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Abstract

We present MultiBodySync, a novel, end-to-end train-
able multi-body motion segmentation and rigid registra-
tion framework for multiple input 3D point clouds. The
two non-trivial challenges posed by this multi-scan multi-
body setting that we investigate are: (i) guaranteeing cor-
respondence and segmentation consistency across multi-
ple input point clouds capturing different spatial arrange-
ments of bodies or body parts; and (ii) obtaining ro-
bust motion-based rigid body segmentation applicable to
novel object categories. We propose an approach to ad-
dress these issues that incorporates spectral synchroniza-
tion into an iterative deep declarative network, so as to si-
multaneously recover consistent correspondences as well
as motion segmentation. At the same time, by explicitly
disentangling the correspondence and motion segmenta-
tion estimation modules, we achieve strong generalizabil-
ity across different object categories. Our extensive evalu-
ations demonstrate that our method is effective on various
datasets ranging from rigid parts in articulated objects to
individually moving objects in a 3D scene, be it single-view
or full point clouds. Code at https://github.com/
huangjh-pub/multibody—-sync.

1. Introduction

Motion analysis in dynamic point clouds is an emerg-
ing area, required by various applications such as surveil-
lance, autonomous driving, and robotic manipulation. Our
human-made environments are dominated by rigid body
movements, ranging from articulated objects to solids like
furniture or vehicles. These settings require us to address
rigid motions of objects or object parts — which is often
referred to as the multi-body motion estimation problem.
Despite its importance, previous work has mainly focused
on specific scenarios with known category semantics, like
category-level articulated object segmentation [44], indoor
scene instance relocalization [70], or car movement detec-
tion [77], leaving the literature of generic motion segmen-
tation relatively unexplored.
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Figure 1. MultiBodySync. Given an unordered set of point clouds,
we simultaneously segment individual moving rigid parts/objects
and register them. The transformed point clouds according to the
first scan are aggregated and shown in the middle column. Note
that the algorithm does not use color information and the right
column is shown just for visualization.

Different from traditional single scan analysis algorithms
like semantic segmentation [42], the most challenging part
in multi-body motion analysis is to disambiguate and dis-
tinguish rigid bodies. There, we are naturally required to
jointly process and relate multiple inputs, to effectively find
consistent motion-based part/object segmentations as well
as point correspondences to enable a multi-way registra-
tion. It is even more challenging when the capture is not
temporally dense, i.e., an intermittent acquisition that does
not follow a stream such as a video, and might contain large
pose variations, hampering naive temporal tracking.

In this paper, we introduce a multi-scan multi-body seg-
mentation and motion estimation problem, where the goal
is to simultaneously discover and register rigid bodies from
multiple scans, represented either as full or partial point
clouds, where objects come from unseen categories. As
an effective solution, we present MultiBodySync, a fully
end-to-end trainable deep declarative architecture [24] able
to process an arbitrary number of unordered point sets. As
shown in Fig. 1, given a set of scans, MultiBodySync begins
relating pairs of scans via 3D scene flow [83, 69] and con-



fidence estimation. Then, the following two differentiable
(permutation and segmentation) synchronization modules,
which are central to our approach, respectively enforce the
consistency of pairwise point correspondences and motion
segmentation labelings across different scans. Our design
explicitly decouples geometry and motion, making Multi-
BodySync generalizable to unseen categories without sac-
rificing robustness.

We evaluate MultiBodySync on various datasets com-
posed of full synthetic point clouds and partial real scans
with articulated and solid objects. We also contribute a new
dataset DynLab with 8 scenes and 64 scan fragments of dis-
tinctly moving objects. Our extensive evaluations demon-
strate that our algorithm outperforms the state-of-the-art by
a large margin on both multi-body motion segmentation and
motion estimation. In brief, our contributions are:

1. We introduce a novel end-to-end trainable architecture
for solving the multi-scan multi-body motion estimation
and segmentation problem.

2. We theoretically analyze the spectral characteristics of
the proposed weighted permutation synchronization.

3. To the best of our knowledge, we showcase the first
cross-category generalization for the task at hand on both
synthetic and real datasets, for both articulated part-level
and object-level regimes.

2. Related Works

Dynamic scene understanding. The modeling of 3D dy-
namic scenes in deep learning literature is often formulated
as a 4D data analysis, as done in seminal works like [46, 20].
Ability to infer spatiotemporal geometric properties has re-
cently motivated research in 3D scene flow as a form of low-
level dynamic scene representation [45, 65, 74, 55, 51, 58,

]. Domain-specific knowledge can be employed to give
better predictions as done in autonomous driving [31, 5, 77]
or articulated object analysis [82, 73]. The most recent dy-
namic SLAM works [33, 7, 86, 80] also rely heavily on se-
mantic cues. While some works [51, 58] advocates con-
tinuous temporal-dynamics modeling, we instead assume
discrete non-sequential input and enforce consistency us-
ing synchronization. Similarly, [27, 70] propose to perform
instance-level re-localization in a changed scene. Neverthe-
less, we do not assume a pre-segmentation of the scene, but
instead perform joint motion segmentation.

Multi-body motion. Provided point correspondences be-
tween two point clouds/images, rigid-body motion segmen-
tation becomes a multi-model fitting problem, amenable for
factorization techniques [21, 43, 81], clustering [34], graph
optimization [48, 37, 12] or deep learning [4 ]. Among oth-
ers, [83] handles raw scans and segments the rigidly mov-
ing parts using a Recurrent Neural Network (RNN). [29]
fits non-parametric part models to sequential 3D data with-
out needing explicit correspondences. However, to our best

knowledge, no prior work can handle multiple scans while
enforcing multi-way consistency like we do.

Synchronization. The art of consistently recovering ab-
solute quantities from a collection of ratios is now a ba-
sic component of the classical multi-view/shape analysis
pipelines [60, 15, 16]. Various aspects of the problem have
been vastly studied: different group structures [26, 25, 13,

, 1, 35, 28, 1, 71, 19, 64, 67, 4, 6], closed-form solu-

tions [4, 2, 1], robustness [18], certifiability [59], global
optimality [14], learning-to-synchronize [36, 54, 23] and
uncertainty quantification [66, 11, 10, 13]. In this work,

we are concerned with synchronizing correspondence sets,
otherwise known as permutation synchronization (PS) [52]
and motion segmentations [3]. PS is rich in the variety of
algorithms: low-rank formulations [85, 72], convex pro-
gramming [32], distributed optimization [32], multi-graph
matching[61] or Riemannian optimization [13]. Out of all
those, we are interested in the spectral methods of [2, 49]
as they provide efficient, closed-form solutions deployable
within a deep declarative network [24] like ours.

To the best of our knowledge, synchronization of corre-
spondences [49] or motion segmentation [3] have not been
explored in the context of deep learning. This is what we
do in this paper to tackle the consistent multi-body motion
estimation and segmentation.

