Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy! Vladimir G. Kim? Minhyuk Sung® Noam Aigerman?
Siddhartha Chaudhuri** Leonidas Guibas'

IStanford University 2Adobe Research *KAIST “IIT Bombay

Abstract

We propose a novel technique for producing high-quality
3D models that match a given target object image or scan.
Our method is based on retrieving an existing shape from
a database of 3D models and then deforming its parts to
match the target shape. Unlike previous approaches that in-
dependently focus on either shape retrieval or deformation,
we propose a joint learning procedure that simultaneously
trains the neural deformation module along with the embed-
ding space used by the retrieval module. This enables our
network to learn a deformation-aware embedding space, so
that retrieved models are more amenable to match the tar-
get after an appropriate deformation. In fact, we use the
embedding space to guide the shape pairs used to train the
deformation module, so that it invests its capacity in learn-
ing deformations between meaningful shape pairs. Further-
more, our novel part-aware deformation module can work
with inconsistent and diverse part-structures on the source
shapes. We demonstrate the benefits of our joint training
not only on our novel framework, but also on other state-
of-the-art neural deformation modules proposed in recent
years. Lastly, we also show that our jointly-trained method
outperforms various non-joint baselines.

1. Introduction

Creating high-quality 3D models from a reference im-
age or a scan is a laborious task, requiring significant ex-
pertise in 3D sculpting, meshing, and UV layout. While
neural generative techniques for 3D shape synthesis hold
promise for the future, they still lack the ability to create
3D models that rival the fidelity, level of detail, and overall
quality of artist-generated meshes [38]. Several recent tech-
niques propose to directly retrieve a high-quality 3D model
from a database and deform it to match a target image or
point cloud, thereby approximating the target shape while
preserving the quality of the original source model. These
prior methods largely focus on one of two complementary
subproblems: either retrieving an appropriate mesh from a
database [26, 6], or training a neural network to deform a
source to a target [14, 43, 49, 36]. In most cases, the static
database mesh most closely matching the target is retrieved,

Database with heterogeneous deformations

[
y \ ‘
o - 4
(54 “2 “2 36 s, (60
24 ints) 18 ints) 24 ints) 27 ints) 33 i
A= # < q -
9= 22 | ln o
m Our Joint Learning l.,
‘ I; Deform 1
Static Retrieval Non-joint H/
D i Retrieval

Target 2D image Baselines aware rtricval | Jointly trained deformation

Figure 1. Given an input target we use jointly-learned retrieval and
deformation modules to find a source model in a heterogeneous
database and align it to the target. We demonstrate that our joint

learning outperforms static retrieval and non-joint baselines.

and then deformed for a better fit [19]. The retrieval step
is not influenced by the subsequent deformation procedure,
and thus ignores the possibility that a database shape with
different global geometry nevertheless possess local details
that will produce the best match after deformation.

Only a few works explicitly consider deformation-aware
retrieval [34, 41]. However, in these works the deforma-
tion module is a fixed, non-trainable black box, which re-
quires complete shapes (and not e.g., natural images or par-
tial scans) as targets, does not handle varying shape struc-
tures across the database, may necessitate time-consuming,
manually-specified optimization of a fitting energy, exhaus-
tive enumeration of deformed variants, and does not support
back-propagating gradients through it for directly translat-
ing deformation error to retrieval error.

In this paper, we argue that retrieval and deformation
should be equal citizens in a joint problem. Given a
database of source models equipped with some parametric
representation of deformations, our goal is to learn how to
retrieve a shape from the database and predict the optimal
deformation parameters so it best matches a given target. A
key feature of our method is that both retrieval and defor-
mation are learnable modules, each influencing the other
and trained jointly. While the benefit of deformation-aware
retrieval has been explored previously, we contribute the no-
tion of retrieval-aware deformation: our learnable deforma-

tion module is optimized for fitting retrieved shapes to target
shapes, and does not try to be a general-purpose algorithm
for arbitrary source-target pairs. Thus, the retrieval module
is optimized to retrieve sources that the deformation module
can fit well to the input target, and the deformation module
is trained on sources the retrieval module predicts for the
input target, thereby letting it optimize capacity and learn
only meaningful deformations.

The robustness of the joint training enables us to devise
a more elaborate deformation space. Specifically, we de-
vise a differentiable, part-aware deformation function that
deforms individual parts of a model while respecting the
part-to-part connectivity of the original structure (Figure 1).
Importantly, it accommodates varying numbers of parts and
structural relationships across the database, and does not re-
quire part labels or consistent segmentations. It can work
with automatically-segmented meshes and even multiple
differently segmented instances of the same source shape.
We propose a way to encode each part in each source and to
enable a general MLP to predict its deformation regardless
of the part count. This holistic view of joint retrieval and de-
formation is especially important when considering hetero-
geneous collections of shapes “in the wild” that often vary
in their part structure, topology, and geometry. These re-
quire different deformation spaces for different source mod-
els, which the retrieval module must be aware of.

We evaluate our method by matching 2D image and
3D point cloud targets. We demonstrate that it outper-
forms various baselines, such as vanilla retrieval [26], or
deformation-aware retrieval using direct optimization for
deformation [41], or a fixed, pre-trained, neural deforma-
tion module (i.e. omitting joint training). We also show
that our method can be used even with imperfect and incon-
sistent segmentations produced automatically. Finally, we
show that even with a different deformation module (e.g.,
Neural Cages [49]), our joint training leads to better results.

2. Related Works

Deep Learning for Shape Generation. Many neural
techniques have been proposed recently for learning gener-
ative latent representations for 3D shapes, modeling geome-
try as implicit functions [31, 27, 5], atlases [3], volumetric
grids [8, 45], point clouds [1, 48, 9], and meshes [42, 44].
These models tend to under-perform on topologically com-
plex objects with intricate part structures. Thus, other
techniques focus on factorized representation, where vari-
ations in structure are modeled separately from the geome-
try [25, 11, 28]. These generative techniques are commonly
used jointly with 2D CNNs [33] or shape encoders [51] to
enable creating a shape based on some partial observations,
such as a natural image [12] or a point scan [7]. A sim-
ple shape retrieval [26] could also be viewed as the simplest
version of such a shape generator, where the system simply

returns the nearest neighbor in the latent space, in fact, of-
fering a strong baseline to other generative techniques [38].

