


capture object shape continuously over space and time. They should encode changes in shape due to
varying camera pose or temporal dynamics, and support shape generation at arbitrary spatiotemporal
resolutions. Second, representations should be robust to irregular sampling patterns in space and
time, including support for full or partial point clouds. Finally, representations should support
within-category generalization to unseen object instances and to unseen temporal dynamics. While
many of these properties are individually considered in prior work [12, 32, 45, 49, 74], a unified and
rigorous treatment of all these factors in space and time is largely missing.

We address the limitations of previous work by learning a novel object-centric ST representation
which satisfies the above properties. To this end, we introduce CaSPR – a method to learn Canonical
Spatiotemporal Point Cloud Representations. In our approach, we split the task into two: (1) canoni-
calizing an input object point cloud sequence (partial or complete) into a shared 4D container space,
and (2) learning a continuous ST latent representation on top of this canonicalized space. For the
former, we build upon the Normalized Object Coordinate Space (NOCS) [69, 78] which canonicalizes
intra-class 3D shape variation by normalizing for extrinsic properties like position, orientation, and
scale. We extend NOCS to a 4D Temporal-NOCS (T-NOCS), which additionally normalizes the
duration of the input sequence to a unit interval. Given dynamic point cloud sequences, our ST
canonicalization yields spacetime-normalized point clouds. In Sec. 5, we show that this allows
learning representations that generalize to novel shapes and dynamics.

We learn ST representations of canonicalized point clouds using Neural Ordinary Differential
Equations (Neural ODEs) [10]. Different from previous work, we use a Latent ODE that operates in
a lower-dimensional learned latent space which increases efficiency while still capturing object shape
dynamics. Given an input sequence, the canonicalization network and Latent ODE together extract
features that constitute an ST representation. To continuously generate novel spatiotemporal point
clouds conditioned on an input sequence, we further leverage invertible Continuous Normalizing
Flows (CNFs) [7, 25] which transform Gaussian noise directly to the visible part of an object’s
shape at a desired timestep. Besides continuity, CNFs provide direct likelihood evaluation which
we use as a training loss. Together, as shown in Fig. 1, the Latent ODE and CNF constitute a
generative model that is continuous in spacetime and robust to sparse and varied inputs. Unlike
previous work [12, 45], our approach is continuous and explicitly avoids treating time as another
spatial dimension by respecting its unique aspects (e.g., unidirectionality).

We demonstrate that CaSPR is useful in numerous applications including (1) continuous spacetime
shape reconstruction from sparse, partial, or temporally non-uniform input point cloud sequences,
(2) spatiotemporal 6D pose estimation, and (3) information propagation via space-time correspon-
dences under rigid or non-rigid transformations. Our experiments show improvements to previous
work while also providing insights on the emergence of intra-class shape correspondence and the
learning of time unidirectionality [20]. In summary, our contributions are:

1. The CaSPR encoder network that consumes dynamic object point cloud sequences and canonical-
izes them to normalized spacetime (T-NOCS).

2. The CaSPR representation of canonicalized point clouds using a Latent ODE to explicitly encode
temporal dynamics, and an associated CNF for generating shapes continuously in spacetime.

3. A diverse set of applications of this technique, including partial or full shape reconstruction,
spatiotemporal sequence recovery, camera pose estimation, and correspondence estimation.

2 Related Work

Neural Representations of Point Sets Advances in 2D deep architectures leapt into the realm of
point clouds with PointNet [57]. The lack of locality in PointNet was later addressed by a diverse set
of works [17, 18, 42, 66, 70, 73, 80, 84, 91], including PointNet++ [58] – a permutation invariant
architecture capable of learning both local and global point features. We refer the reader to Guo et
al. [29] for a thorough review. Treating time as the fourth dimension, our method heavily leverages
propositions from these works. Continuous reconstruction of an object’s spatial geometry has been
explored by recent works in learning implicit shape representations [11, 31, 47, 53].

