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Abstract. We investigate the problem of learning to generate 3D para-
metric surface representations for novel object instances, as seen from
one or more views. Previous work on learning shape reconstruction from
multiple views uses discrete representations such as point clouds or voxels,
while continuous surface generation approaches lack multi-view consis-
tency. We address these issues by designing neural networks capable of
generating high-quality parametric 3D surfaces which are also consistent

between views. Furthermore, the generated 3D surfaces preserve accurate
image pixel to 3D surface point correspondences, allowing us to lift texture
information to reconstruct shapes with rich geometry and appearance.
Our method is supervised and trained on a public dataset of shapes
from common object categories. Quantitative results indicate that our
method significantly outperforms previous work, while qualitative results
demonstrate the high quality of our reconstructions.
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1 Introduction

Reconstructing the 3D shape of an object from one or more views is an important
problem with applications in 3D scene understanding, robotic navigation or
manipulation, and content creation. Even with multi-view images, the problem can
be challenging when camera baselines are large, or when lighting and occlusions
are inconsistent across the views. Recent developments in supervised deep learning
have demonstrated the potential to overcome these challenges.

Ideally, a multi-view surface reconstruction algorithm should have the fol-
lowing desirable 3C properties: surface continuity, multi-view consistency and
2D-3D correspondence. First, it should be able to reconstruct high-quality shapes
that can be readily used in downstream applications. While much progress has
been made in learning shape representations such as point clouds [11,25,39,17],
volumetric grids [9,41,42], and meshes [44,47], their geometric quality is limited
by the discrete nature of the underlying representation. Therefore, representations
such as implicit functions [34,37,7], and UV surface parametrizations [15,10] are
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the same canonical space, this näıve approach can lead to discontinuities at view
boundaries. Instead, for view-consistent reconstruction, we aggregate multiple
views at the feature level and explicitly enforce consistency during training.

Extensive experiments and comparisons with previous work show that Pix2Surf
is capable of reconstructing high-quality shapes that are consistent within and
across views. In terms of reconstruction error, we outperform state-of-the-art
methods while maintaining the 3C properties. Furthermore, accurate 2D–3D
correspondences allow us to texture the reconstructed shape with rich color
information as shown in Fig. 1. In summary, the primary contributions of our
work are:

– a method to generate a set of continuous parametric 3D surfaces represent-
ing the shape of a novel object observed from single or multiple views;

– the unsupervised extraction of a learned UV parametrization that retains
accurate 2D to 3D surface point correspondences, allowing lifting of texture
information from the input image; and

– a method to consistently aggregate such parametrizations across different
views, using multiple charts.

Emergent Properties: A notable emergent property of our network is that
the learned UV parametrization domains are consistent across different views
of the same object (i.e., corresponding pixels in different views have similar UV

coordinates) – and even across views of related objects in the same class. This is
despite the UV domain maps only being indirectly supervised for consistency,
through 3D reconstruction.
Scope: In this work, our focus is on continuity, consistency, and 2D image–3D

surface correspondences. We focus on the case when the multi-view images have
little overlap, a setting where traditional stereo matching techniques fail. Our
method only requires supervision for the input views and their corresponding
NOCS maps but does not require camera poses or ground truth UV parametriza-
tion. We note that the generated surfaces need not be watertight, and continuity
at the seams between views is not guaranteed.

2 Related Work

There is a large body of work on object reconstruction which we categorize
broadly based on the underlying shape representation.
Voxels: The earliest deep-learning-based methods predict a voxel representation
of an object’s shape. Many of these methods are trained as generative models
for 3D shapes, with a separate image encoder to obtain the latent code for
a given image [14]. Later methods use more efficient data structures, such as
octrees [40,45,36] to alleviate the space requirements of explicit voxels. Multiple
views can also be aggregated into a voxel grid using a recurrent network [9].
Several methods use supervision in the form of 2D images from different view-
points, rather than a 3D shape, to perform both single-view and multi-view
voxel reconstruction [19,49,42,16]. These methods usually use some form of a
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differentiable voxel renderer to obtain a 2D image that can be compared to the
ground truth image. The quality gap of these methods to their counterparts
that use 3D supervision is still quite large. Voxels only allow for a relatively
coarse representation of a shape, even with the more efficient data representations.
Additionally, voxels do not explicitly represent an object’s surface prompting the
study of alternative representations.