3. Method

Problem setting and notation. Suppose we observe a
set of K point clouds X = {X* € R*>N k € [1,K]}
where each point cloud X* = [a:’lﬂ ...,acf, ,a:ﬂ“v] con-
tains IV points in R3 and sampled from the same object
with S independently moving rigid parts indexed by s. Each
point is assumed to belong to one of the .S rigid parts and
we denote the binary point-part association matrices as
G = {GF € [0,1]V*5} where G¥, = 1 if =¥ belongs
to the s*! rigid part and G¥, = 0 otherwise!. The rigid
motions for each part s in each point cloud k is defined as
T = {T* € SE(3),k € [1,K],s € [1,S]}, with the ro-
tational part being R¥ € SO(3) and the translational part
being t¥ € R®. Our final goal is to infer G and 7 given X

Summary. The core of our approach is a fully differen-
tiable deep network fusing rigid dynamic information from
multiple 3D scans as outlined in Fig. 2. We begin by
explicitly predicting pairwise soft correspondences across
all pairs of point clouds while enforcing consistency via a
weighted permutation synchronization (§ 3.1). Next, the
point clouds are segmented using a novel motion-based
segmentation network and also further synchronized by a
subsequent motion segmentation synchronization module
(§ 3.2). Finally, the correspondences and segmentations are

IThroughout our paper we use superscript k, ! to index point-clouds,
subscript %, j to index points and subscript s to index rigid parts.
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Figure 2. Our pipeline. ©® Given multiple input point clouds, we first estimate pairwise scene flows. @ The point correspondences (permu-
tations) computed from the flows are then synchronized in a weighted fashion to enforce consistencies. @ Pairwise relative segmentations
are subsequently estimated from the flows, and @ further synchronized to get absolute motion segmentation. The pose of each part can be
recovered by a weighted Kabsch algorithm. Our pipeline is fully differentiable and can be iterated (®) to get improved results.

used to recover the 6-DoF transformation for each of the in-
dividual rigid parts. The whole procedure can be iterated to
refine the results. The pipeline can be readily trained end-
to-end and we describe our training procedure in § 3.3.

3.1. Flow Estimation and Synchronization

Our approach starts with point correspondence estima-

tion between all (%) pairs of point clouds. We tackle
this problem by predicting a 3D scene flow F*
[ L fi’“l, - f}fﬂ € R3*N for each point cloud pair in-
dexed by (k,l) using a deep neural network @gow(-), Le.
FF = pgow (XE, X1, so that XF 4 F* £ X! holds up to
a permutation. The architecture of ¢g.y, inspired by Point
PWC-Net [78] is detailed in the supplementary material.

Flow signals, estimated in a pairwise fashion, are not
informed about the multiview configuration at our dis-
posal. To ensure multi-way consistent flows, we employ
the weighted variant of permutation synchronization [49]
inspired by [23, 36] where a closed-form solution is given
under spectral relaxation. We begin by the observation
that any flow F* would induce a soft assignment matrix
P* ¢ MN*N based on the nearest-neighbor distances:

exp (657 /7)

N
D=1 €XD (5ij T)
where 7 is the temperature of the softmax. The multinomial

manifold M of row-stochastic matrices is a continuous re-
laxation of the (partial) permutation group P.

Pj = O =l £ )

Outlier filtering. To take into account the noise, missing
points, or errors in the network, we further associate a con-
fidence value cfl € R to each point :ch and its correspond-
ing flow vector fF through another network @eone(-)

R7™N s RN inspired from OANet [87]. The input to
this network are the tuples {(x}, x + f, argmin; 6;7) €
R7}N | and we provide the architectural details in the sup-
plementary. The last dimension of this tuple measures the
quality of the flow vector via the distance between the trans-
formed points and their nearest neighbors, thereby detect-

ing spurious flow predictions. The final w* in Eq (3) re-
flects the overall quality of the corresponding P*!. Here
we choose w*! as the average confidence of all points, i.e.,
wh = Zi\;l ;' /N.

Consistent correspondences. We now use the predic-
tions {Pkl,wkl}(k,l) to achieve multiview consistent as-
signments. To this end, we deploy a differentiable syn-
chronization algorithm inspired by [49]. We first intro-
duce absolute permutation matrices P* which map each
point in X* to a universe space and stack them as p =

[...,(P*)T,...]T. We solve for the best p minimizing:
K K
E(p) =Y > wH|P* — PHP!|%. )
k=1 1=1

Theorem 1 (Weighted synchronization). The spectral so-
lution to the weighted synchronization problem in Eq (2)
p is given by the N eigenvectors of L corresponding to
the smallest N eigenvalues, where L € RENXEN s the
weighted Graph Connection Laplacian (GCL) constructed
by tiling all P*" matrices weighted by the related w*':

U}l:[]\/' —U)12P12 _lele
_w21P21 wQIN _wQKP2K
L= )
*lePKl *U]KQPK2 wKIN,

with w* = Z{il 14k w* and Iy € RN*N is the identity.
Proof. Please refer to the supplementary material. O

This spectral solution requires only an eigen-
decomposition lending itself to easy differentiation [36, 23].
The synchronized soft correspondence P*! is then extracted
as the (k,I)-th N x N block of pp". As a consequence
of the relaxation, we cannot ensure that each sub-matrix
of pp” would be a valid permutation. To preserve
differentiability we avoid Hungarian-like projection opera-
tors [49] and propose to directly compute the induced flow
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Figure 3. Illustration of our motion segmentation network @mot.

F = [ Ai’fl, ...] using a softmax normalization on the

synchronized soft correspondences:

N Bkl oyl k
Zj:l P (mj —z;)
N Bkl
2 j=1 b
Intuitively, this amounts to using the normalized synchro-

nized result as a soft-assignment matrix, diminishing the
effect of non-corresponding matches (false positives).

pkl Dkl Dkl
= N :cxp(PZ-j /). (4)

3.2. Motion Segmentation

Based upon the multiview consistent flow output FH,
we now predict the point-part associations G. Since we
are not provided with consistent labeling of the parts, in-
stead of predicting G* directly, we estimate for all (12{ )
point cloud pairs a relative motion segmentation matrix
¢H e [0, 1]V*N, where ([ is 1 when x} and x) belong
to the same rigid body, and 0 otherwise.