Spatiotemporal Networks for 3D Data Analogous to volumetric 3D convolutions on video
frames [39, 75, 90], a direct way to process spatiotemporal point cloud data is performing 4D
convolutions on a voxel representation. This poses three challenges: (1) storing 4D volumes densely
is inefficient and impractical, (2) direct correlation of spatial and temporal distances is undesirable,
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and (3) the inability to account for timestamps can hinder the final performance. These challenges
have fostered further research along multiple fronts. For example, a large body of works [3, 28, 44, 81]
has addressed temporal changes between a pair of scans as per-point displacements or scene flow [76].
While representing dynamics as fields of change is tempting, such methods lack an explicit notion
of time. MeteorNet [45] was an early work to learn flow on raw point cloud sequences, however
it requires explicit local ST neighborhoods which is undesirable for accuracy and generalization.
Prant et al. [55] use temporal frames as a cue of coherence to stabilize the generation of points.
CloudLSTM [87] models temporal dependencies implicitly within sequence-to-sequence learning.
Making use of time in a more direct fashion, MinkowskiNet [12] proposed an efficient ST 4D CNN
to exploit the sparsity of point sets. This method can efficiently perform 4D sparse convolutions, but
can neither canonicalize time nor perform ST aggregation. OccupancyFlow [49] used occupancy
networks [47] and Neural ODEs [10] to have an explicit notion of time.

Our method can be viewed as learning the underlying kinematic spacetime surface of an object
motion: an idea from traditional computer vision literature for dynamic geometry registration [48].

Canonicalization Regressing 3D points in a common global reference frame dates back to 6D
camera relocalization and is known as scene coordinates [67]. In the context of learning the normal-
ized object coordinate space (NOCS), [78] is notable for explicitly mapping the input to canonical
object coordinates. Thanks to this normalization, NOCS enabled category-level pose estimation and
has been extended to articulated objects [41], category-level rigid 3D reconstruction [13, 26, 33] via
multiview aggregation [69], and non-rigid shape reconstruction either via deep implicit surfaces [86]
or by disentangling viewpoint and deformation [50]. Chen et al. [8] proposed a latent variational
NOCS to generate points in a canonical frame.

Normalizing Flows and Neural ODEs The idea of transforming noise into data dates back to
whitening transforms [23] and Gaussianization [9]. Tabak and Turner [72] officially defined nor-
malizing flows (NFs) as the composition of simple maps and used it for non-parametric density
estimation. NFs were immediately extended to deep networks and high dimensional data by Rippel
and Adams [61]. Rezende and Mohamed used NFs in the setting of variational inference [59] and
popularized them as a standalone tool for deep generative modeling e.g. [35, 71]. Thanks to their
invertibility and exact likelihood estimation, NFs are now prevalent and have been explored in the
context of graph neural networks [43], generative adversarial networks [27], bypassing topological
limitations [2, 15, 19], flows on Riemannian manifolds [24, 46, 65], equivariant flows [5, 37, 60],
and connections to optimal transport [21, 51, 77, 89]. The limit case where the sequence of transfor-
mations are indexed by real numbers yields continuous-time flows: the celebrated Neural ODEs [7],
their latent counterparts [62], and FFJORD [25], an invertible generative model with unbiased density
estimation. For a comprehensive review, we refer the reader to the concurrent surveys of [36, 52].

Our algorithm is highly connected to PointFlow [83] and C-Flow [56]. However, we tackle encoding
and generating spatiotemporal point sets in addition to canonicalization while both of these works
use CNFs in generative modeling of 3D point sets without canonicalizing.

3 Background

In this section, we lay out the notation and mathematical background required in Sec. 4.

