst and unveiled the underlying reason for its gradual loss of activity. Based on the reactivation mechanism, air reoxidation was proposed and validated as an effective strategy to reverse such deactivation. With periodic reactivation, the LNF redox catalyst exhibited stable performance over 900 cycles, highlighting its potential as a cost-effective redox catalyst for the hybrid redox process.

2. Experimental

2.1. Redox catalyst synthesis

LaNi_xFe_{1-x}O_{3-δ} perovskites were prepared via a modified Pechini method. The detailed synthesis procedure was described elsewhere²⁷. The main synthesis steps include mixing nitrate precursors of La, Ni and Fe with citric acid at molar ratio of 1: 2.5 (sum of metal cations: acetic acid). This is followed by mixing the dissolved cations with ethylene glycol at a 1.5:1 molar ratio (ethylene glycol: citric acid). The resulting mixture is then heated at 80 °C to form a gel. The gel was first dried at 120 °C overnight then calcined at 750 °C for 6 h under an oxidative environment. Mixed composites were prepared by first synthesizing CGCO separately, using the modified Pechini method, and mixing it with LNF at a 60/40 ratio by weight using a high-energy ball mill. This is

following by pelletization. Finally, all the prepared sample were fragmented and sieved to a size range of 250-450 μ m for redox experiments in a fixed bed (U-shaped quartz tube; 4mm ID). Standalone LNF and composite CGCO/LNF were also synthesized for redox experiments in a 0.75" I.D. packed bed with a larger particle size range (850 μ m-1,000 μ m).

2.2. Characterization

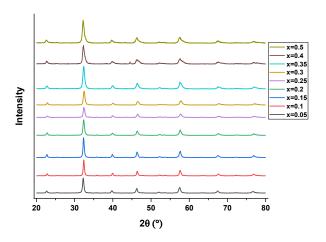
Crystalline phases in various samples, including as-prepared, deactivated, reactivated, and O_2/CO_2 treated samples, were characterized via X-ray diffraction (XRD). Rigaku SmartLab X-ray diffractometer with Cu-K α radiation at 40 kV and 44 mA was used to record the diffraction spectra. A step-size method with a step size of 0.05° and a residence time of 2 s at each step was used by varying the 2 θ angle from 20° to 80°. Temperature-programmed reduction/Oxidation (TPR/TPO) experiments were performed to investigate the reducibility and deactivation/reactivation mechanisms. In TGA based TPR/TPO experiments, ~10 mg of sample was placed inside a thermogravimetric analyser (TGA) apparatus. For TPR, the samples were exposed to 200 ml/min of CH₄/Ar mixture (5 vol%) with a temperature ramping rate of 20 °C/min. TPO experiments were performed in both a fixed bed (U-shaped quartz tube; 4mm ID) and a TGA by exposing the deactivated sample to O_2 /Ar or CO_2 /Ar mixture (5 vol%) at 200 ml/min and 25 ml/min respectively with a temperature ramping rate of 20 °C/min. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were performed using a Hitachi S3200 VPSEM with an acceleration voltage of 20kVa.

2.3. Redox tests

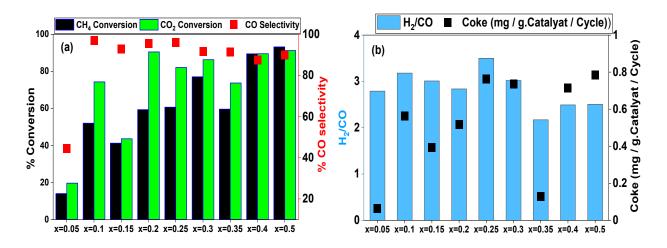
The redox performance of all the samples prepared was evaluated by exposing them to CH₄/CO₂ redox cycles. In a typical experiment, the sample was packed in a in a fixed bed (U-shaped quartz tube; 4mm ID) which was placed inside an electric furnace. The product gas compositions were quantified with a quadrupole mass spectrometer (Cirrus 2, MKS). 0.5g of the as prepared redox catalyst sizing between 250-450um was loaded into the U-shaped quartz tube. To keep the particles in place, U-tube was loaded with quartz wool on both ends. The furnace was heated up to reaction temperature in Ar (25 ml/min) followed by the introduction of reducing gas CH₄ at 2.8 ml/min for 2 mins. After the reduction step, the U-tube was purged with 25 ml/min Ar to

remove the leftover CH₄ followed by the introduction of CO₂ at 1.4 ml/min along with 25 ml/min Ar for 4 mins. This is followed with Ar purge prior to the next redox cycle.