Our motion segmentation network @0 (-) @ R12XN
RN >N illustrated in Fig. 3 takes the point cloud pair X*, X!
as well as flow ¥ F'* estimated from the last step as input
and outputs the matrix ¢**. It begins with a PointNet++ [57]
predicting a transformation T¥! for each pointin ¥ € X*2.
The predictions map the part in X* containing =¥ to X'.
We then compute a residual matrix 3% € R3*N*N pased
on T?l, whose element is:

Kl k-1 1 1, ik
= (T7) oz — (z; + f;7), (5

where o denotes the action of T. One can easily verify that
the smaller the norm of the (i, j)-th entry of 3*! is, the more
likely that ¥ and :1:2 are in the same rigid part. Therefore, it
contains valuable information for deducing the motion seg-
mentation ¢*!. We apply N denoising mini-PointNet [56]
@mip(+) to each horizontal 3 x N slice of B*!, concatenated
with X! to get a likelihood score for each pair of points
(xzF e XF, ccé € X!). The network output ¢¥., is subse-

quently computed by applying a sigmoid on the output:

( r’ilat)i,: = sigmoid (‘Pmlp([ zk,lvxl])) . (6)

2In practice, instead of predicting ’i‘fl directly, we estimate a residual
motion w.r.t. the already obtained flow vectors similar to the method in
[83]. This procedure is detailed in our supplementary material.

Motion segmentation consistency. Given all pairwise
motion information ¢*!, we adopt the method of Arrigoni
and Pajdla [3] to compute an absolute motion segmentation
g € RENXS aq a stack of matrices in G. Once again, this is
an instance of a synchronization problem, with the stacked
relative and absolute motion segmentation matrices being:

0 ¢ ... (K G!
¢t 0 L. K G2
z=|". . .0, 9=|.]. O

A spectral approach similar to the one in § 3.1 optimizes
for g so that Z = gg ' is best satisfied. Then, g is just the
S leading eigenvectors of Z, scaled by the square root of
its S largest eigenvalues. Here, the point-part association
matrices G are relaxed to fuzzy segmentations by allowing
its entries to take real values. As a subsequent step simi-
lar to § 3.1, we replace the projection step with a row-wise
softmax on g to maintain differentiability.

Note that the output ¢¥, of ¢,,,,¢ is unnormalized, mean-
ing that any submatrix in Z can be written as (¥ = o*!¢kL |
where o acts as a normalizer. This is akin to encoding
a confidence in the norm of the matrix ¢*!, and requires
us to solve a weighted synchronization. However, as we
prove in the following theorem, such a solution would in-
volve an anisotropic scaling in the eigenvectors as a func-
tion of the number of points belonging to each part. As this
piece of information is not available in runtime, we take an

alternative approach and approximate the scaling factor as

¢" = mean(¢FL,) and pre-factor it out of ¥, by letting
¢k = ¢kl /g¥!. In this way, we ensure that the eigenvectors

yield the synchronized motion segmentation.

Theorem 2. Under mild assumptions, the solution to
the segmentation synchronization problem using a non-
uniformly weighted matrix will result in a proportionally
scaled version of the solution obtained by the eigenvectors
of the unweighted matrix Z.

Proof. Please refer to the supplementary material. O

As we show in our supplement, entry % in the decom-
posed eigenvalues is related to the number of points belong-
ing to motion k. To compute the number of rigid bodies S,
i.e., determine how many eigenvectors to use in g, the spec-
trum of Z is analyzed during test time: We estimate S as
the number of eigenvalues that are larger than a-percent of
the sum of the first 10 eigenvalues. For training, we just fix
S = 6 as an over-parametrization.

Pose Computation and Iterative Refinement. We finally
estimate the motion for each part using a weighted Kab-
sch algorithm [39, 23] followed by a joint pose estimation.
During test time we also iterate our pipeline several times to



gradually refine the correspondence and segmentation esti-
mation by transforming input point clouds according to the
estimated 7 and adding back the residual flow onto the flow
predicted at the previous iteration. The details are provided
in our supplementary.

3.3. Network Training

We propose to train each learnable component of our
pipeline separately in a pairwise manner and then fine-tune
their parameters using the full pipeline. Specifically, we
first train the flow estimation network gy, supervised with
ground-truth flow: £k~ = ||F* — Fkl’gtHi. Given the
trained @gow, the confidence estimation network @conf 1S
trained based on its output using a binary cross-entropy
(BCE) loss supervised by comparing whether the error of
the predicted flow is under a certain threshold:

coni - ZBCE kl’gt )a (8)

with ¢F"8 = 1 if we have |f¥ — kl’gt||2 < €y and

0 otherwise. The motion segmentation network ¢t 1S
trained using joint supervision over the estimated transfor-
mation residual and the final motion segmentation matrix:

Kl _ kl : .
Lo = Lr o+ Lroup Where each term is defined as:

N N
Sl 1) |85 H
‘Crans: j
t Z Z?_J(cfg =1)

L= ZZBCE rhet ch. (10)

i=1 j=1

€))

After we train all the networks (i.e., Yfow, @cont and
¥mot), the entire pipeline is trained end-to-end with the su-
pervision on both the pariwise flow Z kel Zl L LR and
the IoU (Intersection-over-union) loss, defined as:

L argmin S Alss) - (gﬁg)Tg:,s,
iou = - 7
A T 985112 + g« 112 — (g55) T g..

where A is an S x S binary assignment matrix which we
found using the Hungarian algorithm. The flow supervision
is added to both the output of flow network, and the final
pairwise rigid flow computed as fF! = TL(TF) Loz, —x;.

4. Experiments

Datasets. Our algorithm is tested on two main datasets:
SAPIEN [79] and DynLab dataset contributed by this work:
SAPIEN consists of realistic simulated articulated models
with part mobility annotated. We ensure that the categories
used for training and validation do not overlap with the test
set, finally leading to 720 articulated objects with 20 dif-

Table 1. Rigid flow estimation on SAPIEN. Table reports mean and
std. dev. (+/-) of the EPE3D over all pairwise flows, with (S) or
w/o (NS) Synchronization and with (W) or w/o (NW) Weighting.

Deep Ours
Part [83] NPP [29] NS, NW S, NW S, W
Mean 5.95 21.22 6.20 6.08 5.03
+/- 3.57 6.29 4.06 347 2.00

ferent categories. We then perform K virtual 3D scans of
the models, with each scan capturing the same object with
a different camera (and hence object) pose and object ar-
ticulating state. Later, furthest point sampling is applied to
down-sample the number of points to N. DynLab (Dy-
namic Laboratory) contains 8 different scenes in a labora-
tory, each with 2-3 rigidly moving solid objects from vari-
ous categories. Each of the scenes is captured 8 times, re-
constructed using ElasticFusion [76] and between each cap-
ture, the object positions are randomly changed. The dataset
also contains manual annotations of the object segmentation
mask and rigid absolute transformations. For benchmark-
ing, in each scene we choose different combinations of the
8 captures, leading to a total of 8 - (}) = 560 dataset items.
We believe the two different scenarios (articulated single
object and moving rigid bodies) reflected in the test sets are
sufficient to verify the robustness and the general applica-
bility of our algorithm.