Definition 1 (Flow & Trajectory) Let us define a d-dimensional flow to be a parametric family of
homeomorphisms φ : M × R 7→ M acting on a vector z ∈ M ⊂ R

d with φ0(z) = z (identity
map) and φt(z) = zt. A temporal subspace of flows is said to be a trajectory T (z) = {φt(z)}t if
T (z) ∩ T (y) = ∅ for all z 6= y, i.e., different trajectories never intersect [14, 19].

Definition 2 (ODE-Flow, Neural ODE & Latent ODE) For any given flow φ there exists a corre-
sponding ordinary differential equation (ODE) constructed by attaching an optionally time-dependent
vector f(z, t) ∈ R

d to every point z ∈ M resulting in a vector field s.t. f(z) = φ′(z)|t=0. Starting

from the initial state z0, this ODE given by
dz(t)
dt

= f(z(t), t) can be integrated for time T modeling
the flow φt=T :

zT = φT (z0) = z0 +

∫ T

0

fθ(zt, t) dt, (1)

where zt , z(t) and the field f is parameterized by θ = {θi}i. By the Picard–Lindelöf theorem [14],
if f is continuously differentiable then the initial value problem in Eq (1) has a unique solution.
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Broader Impact

CaSPR is a fundamental technology allowing the aggregation and propagation of dynamic point
cloud information – and as such it has broad applications in areas like autonomous driving, robotics,
virtual/augmented reality and medical imaging. We believe that our approach will have a mostly
positive impact but we also identify potential undesired consequences below.

Our method will enhance the capabilities of existing sensors and allow us to build models of objects
from sparse observations. For instance, in autonomous driving or mixed reality, commonly used
LIDAR/depth sensors are limited in terms of spatial and temporal resolution or sampling patterns. Our
method creates representations that overcome these limitations due to the capability to continuously
sample in space and time. This would enable these sensors to be cheaper and operate at lower
spacetime resolutions saving energy and extending hardware lifespans. Our approach could also be
useful in spatiotemporal information propagation. We can propagate sparse labels in the input over
spacetime, leading to denser supervision. This would save manual human labeling effort.

Like other learning-based methods, CaSPR can produce biased results missing the details in the
input. In a self driving scenario, if an input LIDAR point cloud only partially observes a pedestrian,
CaSPR may learn representations that misses the pedestrian completely. If real-world systems rely
excessively on this incorrect representation it could lead to injuries or fatalities. We look forward to
conducting and fostering more research in other applications and negative impacts of our work.
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Appendices

We expand on discussions in Sec. A, provide additional evaluations in Sec. B, explain details of
dataset generation and architecture implementation in Sec. C and Sec. D, and give details of
experiments from the main paper in Sec. E.

A Discussions

Remarks on ODE-Nets The requirements of homeomorphisms and differentiability impose certain
limitations. First, neural ODEs lack a universal approximation capability as non-intersecting trajec-
tories cannot learn to approximate arbitrary topologies [88]2. On the other hand, it is also shown
that this very property brings intrinsic robustness to ODE-Nets [30]. Moreover, the requirement of
invertibility in CNFs is proven to hamper the approximation quality of the target distribution [15].
In fact, for a perfect recovery and likelihood evaluation, non-invertibility is a requirement [15].
Nonetheless, the extent to which these limitations restrict the applicability of Neural ODEs and CNFs
is still an active research topic.

Why can’t we use existing point cloud networks as a canonicalizer? Extending PointNet++ to
time (similar to MeteorNet [45]) requires some form of a spatiotemporal neighborhood query or
using time as an auxiliary input feature diminishing its contribution. Spatiotemporal neighborhood
queries are undesirable as they necessitate difficult hyperparameter tuning and limit the network’s
ability to holistically understand the motion. For example, learning the arrow of time (as CaSPR does
in Sec. 5 of the main paper) would be difficult when using local spatiotemporal queries. PointNet can
somewhat remedy this by operating on the full 4D point cloud at once, treating time equally important
as the spatial dimensions. However, we found that PointNet by itself is incapable of extracting
descriptive local features, which are essential for an accurate mapping to T-NOCS.