A 0.75" I.D. packed bed was used for long-term stability studies with 5g of redox catalysts (both standalone LNF and composite CGCO/LNF). A schematic of the reactor is provided in Figure S1 (in the Supplementary Information). Before the long-term experiments, the effect of gas hourly space velocities (GHSV) was determined with 80% CH₄ and CO₂ as the reducing and oxidizing gases respectively. A schematic of the packed bed is shown in the Figure S1. The total volumes of reducing (112.5cm³) and oxidizing (112.5cm³) gases injected were kept constant by adjusting the contact time at various GHSVs (1673, 835 and 420h⁻¹). Long term testing was performed with 10g LNF for 900 cumulative cycles. For the first 500 cycles, CH₄ and CO₂ concentrations were 30% and 50% respectively. Cycles 501-700 were conducted with 15% CH₄ and CO₂ concentrations. Cycles 701 to 900 were performed with 15% CH₄ and CO₂ with 20 ml total injection for both CH₄ and CO₂. To re-activate the redox catalyst, air treatment of the redox catalyst was implemented periodically at an overall air flow rate of 45 ml/min for 25 minutes at 930 °C.


3. Results and Discussion

3.1. Phase Characterization and redox performance of the redox catalysts


XRD patterns of the as synthesised LaNi_xFe_{1-x}O_{3-δ} samples are shown in Figure 2. For all the LaNi_xFe_{1-x}O_{3-δ} samples, an orthorhombic perovskite phase was detected with negligible impurities. This confirms the compatibility of Ni as a B-site dopant in LaFeO₃. Redox performance of the as prepared samples was evaluated in the lab scale U-tube reactor by exposing them to CH₄/CO₂ redox cycles, as shown in Figure 3. As can be seen, partial substitution of Ni into LaFeO₃ substantially improved the redox performance in both methane and CO₂ conversion steps: CH₄ conversion was merely 15% for LaFe_{0.05}Ni_{0.95}O₃. Increase in the Ni content improved the redox performance by up to 6 folds. The best performance was observed for LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃, with near 90% CH₄ and CO₂ conversions. CO selectivities for these samples were also near 90%. LaNi_{0.5}Fe_{0.5}O₃ exhibited slightly higher activity than LaNi_{0.4}Fe_{0.6}O₃. We note that small amounts of coke were also formed during the methane POx step on all the samples. Figure 3(b) summarizes the H₂/CO ratios and the amounts of coke formation in the methane POx step.

As can be seen, H₂/CO for LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ was near 2.4. Mass balances indicate 0.07 and 0.08 wt.% coke formation, respectively. We note that the coke formed in the methane POx step was near completely gasified in the CO₂-splitting step, leading to increased CO yield when compared to the redox based CO₂-splitting alone. Generally speaking, the amount of carbon deposition is affected by the amount of CH₄ injected and hence it varies with the reaction time of the POx step. Figure S2 in the supplemental file illustrates the accumulation of coke over time on LaNi_{0.5}Fe_{0.5}O₃. The redox catalysts tested in the current study resulted in relatively small amounts of carbon (0.45 to 0.8mg/g. catalyst/cycle) for the given reaction conditions, as shown in Figure 3b. A majority of this carbon, ~81% in the case of LaNi_{0.5}Fe_{0.5}O₃, was gasified in the subsequent CO₂-splitting step. Further discussions on coke formation, removal, and long-term accumulation are provided in Section 3.3. It should also be noted that the coke formation for LaNi_{0.35}Fe_{0.65}O₃ was lower than LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃, but the corresponding CH₄/CO₂ conversions were significantly lower as well. The general trends from Figure 3 indicate that an increase in nickel content leads to improved redox performance. On the other hand, it also leads to moderate increase in coke formation. This is understandable given that Ni is more reducible than Fe and metallic Ni (and Ni-Fe bimetallic alloys) are highly active for methane activation and coke formation. In addition, there appeared to be a few "outliers", e.g. LaNi_{0.35}Fe_{0.65}O₃ and LaNi_{0.15}Fe_{0.85}O₃, especially in terms of the trend for coke formation amount. This is likely to have resulted from the slight differences in the average oxidation states of the redox catalysts when operated under steady state redox cycles. Redox catalysts stabilized at higher average oxidation states tend to exhibit lower activity for methane activation and hence lower coke formation.

In our previous study, we showed that LaNi_{0.35}Fe_{0.65}O₃ (LNF)/Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2- δ} (CGCO) composite exhibited satisfactory performance with >90% conversions in both methane partial oxidation (POx) and CO₂ splitting steps and with >95% CO selectivity at 750°C.²⁷ In comparison, LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ exhibited similar performance at a lower temperature (700°C). Given the simplicity of LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ compared to LNF/CGCO composites, they can be more cost-effective for HRP. The next section investigates the effect of CGCO addition to LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ towards the redox performance.

Figure 2. XRD Patterns of as-synthesized LaNi_xFe_{1-x}O_{3- δ} (x = 0.05 to 0.5).