Deformation-Aware Retrieval. Direct retrieval has the
advantages of producing stock-quality meshes [39, 40],
however, unless the database contains all possible objects,
might not produce a good fit for an encoded target. Prior
works [30, 34, 41] address this issue by additionally de-
forming, i.e. fitting, the retrieved shape to the desired tar-
get. One approach is to exhaustively deform all shapes in
the database to the target and select the best fit [30], but is
however computationally expensive. Schulz et al. [34] alle-
viates this by retrieving parametric models by representing
each as a set of points and bounded tangent planes, thus
enabling retrieval before the fitting process. Leveraging on
deep networks, Uy et al. [41] use a deep embedding to re-
trieve a shape and then separately deform it to the target by
directly optimizing the ARAP [18] loss. Their method is
limited to full shapes as targets as direct optimization is not
possible with partial scans [2] or natural images. They fur-
ther observe that the retrieval network needs to be aware of
the deformation step to retrieve a more appropriate source.
We extend their approach in several ways. First, we demon-
strate that one can use retrieve-and-deform method with a
neural deformation technique, allowing us to handle natural
images as inputs. Second, we propose a novel joint training
process, which enables us to train our deformation module
to be more suitable for the kind of pairs of shapes that are
being retrieved. And third, we propose a novel neural defor-
mation module that is especially suitable for heterogeneous
shape collections with topological and structural variations.

3D Deformation. Deforming a source 3D model to a tar-
get is one of the fundamental problems in geometry pro-
cessing. If target is a full shape, direct optimization tech-
niques can be employed [17, 35, 22], as well as human-
made [23, 10, 46, 52] shapes. One can only directly opti-
mize if a target is a full shape, however if it of a different
modality, such as image or partial scan, one needs to employ
priors [15]. Neural techniques have been used to learn such
deformation priors from collections of shapes, representing
deformations as volumetric warps [20, 24, 50], cage defor-
mations [49], vertex-based offsets [43, 14] or flow-based
approaches [21]. To make learning easier, these techniques
typically assume homogeneity in the sources and represent
the deformation with the same number of parameters for
each source, i.e. grid control points [20], cage mesh [49]
or number of vertices [43]. These assumptions make them
less suitable for heterogeneous databases of sources with
significant structural variations at the part level. We extend
the part-level reasoning that proved to be effective for other
problems [29, 47, 4] to neural deformation, by proposing a
novel module that can learn source-specific deformations,
and handle cases when sources can have different number
of deformation parameters to account for part variability.

Soft Retrieval Py

Deformation-
(z /@ =P Aware
Retrieval

R

Target Target ﬁ ﬁ‘i
) ’ 5 g g Connectivity ! A
glob == |= : ﬁz'
Heterogeneous Database 5 . Constraints
=y i Source shape latent code s Deformed
y yar a5 (s P Source
| = | {St}NPR — ’ ‘»_4

(8.4

F|/q |

i
Source Source part latent code = FD

Structure-Aware
Neural Deformation

Directly Optimized (Autodecoded)

Figure 2. During training, given a target image or a point cloud and a database of deformable sources, we retrieve a subset of source models
based on their proximity in the retrieval space, and use the structure-aware deformation module (right) to fit each source. Our deformation
module uses encoded target, global and per-part source codes to predict per-part deformation parameters.

3. Method

Overview. We assume to possess a database of parametric
source models s € S, and we aim to jointly train a deforma-
tion and retrieval module to choose a source and deform it to
fit a given target t (an image or a point cloud), with respect
to a fitting metric Lg, (We use chamfer in all experiments).
Each source also has parameters defining its individual de-
formation space, that are optimized during training.

Our deformation module is designed to enable a differ-
ent deformation function Dg for each source s, based on its
parts. The retrieval module uses embeddings of the sources
and the target into a latent space R, where it retrieves based
on a distance measure dy, which enables the retrieval of the
source shape that best fits to the target after deformation.

The training consists of optimizing the latent retrieval
space R and the deformation functions {Ds}:

min Cﬁt (Ds/ (t), ttrue) ’

where s’ is the closest source to target t in latent space, w.r.t
the distance measure dg (s’,t), and tyy is the correspond-
ing true shape.

We progress by first explaining in Section 3.1 how we
design our framework and optimization in a way that is dif-
ferentiable and enables the deformation and retrieval mod-
ules to propagate information from one to the other. We
then detail our novel deformation module and how it en-
ables source-specific deformations in Section 3.2, and con-
clude by describing the retrieval module in Section 3.3.

3.1. Joint Deformation and Retrieval Training

It is critical for our approach to optimize the parameters
of R and {Ds} jointly. First, it enables the deformation
module of each source to efficiently utilize its capacity and
specialize on relevant targets that it could fit to. Second, it
allows the retrieval module to create a deformation-aware
latent space where sources are embedded closer to the tar-
gets they can deform to.

Soft Retrieval for Training. The retrieval module em-
beds the sources and the target in the latent retrieval space

‘R. The proximity in latent space is used to define a biased
distribution that can be loosely interpreted as the probability
of source s being deformable to t:

Pr(s,t) = p(s;t,S,dr, 00), (1
where
Ssit.5.d5) ORI 0/5%)
Y ses exp(—d?(s',1)/5%(s))

d: (S x T) — R is a distance function between a source
and a target (T is the target space), and ¢ : S — R is
a potentially source-dependent scalar function. Though,
oo(+) = 100 is a constant set for all experiments.

Instead of choosing the highest-scoring source according
to the probability P, we perform soft retrieval and sample
K = 10 retrieval candidate sources from the distribution:

si ~Pr(s,t),Vie {1,2,..,K}.

The candidates Sy = {sy, ..., sk} sampled via our soft
retrieval are then used to train both our retrieval module to
learn R and deformation module for source-depedent de-
formation functions {Ds}.

The soft retrieval is crucial for our training: 1) adding

randomness to the retrieval ensures that the latent space is
optimized with respect to both high-probability instances
and low-probability ones, that may reverse roles as the de-
formation module improves. 2) On the other hand, train-
ing the deformation module with a bias towards high-
probability sources and not random ones ensures it is aware
of the retrieval module and expands its capacity on mean-
ingful matches.
Training. We train the two modules jointly in an alter-
nating fashion, keeping one module fixed when optimizing
the other, and vice versa, in successive iterations. To train
the retrieval module, we deform the candidate sources and
compute their fitting losses to the target. We update our la-
tent space R by penalizing the discrepancy between the dis-
tances in the retrieval space dz and the post-deformation fit-
ting losses Ly using softer probability measures estimated
from the distances of the sampled candidates:

K
Eemb = Z ‘ p(skvtv St7dR;UO) - p(skatv St7dﬁtao—k)|a

k=1
2

dit(s, t) = L (Ds(t), birue), 3)

and oy, is a source-dependent scalar representing the pre-
dicted range of variations of each source model s € S,
which is also learned. For the deformation module, we
update the deformation functions {Ds, } for the K biased
samples by minimizing the post-deformation fitting losses
weighted by their soft probability measures:

where

K
Lot = > P(Skt,Se,dr, 00)Lit(Ds, (t), brue)- ()
k=1

This weighting scheme puts greater weight on sources
that are closer to the target in the embedding space, thus fur-
ther making the deformation module aware of the retrieval
module, and allowing it to specialize on more amenable
sources with respect to the training target.