On the arrow of time Due to the second law of thermodynamics, the entropy of an isolated system
tends to increase with time, making the direction of time irreversible [40] i.e. it is more common
for a motion to cause multiple motions than for multiple motions to collapse into one consistent
motion [54]. This causality is confirmed in computer vision by showing that the statistics of natural
videos are not symmetric under time reversal [54]. Any method processing spacetime inputs should
then be sensitive to this direction so as to yield distinctive representations rather than being invariant
to it. As shown in the experiments of the main paper, thanks to the inclusion of timestamps and the
Latent ODE advecting forward in time, CaSPR is highly aware of this unidirectionality and it is one
of the reasons why it can extract robust spatiotemporal latent features.

On disentanglement In the main paper, we have demonstrated experimentally that static and dy-
namic feature disentanglement is achieved to a large extent. Note that CaSPR involves no mechanism
that can guarantee a theoretically disentangled latent space such as the one of [92]. Our design
softly encourages the canonicalization network to respect the subspace nature by only advecting
the dynamic feature with the ODE. Though this is not a CaSPR-specific drawback and many SoTA
disentanglement networks rely upon the same intuition.

Limitations Using a CNF to sample the object surface does come with some limitations as men-
tioned in prior work [83] and discussed above. The inherent properties of CNFs may hamper the
ability to capture fine-scale geometric detail. We observe this in chairs with back slats and other thin
structures that are not captured by our Reconstruction CNF as shown in the left panel of Fig. A1.
Additionally, outlier shapes can cause noisy sampling results (shown in the middle). One current
limitation of TPointNet++ is its inability to handle symmetry when canonicalizing a point cloud
sequence. If the partial view of an object is ambiguous or the object is symmetric, TPointNet++ may
predict a flipped or rotated canonical output as shown in the right panel.

2Augmented-Neural ODEs [64] propose to operate on a higher dimensional space as one workaround.
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B.4 Multi-Category Model
Table B5: Reconstruction errors training
on all categories jointly.

Train Data Test Data CD EMD

Cars Cars 0.566 10.103
All Cars 0.728 13.631

Chairs Chairs 0.715 13.009
All Chairs 1.231 15.632

Airplanes Airplanes 0.231 6.026
All Airplanes 0.391 8.213

All All 0.798 12.578

We evaluate CaSPR when trained on all shape categories
together: cars, chairs, and airplanes. This determines
the extent of the category-level restriction on our method.
Results compared to models trained on each category sep-
arately are shown in Tab. B5. Models are evaluated by
reconstructing all 10 observed time steps. As expected,
there is a performance drop when training a single joint
model, however errors are still reasonable and in most
cases better than the PointFlow baseline in terms of EMD
(see Tab. 2 in main paper).

B.5 Canonicalizing for Deformation

Table B6: Canonicalization perfor-
mance for deforming cars.

Method Spatial Err Time Err

Identity 0.0583 0.0000
TPointNet++ 0.0221 0.0012

We evaluate the ability of TPointNet++ to canonicalize non-
rigid transformations. Given a deforming car sequence from
the Warping Cars dataset, the task is to remove the deformation
at each step, leaving the base shape without any warping. To achieve this, we train TPointNet++ with
Lc only, and supervise every step in a sequence with the same GT canonical point cloud that contains
no deformation. Note that Warping Cars is already canonical in terms of rigid transformations, so
the network needs to learn to factor out non-rigid deformation only. Results are shown in Tab. B6
where we compare TPointNet++ to a baseline that simply copies the input points to the output
(Identity, which performs reasonably since there is no rigid transformation). Identity trivially gives a
perfect time error, but TPointNet++ achieves a much lower spatial error, effectively removing the
deformation from each step. This is qualitatively shown in Fig. E6. This strategy of canonicalization
offers an explicit way to extract temporal correspondences over time, rather than relying on the CNF
to naturally exhibit correspondences (main paper Sec. 5).

