


tion module is optimized for fitting retrieved shapes to target

shapes, and does not try to be a general-purpose algorithm

for arbitrary source-target pairs. Thus, the retrieval module

is optimized to retrieve sources that the deformation module

can fit well to the input target, and the deformation module

is trained on sources the retrieval module predicts for the

input target, thereby letting it optimize capacity and learn

only meaningful deformations.

The robustness of the joint training enables us to devise

a more elaborate deformation space. Specifically, we de-

vise a differentiable, part-aware deformation function that

deforms individual parts of a model while respecting the

part-to-part connectivity of the original structure (Figure 1).

Importantly, it accommodates varying numbers of parts and

structural relationships across the database, and does not re-

quire part labels or consistent segmentations. It can work

with automatically-segmented meshes and even multiple

differently segmented instances of the same source shape.

We propose a way to encode each part in each source and to

enable a general MLP to predict its deformation regardless

of the part count. This holistic view of joint retrieval and de-

formation is especially important when considering hetero-

geneous collections of shapes “in the wild” that often vary

in their part structure, topology, and geometry. These re-

quire different deformation spaces for different source mod-

els, which the retrieval module must be aware of.

We evaluate our method by matching 2D image and

3D point cloud targets. We demonstrate that it outper-

forms various baselines, such as vanilla retrieval [26], or

deformation-aware retrieval using direct optimization for

deformation [41], or a fixed, pre-trained, neural deforma-

tion module (i.e. omitting joint training). We also show

that our method can be used even with imperfect and incon-

sistent segmentations produced automatically. Finally, we

show that even with a different deformation module (e.g.,

Neural Cages [49]), our joint training leads to better results.

2. Related Works

Deep Learning for Shape Generation. Many neural

techniques have been proposed recently for learning gener-

ative latent representations for 3D shapes, modeling geome-

try as implicit functions [31, 27, 5], atlases [13], volumetric

grids [8, 45], point clouds [1, 48, 9], and meshes [42, 44].

These models tend to under-perform on topologically com-

plex objects with intricate part structures. Thus, other

techniques focus on factorized representation, where vari-

ations in structure are modeled separately from the geome-

try [25, 11, 28]. These generative techniques are commonly

used jointly with 2D CNNs [33] or shape encoders [51] to

enable creating a shape based on some partial observations,

such as a natural image [12] or a point scan [7]. A sim-

ple shape retrieval [26] could also be viewed as the simplest

version of such a shape generator, where the system simply

returns the nearest neighbor in the latent space, in fact, of-

fering a strong baseline to other generative techniques [38].

Deformation-Aware Retrieval. Direct retrieval has the

advantages of producing stock-quality meshes [39, 40],

however, unless the database contains all possible objects,

might not produce a good fit for an encoded target. Prior

works [30, 34, 41] address this issue by additionally de-

forming, i.e. fitting, the retrieved shape to the desired tar-

get. One approach is to exhaustively deform all shapes in

the database to the target and select the best fit [30], but is

however computationally expensive. Schulz et al. [34] alle-

viates this by retrieving parametric models by representing

each as a set of points and bounded tangent planes, thus

enabling retrieval before the fitting process. Leveraging on

deep networks, Uy et al. [41] use a deep embedding to re-

trieve a shape and then separately deform it to the target by

directly optimizing the ARAP [18] loss. Their method is

limited to full shapes as targets as direct optimization is not

possible with partial scans [2] or natural images. They fur-

ther observe that the retrieval network needs to be aware of

the deformation step to retrieve a more appropriate source.

We extend their approach in several ways. First, we demon-

strate that one can use retrieve-and-deform method with a

neural deformation technique, allowing us to handle natural

images as inputs. Second, we propose a novel joint training

process, which enables us to train our deformation module

to be more suitable for the kind of pairs of shapes that are

being retrieved. And third, we propose a novel neural defor-

mation module that is especially suitable for heterogeneous

shape collections with topological and structural variations.

3D Deformation. Deforming a source 3D model to a tar-

get is one of the fundamental problems in geometry pro-

cessing. If target is a full shape, direct optimization tech-

niques can be employed [17, 35, 22], as well as human-

made [23, 10, 46, 52] shapes. One can only directly opti-

mize if a target is a full shape, however if it of a different

modality, such as image or partial scan, one needs to employ

priors [15]. Neural techniques have been used to learn such

deformation priors from collections of shapes, representing

deformations as volumetric warps [20, 24, 50], cage defor-

mations [49], vertex-based offsets [43, 14] or flow-based

approaches [21]. To make learning easier, these techniques

typically assume homogeneity in the sources and represent

the deformation with the same number of parameters for

each source, i.e. grid control points [20], cage mesh [49]