Point Clouds: To recover the point cloud of an object instance from a single
view, methods with 3D supervision [11,25] and without 3D supervision [17] have
been proposed. These methods encode the input image into a latent code thus
losing correspondences between the image pixels and the output points. Some
methods establish a coarse correspondence implicitly by estimating the camera
parameters, but this is typically inaccurate. A recent method reconstructs a
point cloud of a shape from multiple views [6], but requires ground truth camera
parameters. A large body of monocular or stereo depth estimation methods
obtain a point cloud for the visible parts of the scene in an image, but do not
attempt to recover the geometry of individual object instances in their local
coordinate frames [3]. NOCS [43,39] obtains exact correspondences between 2D
pixels and 3D points by predicting the 3D coordinates of each pixel in a canonical
coordinate frame. NOCS can even be extended to reconstruct unseen parts of
an object [39] (X-NOCS). All these approaches that output point clouds do not
describe the connectivity of a surface, which has to be extracted separately – a
classical and difficult geometry problem. We extend NOCS to directly recover
continuous surfaces and consistently handle multiple views.

Implicit Functions: Poisson Surface Reconstruction [22,23] has long been the
gold standard for recovering an implicit surface from a point cloud. More recently,
data-driven methods have been proposed that model the implicit function with a
small MLP [8,34,31], with the implicit function representing the occupancy prob-
ability or the distance to the surface. These methods can reconstruct an implicit
function directly from a single image, but do not handle multiple views and do
not establish a correspondence between pixels and the 3D space. PiFU [37] and
DISN [48] are more recent methods that establish a correspondence between pix-
els and 3D space and use per-pixel features to parameterize an implicit function.
Both single and multiple views can be handled, but the methods either require
ground truth camera poses as input [37], or use a network to get a coarse approx-
imation of the camera poses, giving only approximate correspondences [48]. Some
recent works integrate the neural rendering with deep implicit functions [32,29],
but they depend on the known camera information. Furthermore, to obtain an
explicit surface from an implicit function, an expensive post-processing step is
needed, such as Marching Cubes [30] or ray tracing.

Parametric Surfaces or Templates: Several methods attempt to directly
reconstruct a parametric representation of a shape’s surface. These parametric
representations range from class-specific templates [18,24], general structured
templates [13], or more generic surface representations, such as meshes or contin-
uous functions. Pixel2Mesh and its sequel [44,47] deform a genus-zero mesh based
on local image features at each vertex, obtained by projecting the vertices to the
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image plane(s). Camera parameters are assumed to be known for this projection.
3DN [46] deforms a given source mesh to approximate a single target image,
using global features for both the source and the target, without establishing
correspondences to the target pixels. Several methods use 2D images instead of
3D meshes as supervisory signal [21,28,35,20] using differentiable mesh renderers.
This makes it easier to collect training data, but the accuracy of these methods
still lags behind methods with 3D supervision. AtlasNet [15] represents shapes
with continuous 2D patches that can be inferred from a single input image, or
from a video clip [26]. Mesh DeformNet [33] introduces topology modification to
AtlasNet. Similar to AtlasNet, we use a 2D patch as a UV parametrization, but
we handle multiple non-adjacent views and establish correspondences between
2D pixels and 3D surface points.

3 Preliminaries

We build our approach upon two previous ideas that we describe below.
(X-)NOCS: Normalized object coordinate space (NOCS) is a canonicalized
unit container space used for category-level reasoning of object pose, size, and
shape [39,43]. Instances from a given object category are normalized for their
position, orientation, and size, thus disentangling intra-category shape variation
from the exact pose and size of instances. NOCS maps (see Fig. 2) are perspective
projections of the 3D NOCS shape onto a specific camera and can be interpreted
as object-centered depth maps that simultaneously encode mask and partial
shape of the object. When used to predict 3D point cloud from images, NOCS
maps retain correspondences from 2D pixels to 3D points, and can be used to
transport image texture directly to 3D. X-NOCS is an extension of NOCS maps
to also encode the occluded parts of a shape [39]. However, using NOCS maps
for reconstruction results in a discontinuous point cloud.
Surface Parametrization: A two-manifold surface in 3D can be mapped to a
2D plane (chart) parametrized by two coordinates (u, v). This UV parametriza-
tion of a 3D surface is widely used in computer graphics and, more recently, in
3D shape reconstruction [15,24]. The parameterization can be limited in expressing
complex shapes, depending on the functional formulation used.

Fig. 2. Given a single image,
X-NOCS [39] reconstructs a point
cloud preserving pixel–3D corre-
spondece. AtlasNet [15] learns
shape as a continuous surface.