B.6 Label Propagation through Canonicalization

We evaluate the ability of T-NOCS canonicalization to establish correspondences by propagating
point-wise labels both throughout a sequence and to new sequences of different object instances.
Given a semantic segmentation of the partial point cloud at the first frame of a sequence at time s1,
the first task is to label all subsequent steps in the sequence at times s2, . . . , sk, i.e. propagate the
segmentation forward in time. Secondly, we want to label all frames of sequences containing different
object instances i.e. propagate the segmentation to different objects of the same class. We achieve
both through canonicalization with TPointNet++: all frames in each sequence are mapped to T-NOCS,
then unknown points are labeled by finding the closest point in the given labeled frame at s1. If the
closest point in s1 is not within a distance of 0.05 in the canonical space, it is marked “Unknown".
This may happen if part of the shape is not visible in the first frame due to self-occlusions.

Table B7: Segmentation label propagation
performance. Total Acc is point-wise accu-
racy over all points; Known Acc is only for
points that our method successfully labels.

Task Category Total Acc Known Acc

Temporal Chairs 0.9419 0.9804
Propagation Airplanes 0.9580 0.9676

Instance Chairs 0.6553 0.8425
Propagation Airplanes 0.7744 0.8006

Results of this label propagation for a subset of
the chairs (1315 sequences) and airplanes (1215 se-
quences) categories of the rigid motion test set are
shown in Tab. B7. We report median point-wise
accuracy over all points (Total Acc) and for points
successfully labeled by our approach (Known Acc).
For the instance propagation task, we randomly use
1/3 of test sequences as “source" sequences where
the first frame is labeled, and the other 2/3 are “tar-
get" sequences to which labels are propagated. In
this case, accuracy is reported only for target sequences. Qualitative results are shown in Fig. B1.

B.7 Extrapolating Motion

We evaluate CaSPR’s ability to extrapolate future motion without being explicitly trained
to do so. In particular, the model is given the first 5 frames in each sequence and
must predict the following 5 frames. The ability to predict future motion based on the
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TPointNet++ The PointNet [57] component operates on the entire 4D input point cloud and
extracts a 1024-dimensional global feature and 64-dimensional per-point features. We use the vanilla
classification PointNet architecture with 3 shared fully-connected (FC) layers (64, 128, 1024), ReLU
non-linearities, and a final max-pool function. The per-point features come from the output of the
first FC layer, while the global feature is the output of the max-pool. We do not use the input or
feature transform layers, and replace all batch normalization with group normalization [82] using 16
groups, which is crucial to good performance with small batch sizes.

The PointNet++ [58] component operates on each frame of the point cloud sequence in-
dependently and does not receive the timestamp as input. The input points to this part
of the network are augmented with pairwise terms x2, y2, z2, xy, yz, and xz, which
we found improves reconstruction performance (see Sec. B.1). We use a modified ver-
sion of the segmentation architecture which contains 5 set abstraction (SA) layers (Point-
Net dimensions, radii, number points out): ([[16, 16, 32], [32, 32, 64]], [0.8, 0.4], 1024) →
([[32, 32, 64], [32, 32, 64]], [0.4, 0.2], 512) → ([[64, 64, 128], [64, 96, 128]], [0.2, 0.1], 256) →
([[128, 256, 256], [128, 256, 256]], [0.1, 0.05], 64) → ([[256, 256, 512], [256, 256, 512]], [0.05, 0.02], 16).
These are followed by 5 feature propagation (FP) layers which each have 2 layers with hidden size
512, and a final shared MLP with layers (512, 512) to produce the final per-point 512-dimensional
local feature. ReLU non-linearities are used throughout, and we again replace all batch normalization
with group normalization [82] using 16 groups.

The final shared MLP which processes the concatenated features from PointNet and PointNet++ also
uses group normalization and ReLU.