or number of vertices [43]. These assumptions make them

less suitable for heterogeneous databases of sources with

significant structural variations at the part level. We extend

the part-level reasoning that proved to be effective for other

problems [29, 47, 4] to neural deformation, by proposing a

novel module that can learn source-specific deformations,

and handle cases when sources can have different number

of deformation parameters to account for part variability.
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Lemb =
K
∑

k=1

| p(sk, t,St, dR, σ0)− p(sk, t,St, dfit, σk)|,

(2)

where
dfit(s, t) = Lfit(Ds(t), ttrue), (3)

and σk is a source-dependent scalar representing the pre-

dicted range of variations of each source model s ∈ S,

which is also learned. For the deformation module, we

update the deformation functions {Dsk
} for the K biased

samples by minimizing the post-deformation fitting losses

weighted by their soft probability measures:

Ldef =

K
∑

k=1

p(sk, t,St, dR, σ0)Lfit(Dsk
(t), ttrue). (4)

This weighting scheme puts greater weight on sources

that are closer to the target in the embedding space, thus fur-

ther making the deformation module aware of the retrieval

module, and allowing it to specialize on more amenable

sources with respect to the training target.

Inner Deformation Optimization. To enforce the defor-

mation module to perform more significant deformations,

at each training iteration we use the deformation network’s

current output for the given source and target that consists

of parameters for the deformation, and directly run SGD

on the deformation parameters until convergence of the fit-

ting loss. We then measure the least-square error between

the deformation network’s output and the optimized param-

eters, and train the module by backpropagating this error,

hence enabling the network to learn stronger deformations

and getting a better estimate for how well the source could

be aligned to the target after the deformation. See the sup-

plementary for the full details.

3.2. Structure­Aware Neural Deformation

While our joint training approach described in Sec-

tion 3.1 is generic and can work well with different param-

eterization of deformations, its greatest advantage is that it

enables our deformation space to vary greatly between each

source without having the deformation module learn subpar

deformations. We thus devise a deformation module with a

heterogeneous space of part-based deformations as shown

in Figure 1, which vary per each source, a necessary fea-

ture if one wants to tailor the deformations to be restricted

to preserve and adjust part structures.

To get meaningful parts, we use manual segmentations

from PartNet [29] or automatic segmentations (preprocess-

ing) of ComplementMe [37], produced by grouping con-

nected components in raw meshes. Our deformation mod-

ule predicts a simple deformation consisting of translation

and axis-aligned scaling for each part in a source model.

See supplementary for the details on the prediction. The

number of parts for different sources vary, making the de-

formation functions source-dependent {Ds}. We abuse the

notation a bit and let D denote our deformation module.

We propose to use a neural network which can be

applied to each part separately, thus making it applicable

to models with varying part-constellations, as opposed

to previous methods. Namely, we assign to each source

a global code s
glob
D

∈ R
n1 , and for each part within the

shape, we assign a local code si=1...Ns

D
∈ R

n2 . The

target is encoded via an encoder (PointNet [32] for point

clouds and ResNet [16] for images) into a latent vector

tD = ED(t) ∈ R
n3 . We set n1 = n3 = 256 and n2 = 32

for all experiments. The global, local, and target codes

are concatenated and fed to a lightweight 3-layer MLP

(512, 256, 6), P , which outputs the deformation parameters

of the corresponding part. The deformation parameters

of all parts are then used to obtain the final deformed

source shape. Each source’s global and local codes are

optimized in an auto-decoder fashion during the training

of the deformation module. Figure 2 (right) illustrates our

module. We additionally add a symmetry loss in training

our deformation module to enforce bilateral symmetry of

the output deformed shapes as regularization, more details

are found in the supplementary.

Connectivity Constraints. We further take advantage of

our joint-training’s robustness to heterogeneous deforma-

tion spaces, and add part-connectivity constraints. We

achieve this by introducing a layer that receives a deforma-

tion and projects it onto the space of contact-preserving de-

formations, via a simple linear transformation. Contacts are

defined between pairs of connected parts where each pair

introduces a set of constraints. The source models have dif-

ferent sets of connected parts, and hence a different number

and set of constraints, as illustrated in Figure 1, making the

deformation functions {Ds} even more source-dependent.

More details are found in the supplementary.

3.3. Retrieval in Latent Space

The retrieval space R is defined similarly to Uy et

al. [41], and we provide relevant technical details in this

section for completeness. We use a PointNet or ResNet en-

coder to get the latent code of the target: tR = ER(t) ∈
R

n4 with n4 = 256. The sources are represented as regions

in the latent space, defined by a center code sR ∈ R
n4 and

a variance matrix sv
R

∈ R
n4×n4 that defines the egocentric

distance field. The variance matrix is diagonal positive def-

inite, with the positivity enforced by the sigmoid activation

function. We define the distances in the retrieval space as:

d(s, t)R =
√

(sR − tR)T sv
R
(sR − tR). (5)

During training we optimize the parameters of the en-

coder ER(t) as well as latent codes and variances for each
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Appendix

We provide additional implementation details (Sec-

tion A.1), and additional quantitative evaluations (Sec-

tion A.2.1) and qualitative results (Section A.2.2).