For example, in typical CAD settings, low-
degree polynomial or rational functions are
used to represent the mappings. In our case,
instead, we use a fully connected network to
overcome the limitation of expressibility. A
single map, however, still lacks the ability to
describe complicated shapes with high-genus
topology. Thus, multiple charts are often used,
where multiple 2D planar patches are mapped
by separate maps to a 3D surface – effectively
partitioning the surfaces into parts, each of
which is the image of a different map in the
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(1) NOCS-UV Branch: Similar to X-NOCS [39], we predict the NOCS map
and mask that encode the partial shape of the object observed in the image. We
use an encoder-decoder architecture building on top of SegNet [1] and VGG [38].
Our network uses skip connections and shares pool indices between the encoder
and the decoder. The predicted NOCS maps and masks are the same size as
the input image. During training, the object mask is supervised with a binary
cross entropy loss and the NOCS map is supervised with an L2 loss. Note that
the NOCS map here is not our final 3D output, but acts as an intermediate
supervision signal for the network.

Emergence of a Chart: Different from previous work, we predict a 2-channel
output in additional to the NOCS map and mask. These 2 channels are not
explicitly supervised during training, so the network can predict any value between
0 and 1. However, when jointly trained with the other branches, we observe the
emergence of a learned chart in these 2 channels (see Fig. 4). The network
discovers how to unwrap an object shape onto a flat surface. Remarkably,
this learned chart is (almost) consistent across multiple views and
even across instances. During reconstruction, each image pixel’s learned chart
coordinates are passed on to the SP branch. We show that using the learned
chart coordinates is superior to using arbitrary UV coordinates like AtlasNet [15],
or alternatively using the original image coordinates (Image2Surf, Sec. 5.1).
Additionally, we preserve exact correspondences between input image pixels and
the learned chart.

Fig. 4. Given an object image (row 1, col 1), our
network predicts a 2-channel image without explicit
supervision (row 1, col 2, color coded). Remarkably,
the output of these two channels visualized in a UV

space (row 1, col 3) show that the network has learned
to unwrap the 3D shape onto a plane (corresponding
patches shown in red). This unwrapping is consistent
over multiple views, and even across multiple object
instances (last row). For more unwrapped charts of
cars and airplanes please see supplementary Fig. S.3.

(a) Code Extractor (CE):
We use a small CNN to re-
duce the high dimensional fea-
ture map extracted by the en-
coder to make a more compact
global code for the SP branch.
This CNN contains two convo-
lutional layers (512 and 1024
output channels), batch nor-
malization, and ELU activa-
tion. The output is a latent
code z of size 1024 and is
passed to the SP branch.

(b) UV Amplifier: Before
we use the learned chart coor-
dinates as an input to the SP
branch, we process each UV
coordinate with a UV ampli-

fier MLP. The motivation for
this comes from the informa-
tion imbalance the two inputs
to the SP branch – one input is
the global latent code z which
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has 1024 dimensions, while the UV coordinates would have only 2 dimensions.
To overcome this, we amplify the UV coordinates to p (256 dimensions) using
a 3-layer MLP that progressively amplifies the 2 coordinates (2, 64, 128, 256).
This allows the SP branch to make use of the image and UV information in a
more balanced manner.
(2) SP Branch: Similar to AtlasNet [15], our surface parametrization (SP)
branch takes the global latent code z from the code extractor (CE) and the
amplified coordinates p as input and produces a continuous 3D position as the
output. Note that the learned chart coordinates can be continuously sampled at
inference time. The continuity of the output 3D surface emerges from our use of
a continuous MLP mapping function between the uv coordinates and the output
3D positions [15]. Our SP branch is a MLP with 9 layers and skip connection
every 2 layers (input: 1024+256, intermediate: 512, last: 3). Since we train on
canonically oriented ShapeNet models, the predicted 3D surface also lies within
the canonical NOCS container [43].

Our approach has three key differences to AtlasNet. First, we use a UV
amplifier to transform the 2D UV coordinates to higher dimensions allowing
better information balancing. Second, the learned chart is in direct correspondence
with the pixels of the input image (see Fig. 4). This allows us to transport
appearance information directly from the image to the 3D surface. Third, our
sampling of the UV chart is learned by a network (NOCS-UV branch) instead
of uniform sampling, which enables us to reconstruct complex topologies. Our
inference processing allows us to sample any continuous point in the learned chart
space within the predicted object mask allowing the generation of continuous
textured 3D surface.
Training: The encoder and decoder CNNs are first initialized by training them
on the NOCS map and mask prediction tasks using only the L2 and BCE losses.
Subsequently, we jointly train the NOCS-UV and SP branches, code extractor,
and UV amplifier end-to-end. The joint loss is given as,