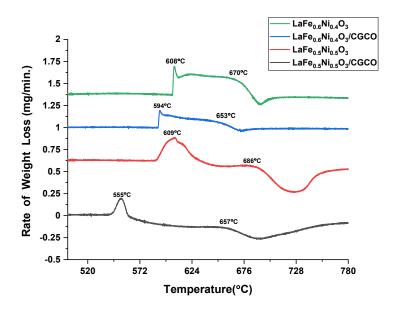
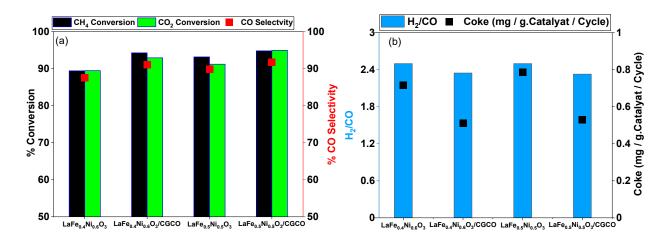
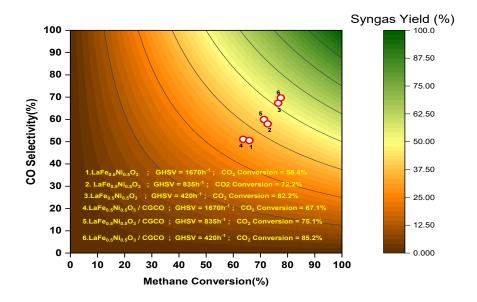


Figure 3. Redox Performance of standalone LaNi_xFe_{1-x}O₃ (x = 0.05 to 0.5) at 700°C (a) CH₄ and CO₂ conversions and CO selectivity; (b) H₂/CO ratios and amount of coke formation.

3.2. Redox performance comparisons between standalone LNF and LNF/CGCO composites

Our previous study indicated that CGCO effectively enhances the redox performance of LaNi_{0.35}Fe_{0.65}O₃. To analyze and compare the redox performance of standalone LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ with LNF/CGCO mixed composites, CGCO was mixed with LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃, to prepare two CGCO/LNF redox catalysts. Before running the redox tests, the mixed composites were reduced in CH₄ to evaluate the reducibility. The results are shown in Figure 4. Three peaks were observed. The first peak is very prominent for all the samples whereas the second peak exhibits as a shoulder. These two peaks correspond to the reduction of metal


cations. The first peak is likely to be the reduction of Fe³⁺ to Fe²⁺ and Ni³⁺ to Ni²⁺ whereas the second peak can be assigned to the further reduction to metallic phases.⁴¹ CGCO, on the other hand, is hardly reducible at temperatures less than 800 °C. However, the synergistic effect of the LNF/CGCO composite would facilitate its reduction.²⁷ The addition of CGCO clearly shifted the reduction peaks of LaNi_{0.4}Fe_{0.6}O₃/CGCO and LaNi_{0.5}Fe_{0.5}O₃/CGCO to lower temperatures, by 14 and 54 °C, respectively. In addition, the total weight loss for LaNi_{0.4}Fe_{0.6}O₃, LaNi_{0.5}Fe_{0.5}O₃/CGCO were 8.5, 5, 5.7 and 2.3wt%. The total weight loss numbers indicate that although the addition of CGCO shifted the reduction peaks to lower temperatures, the oxygen capacities of standalone LNFs are higher. This is understandable since CGCO is less reducible. The total weight loss during the reduction was above 5 wt% for all the samples except for LaNi_{0.5}Fe_{0.5}O₃/CGCO. The third peak, which corresponds to weight gain, was observed due to the coke deposition via CH₄ cracking. It is evident that addition of CGCO was effective to inhibit coke formation.


Figure 4. CH₄ TPR of standalone LNF and Composite LNF/CGCO (40/60)

The TPR peaks also confirm that all the materials are reducible at temperatures less than 700 °C. Meanwhile, equilibrium limitations for methane conversion would likely to require an operating temperature higher than 650 °C. As such, standalone LNFs, which were substantially reduced by 680°C based on TPR, are likely to exhibit satisfactory performance despite being less reducible

than CGCO/LNF composites. In addition, coke formation should be relatively low at operating temperatures below 700 °C. To compare the redox performance under isothermal conditions, both composite materials (CGCO/LNF) and standalone LNFs (LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃,) were evaluated in the lab scale U-tube reactor under identical conditions. The redox performance of mixed composites is shown in Figure 5a. It can be observed that, in the case of LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃, the addition of CGCO improved the redox performance with approximately 4% increase in the CH₄ conversion and 3% increase in the CO₂ conversion. Coke formation was also higher (~30%) for standalone LNF compared to the composite CGCO/LNF (Figure 5b). The higher coke resistance of CGCO/LNF samples is consistent with the TPR results. We note that the redox performances of standalone LNFs are only slightly inferior to those of the composite CGCO/LNFs. Considering the simplicity and potential cost savings, standalone LaNi_{0.5}Fe_{0.5}O₃ can be a very promising candidate. It is also noted that the redox kinetics can affect the redox catalyst performance at high gas hourly space velocities (GHSVs). It is therefore informative to investigate the effect of CGCO addition at a larger scale. With this in mind, we tested both standalone LaNi_{0.5}Fe_{0.5}O₃(LNF) and composite CGCO/LNF in a .75" I.D. packed bed at 700 °C with 80% CH₄/CO₂ concentrations (balance Argon). The results are shown in the Figure 6. It was found that GHSV has a significant influence on the syngas yield. For example, at GHSV=1670 h⁻¹ and 15s injection time, 63.65% CH₄ conversion, 58.85% CO₂ conversion and 95.25% CO selectivity was observed, respectively. By decreasing the GHSV to 835 h⁻¹, syngas yield was improved, with 71.30% CH₄ conversion, 72.23% CO₂ conversion, and 93.84% CO selectivity. Upon further decrease of GHSV, redox performance was further improved to 76.51% CH₄ conversion, 82.14% CO₂ conversion and 91.40% CO selectivity. Improved performance at lower GHSVs is due to the longer residence time for the reactant gases. We also note that the redox performance of composite CGCO/LNF is comparable to that of standalone LNF. This further confirms the potential of standalone LNF as a simple yet effective redox catalyst.

