


fidence estimation. Then, the following two differentiable

(permutation and segmentation) synchronization modules,

which are central to our approach, respectively enforce the

consistency of pairwise point correspondences and motion

segmentation labelings across different scans. Our design

explicitly decouples geometry and motion, making Multi-

BodySync generalizable to unseen categories without sac-

rificing robustness.

We evaluate MultiBodySync on various datasets com-

posed of full synthetic point clouds and partial real scans

with articulated and solid objects. We also contribute a new

dataset DynLab with 8 scenes and 64 scan fragments of dis-

tinctly moving objects. Our extensive evaluations demon-

strate that our algorithm outperforms the state-of-the-art by

a large margin on both multi-body motion segmentation and

motion estimation. In brief, our contributions are:

1. We introduce a novel end-to-end trainable architecture

for solving the multi-scan multi-body motion estimation

and segmentation problem.

2. We theoretically analyze the spectral characteristics of

the proposed weighted permutation synchronization.

3. To the best of our knowledge, we showcase the first

cross-category generalization for the task at hand on both

synthetic and real datasets, for both articulated part-level

and object-level regimes.

2. Related Works

Dynamic scene understanding. The modeling of 3D dy-

namic scenes in deep learning literature is often formulated

as a 4D data analysis, as done in seminal works like [46, 20].

Ability to infer spatiotemporal geometric properties has re-

cently motivated research in 3D scene flow as a form of low-

level dynamic scene representation [45, 65, 74, 55, 51, 58,

47]. Domain-specific knowledge can be employed to give

better predictions as done in autonomous driving [31, 5, 77]

or articulated object analysis [82, 73]. The most recent dy-

namic SLAM works [33, 7, 86, 80] also rely heavily on se-

mantic cues. While some works [51, 58] advocates con-

tinuous temporal-dynamics modeling, we instead assume

discrete non-sequential input and enforce consistency us-

ing synchronization. Similarly, [27, 70] propose to perform

instance-level re-localization in a changed scene. Neverthe-

less, we do not assume a pre-segmentation of the scene, but

instead perform joint motion segmentation.

Multi-body motion. Provided point correspondences be-

tween two point clouds/images, rigid-body motion segmen-

tation becomes a multi-model fitting problem, amenable for

factorization techniques [21, 43, 81], clustering [34], graph

optimization [48, 37, 12] or deep learning [41]. Among oth-

ers, [83] handles raw scans and segments the rigidly mov-

ing parts using a Recurrent Neural Network (RNN). [29]

fits non-parametric part models to sequential 3D data with-

out needing explicit correspondences. However, to our best

knowledge, no prior work can handle multiple scans while

enforcing multi-way consistency like we do.

Synchronization. The art of consistently recovering ab-

solute quantities from a collection of ratios is now a ba-

sic component of the classical multi-view/shape analysis

pipelines [60, 15, 16]. Various aspects of the problem have

been vastly studied: different group structures [26, 25, 13,

2, 1, 35, 28, 1, 71, 19, 64, 67, 4, 6], closed-form solu-

tions [4, 2, 1], robustness [18], certifiability [59], global

optimality [14], learning-to-synchronize [36, 54, 23] and

uncertainty quantification [66, 11, 10, 13]. In this work,

we are concerned with synchronizing correspondence sets,

otherwise known as permutation synchronization (PS) [52]

and motion segmentations [3]. PS is rich in the variety of

algorithms: low-rank formulations [85, 72], convex pro-

gramming [32], distributed optimization [32], multi-graph

matching[61] or Riemannian optimization [13]. Out of all

those, we are interested in the spectral methods of [2, 49]

as they provide efficient, closed-form solutions deployable

within a deep declarative network [24] like ours.

To the best of our knowledge, synchronization of corre-

spondences [49] or motion segmentation [3] have not been

explored in the context of deep learning. This is what we

do in this paper to tackle the consistent multi-body motion

estimation and segmentation.