LI = w1 (wn Ln + wm Lm) + w2 Ls, (1)

where Ln and Lm are the L2 NOCS map and BCE losses respectively, wn, wm

are the weights for the NOCS map and mask prediction respectively, and w1, w2

are the weights for the NOCS-UV and SP branches respectively. For the SP
branch we supervise on K points sampled randomly from within the foreground
mask. For each sampled point, a corresponding amplified chart coordinate p is
predicted without any supervision. This is concatenated with the global latent
code z to predict the final 3D surface position. Empirically, we found the best
hyperparameters to be: K = 4096, w1 = 0.1, w2 = 0.9, wn = 0.7, wm = 0.3. The
loss for the SP branch is given as, Ls = 1

K

∑K

i=1 ‖xi − x̂i‖2, where x and x̂
are the ground truth and predicted 3D surface position obtained from the 3D
ShapeNet models (same as ground truth NOCS map values). During inference,
we can predict a continuous 3D surface for any given image and its learned chart
coordinate. Please see the supplementary document for more details on inference
and final 3D model generation.
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Atlas: Similar to the single view network, we learn a chart for each view.
The chart coordinates for each view pi are extracted using the NOCS-UV
branch with weights shared between the views. Although the NOCS-UV branch
weights are shared, one chart is predicted for each view – thus, we have an
atlas. Note that the network is free to predict different chart coordinates for
each view. However, we observe that similar parts of objects in different images
map to similar locations on their respective charts (see Fig.S3 in supplementary
document). This indicates that our network is discovering the notion of
image cross-view correspondence (note that this is different from 2D-
3D correspondence). As in the single-view network, chart coordinates are
passed through a shared UV amplifier.

We concatenate the shared latent code zm to each of the per-view latent codes
zi. This concatenated multi-view code and the learned per-view chart coordinates
pi are passed to the SP branch. The UV amplifier, code extractor and structure
of the learned UV map are similar to the single view network.
Multi-View Loss: In addition to the L2 loss function on the 3D surface gen-
erated by the SP branch, we also have a multi-view consistency loss. This loss
enforces corresponding points on multiple views to predict similar 3D surface
positions. To obtain correspondence information at training time, we sample
a random set of foreground points within the mask and find the exact match
of the ground truth NOCS values of that pixel in the other input views. Note
that this correspondence information is not provided as additional supervision
– the ground truth NOCS maps already contain this information since corre-
sponding points multiple views have the same NOCS position. Given these
correspondences, the multi-view consistency loss for a pair of views is given as,
LC = 1

|P|

∑
(i,j)∈P ‖xi − xj‖2, where xi,j are the paired predicted xyz from two

different views and the set P contains all matched correspondence pair from
these two views. During training, within each mini-batch, we sample multiple
views per object and compute the loss for all possible pairs.
Training: The multi-view network is trained similar to the single view model.
The NOCS-UV branch is first trained and subsequently the whole network
is trained end-to-end. The loss function we use is LM = LI + w3

a

∑a

j=0 LC ,
where a denotes the number of pairs of views within that batch, and w3 is the
correspondence loss weight empirically set to 0.9. We set wn, wm to 0.1 inside
LI . Please see the supplementary document for more details on inference and
final 3D model generation.

5 Experiments

We present extensive experimental comparison of Pix2Surf with several recent
single- and multi-view reconstruction methods, and validate our design choices.
We do so by focusing on the 3C properties (consistency, correspondence and
continuity) for visible surface reconstruction (Sec. 5.1). Since we learn a strong
prior over shapes, we can also estimate surfaces that are hidden in the input
image (Sec. 5.2). For the details of training, inference, and evaluation metrics,
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and also ablations, more comparisons, and results with real images, refer to the
supplementary document.

Dataset: For quantitative comparisons, we use ShapeNetPlain [39] dataset
which consists of 5 random views for each shape in ShapeNet [4] with a white
background. For additional robustness to the background found in real-world
images, we train Pix2Surf on ShapeNetCOCO [39] which consists of 20 random
views of each ShapeNet object with a random background from MS COCO [27].
We use this dataset for all qualitative results and for real-world results. Each
shape category is trained separately in all experiments.

Experimental Setting: We follow the experimental setup of X-NOCS [39].
Our ground truth for each input image is the point cloud represented by the
NOCS map (or X-NOCS map for hidden surface) provided in the dataset [39].
The outputs of all methods are converted to a NOCS map (using the ground truth
camera pose) allowing us to compute metrics even for partial shapes. Multi-view
experiments use all 5 views in the dataset to reconstruct a surface, using the
same dataset as the single-view experiments. All metrics are computed per-view
and then averaged up, making the single- and multi-view values comparable in
our quantitative experiments.