The training data for articulated objects are generated us-
ing the dataset from [84], containing manually annotated
semantic segmentation of 16 categories. Similar to [83], we
generate K random motions for each connected semantic
part of the shapes. For the training data of solid objects, we
randomly sample independent motions for multiple objects
taken from ShapeNet [17] as if they are floating and rotat-
ing in the air. Please refer to supplementary material for
detailed data specifications and visualizations.

Metrics. Two main metrics are used: (1) EPE3D (End-
Point Error in 3D) of all () pairs of point clouds. The
mean and standard deviation (+/-) measures the rigid 3D
flow estimation quality: While the mean reflects an over-
all error in the transformation, the standard deviation shows
how consistent the estimate is among all pairs - a desir-
able property in the multi-scan setting. (2) Segmentation
accuracy assesses the motion segmentation quality. We use
mloU (mean Intersection-over-Union) and RI (Rand Index)
to score the output based on ‘Multi-Scan’ and ‘Per-Scan’
segmentations. For ‘Multi-Scan’, we evaluate the points
from all K clouds altogether, revealing the consistency of
the labeling across multiple scans. For ‘Per-Scan’, we com-
pute the score for each of the clouds separately and evaluate
the mean and standard deviation across all scans.

Training. Vaow, Pmot and Peons are trained using Adam
optimizer with initial learning rate of 10~ and a 0.5/0.7/0.7
decay every 400K iterations for the three networks. The
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Figure 4. Qualitative results on SAPIEN [79] dataset. On the left-most column, we show reference rendering of the objects we tackle. Each
method span two columns and the point colors show the motion segmentation. For our method, we additionally show the registration result
as the last column, where the darkness of the points shows the point cloud index it comes from.

Table 2. Segmentation Accuracy on SAPIEN Dataset.

| Multi-Scan Per-Scan

| mloU  RI mloU RI
PointNet++ [57] | 47.5 0.62 51.24+12.1 0.65+0.09
MeteorNet [46] 43.7 0.59 45.74£5.4  0.60+0.03
DeepPart [83] 49.2 0.64 53.0£8.9  0.67+0.06
NPP [29] 48.2 0.63 51.5+£6.6  0.66+0.05
Ours (4iters) | 66.7 076  67.3+4.3  0.77+0.03

batch sizes are set to 32/8/32, respectively. The entire
pipeline is trained end-to-end using K = 4 point clouds,
with a learning rate of 10~¢. The gradient computation for
eigen-decomposition will sometimes lead to numerical in-
stabilities [22], so we roll back that iteration when the gra-
dient norm is large. Our algorithm is implemented using
PyTorch [53] with N = 512, 7 = 0.01, ey = 0.1. We set
a = 0.05 for articulated objects and o = 0.15 for solid
objects.

4.1. Results on Articulated Objects

Baselines. Given our new multi-scan multi-body setting,
we made adaptations to previous methods and compared to
the following 4 baselines: (1) PointNet++ [57]: We use
the segmentation backbone to directly predict G* matri-

ces. We aggregate the bottleneck features by taking the
max before feeding it to the individual K feature propaga-
tion modules. (2) MeteorNet [46]: We use the MeteorNet-
seg model proposed to directly predict the segmentations.
Both PointNet++ and MeteorNet are supervised with the
IoU loss (Eq (11)) which counts in the ambiguity of rigid
body labeling. (3) DeepPart [83]: As this method only al-
lows pairwise input, we associate multiple point clouds us-
ing sequential label propagation. (4) NPP (Non-Parametric
Part) [29]: This algorithm does not need training and a grid
search is conveyed for its many tunable parameters.

Flow Accuracy. Tab. | shows that despite being based
on [83], our method gives the lowest flow error and variance
across different view pairs. This is thanks to the correspon-
dence consistency among the provided K scans enforced by
our synchronization module. The NPP method suffers from
a surprisingly high flow error mainly because the point-level
correspondence is not explicitly modeled. Note that Point-
Net++ and MeteorNet are excluded because they only out-
put point-wise segmentations.

Segmentation Accuracy. For the segmentation bench-
mark, we achieve a significantly better result than all the
baselines as shown in Tab. 2. Among the baselines, Me-



Figure 5. Qualitative segmentation results on two articulated se-
quences from [68] (‘Donkey’ and ‘Pipe 3/4’, first two rows) and
[62] (‘Alex’ and ‘Duck’, last two rows).

teorNet fails because it assumes proximity of relevant data
in the given point clouds, which is not robust to SAPIEN
dataset because of change in both object pose and articu-
lated parts. Even though PointNet++ reaches a relatively
high mean score, the standard deviation and Multi-Scan
score show the segmentation is not consistent across dif-
ferent input scans. DeepPart is specially designed for
part-based motion segmentation, but only operates on two-
views, which can cause drastic performance degradation if
the input two-views have a large difference. Also the RNN
they proposed for part segmentation tends to generate short
sequences and most of the shapes are only divided into
two parts. Despite the large error in flow estimation, NPP
behaves reasonably in terms of segmentation. Qualitative
comparisons are visualized in Fig. 4.

One important aspect of our network is that it can gen-
eralize to different objects and motions without re-training.
To qualitatively showcase this, we use two additional dy-
namic RGB-D sequences from [68] and [62]. For each se-
quence, we use four views and back-project the depth map
into point clouds for inference. As shown in Fig. 5, our
model trained on full objects of synthetic SAPIEN dataset,
can generalize to real dynamic depth sequences produc-
ing consistent motion-based segmentation. This is possible
thanks to the property that our network anchors on the mo-
tion and not on the specific geometry.

4.2. Results on Full Objects

In DynLab, each rigid body (i.e. object) is now seman-
tically meaningful, so apart from the 4 baseline methods
from § 4.1, we additionally compare to the following two
alternatives: (5) InstSeg (Instance Segmentation): We take
the state-of-the-art indoor semantic instance module Point-
Group [38] trained on ScanNet dataset to segment for each
input cloud. (6) Geometric: We use the Ward-linkage [75]
to agglomeratively cluster the points in each scan. In order
to obtain consistent segmentation across multiple inputs, we

Table 3. Segmentation Accuracy on DynLab dataset.

Multi-Scan Per-Scan
mloU RI mloU RI
PointNet++ [57] | 37.2 0.53 39447.1  0.54+0.03
MeteorNet [46] 58.5 0.69 71.8+£9.7  0.76+0.06
DeepPart [83] 60.7 0.70 66.3+17.2 0.75+0.13
NPP [29] 65.7 0.74 71.6+£7.7  0.78+0.05
Geometric 83.1 0.87 88.64+5.8 0.91+0.04
InstSeg [38] 56.5 0.66 7244125 0.78+0.09
Ours | 90.7 0.95 94.0+3.1  0.96+0.02

|

Instance Segm.

Ours Geometric Segm.