There are a few things of note with this architecture. First of all, it avoids any spatiotemporal
neighborhood queries since time is handled entirely with PointNet which treats the timestamps as
an additional spatial dimension. This allows the network to decide which time windows are most
important to focus on. Second, the architecture can easily generalize to sequences with differing
numbers of points and frames since both are processed almost entirely independently (the only
components affected by changing these at test-time are the PointNet max-pooling and the PointNet++
spatial neighborhood queries).

Latent ODE The Latent ODE is given a 64-dimensional latent state z0 , z
C
dyn which can be

advected to any canonical timestamp from 0.0 to 1.0. The dynamics of the Latent ODE is an
MLP with 3 hidden layers (512, 512, 512) which uses Tanh non-linearities. We use the torchdiffeq
package5 [10] which implements both the ODE solver along with the adjoint method to enable
backpropagation. We use the dopri15 solver which is an adaptive-step Runge-Kutta 4(5) method. We
use a relative tolerance of 1e-3 and absolute tolerance of 1e-4 both at training and test time.

Reconstruction CNF Our reconstruction CNF adapts the implementation of FFJORD [25] for
point clouds from PointFlow [83]. The dynamics of the CNF are parameterized by a neural network
that uses 3 hidden ConcatSquashLinear layers (512, 512, 512), which are preceeded and followed by
a Moving Batch Normalization layer. We use Softplus non-linearities after each layer. Please see [83]
for full details. In short, each layer takes as input the current hidden state (512-dimensional at hidden
layers or 3-dimensional x, y, z at the first layer), the conditioning shape feature (1600-dimensional
in CaSPR), and the current time of the flow (scalar), and uses this information to update the hidden
state (or output the 3-dimensional derivative at the last layer). The ODE is again solved using
dopri15, this time with both a relative and absolute tolerence of 1e-5. We use the adjoint method for
backpropagation and jointly optimize for the final flow time T along with the parameters of network.

Training and Inference In practice, the full loss function is L = wrLr+wcLc where the contribu-
tions of the reconstruction and canonicalization terms are weighted as wr = 0.01 and wc = 100 as to
be similar scales. No weight decay is used. We use the Adam [34] optimizer (β1 = 0.9, β2 = 0.999)
with a learning rate of 1e-4. During training, we periodically compute the validation set loss, and
after convergence use the weights with the best validation performance as the final trained model.
The number of epochs trained depends on the dataset and the task. We train across up to 4 NVIDIA
Tesla V100 GPUs which allows for a batch size of up to 20 sequences of 5 frames each. As noted in
previous work [83], solving and backpropagating through ODEs (two in our case: Latent and CNF)

5https://github.com/rtqichen/torchdiffeq
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results in slow training: it takes about 5 days for the full CaSPR architecture using the multi-gpu setup.
The full CaSPR network contains about 16 million trainable parameters. Inference for a 10-step
sequence of rigid car motion with 2048 points at each step takes on average 0.598 seconds.

E Experimental Details and Supplemental Results

Here we give details of experiments shown in Section 5 of the main paper along with some supporting
results for these experiments (e.g. means, standard deviations, and visualizations).

Evaluation Procedure To evaluate reconstruction error, we use the Chamfer Distance (CD) and
Earth Mover’s Distance (EMD). For our purposes, we define the CD and EMD between two point
clouds X1,X2 each with N points as

dCD (X1,X2) =
1

N

∑
x1∈X1

min
x2∈X2

‖x1 − x2‖
2
2 +

1

N

∑
x2∈X2

min
x1∈X1

‖x1 − x2‖
2
2

dEMD (X1,X2) = min
φ:X1→X2

1

N

∑
x1∈X1

‖x1 − φ(x1)‖
2
2

where φ : X1 → X2 is a bijection. In practice, we use a fast approximation of the EMD based on [4].
Both CD and EMD are always reported multiplied by 103.

Table E1: Canonicalization performance mean and
(standard deviation). Supplements Tab. 1 in the main
paper.