Metrics: We quantify the quality of reconstructed surfaces with several met-
rics. The reconstruction error of predictions is computed as the Chamfer
distance [2,12] between the estimated surface and the ground truth NOCS map
(interpreted as a point cloud). To obtain points on a reconstructed surface, we
convert it into a NOCS map using the ground truth camera pose.

In addition to the accuracy of reconstructed surfaces, we quantify the 3C
properties of a surface with the following metrics. The 2D–3D correspondence
error measures the accuracy of the estimated correspondence between input
pixels and 3D points on the reconstructed surface. The error for each foreground
pixel is the distance between the estimated 3D location of the pixel and the
ground truth location. Unlike the Chamfer distance, this uses the 2D–3D corre-
spondence to compare points. We average over all foreground pixels to obtain
the correspondence error of a surface. The multi-view consistency error was
defined in Sec. 4.2 as the 3D distance between corresponding points in different
views. We average the distance for a given point over all pairs of views that
contain the point. Corresponding points are found based on the ground truth
NOCS map. We measure discontinuity based on the surface connectivity. While
the continuity of Pix2Surf is induced by our use of a continous MLP as mapping
from uv space to 3D space [15], the mapping from the input image to the 3D space
should not be C0-continuous everywhere, due to self occlusions and boundaries of
the 3D shape. The reconstructed surface should have the same C0 discontinuities
as the ground truth surface. We define a C0 discontinuity as large difference in
the 3D locations of the neighboring pixels in a NOCS map (above a threshold
of 0.05). We take a statistical approach to measure the surface connectivity, by
computing a histogram over the 3D distances between neighboring pixels that
are discontinuous. The discontinuity score is the correlation of this histogram to
a histogram of the ground truth surface. A higher score indicates a distribution
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Table 1. Visible surface reconstruction. We compare our method to a baseline and
three state-of-the-art methods evaluating reconstruction accuracy and the 3C properties.
The top half of the table shows single-view reconstruction, the bottom half is multi-
view reconstruction. Note how Pix2Surf is close to the top performance in each of the
metrics, while all other methods have significant shortcomings. The Recons. Error

and Correspond. Error, Consistency Error are all multiplied by 103.

Recons. Error ↓ Correspond. Error ↓ Consistency Error ↓ Disconti. Score ↑

car chairplaneavg. car chairplane avg. car chair plane avg. car chairplaneavg.

Im.2Surf 2.23 3.81 2.66 2.90 8.49 9.54 8.76 8.93 13.08 12.55 10.75 12.13 0.46 0.39 0.35 0.40
X-NOCS 2.25 2.95 2.08 2.43 12.82 8.63 8.93 10.13 18.93 12.00 10.59 13.84 0.59 0.47 0.59 0.55
AtlasNet 1.54 3.36 3.15 2.68 – – – – – – – – 0.68 0.39 0.64 0.57
Pix2Surf 1.67 1.91 1.61 1.73 9.52 5.79 7.19 7.50 12.72 7.75 8.48 9.65 0.69 0.43 0.65 0.59

X-NOCS 2.89 2.80 2.19 2.63 14.30 9.48 8.95 10.91 22.18 14.26 11.65 16.03 0.67 0.48 0.54 0.56
P2M++ 2.88 5.59 3.24 3.90 – – – – – – – – 0.67 0.36 0.63 0.55
Pix2Surf 1.41 1.78 1.38 1.52 8.49 5.84 7.06 7.13 10.98 6.65 7.50 8.38 0.66 0.43 0.66 0.58

of discontinuities that is more similar to the ground truth surface. Note that
continuity is a property induced from method design itself, and the score can
penalize the over-smooth case from methods that produces continuous prediction.