3. Method

Problem setting and notation. Suppose we observe a

set of K point clouds X = {Xk ∈ R
3×N , k ∈ [1,K]}

where each point cloud X
k =

[

xk
1 , ...,x

k
i , ...,x

k
N

]

con-

tains N points in R
3 and sampled from the same object

with S independently moving rigid parts indexed by s. Each

point is assumed to belong to one of the S rigid parts and

we denote the binary point-part association matrices as

G = {Gk ∈ [0, 1]N×S} where Gk
is = 1 if xk

i belongs

to the sth rigid part and Gk
is = 0 otherwise1. The rigid

motions for each part s in each point cloud k is defined as

T = {Tk
s ∈ SE(3), k ∈ [1,K], s ∈ [1, S]}, with the ro-

tational part being R
k
s ∈ SO(3) and the translational part

being t
k
s ∈ R

3. Our final goal is to infer G and T given X .

Summary. The core of our approach is a fully differen-

tiable deep network fusing rigid dynamic information from

multiple 3D scans as outlined in Fig. 2. We begin by

explicitly predicting pairwise soft correspondences across

all pairs of point clouds while enforcing consistency via a

weighted permutation synchronization (§ 3.1). Next, the

point clouds are segmented using a novel motion-based

segmentation network and also further synchronized by a

subsequent motion segmentation synchronization module

(§ 3.2). Finally, the correspondences and segmentations are

1Throughout our paper we use superscript k, l to index point-clouds,

subscript i, j to index points and subscript s to index rigid parts.
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gradually refine the correspondence and segmentation esti-

mation by transforming input point clouds according to the

estimated T and adding back the residual flow onto the flow

predicted at the previous iteration. The details are provided

in our supplementary.

3.3. Network Training

We propose to train each learnable component of our

pipeline separately in a pairwise manner and then fine-tune

their parameters using the full pipeline. Specifically, we

first train the flow estimation network ϕflow supervised with

ground-truth flow: Lkl
flow =

∥

∥F
kl − F

kl,gt
∥

∥

2

F
. Given the

trained ϕflow, the confidence estimation network ϕconf is

trained based on its output using a binary cross-entropy

(BCE) loss supervised by comparing whether the error of

the predicted flow is under a certain threshold:

Lkl
conf =

N
∑

i=1

BCE(ckl,gti , ckli ), (8)

with c
kl,gt
i = 1 if we have ‖fkl

i − f
kl,gt
i ‖

2

2 < ǫf and

0 otherwise. The motion segmentation network ϕmot is

trained using joint supervision over the estimated transfor-

mation residual and the final motion segmentation matrix:

Lkl
seg = Lkl

trans + Lkl
group where each term is defined as:

Lkl
trans =

N
∑

i=1

∑N

j=1 I(ζ
kl
ij = 1)

∥

∥βkl
ij

∥

∥

2

2
∑N

j=1 I(ζ
kl
ij = 1)

, (9)

Lkl
group =

N
∑

i=1

N
∑

j=1

BCE(ζkl,gtij , ζklij ). (10)

After we train all the networks (i.e., ϕflow, ϕconf and

ϕmot), the entire pipeline is trained end-to-end with the su-

pervision on both the pariwise flow
∑K

k=1

∑K

l=1 L
kl
flow and

the IoU (Intersection-over-union) loss, defined as:

Liou = argmin
A

S×S
∑

s,s′=1

A(s, s′) · (ggt
:,s)

⊤g:,s′

‖ggt
:,s‖22 + ‖g:,s′‖22 − (ggt

:,s)⊤g:,s′
,

where A is an S × S binary assignment matrix which we

found using the Hungarian algorithm. The flow supervision

is added to both the output of flow network, and the final

pairwise rigid flow computed as fkl
i = T

l
s(T

k
s)

−1◦xi−xi.

4. Experiments

Datasets. Our algorithm is tested on two main datasets:

SAPIEN [79] and DynLab dataset contributed by this work:

SAPIEN consists of realistic simulated articulated models

with part mobility annotated. We ensure that the categories

used for training and validation do not overlap with the test

set, finally leading to 720 articulated objects with 20 dif-

Table 1. Rigid flow estimation on SAPIEN. Table reports mean and

std. dev. (+/-) of the EPE3D over all pairwise flows, with (S) or

w/o (NS) Synchronization and with (W) or w/o (NW) Weighting.