A.1. Implementation Details

Inner Deformation Optimization. We provide additional

details for the inner deformation optimization step, as de-

scribed in Section 3.1 of the main paper.

We initialize the inner deformation optimization with

the parameters predicted by our deformation network.

We propagate gradients directly to the parameters by

minimizing the mean chamfer loss of the batch. We use

the SGD optimizer with a learning rate of 0.05, and we

terminate upon convergence (i.e., when the maximum loss

change in a pair in the batch is less than 10−6 or it has

reach the maximum number of iterations = 2000).

Structure-Aware Neural Deformation. We provide addi-

tional details for our structure-aware neural deformation as

described in Section 3.2 of the main paper.

Our structure-aware neural deformation module predicts

the deformation parameter offset from the default parame-

ters of each source model. Specifically for a specific source-

target pair, given network prediction p and default source

parameter p̄, our output parameters to obtain the deformed

source model is given by (p̄+ α ∗ p, where α = 0.1) in all

our experiments.

We also add the symmetry loss to supervise the train-

ing of our structure-aware neural deformation. Note that

all the source shapes in our databases have global reflec-

tive symmetry, and have been pre-aligned so that yz-plane

aligns with the symmetry axis. Given the output deformed

source shape, represented as a sampled point cloud O, for

target point cloud T of given target t, we reflect each point

O about the yz-plane to obtain reflected point cloud O′, then

the symmetry loss is given by

Lsymm = LCD(O,O′),

where LCD is the chamfer distance. Then the loss we use to

train our deformation module is given by

Ltotal = Ldef + Lsymm,

where Ldef is defined in Equation 4 in the main paper.

Connectivity constraint. We provide the details on how

we obtain our connectivity constraint as described in Sec-

tion 3.2 of the main paper.

We precompute the constraint projection matrix for

each source s ∈ S in an automatic pre-processing step,

where we first identify contacts based on the distance

between the closest pairs of keypoints between pairs of

Chair Table Cabinet

DAR+DF (No Conn.) 1.107 1.728 1.480

Uniform Sampling (No Conn.) 1.129 1.655 1.358

Ours (No Conn.) 0.757 0.708 0.846

Table A1. Our approach compared to the baselines in the setup

with no connectivity constraint.

parts (si
D
, s

j
D
). Parts si

D
and s

j
D

are deemed connected

if the closest part of keypoints falls below a threshold

τ = 0.05. Part keypoints is the set of face centers, edge

midpoints, and corners of each part’s axis-aligned bounding

box. We then define contacts as the midpoint of the closest

pair of keypoints of two connected parts, and obtain 3

linear constraints (one for each axis) for each pair of

connected parts that enforces the contact point to maintain

connectivity during deformation. We obtain a number

of linear constraints from the collection of contacts that

results in a different number of linear constraints for each

source model. We concatenate all the linear constraints

and represent these with constraint matrix Bs for source

model s. Let Qs be the nullspace, i.e. columns represent-

ing the nullspace basis vectors, of Bs computed via SVD,

then the constraint projection matrix of s is given by QsQ
T
s

.

Training details and training time. We alternately update

the retrieval module and the deformation module at each

iteration during our training procedure, and train for 300

epochs. To speedup training, we cache the distances to the

sources for each target and update this cache every 5 epochs.

We use a batch size of 16 targets in each iteration, the SGD

optimizer with learning rate of 0.001, momentum of 0.9 and

weight decay of 0.0005. For the inner deformation opti-

mization, also use the SGD optimizer with a learning rate of

0.05 until the termination criteria is reached, which is when

the fitting loss decreases by less than 10−5 or the maximum

number of 5000 iterations is reached.

For our joint training module, we first train our Structure-

Aware neural deformation module until convergence on ran-

dom pairs, and also train our retrieval module on random

pairs to initialize our joint training optimization scheme.

Also note that when training image-based ResNet encoder

for the retrieval and deformation modules, we warm-start

with weights that are pre-trained on ImageNet, and only

train the fourth block and the final fully-connected layers.

Training takes 18 and 40 hours on point clouds and

images, respectively, for the chair class. With the inner

loop direct optimization, the corresponding training time for

chairs takes 3 days for both the point cloud and image ex-

periments as the inner optimization dominates the runtime.
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