5.1 Visible Surface Reconstruction

We compare the quality of single- and multi-view reconstructions to one baseline
[Image2Surf (single-view)], and three state-of-the-art methods [AtlasNet [15]
(single-view), X-NOCS [39] (single- and multi-view), Pixel2Mesh++ [47] (multi-
view)]. Note that Pix2Surf deals with a more challenging problem compared to
AtlasNet and Pixel2Mesh++: (1) we predict 2D–3D correspondences (AtlasNet
does not), and (2) we do not require camera geometry information as input
(Pixel2Mesh++ does). In this section, we only focus on reconstructing visible

surfaces, but we also report hidden surface generation in the next section.
The single-view performance of each method in all of our metrics is shown in

the first four rows of Table 1, and the multi-view performance in the last three
rows. Metrics are comparable across single- and multi-view methods. For each
of the four metrics, we show the performance on each dataset category, and an
average over all categories.
Image2Surf : This baseline is similar to Pix2Surf, but takes image UV coordi-
nates (normalized by predicted mask) as input to the UV amplifier instead of the
learned UV chart, i.e., the input image is the chart. We observe that it is hard for
the network to learn depth discontinuities, resulting in over-smoothed occlusion
boundaries (see supplementary document). The over-smoothing is reflected in a
high reconstruction error, and particularly low discontinuity correlation score.
This comparison justifies our design to include a learned UV chart.
X-NOCS: This is a state-of-the-art reconstruction method that predicts a 3D
point cloud, i.e., a 3D point for each foreground pixel. Since X-NOCS has no notion
of surface connectivity, there is no coordination between neighboring points, re-
sulting in poor reconstruction accuracy and noisy output point clouds (see Fig. 7).
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Fig. 7. Our results (left) compared with
surface-agnostic X-NOCS (right), visualized
with image connectivity. Pix2Surf produces
significantly smoother results.

Note that the output point cloud from
X-NOCS can capture the right discon-
tinuity. However, it can only produce
discrete noisy point cloud instead of
continuous surfaces.
AtlasNet: This method also uses an
explicit surface parametrization, giv-
ing it a low reconstruction error on
the Car category. However, since the
parametrization is not learned and has
a fixed layout and connectivity, the reconstruction error increases significantly for
categories with more complex shapes and topologies, such as Chair and Airplane.
Correspondence and multi-view consistency are not evaluated, since AtlasNet
lacks pixel-to-point correspondences and works only for a single view.
Pixel2Mesh++: This method deforms a given starting mesh in a coarse-to-fine
approach to approximate an object shown from multiple views. In each refinement
step, a mesh vertex is deformed based on a small image neighborhood around
the projection of the vertex in each view. Unlike in our method, ground truth
camera positions need to be known for this projection. The fixed connectivity
and topology of the starting mesh results in a higher reconstruction error. Since
correspondence and multi-view consistency are trivial given a ground truth
camera model, we do not evaluate these properties.

Unlike the previous methods, Pix2Surf learns a continuous parametrization
of the surface that does not have a fixed topology or connectivity. This gives us
more flexibility to approximate complex surfaces, for instance, to correctly place
holes that can model C0 discontinuities. This explains our high discontinuity
correlation scores which also benefits the accuracy of reconstruction and 2D-3D
correspondence. In the multi-view setting, Pix2Surf shares information across the
views, improving the overall reconstruction accuracy. For example, surfaces that
are only visible at a very oblique angle in one view can benefit from additional
views. Our use of a consistency loss additionally ensures an improvement of the
multi-view consistency over the baselines, and a lower consistency error compared
to single view Pix2Surf (Fig. 5). We observe that Pix2Surf is the only method that
has top performance on all quality metrics (reconstruction and 3C properties), all
other methods reconstruct surfaces that fall short in at least some of the metrics.

5.2 Hidden Surface Generation

Since Pix2Surf learns a strong prior of the shapes it was trained on, we can
generate plausible estimates for surfaces in parts of the object that are not directly
visible in the image (see Fig. 8). Similar to X-NOCS, we represent a 3D object
with two layers: a visible layer that we reconstruct in the experiments described
previously, and a hidden layer denoting the last intersection of camera rays [39].
Pix2Surf can be easily extended to reconstruct hidden surface farthest from the
camera by adding additional output channels to the NOCS-UV branch. The
rest of the architecture remains the same with the learned UV parametrization
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Supplementary Material

S.1 Overview

In this supplementary, we provide additional details about our training (Sec. S.2)
and inference setups (Sec. S.3), and details of our evaluation metrics (Sec. S.4).
We provide an extended qualitative comparison of our method to the Image2Surf
baseline (Sec. S.5), ablations (Sec. S.6) and for visible surface generation on
real-world data (Sec. S.7). We show additional qualitative results for hidden
surface generation (Sec. S.9) and also provide more visual results for Pix2Surf
(Sec. S.8) and more qualitative comparison to Pixel2Mesh++[47] and AtlasNet[15]
(Sec. S.10).