Deep

Part [83]
NPP [29]

Ours

NS, NW S, NW S, W

Mean 5.95 21.22 6.20 6.08 5.03

+/- 3.57 6.29 4.06 3.47 2.00

ferent categories. We then perform K virtual 3D scans of

the models, with each scan capturing the same object with

a different camera (and hence object) pose and object ar-

ticulating state. Later, furthest point sampling is applied to

down-sample the number of points to N . DynLab (Dy-

namic Laboratory) contains 8 different scenes in a labora-

tory, each with 2-3 rigidly moving solid objects from vari-

ous categories. Each of the scenes is captured 8 times, re-

constructed using ElasticFusion [76] and between each cap-

ture, the object positions are randomly changed. The dataset

also contains manual annotations of the object segmentation

mask and rigid absolute transformations. For benchmark-

ing, in each scene we choose different combinations of the

8 captures, leading to a total of 8 ·
(

8
4

)

= 560 dataset items.

We believe the two different scenarios (articulated single

object and moving rigid bodies) reflected in the test sets are

sufficient to verify the robustness and the general applica-

bility of our algorithm.

The training data for articulated objects are generated us-

ing the dataset from [84], containing manually annotated

semantic segmentation of 16 categories. Similar to [83], we

generate K random motions for each connected semantic

part of the shapes. For the training data of solid objects, we

randomly sample independent motions for multiple objects

taken from ShapeNet [17] as if they are floating and rotat-

ing in the air. Please refer to supplementary material for

detailed data specifications and visualizations.

Metrics. Two main metrics are used: (1) EPE3D (End-

Point Error in 3D) of all
(

K
2

)

pairs of point clouds. The

mean and standard deviation (+/-) measures the rigid 3D

flow estimation quality: While the mean reflects an over-

all error in the transformation, the standard deviation shows

how consistent the estimate is among all pairs - a desir-

able property in the multi-scan setting. (2) Segmentation

accuracy assesses the motion segmentation quality. We use

mIoU (mean Intersection-over-Union) and RI (Rand Index)

to score the output based on ‘Multi-Scan’ and ‘Per-Scan’

segmentations. For ‘Multi-Scan’, we evaluate the points

from all K clouds altogether, revealing the consistency of

the labeling across multiple scans. For ‘Per-Scan’, we com-

pute the score for each of the clouds separately and evaluate

the mean and standard deviation across all scans.

Training. ϕflow, ϕmot and ϕconf are trained using Adam

optimizer with initial learning rate of 10−3 and a 0.5/0.7/0.7

decay every 400K iterations for the three networks. The
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Davide Scaramuzza, José Neira, Ian Reid, and John J

Leonard. Past, present, and future of simultaneous localiza-

tion and mapping: Toward the robust-perception age. IEEE

Transactions on robotics, 32(6):1309–1332, 2016. 2

[16] Luca Carlone, Roberto Tron, Kostas Daniilidis, and Frank

Dellaert. Initialization techniques for 3d slam: a survey on

rotation estimation and its use in pose graph optimization.

In International Conference on Robotics and Automation,

pages 4597–4604. IEEE, 2015. 2

[17] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 5

[18] Avishek Chatterjee and Venu Madhav Govindu. Robust rel-

ative rotation averaging. IEEE transactions on pattern anal-

ysis and machine intelligence, 40(4):958–972, 2017. 2

[19] Kunal N Chaudhury, Yuehaw Khoo, and Amit Singer. Global

registration of multiple point clouds using semidefinite pro-

gramming. SIAM Journal on Optimization, 25(1), 2015. 2

[20] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019. 2

[21] João Paulo Costeira and Takeo Kanade. A multibody factor-

ization method for independently moving objects. Interna-

tional Journal of Computer Vision, 29(3), 1998. 2

[22] Zheng Dang, Kwang Moo Yi, Yinlin Hu, Fei Wang, Pascal

Fua, and Mathieu Salzmann. Eigendecomposition-free train-

ing of deep networks with zero eigenvalue-based losses. In

European Conference on Computer Vision, pages 768–783,

2018. 6

[23] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas,

and Tolga Birdal. Learning multiview 3d point cloud regis-

tration. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2020. 2, 3, 4, 16, 17

[24] Stephen Gould, Richard Hartley, and Dylan Campbell. Deep

declarative networks: A new hope. Technical report, Aus-

tralian National University (arXiv:1909.04866), Sep 2019.