Figure 5. Redox Performance of standalone LaNi_xFe_{1-x}O_{3- δ} (x = 0.4 and 0.5) and composite LNF/CGCO (40/60) at 700°C (a) CH₄ and CO₂ conversions and CO selectivity in the methane POx step; (b) H₂/CO ratio and coke formation.

Figure 6. Effect of GHSV on the redox performance of standalone LNF and Composite LNF/CGCO (40/60) in a 0.75" I.D. packed bed at 700 $^{\circ}$ C with 80% CH₄ and CO₂ concentrations in the feed.

3.3. Redox catalyst deactivation and reactivation mechanisms and long-term stability

To evaluate the long-term stability of the redox catalyst, a 0.75'' I.D. packed bed reactor was used. A 700-cycle experiment was first performed. Results are shown in the Figure 7 (cycle to cycle data is provided in the Figure S3). As can be seen, both CH_4 and CO_2 conversions started at ~86 and 92% respectively. At the 500^{th} cycle, conversions dropped to ~80%, indicating a slight deactivation of the redox catalyst. It was determined that deep oxidation of the redox catalyst

with air was effective in reactivating the redox catalyst. As can be seen, reactivation of the redox catalyst with air prior to cycle 501 resulted in a 5% increase in methane conversion and 6% increase in CO₂ conversion. To investigate the effect of inlet gas concentrations, both CH₄ and CO₂ concentrations were decreased to 15% starting from cycle 501 without changing the total amount of CH₄ and CO₂ being injected. As can be seen, both CH₄ and CO₂ conversions started at above 85% after reactivation and then gradually dropped to ~80% at the 700th cycle. This indicates that gradual deactivation may be unavoidable without periodic reactivation of the LNF redox catalyst. Before further exposing the sample for additional redox cycles, deactivation/reactivation mechanisms were investigated.

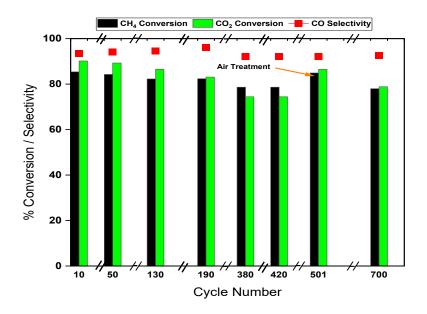
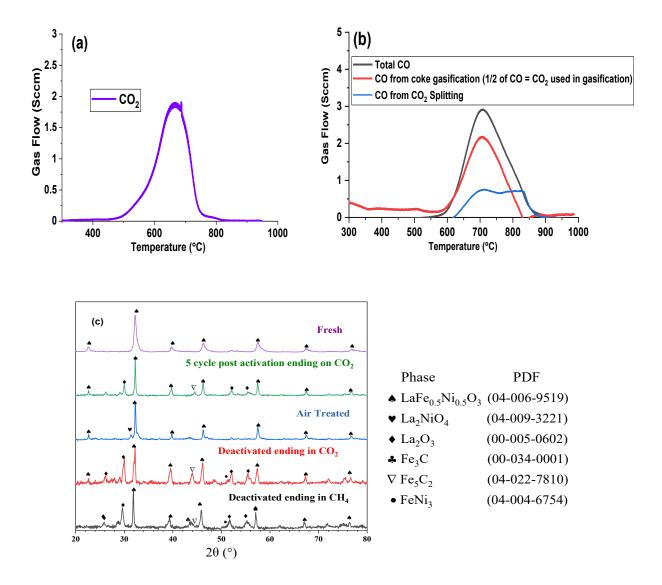



Figure 7. CH₄/CO₂ conversions and CO selectivity for long term tests with a standalone LaNi_{0.5}Fe_{0.5}O₃.