Inner Deformation Optimization. To enforce the defor-
mation module to perform more significant deformations,
at each training iteration we use the deformation network’s
current output for the given source and target that consists
of parameters for the deformation, and directly run SGD
on the deformation parameters until convergence of the fit-
ting loss. We then measure the least-square error between
the deformation network’s output and the optimized param-
eters, and train the module by backpropagating this error,
hence enabling the network to learn stronger deformations
and getting a better estimate for how well the source could
be aligned to the target after the deformation. See the sup-
plementary for the full details.

3.2. Structure-Aware Neural Deformation

While our joint training approach described in Sec-
tion 3.1 is generic and can work well with different param-
eterization of deformations, its greatest advantage is that it
enables our deformation space to vary greatly between each
source without having the deformation module learn subpar
deformations. We thus devise a deformation module with a
heterogeneous space of part-based deformations as shown
in Figure 1, which vary per each source, a necessary fea-
ture if one wants to tailor the deformations to be restricted
to preserve and adjust part structures.

To get meaningful parts, we use manual segmentations
from PartNet [29] or automatic segmentations (preprocess-
ing) of ComplementMe [37], produced by grouping con-
nected components in raw meshes. Our deformation mod-
ule predicts a simple deformation consisting of translation
and axis-aligned scaling for each part in a source model.
See supplementary for the details on the prediction. The

number of parts for different sources vary, making the de-
formation functions source-dependent {Ds}. We abuse the
notation a bit and let D denote our deformation module.

We propose to use a neural network which can be
applied to each part separately, thus making it applicable
to models with varying part-constellations, as opposed
to previous methods. Namely, we assign to each source
a global code S%Ob € R™, and for each part within the
shape, we assign a local code sfljzl“'N*" € R™. The
target is encoded via an encoder (PointNet [32] for point
clouds and ResNet [16] for images) into a latent vector
tp = Ep(t) € R™. We set n; = ng = 256 and ny = 32
for all experiments. The global, local, and target codes
are concatenated and fed to a lightweight 3-layer MLP
(512, 256, 6), P, which outputs the deformation parameters
of the corresponding part. The deformation parameters
of all parts are then used to obtain the final deformed
source shape. Each source’s global and local codes are
optimized in an auto-decoder fashion during the training
of the deformation module. Figure 2 (right) illustrates our
module. We additionally add a symmetry loss in training
our deformation module to enforce bilateral symmetry of
the output deformed shapes as regularization, more details
are found in the supplementary.

Connectivity Constraints. We further take advantage of
our joint-training’s robustness to heterogeneous deforma-
tion spaces, and add part-connectivity constraints. We
achieve this by introducing a layer that receives a deforma-
tion and projects it onto the space of contact-preserving de-
formations, via a simple linear transformation. Contacts are
defined between pairs of connected parts where each pair
introduces a set of constraints. The source models have dif-
ferent sets of connected parts, and hence a different number
and set of constraints, as illustrated in Figure 1, making the
deformation functions {Ds} even more source-dependent.
More details are found in the supplementary.

3.3. Retrieval in Latent Space

The retrieval space R is defined similarly to Uy et
al. [41], and we provide relevant technical details in this
section for completeness. We use a PointNet or ResNet en-
coder to get the latent code of the target: tx = Fr(t) €
R™ with ny = 256. The sources are represented as regions
in the latent space, defined by a center code sgx € R™* and
a variance matrix sj; € R™4*"4 that defines the egocentric
distance field. The variance matrix is diagonal positive def-
inite, with the positivity enforced by the sigmoid activation
function. We define the distances in the retrieval space as:

ds.t)r = \/(sr — tr)Tsp(sr —tr). ()

During training we optimize the parameters of the en-
coder E'r (t) as well as latent codes and variances for each

=

-

-
Hx:rﬁ ¥

| &

g

T

<

Qﬁ!!% ;.

Input Retrieved Deformed Input Retrleved Deformed
Figure 3. We test our trained method on online product images.

J_

jl

source, SR ,S%. Sr is obtained by feeding the default shape
of source model s to encoder E%(t). Different from Uy et
al. [41], we optimize s} in an auto-decoder fashion, since
we want to represent the deformation space of the source
rather than its geometry. This allows us to handle sources
with similar geometry but different parameterizations.

4. Results

In this section we discuss our data sources and evalua-
tion metric and provide thorough experiments with image
(Sec 4.1) and point cloud (Sec 4.2) targets.

Datasets and Evaluation Metric. We evaluate our
method on the three furniture categories in the ShapeNet
dataset [3] chairs (6531), tables (7939) and cabinets (1278).
For our database of deformable source models, we use
manually- and automatically-segmented shapes from two
different datasets. Manually-segmented shapes come from
the finest level of PartNet hierarchy [29], and we select
random 10% of the data as our sources. Automatically-
segmented shapes come from two pre-analyzed classes in
ComplementMe [37] (chairs and tables), and we pick 200
random models for each. We remove the selected sources
from the database, and use remaining models as training
(80%) and testing (20%) targets. To demonstrate the practi-
cal utility of our method, we also test our trained networks
on product images and 3D scans.

We represent the shapes by uniformly sampling 2048
points. For the image experiments, we render 24 uniformly-
sampled viewpoints, and pick a random view at each itera-
tion during training. In all cases our true targets and de-
formed sources are represented as point clouds, and points-
to-points distances are used for training and evaluation.

4.1. Image-to-Mesh

We first test our system on product images “in the wild”
as well as images from our test set and show qualitative re-
sults for retrieval and deformation in Figures 3 and 4. Note

| Chair | Table | Cabinet
R 1.926 2.235 2.228
R+DF 1.969 2.705 2.035
DAR (Retrieval Only) 1.345 2.058 3.489
DAR+DF 1.216 1.621 1.333
Uniform Sampling 1.118 1.486 1.318
Ours 1.005 0.970 1.220
Ours w/ IDO 0.976 0.935 1.141

Table 1. Comparing our method to various baselines and ablations
on image-to-mesh benchmark (chamfer distances, X 1072).

how retrieved results have compatible structure to the in-
put, which then enables the deformation technique to match
the source to the target. We quantitatively evaluate perfor-
mance of our method and report chamfer distances in Ta-
ble 1 (Ours) together with the chamfer distances with the
inner deformation optimization (Qurs w/ IDO). Since IDO
step described significantly increases training time, we do
not use it in ablations and comparisons.