1, 2

[25] Venu Madhav Govindu. Lie-algebraic averaging for globally

consistent motion estimation. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, volume 1, pages I–I. IEEE, 2004. 2

[26] Venu Madhav Govindu and A Pooja. On averaging multi-

view relations for 3d scan registration. IEEE Transactions

on Image Processing, 23(3):1289–1302, 2014. 2

[27] Maciej Halber, Yifei Shi, Kai Xu, and Thomas Funkhouser.

Rescan: Inductive instance segmentation for indoor rgbd

scans. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2541–2550, 2019. 2

[28] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong

Li. Rotation averaging. International journal of computer

vision, 103(3), 2013. 2

[29] David S Hayden, Jason Pacheco, and John W Fisher. Non-

parametric object and parts modeling with lie group dynam-

ics. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2020. 2, 5, 6, 7, 8, 19

9



[30] Roger A Horn and Charles R Johnson. Matrix analysis.

Cambridge university press, 2012. 13

[31] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,

Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. Joint

monocular 3d vehicle detection and tracking. In Proceed-

ings of the IEEE international conference on computer vi-

sion, pages 5390–5399, 2019. 2

[32] Nan Hu, Qixing Huang, Boris Thibert, UG Alpes, and

Leonidas Guibas. Distributable consistent multi-object

matching. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018. 2

[33] Jiahui Huang, Sheng Yang, Tai-Jiang Mu, and Shi-Min Hu.

Clustervo: Clustering moving instances and estimating vi-

sual odometry for self and surroundings. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2168–2177, 2020. 2

[34] Jiahui Huang, Sheng Yang, Zishuo Zhao, Yu-Kun Lai, and

Shi-Min Hu. Clusterslam: A slam backend for simultaneous

rigid body clustering and motion estimation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 5875–5884, 2019. 2

[35] Qixing Huang, Zhenxiao Liang, Haoyun Wang, Simiao Zuo,

and Chandrajit Bajaj. Tensor maps for synchronizing hetero-

geneous shape collections. ACM Trans. Graph., 38(4):106,

2019. 2

[36] Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie,

Leonidas J Guibas, and Qixing Huang. Learning transfor-

mation synchronization. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

8082–8091, 2019. 2, 3, 16

[37] Hossam Isack and Yuri Boykov. Energy-based geometric

multi-model fitting. International journal of computer vi-

sion, 97(2):123–147, 2012. 2

[38] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-

Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point grouping

for 3d instance segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4867–4876, 2020. 7, 8

[39] Wolfgang Kabsch. A solution for the best rotation to re-

late two sets of vectors. Acta Crystallographica Section A:

Crystal Physics, Diffraction, Theoretical and General Crys-

tallography, 1976. 4, 16

[40] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 66–75, 2017. 15

[41] Florian Kluger, Eric Brachmann, Hanno Ackermann,

Carsten Rother, Michael Ying Yang, and Bodo Rosenhahn.

Consac: Robust multi-model fitting by conditional sample

consensus. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2020. 2

[42] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4558–4567, 2018. 1

[43] Ting Li, Vinutha Kallem, Dheeraj Singaraju, and René Vi-
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MultiBodySync:

Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization

— Supplementary Material

In this supplementary material, we first give the proofs

of the theorems in Sec. A, then provide more details of our

implementation and our dataset in Sec. B. Additional abla-

tions and results are shown in Sec. C.