To determine the re-activation and deactivation mechanisms, XRD and temperature programmed oxidation with O_2 and CO_2 were performed. Figure 8a and 8b show the gas evolutions during O_2 -TPO and the CO_2 -TPO of the deactivated redox catalyst, respectively. It can be observed that for the case of O_2 -TPO, the product CO_2 appears at around 665°C, whereas for CO_2 -TPO, this peak was shifted to 710°C. This is due to the lower activity of CO_2 for carbon gasification. More importantly, the carbon removed from CO_2 -TPO (40 mg/g of redox catalyst)

was roughly 1/3 of the carbon removable by O₂-TPO (130 mg/g). This is also consistent with the TGA based TPO results (Figure S4) and SEM/EDX analysis (Figure S5). From a thermodynamic standpoint, both graphitic and amorphous carbon should be removed by CO₂ at temperatures below 900 °C.^{42,43} This indicates the formation of carbon species that are largely inert to CO₂ and hence cannot be effectively removed by CO₂ regeneration in typical redox steps. XRD characterization of the samples, as will be discussed in the next paragraph, indicates that these CO₂ stable species should be iron carbides. It is also worth noting that the net carbon accumulation is 0.325 mg/gram of redox catalyst each cycle. This indicates that the net carbon build-up in each cycle is small and most of the amorphous and graphic carbon species are gasified during the CO₂ regeneration step. amount

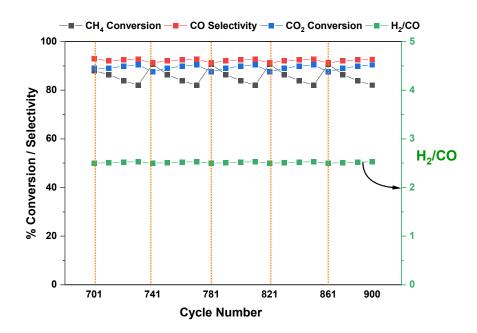

Figure 8c shows the XRD Patterns of the samples at various stages of the reactions. As can be seen, the deactivated samples, both after methane reduction and CO2 regeneration, contain significant amount of iron carbides (Fe₃C and/or Fe₅C₂). Exposure to CO₂ appears to have promoted the formation of Fe₅C₂ but was unable to remove the iron bond carbon within the sample. In contrast, iron carbide species are completely absent from the reactivated (air treated sample). Moreover, the monoclinic Fe₅C₂ phase, although insignificant, start to form within 5 redox cycles after reactivation with air. These findings indicate that accumulation of iron carbide phases is likely to be the primary cause for deactivation. It is also noted that the deactivated redox catalyst exhibits larger crystallite sizes for the La₂O₃ phase (44.7 nm) whereas the reactivated sample after 5 redox cycles showed considerably smaller La₂O₃ crystallite size (37 nm). Meanwhile, the LNF phase crystallite size remained nearly identical at 56.8 nm. This sintering of the La₂O₃ phase is likely to have resulted from the continuous depletion of Fe due to the formation of the "inert" carbide phase. We note that the reversible solid-state reaction between Fe and La₂O₃ represents a key pathway for lattice oxygen release and uptake during cyclic methane conversion and CO₂-splitting. The continuous depletion of Fe to the carbide phases would hence lead to (i) sintering of the unreacted La₂O₃ phase; (ii) loss of redox activity. XRD spectra also indicates the formation of FeNi₃ phase, which is effective for methane activation, in the redox catalysts under working conditions.

Figure 8. Redox catalyst characterizations. (a) Product gas evolution during O_2 -TPO of the deactivated redox catalyst; (b) Product gas evolution during CO_2 -TPO of the deactivated redox catalyst; (c) XRD of deactivated and reactivated LNF redox catalyst at various stages.

From the above experimental results and characterizations, it can be concluded that gradual deactivation of the LNF redox catalyst, albeit very slow, is unavoidable due to the formation of the carbide phase. In addition, reactivation with air is highly effective to restore its redox activity. To validate the effectiveness of this reactivation strategy, we operated the redox catalyst for an additional 200 cycles. During this experiment, the redox catalyst was re-oxidized with air every 40 cycles. As shown in Figure 9, >85% methane conversion, 95% CO selectivity, and ~90% CO₂

conversion were achieved throughout the last 200 cycles with periodic reactivation. Considering that the LNF redox catalyst has experienced over 900 cumulative redox cycles, the results demonstrates the long-term stability of the redox catalyst when periodic reactivation with air is implemented. We also note that infrequent air reactivation, i.e. once every 40 - 50 cycles, will have a minimal negative impact on the overall syngas and CO yields.

Figure 9. Long-term redox performance of the LNF redox catalyst with air reactivation every 40 cycles (orange dashed line indicates air treatment prior to the specified cycle number).