S.2 Training Details

For the Single-View case, we train our network in two phases. In the first
phase, we train the NOCS-UV branch with a learning rate of 1e−4, using the
NOCS Map and the object mask as supervision. In the second phase, we add the
remaining SP branch and train end-to-end until convergence, with a learning rate
of 1e−4 for cars and 3e−5 for planes and chairs, and using the losses described
in Sec. 4.1.

For the Multi-View case, we have found that pre-training with the single-
view architecture, before switching to the full multi-view architecture results in
better initialization. For this purpose, we start by passing the feature zm, directly
to the SP branch without max-pooling multiple views. After pre-training, we
switch to the multi-view architecture as described in Sec. 4.2, by max-pooling
the zm features of all views, and concatenating both this max-pooled multi-view
feature, and the single-view feature zm for the current view as input to the
MLP. To better fuse multi-view information for learned chart prediction, the
feature map in the middle of CNN encoder and decoder also follows above fusion
operation. We randomly pick 5 views as input during multi-view training. For
our multi-view consistency loss, we need to identify corresponding pixels in
different views. We sample pixels in each view as in the single-view case and find
corresponding pixels based on their distance in NOCS coordinates. Two pixels
are in correspondence if their NOCS distance is less than 1e−3.

We separately train on each object category of our dataset.

S.3 Inference Details

One significant advantage of our explicit continuous parametric surface predic-
tion is that we can sample the results at any resolution (e.g. points or vertices).
We generate our final predictions at a regular grid of samples in the unwrapped
uv chart, obtaining a 3D location for each sample (obtained from the SP-Branch).
Since we have exact correspondence to pixels of the input image, each sample
also has a color value (or interpolated color value in super-resolution). Samples
corresponding to background pixels are masked out. To create a mesh, we can
connect neighboring foreground samples with edges. All visual results of our
method in the paper are generated using this approach. We provide more details.



Pix2Surf 19

Identifying foreground regions in the unwrapped chart. Unlike AtlasNet, the shape
and topology of the unwrapped surface in our chart is learned by the NOCS-
UV branch, which gives the reconstructed surface more flexibility to represent
arbitrary shapes and topologies. To identify foreground regions in the uv space
of the unwrapped chart, we map the the learned image-space foreground mask
to uv space. Directly unwrap the mask by learned-uv map (two channel output
from NOCS-UV branch) results in pixel cloud with holes in uv space. To solve
this issue, we up-sample the image-space mask and learned-uv map from its
original resolution of 240× 320 by a factor of 4 using linear interpolation before
mapping mask to uv space. To avoid interpolating across C0 discontinuities of
the surface, we only interpolate neighboring pixels that are mapped to similar
uv locations (i.e., the gradient of their uv coordinates is below a threshold). We
then map the up-sampled mask to uv space (resolution of 128 × 128) by the
up-sampled learned-uv map. Finally we up-sample the mask in uv space to the
desired resolution (in paper we use 512× 512).

In uv space, we additionally post-process the unwrapped foreground mask by
closing small holes using morphological operations. Finally, we remove outliers
using the predicted 3D locations (quarried from SP-Branch) of each mask sample.
A sample of the foreground mask is classified as outlier if the distance in 3D space
to its nearest neighbor is larger than a threshold t. In practice, we use t = 0.03
for chairs and t = 0.02 for cars and airplanes. Similar outlier removing operation
is also applied to image-space mask before identifying foreground regions.

Texturing the unwrapped chart. Similar to the mask, directly unwrapping the
image-space color values to the uv space results in a sparse set of irregular color
samples in uv space. We can interpolate these samples to obtain the color value
at any point in uv space by interpolating the k nearest neighbors (we use k = 4
for our results).

S.4 Evaluation Metrics

We now define the evaluation metrics used in the paper.
A common surface representation: Before evaluating our metrics, we

convert the results of all methods to a common format to avoid biasing our results
due to different surface representations. We convert all output representations to
the NOCS-Map format defined in X-NOCS [39] using the ground truth camera
model. The NOCS map P samples the reconstructed surface from a single
viewpoint, giving a point cloud where each sample has a 2D pixel coordinate
p and a 3D location x. The 3D location is defined in a canonical coordinate
frame that is shared across views and across instances of the same shape category.
For multi-view reconstructions, we create one NOCS-Map for each viewpoint,
compute the metrics on each NOCS-Map, and average the results over all views.
As AtlasNet [15] ground truth is not in the same ShapeNet version as ShapeNet-
Plain [39], we first scale the AtlasNet results to have the same bounding box
diagonal as the ground truth 2-intersection X-NOCS maps point cloud, and then
align the lower left corner of the bounding box.
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The Reconstruction Error is measured as the 2-Way-Chamfer-Distance
between the ground truth NOCS-Map P1 and predicted NOCS-Map P2:

Erec =
1

|P1|
∑

xi∈P1

min
yj∈P2

‖xi − yj‖22 +
1

|P2|
∑

yj∈P2

min
xi∈P1

‖xi − yj‖22.