A. Proofs of Theorems

A.1. Theorem 1

Proof. The energy function in Eq (2) can be written as:

E(p) =

K
∑

k=1

K
∑

l=1

wkl‖Pk −P
kl
P

l‖2F

=
K
∑

k=1

K
∑

l=1

N
∑

i=1

wkl‖Pk
:i −P

kl
P

l
:i‖

2

=
N
∑

i=1

K
∑

k=1

K
∑

l=1

wkl‖Pk
:i‖

2 + wlk‖Pl
:i‖

2

− wkl(Pk
:i)

⊤(Pkl
P

l
:i)− wlk(Pl

:i)
⊤(Plk

P
k
:i)

=

N
∑

i=1

2

K
∑

k=1

(Pk
:i)

⊤

(

K
∑

l=1

wkl(Pk
:i −P

kl
P

l
:i)

)

=

N
∑

i=1

2

K
∑

k=1

(Pk
:i)

⊤





(

wk
IN

)

P
k
:i −

∑

l 6=k

wkl
P

kl
P

l
:i





=2

N
∑

i=1

p⊤
:iLp:i = 2tr(p⊤

Lp).

The spectral solution additionally requires each column

of p to be of unit norm and orthogonal to others relaxing

{Pkl ∈ M}k,l:

min
p

tr(p⊤
Lp) s.t. p⊤p = IN . (S.11)

This QCQP (Quadratically Constrained Quadratic Pro-

gram) is known to have the closed form solution revealed

by generalized Rayleigh problem [30] (or similarly, the

Courant-Fischer-Weyl min-max principle). The solution

is given by the N eigenvectors of L corresponding to the

smallest N eigenvalues.

A.2. Theorem 2

We first recall the spectral solution of the synchroniza-

tion problem and then extend the result to the weighted

variant we propose. For completeness, here we include

Z = gg⊤, the unweighted motion segmentation matrix:

Z =











0 ζ12 . . . ζ1K

ζ21
0 . . . ζ2K

...
...

. . .
...

ζK1 ζK2 . . . 0











. (S.12)

Lemma 1 (Spectral theorem of synchronization). In the

noiseless regime and under spectral relaxation, the synchro-

nization problem can be cast as

max
U

tr(U⊤
ZU) s.t. U

⊤
U = IS , (S.13)

where U ∈ R
KN×S denotes the sought solution, i.e. abso-

lute permutations. Then each column in U will be one of

the S leading eigenvectors of matrix Z [3]:

U · diag(
√

λ1, . . . ,
√

λS) ≈ g =











G
1

G
2

...

G
K











, (S.14)

where λ1, . . . , λS are the leading eigenvalues of Z.

We now recall the weighted synchronization problem.

Here we assume the ζkl matrices are binary and satisfy the

properties listed in [3]. The weighted synchronization ma-

trix Z̃ is composed of a set of anisotropically-scaled ζkl

matrices:

Z̃ =











0
1

σ12 ζ
12 . . . 1

σ1K ζ1K

1
σ21 ζ

21
0 . . . 1

σ2K ζ2K

...
...

. . .
...

1
σK1 ζ

K1 1
σK2 ζ

K2 . . . 0











. (S.15)

Remind that in the main paper we use the unweighted

synchronization (i.e. without 1
σ

) by cancelling the effect of

the weights via a normalization. Thm. 2, which we now

state more formally, is then concerned about the linear scal-

ing of the solution proportional to the weights in the motion

segmentation matrix:

Theorem 2 (Weighted synchronization for segmentation).

The spectral solution to the weighted version of the syn-

chronization problem

max
Ũ

tr(Ũ⊤
Z̃Ũ) s.t. Ũ

⊤
Ũ = IS (S.16)
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is given by the columns of g̃:

Ũ · diag(

√

λ̃1, . . . ,

√

λ̃S) ≈ g̃ =











G
1
D

1

G
2
D

2

...

G
K
D

K











, (S.17)

Here λ̃1, . . . , λ̃S are the leading eigenvalues of Z̃, and

(D1, . . . ,DK ∈ R
S×S) are diagonal matrices. In other

words, the columns of g̃ being the eigenvectors of Z̃ are re-

lated to the non-weighted synchronization by a piecewise

linear anisotropic scaling.