Retrieval Baselines. We compare our method to a vanilla
image-to-shape retrieval technique [26] (denoted by R).
This baseline first constructs the latent space by projecting
shape-to-shape chamfer distance matrix to 256-dimensional
space via MDS, and then trains a ResNet [16] encoder to
map images to that latent space with L2-loss. Since any
retrieval baseline can also work with a pre-trained neural
deformation, we also train our structure-aware deformation
module on random pairs of shapes (i.e., ablating the joint
training procedure) and report results with neural defor-
mation applied to the retrieved results (R+DF). Since this
vanilla baseline retrieves only based on geometric similarity
and does not account for deformation, the retrieved shapes
may not deform to targets well. Hence, there is no im-
provement when deforming with the pre-trained deforma-
tion function.

The second retrieval baseline is the deformation-aware
retrieval [41], where we also use our structure-aware de-
formation module pre-trained on random pairs. For this
baseline we report results for retrieval (DAR) as well
as deformation (DAR+DF). Our results show that being
deformation-aware is not sufficient, and it is important for
deformation module to be trained with retrieved shapes.

Biased Sampling Ablation. Our joint training benefits
from biasing sampling of retrieval targets (Eq. 1). To ab-
late this, we sample from a uniform distribution, i.e., each
source is sampled with equal probability during training. In
this setting, while the retrieval and deformation modules are
still trained together, they are less aware of which samples
are most relevant at inference time and thus yield higher
errors (see Uniform Sampling in Table 1).

Improvement in Deformation Module. In addition to
holistic improvement to the final output, we would like to

R+DF

DAR DAR+DF Uniform Sampling

Ours w/ IDO

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed Retrieved Deformed Retrieved Deformed
Figure 4. Comparison between our approach and baselines for the image-to-mesh experiment.

| Chair | Table | Cabinet
DF 0.748 0.702 0.706
Uniform Sampling 0.755 0.690 0.701
Ours 0.681 0.584 0.675
Ours w/ IDO 0.669 0.533 0.689

Table 2. Improvement in deformation module for image-to-mesh
task with oracle retrieval due to joint training (chamfer x10~2).

evaluate the effect of joint training on deformation module.
To do this, we use oracle retrieval where for each test target,
we deform all sources and pick the one with the smallest fit-
ting error. Our joint training allows the deformation module
to specialize on targets that are a good fit. Thus, as shown
in Table 2, our method achieves the lowest fitting error for
the best-fit sources with respect to the deformation mod-
ule trained on all pairs (DF), and the deformation module
trained without the biased sampling (Uniform Sampling).

4.2. Points-to-Mesh

We also test our method on point cloud targets. We first
show qualitative results with real noisy and partial 3D scans
in Scan2CAD dataset [2]. Figure 5 show some examples,
and more are in the supplementary. As shown, given an in-
complete scan, with missing parts and a noise, our approach
still correctly retrieves and deforms a source database model
to output a clean and complete mesh to match the scan. Our
structure-aware neural deformation leverages learned shape
priors to complete missing regions.

We also provide qualitative and quantitative results on
our test set of point clouds sampled from ShapeNet meshes
in Table 3 and Figure 6. As in the previous section, we
report our results (Qurs) along with our method with the
inner direct optimization step (Ours w/ IDO). Since our
input are point clouds, similar to prior work [41] we can

Input Retrieved Deformed Input Retrieved Deformed

Figure 5. Our approach tested on real scans from the Scan2CAD
dataset [2].

also directly optimize the chamfer distance to make our
output fit better to the inputs, and we report results with
this post-process as well (Ours + DO, Ours w/ IDO + DO).

Deformation-Aware Retrieval Baseline. We compare
to deformation-aware retrieval [41] (DAR) followed by
either directly optimizing with respect to our per-part
parameters (DAR+DQ), or using our neural deformation
module pre-trained on random pairs (DAR+DF). Note that
the direct optimization step is only possible with complete
inputs and cannot be employed with partial data such as

Ours+DO Ours w/ IDO + DO
!ﬂ

< Jomm fhmm 2w i 2 P

EEENIwl

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure 6. Comparison between our approach and baselines for the
point-cloud-to-mesh experiment.

Input Retrieved Deformed Input Retrieved Deformed

Figure 7. Fitting results using auto-segmented sources [37].

DAR+DF Uniform Ours

Sampling
Chair 1.118 1.077 0.990
Table 1.409 1.502 1.166

Table 4. Using auto-segmented models as the source database [37]
(chamfer distance (x1072).

| Chair | Table | Cabinet
Classif.+DO 1.826 2.192 1.144 - -
DAR+DO 0.584 0452 0.633 | Chair | Tble | Cabiner
Ours+DO 0.504 0.414 0.494 DAR+NC 0.480 0.575 0.589
Ours w/ IDO+DO 0.484 0.407 0.485 Ours NC 0.476 0.411 0.538
Classif.4+DO 3.199 4518 1.661 Table 5. Using our joint training with Neural Cages [49] deforma-
DAR+DF 0.965 1.561 0.829 tion module (chamfer distances, x 10™2).
Uniform Sampling 0.998 1.502 0.767
Ours 0.763 0.696 0.715
Ours w/IDO 0.691 0.670 0.696 Performance on Auto-Segmented Data. Since manually

Table 3. Comparing our method to various baselines and ablations
on points-to-mesh benchmark (chamfer distances, X 1072).

3D scans or images. Our method outperforms this baseline
with and without the direct optimization step (Table 3).
Qualitative results in Figure 6, also demonstrate that our
method retrieves structurally similar shapes and deforms
them to a better fit for the target. Even if retrieved shape
is identical (chair in the first row), the deformation learned
with our method is superior (e.g., see seat alignment).

Template-Classification Baseline. We also compare to a
template-classification-based approach mimicked from [10]
(Classif). Instead of using a non-learnable defomation
module via direct optimization of handcrafted templates as
in [10], we use our pre-trained neural deformation module
(DF) to make the baseline computationally feasible. We
treat every source shape as a template, deform it to each
training target, and train a classifier based on the best
match. We use this classifier instead of the retrieval module
at inference time, and show the fitting error in Table 3. Note
that this baseline is worse than our method and even [41].

Biased Sampling Ablation. As in the image target case,
we demonstrate the importance of biased sampling (Equa-
tion 3.1) in joint training (Table 3, Uniform Sampling).

segmenting a collection of source shapes is an expensive
process, we test our method on automatically-segmented
models. We use a heuristic method proposed in Comple-
mentMe [37] grouping connected components of meshes.
As shown in Figure 7, even though the models have
inconsistent segmentations, our method can still success-
fully learn a meaningful deformation module. We also
outperform the baseline (DAR+DF, Uniform Sampling)
in the quantitative benchmark (Table 4).