Method Category Spatial Err Time Err

MeteorNet Cars 0.0834 (0.0801) 0.0002 (0.0015)
PointNet++ No Time 0.0649 (0.0468) —
PointNet++ w/ Time 0.0715 (0.0811) 0.0006 (0.0012)

PointNet 0.0485 (0.0952) 0.0016 (0.0015)
TPointNet++ No Aug 0.0225 (0.0501) 0.0015 (0.0014)

TPointNet++ No Time 0.0224 (0.0570) —

TPointNet++ Cars 0.0229 (0.0617) 0.0013 (0.0012)
TPointNet++ Chairs 0.0162 (0.0337) 0.0008 (0.0006)
TPointNet++ Airplanes 0.0148 (0.0412) 0.0009 (0.0007)

As noted in the main paper, for these recon-
struction metrics and the canonicalization er-
ror metrics, we report the median values over
all test frames. This is motivated by the fact
that ShapeNet [6] contains some outlier shapes
which result in large errors that unfairly bias
the mean and do not accurately reflect compre-
hensive method performance. For completeness,
we also report mean and standard deviation for
these metrics in this document for main paper
experiments. Note that CD and EMD, along
with the spatial canonicalization error, are all
reported in the canonical space where the shape lies within a unit cube. This helps intuit the severity
of reported errors.

Although we randomly subsample 1024 points at each frame for training, during evaluation we
always use the same 2048 points (unless specifically stated otherwise) to make evaluation consistent
across compared methods. Unless otherwise stated, CaSPR and all compared baselines reconstruct
the same number of points as in the input (e.g. for evaluation, each input frame has 2048 points, so
we sample 2048 points from our Reconstruction CNF).

Canonicalization In this experiment, we train TPointNet++ by itself with only the canonicalization
loss Lc on each category of the rigid motion dataset. In order to make the number of parameters
comparable across all baselines, we use hidden layers of size 1024 (rather than 1600) in the final
shared MLP for the full TPointNet++ architecture only. We compare to the following baselines which
are all trained with the same Lc:

• MeteorNet [45]: A recent method that extends PointNet++ to process point cloud sequences through
spatiotemporal neighborhood queries. We adapt the MeteorNet-seg version of the architecture with
direct grouping for our task by adding an additional meteor direct module layer, as well as two fully
connected layers before the output layer. Additionally, we slightly modify feature sizes to make the
model capacity comparable to other methods. We found the spatiotemporal radii hyperparameters
difficult to tune and in the end we opted for 10 uniformly sampled radii between (0.03, 0.05) in the
first layer, which were doubled in each subsequent layer.

• PointNet++ No Time: An ablation of TPointNet++ that removes the PointNet component. This
leaves PointNet++ processing each frame independently followed by the shared MLP, and therefore
has no notion of time.
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Table E3: Partial surface sequence reconstruction results showing mean and (standard deviation).
Supplements Tab. 2 in the main paper.

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD

PointFlow Cars 0.537 (0.272) 15.986 (11.130) 0.538 (0.270) 15.967 (11.065) 0.700 (0.732) 17.362 (12.276)
CaSPR-Atlas Cars 0.814 (1.729) 26.922 (28.562) 0.874 (2.051) 29.171 (29.479) 0.853 (1.705) 26.416 (27.582)
CaSPR Cars 0.795 (1.048) 14.242 (21.619) 0.846 (1.261) 16.564 (24.296) 0.824 (1.108) 16.217 (23.011)

PointFlow Chairs 0.907 (0.519) 20.254 (11.938) 0.907 (0.514) 20.225 (11.899) 1.245 (1.299) 21.971 (13.417)
CaSPR-Atlas Chairs 1.007 (1.243) 54.406 (24.970) 1.030 (1.221) 54.827 (25.250) 1.061 (1.277) 52.964 (24.355)
CaSPR Chairs 1.013 (1.426) 15.287 (9.837) 0.972 (1.498) 15.757 (11.154) 1.000 (1.542) 16.145 (11.620)