Proof. We begin by the observation that Kk = G
k⊤

G
k is

a diagonal matrix where Kk
ss counts1 the number of points

in point cloud k belonging to part s. Hence, each element

along g⊤g =
∑K

k=1(K
k) counts the number of points over

all point clouds that belong to part s. Because Z = gg⊤, we

have the following spectral decomposition Zg = gΛ [3]:

Zg = gg⊤g = g

K
∑

k=1

G
k⊤

G
k = gΛ. (S.18)

To simplify notation we overload wkl by setting wkl =
1

σkl for the rest of this subsection. Let us now write Z̃g̃ in

a similar fashion and seek the similar emergent property of

eigen-decomposition:

Z̃g̃ =























K
∑

l=1

w1lζ1l
G

l
D

l

K
∑

l=1

w2lζ2l
G

l
D

l

...
K
∑

l=1

wKlζKl
G

l
D

l























. (S.19)

1According to our assumption, this ‘count’ hereafter is only valid when

ζkls are binary and can be viewed as soft counting when such an assump-

tion is relaxed.

Then, using ζkl = G
k
G

l⊤ we can express Eq (S.19) as:

Z̃g̃ =























K
∑

l=1

w1l
G

1
G

l⊤
G

l
D

l

K
∑

l=1

w2l
G

2
G

l⊤
G

l
D

l

...
K
∑

l=1

wKl
G

K
G

l⊤
G

l
D

l























(S.20)

=























G
1

K
∑

l=1

w1l
G

l⊤
G

l
D

l

G
2

K
∑

l=1

w2l
G

l⊤
G

l
D

l

...

G
K

K
∑

l=1

wKl
G

l⊤
G

l
D

l























=











G
1
H

1

G
2
H

2

...

G
K
H

K











(S.21)

where:

H
k =

K
∑

k=1

wkl
G

l⊤
G

l
D

l. (S.22)

H is a diagonal matrix because D
l is diagonal by assump-

tion. Note that, the first part in the summation is assumed to

be a known2 diagonal matrix (see the beginning of proof):

E
kl = wkl

G
l⊤
G

l, (S.23)

This form is very similar to Eq (S.17) scaled by the corre-

sponding diagonal matrices. Let us know consider the sth

column of g̃ responsible for part s. We are interested in

showing that such column is an eigenvector of Z̃:

Z̃g̃s = λ̃sg̃
s. (S.24)

In other words, we seek the existence of λ̃s such

that Eq (S.24) is satisfied. Moreover, a closed form expres-

sion of λ̃s would allow for the understanding of the effect

of the weights on the problem. Let us now plug Eq (S.17)

and Eq (S.21) into Eq (S.24) to see that:











(G1
H

1)s

(G2
H

2)s

...

(GK
H

K)s











= λ̃s











(G1
D

1)s

(G2
D

2)s

...

(GK
D

K)s











. (S.25)

As Gk is a binary matrix, it only actas as a column selector,

where for a single part s, a column of the motion segmen-

tation g̃ should contain only ones. We can use this idea and

the diagonal nature of Z̃g̃s to cancel Gk on each side. Re-

2We will see later in remark 1 why this is only an assumption.
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arranging the problem in terms of scalars on the diagonal

yields:











































H1
ss =

K
∑

l=1

E1j
ssD

l
ss = λ̃sD

1
ss

H2
ss =

K
∑

l=1

E2j
ssD

l
ss = λ̃sD

2
ss

...

HK
ss =

K
∑

l=1

EKj
ss Dl

rr = λ̃sD
K
ss

(S.26)

where E is as defined in Eq (S.23). Note that both D and

λ̃s are unknowns in this seemingly non-linear problem. Yet,

we can re-arrange Eq (S.26) into another eigen-problem:

J
s
d
s = λ̃′

sd
s, (S.27)

where:

J
s =











E11
ss E12

ss · · · E1K
ss

E21
ss E22

ss · · · E2K
ss

...
. . .

...