Figure 6. Example comparisons to baselines on DynLab. In the
leftmost column we compare the warped point clouds without
(‘NS’) and with (‘S’) synchronization. The right three sub-figures
show the segmentation in different colors. For clarity we exclude
the computed pose for the geometric & InstSeg approaches be-
cause the inaccuracy in segmentation leads to very noisy poses.

associate the segmentations between two different scans us-
ing a Hungarian search over the object assignment matrix,
whose element is the root mean squared error measuring
the fitting quality between any combinations of the object
associations.

Interestingly, as listed in Tab. 3, all the previous deep
methods lead to unsatisfactory results on this dataset. Point-
Net++ and MeteorNet are found to be inaccurate because
by design they associate labels in the level of semantics
(not motion) and no explicit consistencies across scans are
considered. Even though the InstSeg method is trained on
large-scale scene dataset, it is impossible for it to cover all
real-world categories so wrong detections are observed in
some scenes. The geometric approach is less robust in clut-
tered scenes where no obvious geometric cues can be used.
Our method is motion-induced and is hence robust to geo-
metric variations and out-of-distribution semantics, outper-
forming all baselines. A typical failure scenario for these
approaches is visualized in Fig. 6. We show additional qual-
itative results in Fig. 7, demonstrating our ability to accu-
rately segment, associate, and compute correct object trans-
formations even if there are large pose changes.

Tab. 4 shows the rigid flow estimation result against the
baselines. Apart from the influence of wrong per-scan seg-
mentation and cross-scan associations, the iterative closest
point (ICP) [8] method used to register object scans can
also suffer from poor initializations. Our approach not only



Figure 7. Results on DynLab dataset. Note that we detect and re-
move the ground for all baselines except InstSeg so only the points
on the moving furniture are input. Point colors indicate segmenta-
tion and the bounding boxes show relative transformations.

Table 4. Rigid flow estimation result on DynLab dataset. The num-
bers represent mean and standard deviation (+/-) of the EPE3D
from all pairwise flows. Note the value here does not reflect real-
world metrics because the scales are uniformly normalized.

|DeepPart [83] NPP[29] Geometric InstSeg [38] Ours

Mean 16.89 51.14 21.61 46.40 11.01
+/- 11.39 18.38 9.76 20.73 6.65

reaches the lowest mean error, but also respects the motion
consistency across multiple scans.

4.3. Ablation Study and System Analysis

Effect of synchronization. For permutation synchroniza-
tion (§ 3.1), we can directly feed the network-predicted flow
vectorAFkl to subsequent steps instead of using synchro-
nized F¥ (Ours: NS, NW), or use an unweighted version of
the synchronization by setting all w*! = 1 (Ours: S, NW).
However, as shown quantitatively in Tab. 1, both variants
result in higher flow error due to the failure to find consis-
tent correspondences. Similar results can be observed on
DynLab dataset as demonstrated in the two sub-figures of
Fig. 6, where direct flow prediction failed because the geo-
metric variation is too large between two scans.

Effect of K. Our method can be naturally applied to an
arbitrary number of views K even if we train using 4 views,
because by design the learnable parameters are unaware of
the input counts. As shown in Fig. 9, the segmentation
accuracy improves given more views. This is because the
introduction of additional scans helps build the connection
between existing scans and benefits the ‘co-segmentation’
process.
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Figure 8. Iterative refinement on SAPIEN dataset. We show trans-
formed and segmented point clouds according to recovered mo-
tions over iterations (shown in the middle).
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Figure 9. Influence of number of iterations (left) and number of
views (right) on the final segmentation accuracy.

Number of iterations. As pointed outin § 3.2, our pipeline
can be run multiple iterations to refine the results and an
example is given in Fig. 8. Shown in Fig. 9, our method
works better with more iterations because we estimate more
accurate flows. Moreover, more iterations are demonstrated
to be unnecessary because previous iterations already lead
to converged results.

Timing. Our experiments are conducted using an Nvidia
GeForce GTX 1080 card. For the input of 4 scans, the run-
ning time of our full model is ~870ms per iteration. The
entirety of a 4-iteration scheme hence takes ~3.5s, while
[83] and [29] take 11.5s and 60s resp. in comparison.

5. Conclusion

We presented MultiBodySync, a pipeline for simultane-
ously segmenting and registering multiple dynamic scans
with multiple rigid bodies. We, for the first time, incor-
porated weighted permutation synchronization and motion
segmentation synchronization into a fully-differentiable
pipeline for generating consistent results across all input
point clouds. However, currently MultiBodySync is not
scalable to a large number (like hundreds) of scans or
rigid bodies. Future directions include improvement of the
pipeline’s scalability and robustness in more complicated
and dynamic settings.
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MultiBodySync:
Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization
— Supplementary Material

In this supplementary material, we first give the proofs
of the theorems in Sec. A, then provide more details of our
implementation and our dataset in Sec. B. Additional abla-
tions and results are shown in Sec. C.

A. Proofs of Theorems
A.l. Theorem 1

Proof. The energy function in Eq (2) can be written as:

E(p) = wH|[PF — PHPIE

NE

1

N
> WP — PP

1

.
=

M= 1= 1=
M- 11

K

> WM PP+ WPy
=11=1

- w*(P5)T (PMPY) — w'

K
T § wlcl
=1

-
Il
—

"~

(PL) (P*PY)

)

(P]i)—l— kIN ZwklPklPl
1 I#£k

o

s
I
—

Il
.
[\&}
M= 1> 5
5

s
Il
-
=~
Il

N

=2 ZpILp;i = 2tr(p' Lp).
i=1

The spectral solution additionally requires each column
of p to be of unit norm and orthogonal to others relaxing
{Pkl S ./\/l} Kl

mgntr(pTLp) st. p'p=In. (S.11)

This QCQP (Quadratically Constrained Quadratic Pro-
gram) is known to have the closed form solution revealed
by generalized Rayleigh problem [30] (or similarly, the
Courant-Fischer-Weyl min-max principle). The solution
is given by the IV eigenvectors of L corresponding to the
smallest /V eigenvalues. O

A.2. Theorem 2

We first recall the spectral solution of the synchroniza-
tion problem and then extend the result to the weighted
variant we propose. For completeness, here we include

13

Z = gg ', the unweighted motion segmentation matrix:
0 C12 CIK
C21 0 C2K
Z=|". . (S.12)

Lemma 1 (Spectral theorem of synchronization). In the
noiseless regime and under spectral relaxation, the synchro-
nization problem can be cast as

m(ejxxtr(UTZU) st. UTU=1Ig, (S.13)
where U € RENXS denotes the sought solution, i.e. abso-
lute permutations. Then each column in U will be one of

the S leading eigenvectors of matrix Z [3]:

Gl
G2

U - diag(v/ A, .,V As) =g = s (S.14)
GK

where A1, ..., Ag are the leading eigenvalues of Z.