Performance with Neural Cages [49]. Since our joint
training is not restricted to our structure-aware deforma-
tion, we further evaluate the performance of our framework
with an alternative neural deformation method. We pick
Neural Cages [49], a state-of-the-art technique that param-
eterizes global warping as a cage-based deformation. We
simply replace our structure-aware deformation with Neu-
ral Cages, without any other changes to our joint training
process (Ours NC). We further compare to the baseline of
running deformation-aware retrieval [41] with neural cage
module that is pre-trained on random pairs (DAR+NC).
Joint training offers an improvement with respect to our
benchmark on all categories of shapes (see Table 5). Quali-
tative results in Figure 8 show that our joint training scheme
can better retrieve shapes such as chairs with the right back
and seat shape (first two rows), and a cabinet with shelves.

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure 8. Using Neural Cages [49] as a deformation module in our
joint training.

| Chair | Table | Cabinet
DF 0.712 0.703 0.549
Uniform Sampling 0.714 0.700 0.509
Ours 0.643 0.564 0.494
Ours w/ IDO 0.583 0.482 0.494

Table 6. Improvement in deformation module for points-to-mesh
(with oracle retrieval) due to joint training (chamfer distances,
x1072).

We remark that our joint training does not constraint the
choice of the neural deformation module. One can choose
any module based on its strengths and weaknesses. For in-
stance, Neural Cages module often provides a tighter fit to
the target, although it often results in bending/distortion of
shapes (e.g., legs of the chair in the first row and the seat
and legs of the chair in the third row of Figure 8). It also
lacks the ability to change the geometry of individual local
parts. In contrast, our deformation module allows thicken-
ing parts such as the seat of the chair in the second row of
Figure 8. This implies that Neural Cages can be used when
a tighter fit to the target is prioritized while our method can
be used when it is more desired to preserve and manipu-
late part-level structure of the object. Our method is also
more suitable for heterogeneous sources whose deforma-
tions need to be parameterized in different manners.

Improvement in Deformation Module. As in the image
target case, we demonstrate the improvement in the defor-
mation module alone using oracle retrieval with joint train-
ing (Ours), random pairs (DF), and without biased sam-
pling (Uniform Sampling), see Table 6. We demonstrate a
qualitative example in Figure 9 showing an example where
all methods retrieve the same source model for the given
target, but our joint approach achieves the best output as
shown by the differences in the legs of the chair.

Performance for Different Database Sizes. We further
evaluate the performance of different techniques while

Input Retrieved Deformed
Figure 9. We pick an example where retrieved mesh is the same for
all methods, and show that joint training also improves the quality

of the neural deformation module on its own.

DAR+DF Uniform Ours

‘ ‘ Sampling
|S|=50 0.872 0.877 0.823
|S|=100 0.858 0.860 0.803
|S]|=200 0.850 0.841 0.748
|S|=400 0.938 0.985 0.784
|S|=800 1.142 1.541 0.734

Table 7. Performance on of our method and various baselines with
different source database sizes (chamfer distances, x1072).

varying the size of the database of source models. We ran-
domly sample 50, 100, 200, 400, and 800 chair models from
PartNet to construct the source databases. Table 7 shows
that in all cases our joint training approach improves the
performance over the baselines. The boost in the perfor-
mance of our joint training is bigger in larger databases as
there are combinatorially more random source-target pairs
which may not be deformable.

5. Conclusion

To summarize, we propose a joint training for retrieval-
and-deformation problem, where the neural modules inform
one another, yielding better matching results with respect to
image and point cloud targets. Our joint training procedure
offers improvements regardless of the choice of the neural
deformation module. We further propose a novel structure-
aware deformation module that is especially suitable for
hetereogeneous datasets of source models with very diverse
parameterizations of deformations. Our method does not
require consistent manual segmentations or part labels and
can work with imprecise automatic segmentations.

Limitations and Future Work. Our method is only su-
pervised by chamfer distance, and thus might not favor se-
mantic and structural similarity between the target and re-
trieved sources. We believe that improving the loss func-
tion to leverage manual part annotations can further remedy
this issue. Our deformation module does not provide strong
links between parts, and does not favor capturing part-to-
part relations, which can be addressed by adding more con-
straints (e.g. symmetry) as well as improving our learning
module with a more advanced graph-based neural architec-
ture.

Acknowledgements. This work is supported by a grant
from the Samsung GRO program, a Vannevar Bush Faculty
Fellowship, and gifts from Adobe, Autodesk, and Snap.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and
Leonidas J Guibas. Learning representations and generative
models for 3D point clouds. In ICML, 2018. 2

Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis
Savva, Angel X Chang, and Matthias Nieiner. Scan2CAD:
Learning cad model alignment in RGB-D scans. In CVPR,
2019. 2,6, 13,15

Angel X. Chang, Thomas A. Funkhouser, Leonidas J.
Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich
3D model repository, 2015. 5

Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning to generate 3D structure. Euro-
graphics State-of-the-Art Reports (STAR), 2020. 2

Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

Manuel Dahnert, Angela Dai, Leonidas Guibas, and
Matthias NieBner. Joint embedding of 3d scan and cad ob-
jects. In ICCV, 2019. 1

Angela Dai and M. NieBner. Scan2Mesh: From unstructured
range scans to 3d meshes. In CVPR, 2019. 2

Angela Dai, Charles Ruizhongtai Qi, and Matthias Nief3ner.
Shape completion using 3D-encoder-predictor CNNs and
shape synthesis. In CVPR, 2017. 2

H. Fan, H. Su, and L. Guibas. A point set generation network
for 3D object reconstruction from a single image. In CVPR,
2017. 2

V. Ganapathi-Subramanian, O. Diamanti, S. Pirk,
Chengcheng Tang, M. Niefiner, and L. Guibas. Pars-
ing geometry using structure-aware shape templates. In
3DV, 2018. 2,7, 14

Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. SDM-NET: Deep generative net-
work for structured deformable mesh. In SIGGRAPH Asia,
2019. 2

Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
R-CNN. In ICCV, 2019. 2

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. AtlasNet: A Papier-Maché Ap-
proach to Learning 3D Surface Generation. In CVPR, 2018.
2

Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. Deep self-Supervised
cycle-Consistent deformation for few-shot shape segmenta-
tion. In Eurographics Symposium on Geometry Processing,
2019. 1,2

Rana Hanocka, Noa Fish, Zhenhua Wang, Raja Giryes,
Shachar Fleishman, and Daniel Cohen-Or. ALIGNet:
Partial-Shape agnostic alignment via unsupervised learning.
ACM Transactions on Graphics, 2018. 2

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016. 4,
5

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

Qixing Huang, B. Adams, Martin Wicke, and L. Guibas.
Non-rigid registration under isometric deformations. Com-
puter Graphics Forum, 2008. 2

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-
rigid-as-possible shape manipulation. In SIGGRAPH, 2005.
2

Vladislav Ishimtsev, Alexey Bokhovkin, Alexey Artemov,
Savva Ignatyev, Matthias NieBner, Denis Zorin, and Burnaev
Evgeny. CAD-Deform: Deformable fitting of cad models to
3d scans. In ECCV, 2020. 1