EK1
ss EK2

ss · · · EKK
ss











d
s =











D1
ss

D2
ss

...

DK
ss











. (S.28)

Hence, we conclude that the eigenvectors of the

weighted synchronization have the form of Eq (S.27) if and

only if we can solve Eq (S.17). This is possible as soon as

E
kl are known and J

s has real eigenvectors. Besides an ex-

istence condition, Eq (S.17) also provides an explicit closed

form relationship between the weights and the eigenvectors

once E
kl are available.

Remark 1. Note that the symmetric eigen-problem given

in Eq (S.28) only requires the matrix E
kl for all k, l.

By definition, each element along the diagonal of Ekl =
wkl

G
k⊤

G
l denotes the number of points in each point

cloud belonging to each part weighted by w. Hence, it does

not require the complete knowledge on the part segmenta-

tion but only the amount of points per part. While this is

unknown in practice, for the sake of our theoretical anal-

ysis, we might assume the availability of this information.

Hence, we could speak of solving Eq (S.27) for each part s.

Remark 2. It is also interesting to analyze the scenario

where one assumes ds = 1 for each s. In fact, this is what

would happen if one were to naively use the unweighted

solution for a weighted problem, i.e. use g̃ itself as the esti-

mate of motion segmentation, as our closed form expression

for Dk (Eq (S.28)) cannot be evaluated in test time. Then,

assuming D
k to be the identity, for each k it holds:

K
∑

l=1

Ekl
ss =

K
∑

l=1

wkl
G

k⊤(Gl)s (S.29)

= wk1
G

1⊤(G1)s + · · ·+ wkK
G

K⊤(GK)s

= wk ·
[

G
1⊤(G1)s · · · G

K⊤(GK)s
]

= wkϕ
s = λ̃′

s. (S.30)

where (Gl)s is the s-th column of Gl. The final equality

follows directly from Eq (S.26) when Dss = 1. Note that

we can find multiple weights wk satisfying Eq (S.30). For

instance, if ϕ and λ were known, one solution for any s

would be:

wkl =
λ̃s

Kϕs
k

. (S.31)

Because (i) we cannot assume a uniform prior on the num-

ber of points associated to each part and (ii) it would

be costly to perform yet another eigendecomposition, we

choose to cancel the effect of the predicted weights wij as

we do in the paper by a simple normalization procedure.

However, such unweighted solution would only be possible

because our design encoded the weights in the norm of each

entry in the predicted ζkl
net.

B. Implementation Details

B.1. Network Structures

B.1.1 Flow Prediction Network

We adapt our own version of flow prediction network ϕflow

from PointPWC-Net [78] by changing layer sizes and the

number of pyramids. As illustrated in Fig. S10, the net-

work predicts 3D scene flow in a coarse-to-fine fashion.

Given input X
k as source point cloud and X

l as target

point cloud, a three-level pyramid is built for them using

furthest point sampling as {Xk,(0) = X
k,Xk,(1),Xk,(2)}

and {Xl,(0) = X
l,Xl,(1),Xl,(2)}, with point counts being

512, 128, 32, respectively. Similarly, we denote the flow

predicted at each level as {Fkl,(0),Fkl,(1),Fkl,(2)}. Per-

point features for all points are then extracted with dimen-

sion 128, 192 and 384 for each hierarchy. A 3D ‘Cost

Volume’ [40] is then computed for the source point cloud

by aggregating the features from X
k and X

l for the point

pyramid, with feature dimension 64, 128 and 256. This

aggregation uses the neighborhood information relating the

target point cloud and the warped source point cloud in a

patch-to-patch manner. The cost volume, containing valu-

able information about the correlations between the point

clouds, is fed into a scene flow prediction module for final

flow prediction. The predicted flow at the coarser level can

be upsampled via interpolation and help the prediction of

the finer level. Readers are referred to [78] for more details.
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which can be possibly eliminated by a carefully-designed

post-processing step and is out of the scope of this work.

We also show results from the DynLab dataset in Fig. S20.

Our method can generate robust object associations under

challenging settings.
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