4. Conclusion

The present study investigates perovskite structured LaNi_xFe_{1-x}O_{3-δ} (LNF) as redox catalysts for redox based CO₂-splitting and methane partial oxidation at relatively low temperatures (~700 °C). Specifically, nine LaNi_xFe_{1-x}O_{3-δ} samples with x ranging from 0.05 to 0.5 were prepared and evaluated. Among them, LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ were determined to be the most active for the redox reactions, showing >90% CH₄ conversion and CO selectivity in the methane POx step and >90% CO yield in the CO₂-splitting step at 700 °C. The redox performance of the standalone LaNi_{0.4}Fe_{0.6}O₃ and LaNi_{0.5}Fe_{0.5}O₃ redox catalysts compared favorably with that of Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2-δ} (CGCO) promoted LNF redox catalysts. A long-term redox test of LaNi_{0.5}Fe_{0.5}O₃ indicates that the redox catalyst gradually loses its activity over repeated redox cycles, resulting in a 6% drop in methane conversion (from 86%) over 500 cycles. Reoxidation of the partially deactivated redox catalyst with air was found to be effective to restore its activity. The deactivation mechanism was determined to be the formation and slow accumulation of iron carbide (Fe₃C and Fe₅C₂) phases, which cannot be effectively removed by the CO₂ splitting step. As such, periodic reactivation with air, e.g. every 40 – 50 redox cycles, was proposed as a strategy to maintain the long-term stability of the redox catalyst. Such a strategy was verified to be effective, as confirmed by operating the redox catalyst over 900 cumulative cycles while maintaining satisfactory redox performance.

Supporting Information

Supporting Information is available free of charge on the ACS Publications website. The supporting information includes the packed bed reactor set up, coke accumulation profile during the methane POx step, cycle to cycle data for the packed bed experiment, O₂/CO₂-TPO of the deactivated redox catalyst, and SEM/EDX images.

Acknowledgment

This work was supported by the U.S. Department of Energy (Award No. DE-FE0031703), National Science Foundation (CBET- 1923468), and the North Carolina State University Kenan Institute for

Engineering, Technology and Science. We acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.

References

- (1) Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.); Carbon Dioxide Capture and Storage. Cambridge University Press. IPCC. 2005 IP, UK. pp 431.
- (2) Newell, R. G.; Raimi, D.; Aldana, G. Global Energy Outlook 2019: The Next Generation of Energy. 46. https://media.rff.org/documents/GEO_Report_8-22-19.pdf. Accessed on 06/04/2021.
- (3) Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks. Accessed on 06/04/2021.
- (4) Fatih Birol, *World Energy Outlook 2012*; International Energy Agency, Ed.; World Energy Outlook; Paris, https://www.iea.org/reports/world-energy-outlook-2012. Accessed on 06/04/2021.
- (5) Ho, H.-J.; Iizuka, A.; Shibata, E. Carbon Capture and Utilization Technology without Carbon Dioxide Purification and Pressurization: A Review on Its Necessity and Available Technologies. *Ind. Eng. Chem. Res.* **2019**, *58* (21), 8941–8954. https://doi.org/10.1021/acs.iecr.9b01213.
- (6) Review of Post-Combustion Carbon Dioxide Capture Technologies Using Activated Carbon. https://www.sciencedirect.com/science/article/abs/pii/S1001074218325622 Accessed on 06/04/2021.
- (7) Daza, Y. A.; Kuhn, J. N. CO ₂ Conversion by Reverse Water Gas Shift Catalysis: Comparison of Catalysts, Mechanisms and Their Consequences for CO ₂ Conversion to Liquid Fuels. *RSC Adv.* **2016**, *6* (55), 49675–49691. https://doi.org/10.1039/C6RA05414E.
- (8) Rajabi, M.; Mehrpooya, M.; Haibo, Z.; Huang, Z. Chemical Looping Technology in CHP (Combined Heat and Power) and CCHP (Combined Cooling Heating and Power) Systems: A Critical Review. *Applied Energy* **2019**, *253*, 113544. https://doi.org/10.1016/j.apenergy.2019.113544.
- (9) Du, C.; Lu, P.; Tsubaki, N. Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. *ACS Omega* **2020**, *5* (1), 49–56. https://doi.org/10.1021/acsomega.9b03577.
- (10) Mesters, C. A Selection of Recent Advances in C1 Chemistry. *Annu. Rev. Chem. Biomol. Eng.* **2016**, 7 (1), 223–238. https://doi.org/10.1146/annurev-chembioeng-080615-034616.