Dominic Jack, Jhony K. Pontes, Sridha Sridharan, Clinton
Fookes, Sareh Shirazi, Frederic Maire, and Anders Eriksson.
Learning free-Form deformations for 3D object reconstruc-
tion. In ICCV, 2018. 2

Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and
Leonidas Guibas. ShapeFlow: Learnable deformations
among 3D shapes. In NeurIPS, 2020. 2

Tao Ju, Scott Schaefer, and Joe Warren. Mean value coor-
dinates for closed triangular meshes. In SIGGRAPH, 2005.
2

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha
Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser.
Learning part-based templates from large collections of 3D
shapes. In SIGGRAPH, 2013. 2, 14

Andrey Kurenkov, Jingwei Ji, Animesh Garg, Viraj Mehta,
JunYoung Gwak, Christopher Bongsoo Choy, and Silvio
Savarese. DeformNet: Free-Form deformation network for
3d shape reconstruction from a single image. In WACV,
2018. 2

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive
autoencoders for shape structures. In SIGGRAPH, 2017. 2
Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish,
Daniel Cohen-Or, and Leonidas J. Guibas. Joint embeddings
of shapes and images via cnn image purification. In SIG-
GRAPH Asia, 2015. 1,2, 5

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 2

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy Mitra, and Leonidas Guibas. StructureNet: Hierarchi-
cal graph networks for 3D shape generation. In SIGGRAPH
Asia, 2019. 2

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna
Tripathi, Leonidas J. Guibas, and Hao Su. PartNet: A large-
scale benchmark for fine-grained and hierarchical part-level
3D object understanding. In CVPR, 2019. 2, 4,5, 13, 15
Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify
approach for cluttered indoor scene understanding. ACM
Transactions on Graphics, 2012. 2

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, 2019. 2

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017. 4

(33]

(34]

(35]

(36]

[37]

(38]

[39]
[40]
[41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

[49]

Charles Ruizhongtai Qi, Hao Su, Matthias Niener, Angela
Dai, Mengyuan Yan, and Leonidas Guibas. Volumetric and
multi-view CNNs for object classification on 3D data. In
CVPR, 2016. 2

Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin,
Pitchaya Sitthi-Amorn, and Wojciech Matusik. Retrieval on
parametric shape collections. ACM Transactions on Graph-
ics,2017. 1,2

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In Eurographics Symposium on Geometry Pro-
cessing, 2007. 2

Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J.
Mitra, and Leonidas J. Guibas. DeformSyncNet: Deforma-
tion transfer via synchronized shape deformation spaces. In
SIGGRAPH Asia, 2020. 1

Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha
Chaudhuri, and Leonidas Guibas. ComplementMe: Weakly-
supervised component suggestions for 3D modeling. In SIG-
GRAPH Asia, 2017. 4,5,7, 13, 15

Maxim Tatarchenko*, Stephan R. Richter*, René Ranftl,
Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do
single-view 3d reconstruction networks learn? In CVPR,
2019. 1,2

Trimble. 3D warehouse. 2

TurboSquid. TurboSquid. 2

Mikaela Angelina Uy, Jingwei Huang, Minhyuk Sung, Tolga
Birdal, and Leonidas Guibas. Deformation-Aware 3D model
embedding and retrival. In ECCV, 2020. 1,2,4,5,6,7, 12,
14

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3D mesh
models from single rgb images. In ECCV, 2018. 2

Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich
Neumann. 3DN: 3D deformation network. In CVPR, 2019.
1,2

Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu.
Pixel2Mesh++: Multi-view 3D mesh generation via defor-
mation. In ICCV, 2019. 2

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. In
NeurlPS, 2016. 2

Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-or, Yueshan
Xiong, and Zhi-Quan Cheng. Style-content separation by
anisotropic part scales. In SSIGGRAPH Asia, 2010. 2

Kai Xu, Hanlin Zheng, Hao Zhang, Daniel Cohen-Or, Lig-
ang Liu, and Yueshan Xiong. Photo-inspired model-driven
3d object modeling. In SIGGRAPH, 2011. 2

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. PointFlow: 3D point cloud
generation with continuous normalizing flows. In ICCV,
2019. 2

Wang Yifan, Noam Aigerman, Vladimir Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3D deformations. In CVPR, 2020. 1, 2,
7,8,13,14

10

(50]

(51]

[52]

Ersin Yumer and Niloy J. Mitra. Learning semantic deforma-
tion flows with 3d convolutional networks. In ECCV, 2016.
2

A. Khosla F. Yu L. Zhang X. Tang J. Xiao Z. Wu, S. Song.
3D ShapeNets: A deep representation for volumetric shapes.
In CVPR, 2015. 2

Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-
Chung Au, and Chiew-Lan Tai. Component-wise Controllers
for Structure-Preserving Shape Manipulation. Computer
Graphics Forum, 2011. 2

Appendix

We provide additional implementation details (Sec-
tion A.1), and additional quantitative evaluations (Sec-
tion A.2.1) and qualitative results (Section A.2.2).

A.1. Implementation Details

Inner Deformation Optimization. We provide additional
details for the inner deformation optimization step, as de-
scribed in Section 3.1 of the main paper.

We initialize the inner deformation optimization with
the parameters predicted by our deformation network.
We propagate gradients directly to the parameters by
minimizing the mean chamfer loss of the batch. We use
the SGD optimizer with a learning rate of 0.05, and we
terminate upon convergence (i.e., when the maximum loss
change in a pair in the batch is less than 107% or it has
reach the maximum number of iterations = 2000).

Structure-Aware Neural Deformation. We provide addi-
tional details for our structure-aware neural deformation as
described in Section 3.2 of the main paper.

Our structure-aware neural deformation module predicts
the deformation parameter offset from the default parame-
ters of each source model. Specifically for a specific source-
target pair, given network prediction p and default source
parameter p, our output parameters to obtain the deformed
source model is given by (p + a * p, where o« = 0.1) in all
our experiments.

We also add the symmetry loss to supervise the train-
ing of our structure-aware neural deformation. Note that
all the source shapes in our databases have global reflec-
tive symmetry, and have been pre-aligned so that yz-plane
aligns with the symmetry axis. Given the output deformed
source shape, represented as a sampled point cloud O, for
target point cloud T of given target t, we reflect each point
O about the yz-plane to obtain reflected point cloud O’, then
the symmetry loss is given by

Esymm = ECD(O7 O/)7

where Lcp is the chamfer distance. Then the loss we use to
train our deformation module is given by

Liotal = Edef + Lsymm7

where Lgef is defined in Equation 4 in the main paper.

Connectivity constraint. We provide the details on how
we obtain our connectivity constraint as described in Sec-
tion 3.2 of the main paper.