The reconstruction error for hidden surfaces in Table 2 of paper is computed in
the same way, but using NOCS-Maps of the hidden surfaces.

The Correspondence Error is measured as the squared distance between
the predicted 3D location xi and the ground truth location yi of the same pixel:

Ecorr =
1

|M|
∑

pi∈M

‖xi − yi‖22.

We only evaluate pixels pi ∈ M that are both in the predicted and ground truth
foreground masks.

Consistency Error is based on the squared distance between the predicted
3D locations of corresponding pixels in different views. For each pair of views a
and b, we identify corresponding pairs of pixels (pai , p

b
j) as pairs having a similar

ground truth 3D location in NOCS: ‖yai − ybj‖2 < ǫ. In practice, we set ǫ = 0.001.
We then average the squared distance between the predicted 3D locations xa

i and
xb
j of all corresponding pixel pairs P2

corr:

Econs =
1

|P2
corr|

∑

(pa
i
,pb

j
)∈P2

corr

‖xa
i − xb

j‖22.

With the Discontinuity Score, we take a statistical approach to measure
the correctness of the surface connectivity. While the continuity of implicit or
parametric surface is a property induced by representation and method design,
we need to make sure the continuity is correct, i.e. no over-smooth results. We
compute statistics of the C0 discontinuities in the predicted surface, and measure
the similarity to the same statistics computed on the ground truth surface. The
statistics are based on the 3D distance ‖xi − xj‖2 of neighboring foreground
pixels pi and pj . Pixels with a large difference are likely to lie on the border of a
C0 discontinuity of the predicted surface. We compute a histogram h of this 3D
distance over all neighboring pixels:

hi = |{(pi, pj) ∈ P2
neighbors | ti ≤ ‖xi − xj‖2 < ti+1}|,

where ti are the boundaries of the histogram bins and P2
neighbors is the set of all

neighboring pixel pairs. We use a 4-connected neighborhood and choose 20 bins
with bin edges spaced uniformly in [0.05,

√
3]. We measure the similarity of two

histograms as the correlation of their normalized bins:

Scont =
1

∑
k hk

∑
j h

gt
j

∑

i

hih
gt
i

Note that unlike the other errors we use as evaluation metrics, this is defined as a
score, where higher values imply more accurate discontinuity of the reconstructed
surface.
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S.5 Qualitative Comparison to Image2Surf

We show more qualitative comparisons between our baseline Image2Surf and
Pix2Surf in paper Sec. 5.1. Image2Surf has a fatal problem to make “cut” around
the occlusion boundary (i.e., wrong C0 discontinuities), which is reflected both
in the red rectangle in Fig. S1 and discontinuity score in Table 1 in paper.

S.6 Ablations

We provide an analysis and justification of several key design choices. First, we
analyze the importance of using a learned UV chart instead of a fixed chart like
Image2Surf. As seen in Sec. 5.1 and Table 1, Pix2Surf outperforms Image2Surf on
all categories for reconstruction error. Second, we analyze the utility of multi-view
feature pooling and consistency loss. As seen in Table 1 (rows 4–7), these two
features significantly improve performance. We also justify the use of intermediate
NOCS map regression by the NOCS-UV branch, and the need for the UV amplifier
(Table S1). We do so by examining networks without these two components. For
the NOCS map ablation, we train the network from scratch without pretraining
the NOCS-UV branch, and for the UV amplifier ablation, we directly input the
learned UV coordinates to the SP branch and increase the dimension of a latent
image code to 256. When conducting the experiments on the chair category, the
results (Table S1) show that these components help learn better reconstructions.
Table S1. We experimentally verify the usefulness of NOCS map regression and the
UV amplifier. NOCS map regression provides intermediate supervision while the UV
amplifier balances information. Here we report average reconstruction error computed
on the visible part (equal training epochs for all methods).

No UV Amp. No NOCS Pix2Surf

Chair 10.37 3.64 2.61

Fig. S1. Qualitative Comparison to Image2Surf. The first row are the results of Pix2Surf
and the second row are for Image2Surf. Each instance is viewed from 2 different
viewpoints. Image2Surf wrongly connects disjoint parts and results in strong distortions,
which are solved by Pix2Surf’s learned chart.
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