- (11) Peter, S. C. Reduction of CO ₂ to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. *ACS Energy Lett.* **2018**, *3* (7), 1557–1561. https://doi.org/10.1021/acsenergylett.8b00878.
- (12) Muhich, C.; Steinfeld, A. Principles of Doping Ceria for the Solar Thermochemical Redox Splitting of H₂ O and CO₂. *J. Mater. Chem. A* **2017**, *5* (30), 15578–15590. https://doi.org/10.1039/C7TA04000H.
- (13) Carrillo, A. J.; Bork, A. H.; Moser, T.; Sediva, E.; Hood, Z. D.; Rupp, J. L. M. Modifying La _{0.6} Sr _{0.4} MnO ₃ Perovskites with Cr Incorporation for Fast Isothermal CO ₂ -Splitting Kinetics in Solar-Driven Thermochemical Cycles. *Adv. Energy Mater.* **2019**, *9* (28), 1803886. https://doi.org/10.1002/aenm.201803886.
- (14) Furler, P.; Scheffe, J.; Marxer, D.; Gorbar, M.; Bonk, A.; Vogt, U.; Steinfeld, A. Thermochemical CO ₂ Splitting *via* Redox Cycling of Ceria Reticulated Foam Structures with Dual-Scale Porosities. *Phys. Chem. Chem. Phys.* **2014**, *16* (22), 10503–10511. https://doi.org/10.1039/C4CP01172D.
- (15) Arifin, D.; Aston, V. J.; Liang, X.; McDaniel, A. H.; Weimer, A. W. CoFe2O4 on a Porous Al2O3 Nanostructure for Solar Thermochemical CO2 Splitting. *Energy Environ. Sci.* **2012**, 5 (11), 9438. https://doi.org/10.1039/c2ee22090c.
- (16) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. *Science* **2010**, *330* (6012), 1797–1801. https://doi.org/10.1126/science.1197834.
- (17) Al-Shankiti, I.; Ehrhart, B. D.; Weimer, A. W. Isothermal Redox for H 2 O and CO 2 Splitting A Review and Perspective. *Solar Energy* **2017**, *156*, 21–29. https://doi.org/10.1016/j.solener.2017.05.028.
- (18) Tong, A.; Zeng, L.; Kathe, M. V.; Sridhar, D.; Fan, L.-S. Application of the Moving-Bed Chemical Looping Process for High Methane Conversion. *Energy Fuels* **2013**, *27* (8), 4119–4128. https://doi.org/10.1021/ef3020475.
- (19) Mattisson, T.; Lyngfelt, A. Applications of Chemical-Looping Combustion with Capture of CO2. Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Göteborg, Sweden, October 26, 2001, 6.
 URL: http://www.entek.chalmers.se/anly/symp/symp2001.html
- (20) Li, D.; Xu, R.; Gu, Z.; Zhu, X.; Qing, S.; Li, K. Chemical-Looping Conversion of Methane: A Review. *Energy Technol.* **2020**, *8* (8), 1900925. https://doi.org/10.1002/ente.201900925.
- (21) Bhavsar, S.; Najera, M.; Veser, G. Chemical Looping Dry Reforming as Novel, Intensified Process for CO2 Activation. *Chem. Eng. Technol.* **2012**, *35* (7), 1281–1290. https://doi.org/10.1002/ceat.201100649.
- (22) Araiza, D. G.; Arcos, D. G.; Gómez-Cortés, A.; Díaz, G. Dry Reforming of Methane over Pt-Ni/CeO2 Catalysts: Effect of the Metal Composition on the Stability. *Catalysis Today* **2021**, *360*, 46–54. https://doi.org/10.1016/j.cattod.2019.06.018.
- (23) Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; de Diego, L. F. Progress in Chemical-Looping Combustion and Reforming Technologies. *Progress in Energy and Combustion Science* **2012**, *38* (2), 215–282. https://doi.org/10.1016/j.pecs.2011.09.001.
- (24) Kang, D.; Lim, H. S.; Lee, J. W. Mesoporous Fe ₂ O ₃ –CeO ₂ –Al ₂ O ₃ Redox catalyst for Chemical Looping Dry Reforming with Subsequent Water Splitting. *Ind. Eng. Chem. Res.* **2020**, *59* (36), 15912–15920. https://doi.org/10.1021/acs.iecr.0c03197.