We now recall the weighted synchronization problem.
Here we assume the ¢* matrices are binary and satisfy the
properties listed in [3]. The weighted synchronization ma-
trix Z is composed of a set of anisotropically-scaled ¢*!
matrices:

0 L¢P e

- | ¢ 0 ... =r¢F

7 = . (S.15)
S ¢H! (,KQCKQ .. 0

Remind that in the main paper we use the unweighted
synchronization (i.e. without %) by cancelling the effect of
the weights via a normalization. Thm. 2, which we now
state more formally, is then concerned about the linear scal-
ing of the solution proportional to the weights in the motion
segmentation matrix:

Theorem 2 (Weighted synchronization for segmentation).
The spectral solution to the weighted version of the syn-
chronization problem

maxtr(UTZU) st. UTU=1Ig4

U

(S.16)



is given by the columns of g:

GlDl

_ — — G2D2

U -diag(\/ A1,...,\/As) = g = : , (S.17)
GK.DK

Here 5\1,...,5\5 are the leading eigenvalues of Z, and
(DY, ..., DX ¢ RS*9) are diagonal matrices. In other
words, the columns of g being the eigenvectors of Z are re-
lated to the non-weighted synchronization by a piecewise
linear anisotropic scaling.

Proof. We begin by the observation that K¥ = G*TG* is
a diagonal matrix where K*, counts' the number of points
in point cloud & belonging to part s. Hence, each element
alongg'g = Zszl (K*) counts the number of points over
all point clouds that belong to part s. Because Z = gg ', we
have the following spectral decomposition Zg = gA [3]:

K
Zg=g9'g=9g)» G''GF=gA.
k=1

(S.18)

To simplify notation we overload w*! by setting w*! =
ﬁ for the rest of this subsection. Let us now write Zg in
a similar fashion and seek the similar emergent property of
eigen-decomposition:

[ f: wllC”GlDl
=1

f: w21c2lGlDl
=1

N
[Na}}
I

(S.19)

i lecKlGlDl
Li—1 i

! According to our assumption, this ‘count’ hereafter is only valid when
¢¥ls are binary and can be viewed as soft counting when such an assump-
tion is relaxed.
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Then, using ¢¥! = GFG!T we can express Eq (S.19) as:

[ & wllGlGlTGlDl i
l?(l
~ E w2lG2GlTGlDl
Zg= | =1 (S.20)
. .
Z leGKGlTGlDl
Li=1 .
— K .
Gl E wllGlTGlDl
l?(l GlHl
G2 Z wQZGlTGlDl G2H2
_ = — (S.21)
. GFHK
GK E leGlTGlDl
L =1 .
where:
K
H* =) w"G'"G'D". (S.22)
k=1

H is a diagonal matrix because D' is diagonal by assump-
tion. Note that, the first part in the summation is assumed to
be a known’ diagonal matrix (see the beginning of proof):
EF = M GITGY, (S.23)
This form is very similar to Eq (S.17) scaled by the corre-
sponding diagonal matrices. Let us know consider the st"
column of g responsible for part s. We are interested in
showing that such column is an eigenvector of Z:
Zg° = \sg°. (S.24)
In other words, we seek the existence of 5\5 such
that Eq (S.24) is satisfied. Moreover, a closed form expres-
sion of A\; would allow for the understanding of the effect
of the weights on the problem. Let us now plug Eq (S.17)
and Eq (S.21) into Eq (S.24) to see that:

(GlHl)s (GlDl)s
(G2H2)s _ (G2D2)s

: =g : (8.25)
(GKi_IK)s (GKbK)s

As GFisa binary matrix, it only actas as a column selector,
where for a single part s, a column of the motion segmen-
tation g should contain only ones. We can use this idea and
the diagonal nature of Zg® to cancel G* on each side. Re-

2We will see later in remark 1 why this is only an assumption.



arranging the problem in terms of scalars on the diagonal
yields:

K -
Z E;gDis = )\SD;S
o
Hs25: ZEEngss:Angs

=1

1
Hss

(S.26)

L ~
HE =Y EN D, =A\DX
=1

where E is as defined in Eq (S.23). Note that both D and
As are unknowns in this seemingly non-linear problem. Yet,
we can re-arrange Eq (S.26) into another eigen-problem:

Jod® = \.d®, (S.27)
where:
Ell E12 EIK Dl
A g2 2K I
= 5 T Tla=| 7. (298
Ekl K'2 EKK DK
Ss Ss SSs SSs
Hence, we conclude that the eigenvectors of the

weighted synchronization have the form of Eq (S.27) if and
only if we can solve Eq (S.17). This is possible as soon as
E*! are known and J* has real eigenvectors. Besides an ex-
istence condition, Eq (S.17) also provides an explicit closed
form relationship between the weights and the eigenvectors
once E* are available.

O

Remark 1. Note that the symmetric eigen-problem given
in Eq (S.28) only requires the matrix E*' for all k..
By definition, each element along the diagonal of EF* =
wFGFT Gl denotes the number of points in each point
cloud belonging to each part weighted by w. Hence, it does
not require the complete knowledge on the part segmenta-
tion but only the amount of points per part. While this is
unknown in practice, for the sake of our theoretical anal-
ysis, we might assume the availability of this information.
Hence, we could speak of solving Eq (S.27) for each part s.

Remark 2. [t is also interesting to analyze the scenario
where one assumes d®° = 1 for each s. In fact, this is what
would happen if one were to naively use the unweighted
solution for a weighted problem, i.e. use g itself as the esti-
mate of motion segmentation, as our closed form expression
for DF (Eq (S.28)) cannot be evaluated in test time. Then,
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assuming DF to be the identity, for each k it holds:
K

Z Ekl

=1

K
ZwlekT(Gl)s
=1
wlelT(Gl)s 4t ka(;KT(GK)s
Wy, - [GIT(Gl)s GKT(GK)S]
wirp® = \.. (S.30)

(S.29)

where (G1)* is the s-th column of G!. The final equality
follows directly from Eq (S.26) when D, = 1. Note that
we can find multiple weights wy, satisfying Eq (S.30). For
instance, if @ and A\ were known, one solution for any s
would be:

wh = As .
Koy,

Because (i) we cannot assume a uniform prior on the num-
ber of points associated to each part and (ii) it would
be costly to perform yet another eigendecomposition, we
choose to cancel the effect of the predicted weights w;; as
we do in the paper by a simple normalization procedure.
However, such unweighted solution would only be possible
because our design encoded the weights in the norm of each
entry in the predicted !

net*

(S.31)