PointFlow Airplanes 0.367 (0.366) 11.852 (8.768) 0.366 (0.363) 11.862 (8.725) 0.446 (0.527) 12.335 (9.146)
CaSPR-Atlas Airplanes 0.587 (1.196) 23.444 (17.386) 0.653 (1.369) 23.165 (16.932) 0.663 (1.400) 22.661 (16.853)
CaSPR Airplanes 0.536 (1.468) 8.827 (12.650) 0.536 (1.682) 8.992 (13.219) 0.530 (1.673) 9.031 (12.792)

• PointNet++ w/ Time: This is the same ablation as above, but modified so that the PointNet++
receives the timestamp of each point as an additional input feature. Note that local neighborhood
queries are still performed only on spatial points, but they may be across timesteps so we use
increased radii of (0.05, 0.1, 0.2, 0.6, 1.2, 2.0). This baseline represents a naive way to incorporate
time, but dilutes its contributions since it is only an auxiliary feature.

• PointNet: An ablation of TPointNet++ that removes the PointNet++ component. This leaves only
PointNet operating on the full 4D spatiotemporal point cloud. This baseline treats time equally as
the spatial dimensions, but inherently lacks local geometric features.

• TPointNet++ No Time: An ablation of TPointNet++ that only regresses the spatial part of the
T-NOCS coordinate (and not the normalized timestamp). This baseline still takes the timestamps
as input, it just doesn’t regress the last time coordinate.

• TPointNet++ No Aug: An ablation of TPointNet++ that does not augment the input points to
PointNet++ with pairwise terms as described previously. This baseline was omitted from the main
paper for brevity, so a comparison of median performance is shown in Tab. E2.

Table E2: Canonicalization performance without
input augmentation.

Method Category Spatial Err Time Err

No Aug Cars 0.0138 0.0012
Full Arch Cars 0.0118 0.0011

Each model is trained for 220 epochs on the cars
category. TPointNet++ is trained for 120 and 70
epochs on the airplanes and chairs categories, respec-
tively, due to the increased number of objects. Me-
dian canonicalization errors are in Tab. 1 of the main
paper; the mean and standard deviations are shown
in Tab. E1.

Representation and Reconstruction In this experiment, we compare the full CaSPR architecture
to two baselines on the task of reconstructing a partial point cloud sequence.

The baselines represent one alternative to achieve spatial continuity, and one to achieve temporal
continuity. The CaSPR-Atlas baseline is the full CaSPR architecture as described, but replaces
the Reconstruction CNF with an AtlasNet [26] decoder. We use the same decoder as the original
AtlasNet. This decoder contains 64 MLPs, each responsible for transforming a patch to the partial
visible surface at a desired timestep. Each MLP contains 4 hidden layers (1600, 1600, 800, 400) with
Tanh activation functions. This version of CaSPR is still trained with the auxiliary canonicalization
task (Lc loss), but the reconstruction loss is now a Chamfer distance since AtlasNet does not support
likelihood evaluations like a CNF. We use group normalization [82] instead of batch normalization
within the decoder to improve performance with small batch sizes.

The PointFlow [83] baseline uses their deterministic autoencoder architecture. This follows the
autoencoding evaluations from the original paper and uses a PointNet-like encoder to extract a
shape feature, which conditions a CNF decoder. This version of the model is trained only with the
reconstruction likelihood objective from the CNF, and does not use the various losses associated with
the VAE formulation of their architecture. To make it a fair comparison, we increase the size of the
shape feature bottleneck to 1600. The CNF decoder uses a dynamics MLP with 3 hidden layers of
size (512, 512, 512), just like CaSPR. Also like CaSPR, we train PointFlow with a learning rate of
1e-4, which we found to decrease the complexity of dynamics and therefore training time.
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