- (25) Hosseini, D.; Abdala, P. M.; Donat, F.; Kim, S. M.; Müller, C. R. Bifunctional Core-Shell Architecture Allows Stable H2 Production Utilizing CH4 and CO2 in a Catalytic Chemical Looping Process. *Applied Catalysis B: Environmental* **2019**, *258*, 117946. https://doi.org/10.1016/j.apcatb.2019.117946.
- (26) Haribal, V. P.; Wang, X.; Dudek, R.; Paulus, C.; Turk, B.; Gupta, R.; Li, F. Modified Ceria for "Low-Temperature" CO ₂ Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat. *Adv. Energy Mater.* **2019**, *9* (41), 1901963. https://doi.org/10.1002/aenm.201901963.
- (27) Jiang, Q.; Gao, Y.; Haribal, V. P.; Qi, H.; Liu, X.; Hong, H.; Jin, H.; Li, F. Mixed Conductive Composites for 'Low-Temperature' Thermo-Chemical CO2 Splitting and Syngas Generation. *J. Mater. Chem. A* **2020**, *8* (26), 13173–13182. https://doi.org/10.1039/D0TA03232H.
- (28) Teimouri, Z.; Abatzoglou, N.; Dalai, A. K. Kinetics and Selectivity Study of Fischer—Tropsch Synthesis to C5+ Hydrocarbons: A Review. *Catalysts* **2021**, *11* (3), 330. https://doi.org/10.3390/catal11030330.
- (29) Sunley, G. J.; Watson, D. J. High Productivity Methanol Carbonylation Catalysis Using Iridium The CativaTM Process for the Manufacture of Acetic Acid. *Catalysis Today* **2000**, 15.
- (30) Lyngfelt, A. Chemical-Looping Combustion of Solid Fuels Status of Development. *Applied Energy* **2014**, *113*, 1869–1873. https://doi.org/10.1016/j.apenergy.2013.05.043.
- (31) Mishra, A.; Li, F. Chemical Looping at the Nanoscale Challenges and Opportunities. *Current Opinion in Chemical Engineering* **2018**, *20*, 143–150. https://doi.org/10.1016/j.coche.2018.05.001.
- (32) Zeng, L.; Cheng, Z.; Fan, J. A.; Fan, L.-S.; Gong, J. Metal Oxide Redox Chemistry for Chemical Looping Processes. *Nat Rev Chem* **2018**, *2* (11), 349–364. https://doi.org/10.1038/s41570-018-0046-2.
- (33) More, A.; Bhavsar, S.; Veser, G. Iron–Nickel Alloys for Carbon Dioxide Activation by Chemical Looping Dry Reforming of Methane. *Energy Technol.* **2016**, *4* (10), 1147–1157. https://doi.org/10.1002/ente.201500539.
- (34) Zhang, J.; Li, F. Coke-Resistant Ni@SiO2 Catalyst for Dry Reforming of Methane. *Applied Catalysis B: Environmental* **2015**, *176–177*, 513–521. https://doi.org/10.1016/j.apcatb.2015.04.039.
- (35) Ratchahat, S.; Surathitimethakul, S.; Thamungkit, A.; Mala, P.; Sudoh, M.; Watanabe, R.; Fukuhara, C.; Chen, S. S.; Wu, K. C.-W.; Charinpanitkul, T. Catalytic Performance of Ni/CeO2 Catalysts Prepared from Different Routes for CO2 Methanation. *Journal of the Taiwan Institute of Chemical Engineers* **2021**, *121*, 184–196. https://doi.org/10.1016/j.jtice.2021.04.008.
- (36) Deml, A. M.; Stevanović, V.; Holder, A. M.; Sanders, M.; O'Hayre, R.; Musgrave, C. B. Tunable Oxygen Vacancy Formation Energetics in the Complex Perovskite Oxide Sr _x La _{1-x} Mn _y Al _{1-y} O ₃. *Chem. Mater.* **2014**, *26* (22), 6595–6602. https://doi.org/10.1021/cm5033755.
- (37) Zhu, X.; Imtiaz, Q.; Donat, F.; Müller, C. R.; Li, F. Chemical Looping beyond Combustion a Perspective. *Energy Environ. Sci.* **2020**, *13* (3), 772–804. https://doi.org/10.1039/C9EE03793D.

- (38) Zhu, X.; Li, K.; Neal, L.; Li, F. Perovskites as Geo-Inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective. *ACS Catal.* **2018**, *8* (9), 8213–8236. https://doi.org/10.1021/acscatal.8b01973.
- (39) Michalsky, R.; Neuhaus, D.; Steinfeld, A. Carbon Dioxide Reforming of Methane Using an Isothermal Redox Membrane Reactor. *Energy Technology* **2015**, *3* (7), 784–789. https://doi.org/10.1002/ente.201500065.
- (40) Zhang, J.; Haribal, V.; Li, F. Perovskite Nanocomposites as Effective CO ₂ -Splitting Agents in a Cyclic Redox Scheme. *Sci. Adv.* **2017**, *3* (8), e1701184. https://doi.org/10.1126/sciadv.1701184.
- (41) Shah, S.; Sayono, S.; Ynzunza, J.; Pan, R.; Xu, M.; Pan, X.; Gilliard-AbdulAziz, K. L. The Effects of Stoichiometry on the Properties of Exsolved NI-FE Alloy Nanoparticles for Dry Methane Reforming. *AIChE J* **2020**, *66* (12). https://doi.org/10.1002/aic.17078.
- (42) Xie, Y.; Yang, H.; Zeng, K.; Zhu, Y.; Hu, J.; Mao, Q.; Liu, Q.; Chen, H. Study on CO2 Gasification of Biochar in Molten Salts: Reactivity and Structure Evolution. *Fuel* **2019**, 254, 115614. https://doi.org/10.1016/j.fuel.2019.06.022.
- (43) Wei, J.; Guo, Q.; Gong, Y.; Ding, L.; Yu, G. Effect of Biomass Leachates on Structure Evolution and Reactivity Characteristic of Petroleum Coke Gasification. *Renewable Energy* **2020**, *155*, 111–120. https://doi.org/10.1016/j.renene.2020.03.132.