B. Implementation Details
B.1. Network Structures

B.1.1 Flow Prediction Network

We adapt our own version of flow prediction network ¢gow
from PointPWC-Net [78] by changing layer sizes and the
number of pyramids. As illustrated in Fig. S10, the net-
work predicts 3D scene flow in a coarse-to-fine fashion.
Given input X* as source point cloud and X' as target
point cloud, a three-level pyramid is built for them using
furthest point sampling as {X*(0) = Xk X (1) Xk.(2)}
and {X4(0) = X! XL XE) | with point counts being
512, 128, 32, respectively. Similarly, we denote the flow
predicted at each level as {F*:(0) FrL(L) FkL(2)1 - Per-
point features for all points are then extracted with dimen-
sion 128, 192 and 384 for each hierarchy. A 3D ‘Cost
Volume’ [40] is then computed for the source point cloud
by aggregating the features from X* and X' for the point
pyramid, with feature dimension 64, 128 and 256. This
aggregation uses the neighborhood information relating the
target point cloud and the warped source point cloud in a
patch-to-patch manner. The cost volume, containing valu-
able information about the correlations between the point
clouds, is fed into a scene flow prediction module for final
flow prediction. The predicted flow at the coarser level can
be upsampled via interpolation and help the prediction of
the finer level. Readers are referred to [78] for more details.
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Xk L2-Feature Cost Volume L2-Feature XU

32x3  32x384 32 x 256 32x384  32x3
FL@ Flow Feature
32x3 32x128
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—> Downsampling
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Figure S10. Our adapted version of PointPWC-Net ¢aow. Each
rectangular block denotes a tensor, whose size is written as N x C'
(batch dimension is ignored) below its name, with IV being the
number of points and C' being the feature dimension. The network
is composed of 3 hierarchical levels. At each level, features from
the two input point clouds are fused via a Cost Volume Layer,
which digests warped point cloud and features from the upsam-
pled coarse flow estimated from the last level and provides a cost
volume for flow prediction.

B.1.2 Confidence Estimation Network

The confidence estimation network @, we use, adapted
from OANet (Order-Aware Network) [87], learns inlier
probability of point correspondences. In our case, each cor-
respondence is represented as a R” vector as described in
the main paper. Different from other network architectures
like PointNet [56], OANet features in the novel differen-
tiable pooling (DiffPool) and unpooling (DiffUnpool) op-
erations as well as the order-aware filtering block, which
are demonstrated to effectively gather local context and are
hence useful in geometric learning settings, especially for
outlier rejection [9].

The network starts and ends with 6 PointCN [50] lay-
ers, which globally exchanges the point feature information
by context normalization (i.e. whitening along the channel
dimension to build cross-point relationship). In between
the PointCNss lies the combination of DiffPool layer, order-
aware filtering block and DiffUnpool layer. The DiffPool
layer learns an N x M soft assignment matrix, where each
row represents the classification score of each point being
assigned to one of the M ‘local clusters’. These local clus-
ters represent local structures in the correspondence space
and are implicitly learned. As the M clusters are in canoni-
cal order, the feature after the DiffPool layer is permutation-
invariant, enabling the order-aware filtering block afterward
to apply normalization along the spatial dimension (i.e.,
‘Spatial Correlation Layer’) for capturing a more complex
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Figure S11. Examples from our training set for (a) articulated
objects and (b) multiple solid objects. Different colors indicate
rigidly moving parts.

global context. In our @cons, we choose M = 64.

B.1.3 Motion Segmentation Network

The architecture of ¢y, has been already introduced in the
main paper. Here we elaborate how the transformations ’i‘fl
are estimated by PointNet++. The input to the network is
the stacked [(XF)T (F¥)T]T e R*N and the output is
in R2*Nwhere for each point we take the first 9 dimen-
sions as the elements in the rotation matrix and the last 3
dimensions as the translation vector.

In practice, direct transformation estimation from the
PointNet++ is not accurate. Given that we have already
obtained the flow vectors, instead of estimating T¥, we
compute a residual motion w.r.t. the given flow similar to
the method in [83]. Specifically, when the actual outputs
from the network are Rpe; € R3*3 and tpe; € R3, the
transformations used in subsequent steps of the pipeline
TF = [RF|tF] are computed as follows:

R =Rye + 13, t7 =ty — Rueel + FFL (S.32)

7

Note that we do not ensure Tfl is in SE(3) with SVD-like
techniques. In fact the transformation is not directly su-
pervised (neither in this module nor in the entire pipeline)
and the nearest supervision comes from 3*! matrix through
Eq (9). This avoids the efforts to find a delicate weight for
balancing the rotational and translational part of the trans-
formation.

B.2. Pose Computation and Iterative Refinement

Given the synchronized pairwise flow f*! and motion
segmentation GF, we estimate the motion separately for
each rigid part using a weighted Kabsch algorithm [39].
The weight for point ¥ and the rigid motion s between
X* and X' is taken as cF'GF,. We then use similar tech-
niques as in [23, 36] to estimate the motions separately for
each part.

The point clouds to register can have a large difference
in poses making it hard for the flow network to recover.



Figure S12. Visualization of the DynLab dataset. Each row shows 8 different dynamic configurations of the same set of rigid objects.
Annotated bounding boxes are parallel to the ground plane and reflect the objects’ absolute poses.

This might lead to wrong results in the subsequent steps. refine the correspondence and segmentation estimation. In
Inspired by point cloud registration works [83, 23], during particular, we use the transformation T* (T#)~! estimated
test time we iterate our pipeline several times to gradually at iteration ¢ — 1 to transform all the points in all point sets

17



Table S5. Training and validation categories from [84] used for
articulated objects.

Training Table Chair Plane Car
Categories Guitar Bike Suitcase
Validation Lamp Pistol Mug Skateboard
Categories | Earphone | Rocket Cap

Table S6. Training and validation categories from [84] used for
multiple solid objects.

Training Table Knife Plane Car
Categories Guitar Bike Suitcase Laptop
Validation Lamp Pistol Mug Skateboard
Categories | Earphone | Rocket Cap

belonging to part s to the canonical pose of the k*-th point
cloud. Note that the choice of k* is arbitrary, and we choose
k* = 1. Then at iteration ¢, we feed the transformed point
clouds to the flow network again to compute the residual
flow, which is added back onto the flow predicted at itera-
tion ¢ — 1 to form the input of the segmentation network.
The progress works reciprocally, as differences in poses of
the point clouds are gradually minimized and the flow es-
timation will hence become more accurate, leading to bet-
ter segmentation and transformations. Specially, during the
first iteration where pose differences are usually large, we
treat the point clouds as if they are composed of only one
rigid part to globally align the shapes. This will provide a
good pose initialization for subsequent iterations.

B.3. Dataset

Training Data. To demonstrate the generalizability of
our method across different semantic categories, we ensure
the categories used for training, validation and test have no
overlap. For articulated objects, the categories we use are
shown in Tab. S5. For multiple solid objects, the categories
are listed in Tab. S6. Examples from our training set are
visualized in Fig. S11.

DynLab dataset. A full visualization of the DynLab
dataset with manual annotations is shown in Fig. S12. We
will make the scans publicly available.