We precompute the constraint projection matrix for
each source s € S in an automatic pre-processing step,
where we first identify contacts based on the distance
between the closest pairs of keypoints between pairs of

11

| Chair | Table | Cabinet
DAR+DF (No Conn.) 1.107 1.728 1.480
Uniform Sampling (No Conn.) 1.129 1.655 1.358
Ours (No Conn.) 0.757 0.708 0.846

Table Al. Our approach compared to the baselines in the setup
with no connectivity constraint.

parts (s, s),). Parts si, and s}, are deemed connected
if the closest part of keypoints falls below a threshold
7 = 0.05. Part keypoints is the set of face centers, edge
midpoints, and corners of each part’s axis-aligned bounding
box. We then define contacts as the midpoint of the closest
pair of keypoints of two connected parts, and obtain 3
linear constraints (one for each axis) for each pair of
connected parts that enforces the contact point to maintain
connectivity during deformation. We obtain a number
of linear constraints from the collection of contacts that
results in a different number of linear constraints for each
source model. We concatenate all the linear constraints
and represent these with constraint matrix Bg for source
model s. Let Qg be the nullspace, i.e. columns represent-
ing the nullspace basis vectors, of Bg computed via SVD,
then the constraint projection matrix of s is given by Qs Q7 .

Training details and training time. We alternately update
the retrieval module and the deformation module at each
iteration during our training procedure, and train for 300
epochs. To speedup training, we cache the distances to the
sources for each target and update this cache every 5 epochs.
We use a batch size of 16 targets in each iteration, the SGD
optimizer with learning rate of 0.001, momentum of 0.9 and
weight decay of 0.0005. For the inner deformation opti-
mization, also use the SGD optimizer with a learning rate of
0.05 until the termination criteria is reached, which is when
the fitting loss decreases by less than 10> or the maximum
number of 5000 iterations is reached.

For our joint training module, we first train our Structure-
Aware neural deformation module until convergence on ran-
dom pairs, and also train our retrieval module on random
pairs to initialize our joint training optimization scheme.
Also note that when training image-based ResNet encoder
for the retrieval and deformation modules, we warm-start
with weights that are pre-trained on ImageNet, and only
train the fourth block and the final fully-connected layers.

Training takes 18 and 40 hours on point clouds and
images, respectively, for the chair class. With the inner
loop direct optimization, the corresponding training time for
chairs takes 3 days for both the point cloud and image ex-
periments as the inner optimization dominates the runtime.

0.014 _ 0.017

ottt 0.016
0013 0015

0.014

0.012

Mean CD error
Mean CD error
o
2
@

0.012

0.011
DAR+DF

Uniform Sampling
Ours
Ours w/ IDO

0.011

G 0.010

0.009

S ——
l 0.0150

—— DAR+DF P
Uniform Sampling / ~

0.0145 ~— Ours =

Ours w/ IDO [

0.0140 —

DAR+DF -

Uniform Sampling

Ours

Ours w/ IDO

0.0135 o

0.0130

Mean CD error

0.0125

0.0120

0.0115

1 2 3 4 5 1 2
Retrieved Rank

(a) Chair

¥

Retrieved Rank

(b) Table

Retrieved Rank

(c) Cabinet

Figure Al. Quantitative evaluation of Image-to-Mesh.

—— 0.016 L
0,011 »

0.014
0.010 oo

0.012

Mean CD error
Mean CD error

0.009

0.010
DAR+DF

Uniform Sampling
Ours

Ours w/ IDO

0.008
0.008

0.007

e —— DAR+DF
Uniform Sampling
Ours r
Ours w/ IDO

"

.

0.0090

—— DAR+DF pi9:0085,

Uniform Sampling
Ours
Ours w/ IDO

Mean CD errol

0.0080

0.0075

0.0070

1 2 3 4 5 1 2
Retrieved Rank

(a) Chair

3

Retrieved Rank

(b) Table

4 5 1 2 3 4 5
Retrieved Rank

(c) Cabinet

Figure A2. Quantitative evaluation of Points-to-Mesh.

A.2. Additional Results
A.2.1 Additional Quantitative Evaluations

No connectivity constraint ablation. We also test our joint
training scheme in the setting where the source database
models do not have connectivity constraints. In this set-up
we do not use the constraint projection matrix. Table Al
shows that even in the set-up with no connectivity, our
approach achieves the best results in all three object classes.

Retrieval-and-deformation results for different re-
trieved sources. We further evaluate how well our method
works with other than top-1 retrieved source. In particu-
lar, we plot the mean chamfer distance for the Eth retrieved
source, for k = 1,2, 3,4, 5.

For image-to-mesh experiment, we show the result in
Figure A1, which complements Table | of the main paper.
For points-to-mesh experiment, we show the result in
Figure A2, which complements Table 3 of the main paper.
Note that in both cases the chamfer distance for up to top-5
retrieved results is consistently lower than the baselines.

Retrieval module evaluation. We further evaluate the re-
trieval modules of our joint approach compared to the base-
lines. To evaluate the retrieval module, we report both rank-

12

ing evaluation and recall similar to the metrics used in [41].

One challenge in defining an evaluation metric is that we
do not know which source model should be used for each
target. Thus, to create the ground truth we use oracle re-
trieval, where we use the each method’s deformation mod-
ule to deform each source to the target, and assume that if
we sort the sources by the chamfer distance, it will give us
the desired ground truth ordering for the retrieval.

Ranking evaluation reports the average rank of the top-1
retrieved model with respect to this ground truth. We re-
port the metrics for image-to-mesh (Table A2) and points-
to-mesh (Table A3) experiments, across all categories, and
see consistent improvement with respect to the baselines.

We also report the recall of retrieval modules. For
recall@N, a correct match is defined as the case where
at least one of the top-V retrieved models is in the top-5
ranks based on the oracle retrieval module. We report both
recall@1 and recall@5. We report the metrics for image-
to-mesh (Table A4) and points-to-mesh (Table AS5) exper-
iments, across all categories, and see consistent improve-
ment with respect to the baselines.