C. Additional Results
C.1. Extended Ablations

In this subsection we provide more complete ablations
extending § 4.3. A full listing of the baselines we compare
is as follows:

* Qurs (1 iter): The pipeline is iterated only once, with-

out the global alignment step as described in § B.2.

* Ours (NS, NW): Same as the main paper, we directly
feed F*! instead of F*! to the motion network @yt .
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Figure S13. Visual comparisons of the pairwise flow. To visualize
the flow we warp the source point cloud and compare the its simi-
larity with the target point cloud. The color bar on the right shows
the end-point error (EPE3D). ‘Ours (S, W)’ represents the out-
put of our method with the Weighted permutation Synchronization
scheme.

* Ours (S, NW): Same as the main paper, we set all
weights of the permutation synchronization w*! = 1.

« Ours (UNZ): The unnormalized matrix Z (Eq (S.15))
is used as input to motion segmentation synchroniza-
tion, i.e., the normalizing factors are set to okl = 1.

e Ours (4 iters): Full pipeline of our method, with 4

steps of iterative refinement.

We show comparisons of the final rigid flow error us-
ing EPE3D metric on both SAPIEN and DynLab dataset in
Fig. S14 and S15 respectively. Results indicate that all the
components introduced in our algorithm, including iterative
refinement, weighted synchronization, and the pre-factoring
of the motion segmentation matrix, contribute to the im-
provement of accuracy under different scenarios. Note that
in DynLab dataset, the performance of ‘Ours (UNZ)’ is very
similar to ‘Ours (4 iters)’ because the motion segmentation
accuracy is already high (Tab. 3) due to the good quality
of each individual (¢ output, rendering normalization op-
tional in practice.

We provide additional visual examples demonstrating
the effectiveness of our weighted permutation synchroniza-
tion in Fig. S13, where direct flow output fails due to large
pose changes between the input clouds, and a naive un-
weighted synchronization still suffers from such failure be-
cause the influence of wrong correspondences is not elimi-
nated.

For completeness we include per-category segmentation
accuracy of articulated objects on SAPIEN [79] dataset in
Tab. S7. The variants of our method perform consistently
better than other methods for nearly all categories, showing
the robustness of our model for accurate multi-scan motion-



Table S7. Per-category mloU comparisons on SAPIEN [79] dataset.

. . Storage . .
Box  Dishwasher  Display Furniture Eyeglasses  Faucet Kettle Knife Laptop  Lighter
PointNet++ [57] | 43.5 46.8 54.8 51.3 34.6 424 65.7 43.0 58.5 52.3
MeteorNet [46] 47.0 42.2 41.7 36.9 36.1 47.1 67.2 36.2 57.9 61.3
DeepPart [83 53.3 55.1 474 48.7 31.8 434 64.7 38.5 67.3 39.0
NPP [29] 414 63.7 57.3 48.0 353 454 50.7 44.5 61.1 50.7
Ours (1 iter) 67.6 57.3 66.3 68.1 57.8 54.7 83.3 55.5 78.6 52.0
Ours (NS, NW) 67.1 61.6 62.6 67.5 60.6 50.3 78.3 53.6 77.5 51.5
Ours (S, NW) 71.4 58.9 68.8 71.3 61.7 57.2 81.4 57.8 82.7 64.6
Ours (UNZ) 71.5 59.6 69.1 71.6 62.1 58.0 78.9 57.8 82.7 65.0
Ours (4 iters) 72.0 62.0 67.4 73.1 66.2 56.2 80.7 56.4 83.3 62.6
. . . Washing
Microwave Oven Phone Pliers Safe Stapler Door Toilet TrashCan . Overall
Machine
PointNet++ [57] 51.5 42.6 46.2 63.6 55.7 43.0 42.7 40.0 51.2 49.8 47.5
MeteorNet [46] 37.4 37.1 41.7 434 33.7 54.7 33.3 38.3 61.5 41.9 43.7
DeepPart [83] 65.9 49.8 41.9 329 57.5 47.0 38.6 39.1 65.1 59.5 49.2
NPP [29] 56.4 39.7 48.4 61.3 55.9 45.5 404 31.2 51.0 48.4 48.2
Ours (1 iter) 61.6 54.7 52.5 50.6 59.4 67.0 47.1 55.7 79.3 64.2 62.9
Ours (NS, NW) 74.6 59.0 494 57.0 62.2 65.6 45.1 52.0 76.1 72.9 63.3
Ours (S, NW) 62.8 52.3 54.1 514 62.5 72.0 49.0 57.2 81.1 71.2 65.6
Ours (UNZ) 62.7 52.2 55.1 499 61.3 72.3 48.8 57.5 81.4 714 65.8
Ours (4 iters) 69.3 56.1 54.6 63.9 63.9 70.2 48.3 56.5 80.4 72.1 66.7
0.8
0.8
0.6
. 06 -
a a
3 —— Ours (1 iter) 204 —— Ours (1 iter)
04 —e— Ours (NS, NW) —e— Ours (NS, NW)
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—e— Ours (4 iters) 00 —— Ours (4 iters)
002 004 006 008 010 012 014 000 005 010 015 020 025 030
EPE3D EPE3D

Figure S14. Empirical cumulative distribution function (ECDF) of
rigid flow error (EPE3D) on SAPIEN [79] dataset. The higher the
curve, the better the results.

based segmentation.

C.2. Qualitative Results

To provide the readers with a more intuitive under-
standing of our performance under different cases, we il-
lustrate in Fig. S16 the scenarios with co-existing articu-
lated/solid objects and multiple cars in a scene of Waymo
Open dataset [63] (though the car category is within our
training set). Moreover, we show in Fig. S17 to S19 our
segmentation and registration results for each category in
SAPIEN [79] dataset, covering most of the articulated ob-
jects in real world. Due to the irregular random point sam-
pling pattern and the natural motion ambiguity, in some
examples, our method may generate excessive rigid parts,
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Figure S15. Empirical cumulative distribution function (ECDF) of
rigid flow error (EPE3D) on DynLab dataset. The higher the curve,
the better the results.
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Figure S16. Quantitative demonstrations on complex scans. The
first row is estimated using our trained articulated objects model
while the last row is obtained by hierarchically apply our method
to each segmented part until convergence. @-@ indicates scan in-
dex. Best viewed with 200% zoom in.



which can be possibly eliminated by a carefully-designed
post-processing step and is out of the scope of this work.
We also show results from the DynLab dataset in Fig. S20.
Our method can generate robust object associations under
challenging settings.
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Figure S17. Qualitative results on SAPIEN dataset (1/3). Figure S18. Qualitative results on SAPIEN dataset (2/3).

21



¢ 6%
Pk Wy

Figure S19. Qualitative results o

¢
{?@‘

n SAPIEN dataset (3/3).

22

Ko ge

2o &

2Bu b
TR

'Y TL.

¢
-

LIt