Additional object categories. We ran experiments on ad-
ditional categories (vases, beds, trash cans), and a combi-
nation of categories (chairs+tables+cabinets). As shown in

| Chair | Table | Cabinet
DAR+DF 23.98 59.51 19.50
Uniform Sampling 20.88 53.01 23.39
Ours 15.35 22.19 21.70
Ours w/ IDO 21.94 36.92 16.89

Table A2. Ranking evaluation for retrieval. Comparing our
method using the ranking evaluation metric on image-to-mesh
benchmark. Numbers show the average rank of the retrieved
model. (Lower is better)

| Chair | Table | Cabinet
DAR+DF 13.88 76.25 20.20
Uniform Sampling 18.27 72.44 23.44
Ours 6.37 6.97 17.91
Ours w/ IDO 6.62 18.03 18.22
Table A3. Ranking evaluation for retrieval. Comparing our

method using the ranking evaluation metric on points-to-mesh
benchmark. Numbers show the average rank of the retrieved
model. (Lower is better)

Chair Table | Cabinet
[recall @1 recall @5[recall@1 recall@5|recall@] recall@5
DAR+DF 37.53 74.65 | 1455 43.46 | 22.37 57.89
Uniform Sampling| 38.94 7556 | 21.90 54.79 | 21.05 53.81
Ours 53.60 81.03 | 53.81 82.93 | 30.70 61.40
Ours w/ IDO 4565 77.30 | 3583 69.35 | 3596 65.79
Table A4. Recall evaluation for retrieval. Comparing our

method using the ranking evaluation metric on image-to-mesh
benchmark. Numbers show recall@1 and recall@5. A correct re-
trieval is when the top-1 and top-5 retrieved models is in the top-5
ranks based on the oracle retrieval. (Higher is better)

| Chair | Table | Cabinet
|recall@l recall@Slrecall@l recall@5|recall@l recall@5
DAR+DF 61.56 9354 | 2357 5454 | 39.83 7229
Uniform Sampling| 53.27 89.98 | 25.03 59.16 | 39.83 6797
Ours 7531 97.02 | 73.71 96.50 | 48.05 76.19
Ours w/ IDO 76.22 96.60 | 55.17 89.72 | 38.53 77.06
Table A5. Recall evaluation for retrieval. Comparing our

method using the ranking evaluation metric on points-to-mesh
benchmark. Numbers show recall@1 and recall@5. A correct re-
trieval is when the top-1 and top-5 retrieved models is in the top-5
ranks based on the oracle retrieval. (Higher is better)

| Vase Bed Trash Can Combined
DAR+DF 1.538 4.498 0.889 1.968
Uniform Sampling 1.633 4.196 0.886 1.821
Ours 1.384 2.138 0.863 0.810

Table A6. Additional object categories. Comparing our method
to various baselines and ablations on additional object classes and
mixture of categories (chamfer distances, X 1072).

Table A6, we got a comparable performance and improve-

ment over baselines.

Perceptual Metric. We performed a user study comparing
our approach to the DAR+DF baseline. We asked 60 partic-

13

DAR+ NC Ours NC Ours w/ IDO + DO

5
)

),

i] 1 1 2 +) T llm In
2= o) Satm g

3

i =)
il 83im3s) s

.lz-m»&}lbl
ol l1e 3 -4 iy s

aom J§ 3 1w o - 0
(I =Y

o

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure A3. More qualitative results on Neural Cages [49].

ipants to pick the better match to input point clouds on 15
randomly selected targets from the test set, where an option
of “no difference” can also be selected. Our approach got
an average score of 8.02, compared to 3.5 for the baseline
and 3.48 abstain votes.

A.2.2 Additional Qualitative Results

We provide additional qualitative results using natural
images, point cloud scans, and our benchmark as input
targets. Note that in all visualizations, we use colors to
indicate different segmentations of the source models,
where segmentation is essential to the performance of the
structure-aware neural deformation module.

Product images targets. Figure A7 shows additional
qualitative results of our approach on product images.

Scan2CAD targets. Figure A5 shows additional results of
our approach on real scans from the Scan2CAD [2] dataset
using the manually segmented PartNet [29] database,
while Figure A6 shows the results on real scans using the
auto-segmented ComplementMe [37] database.

DAR+DO Ours+DO Ours w/ IDO + DO

- Tmly =g

CTPERY B
of) J i = ER =
FE R] A Fn s v @
o] THI

i I - T M v

1 0) S e <6}
M)~ 5 & =)

Input Retrieved Deformed Retrieved Deformed Retrieved Deformed

Figure A4. Additional qualitative results on comparisons between
our approach and the baselines for the points-to-mesh experi-
ments.

Image-to-Mesh baseline comparison. Figure A8 shows
additional qualitative results on the image-to-mesh set-up
that compares our method to the baselines.

Points-to-Mesh baseline comparison. Figure A4 shows
additional qualitative results of our joint approach com-
pared to the baselines on the points-to-mesh experiment.

Neural cages. Figure A3 shows additional qualitative
results of our joint approach on Neural Cages [49].

Points-to-Mesh ablations qualitative results. Figure A9
shows qualitative results of ablations of our joint approach
on the points-to-mesh experiment.

A.3. Discussion on [10]

The differences between our work and with [10] are as fol-
lows:

1. Non-learnable deformations: The fitting module
of [10] is not learnable; they directly optimize param-
eters of a handcrafted template to fit to an input point
cloud. Thus, one of our key contributions, a retrieval-
aware deformation, is incompatible with their method.

2. Infeasibility of image-to-mesh: Without learnable de-
formations, their method cannot be used for the main
application of our method, image-to-mesh generation.

14

3. Manually-designed templates: Designing templates is
a tedious manual task that requires significant expertise.
Their method requires users to pre-design a set of tem-
plates, hence they only use a small set of 21 templates.

4. Non-scalable system: While one could address solv-
ing our retrieval problem as a classification problem by
treating every source shape as a template, this approach
is not scalable. Their method requires a pre-process of
matching every template to every input shape for train-
ing. Their optimization-based deformation module takes
2-3 mins for a single pair, and thus for all 500 sources
and 4000 training targets as in our chair dataset, it would
take ~ 8 years. Note that this limitation has been ad-
dressed in a recent work of Uy et al. [4 1] who propose to
learn a deformation-aware retrieval latent space instead
of the non-scalable hard shape-to-template assignment
(and we extensively compared to Uy et al. [41]).

5. Specific to template-based deformations: Our key
contribution, joint learning for retrieval and deformation,
is not constrained to a specific choice of the deformation
module.

We also remark that, while both ours and their method
leverage on part bounding boxes for deformations, neither
of these two were the first to use bounding boxes to deform
the underlying geometry (e.g., [23]).

Input Retrieved Deformed Input Retrieved Deformed Input Retrieved Deformed Input Retrieved Deformed

Figure A7. More qualitative results on product images.

16

: I} @hee Ny awm,pm#-w.ﬂuw_ﬁ?—
i e e e Cr M O N a |

.wa-w#un.nww#.wﬂ.ﬁﬂr;
-wﬁlwﬂmnnnww#-wlw@mlwﬁt—s—

AL LR L aneais | 10

#dmw'd..wwmw-ﬂlwlw.ﬂaﬂf~!!
Ry Qe armzs QO [~ [0
Mlﬂﬂlw-qw#lwmw'lw‘wqﬂm@ﬁT-.!

QU= Qe N Q= el

dﬂlﬂd e QuEEcaE e

LOeac = > j @ =y o =F!

—!am

%w.i#.i#‘.'-s'm
e N =y g [e
e ([ey e [-
o ey [-]

1
.
mm
[}
S =
g E
=
3 &

