


door scene benchmarks 7-scenes [51] and 12-scenes [54].

One type of successful approach in this regard is designed

based on decision trees, which was firstly introduced into

the camera relocalization field in [51], with many follow-ups

[35, 36, 37, 12, 11]. They build a binary regression forest

that takes a query image point sampled from the visual ob-

servation as input, and routes it into one leaf node via a

hierarchical splitting strategy, which is simply implemented

as color/depth comparison within the neighbourhood of the

query point. The leaf node fits a density distribution over

the 3D world coordinates from the training scene. Hence, by

evaluating the decision tree with a test image, a 2D/3D-3D

correspondence can be easily established between the in-

put sample and regressed world coordinate for camera pose

optimization.

Although the aforementioned approaches are good at

camera relocalization in static training environments, they

tend to fail in dynamic test scenes, which are quite common

yet challenging in real life. This is mainly due to the fact that

the decision tree is constructed using only the static training

image sequence so that, for any image point belonging to

dynamic regions captured during evaluation, it is challenging

to locate its correct correspondence in the leaf node. Recent

studies [57] have demonstrated that the decision tree based

approaches achieve around 28% camera pose accuracy (5cm

5◦), which is also the best among all the competitors, in their

proposed RIO-10 benchmark developed for dynamic indoor

scenes. This performance is far from being comparable to

the ones in static indoor scenes.

In order to tackle the challenges of camera relocalization

in dynamic indoor environments, in this paper, we propose

to learn an outlier-aware neural tree to help establish point

correspondences for accurate camera pose estimation focus-

ing only on the confident static regions of the environment.

Our algorithm inherits the general framework of decision

trees, but mainly differs in the following aspects in order to

obtain better generalization ability in dynamic test scenes.

(a) Hierarchical space partition. We perform an explicit

hierarchical spatial partition of the 3D scene in the world

space to construct the decision tree. Then each split node

in the decision tree not only performs a hard data parti-

tion selection, but in fact one which also corresponds to

a physically-meaningful 3D geometric region. (b) Neural

routing function. Given an input point sampled from the

2D visual observation, the split node needs to determine

which divided sub-region in the world space to go. Such a

classification task needs more contextual understanding of

the 3D environment. Therefore, we propose a neural routing

function, implemented as a deep classification network, for

learning the splitting strategy. (c) Outlier rejection. In or-

der to deal with potential dynamic input points, we propose

to consider these points as outliers and reject them during the

hierarchical routing process in the decision tree. Specifically,

the neural routing function learns to classify any input point

from the dynamic region into the outlier category, stopping

any further routing for that point. Once our proposed neural

tree is fully trained, we follow the optimization and refine-

ment steps in existing works [12, 11] to calculate the final

pose.

We further train and test our proposed outlier-aware neu-

ral tree on the recent camera relocalization benchmark, RIO-

10, which aims for dynamic indoor scenes. Experimental

results demonstrate that our proposed algorithm outperforms

the state-of-the-art localization approaches by at least 30%

on camera pose accuracy. More analysis shows that our

algorithm is robust to various types of scene changes and

successfully rejects most dynamic input samples during neu-

ral routing.

2. Related Work

2.1. Camera Relocalization

Direct pose estimation. Approaches of this type aim for

predicting the camera pose directly from the input image.

One popular solution in this direction is image retrieval

[21, 20, 22, 1, 26]. They approximate the camera pose of

the query image by matching the most similar images in the

dataset with known poses using low-level image features.

Instead of matching features, PoseNet [29] and many follow-

ups [28, 58, 9, 56, 47] propose to use a convolution neural

network to directly regress the 6D camera pose from an input

image. However, as mentioned in [47], the performance of

direct pose regression using CNNs is more similar to the one

using image retrieval, and still lags behind the 3D structure-

based approaches detailed below.

Indirect pose estimation. Approaches of this type find

correspondences between camera and world coordinate

points, and calculate the camera pose through optimization

with RANSAC [13]. One common direction is to leverage

the 2D-3D correspondences between traditional keypoints

in the observed image and 3D scene map [45, 34, 44, 46],

followed by some recent works that deploy deep learning

features [43, 42, 52, 16] to replace the extracted poor de-

scriptors. Another common direction to seek correspon-

dences is scene coordinate regression. Shotton et al. [51]

proposes to regress the 3D points in the world space from

a query image point by training a decision tree, followed

by many variants [36, 37, 5, 55]. The other related works

[4, 6, 8, 7, 33, 59, 32, 35] in this direction leverage the deep

convolutional neural network to regress the world coordi-

nates from an input image, with a following pose optimiza-

tion step.

2.2. Decision Tree and Deep Learning.

Some recent efforts have been devoted to combining the

two families of decision tree and deep learning techniques.

2



(a) Hierarchical space partition in the world space

level 1 level 2 level 3

(d) Outlier-aware neural routing function

k
+

1

Shared

MLP Max pool

MLP

Output scores 𝒑𝒑
Context points

{𝒙𝒙𝒐𝒐𝒊𝒊(𝒄𝒄), 𝒙𝒙𝒐𝒐𝒊𝒊(𝒓𝒓)}𝒊𝒊=𝟏𝟏𝑵𝑵

MLP

level 1

level 2

level 3

(b) Outlier-aware neural tree

(c) Visual observation in camera space

Space partition for the neural tree construction

Training of the neural routing function

Node index 𝒙𝒙𝒏𝒏𝒐𝒐𝒏𝒏𝒏𝒏 Normalization parameters 

{𝜽𝜽𝒔𝒔𝒄𝒄𝒔𝒔𝒔𝒔𝒏𝒏, 𝜽𝜽𝒔𝒔𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉}HyperNetwork

Query point 𝒙𝒙𝒒𝒒(𝒄𝒄) 𝒉𝒉𝒒𝒒
𝒉𝒉𝒐𝒐

Figure 2. Illustration of our algorithm on the simple 2D case. Top: constructing a 3-level 4-way outlier-aware neural tree of a scene

environment via hierarchical space partition. The dashed line and circle indicates the outlier category designed to reject the input dynamic

points. Bottom: training an outlier-aware neural routing function for each split node in the neural tree.

The deep neural decision trees [31] propose a principled,

joint and global optimization of split and leaf node param-

eters, and hence enable end-to-end differentiable training

of the whole decision tree. Shen et al. [50] presents label

distribution learning tree to enable all the decision trees in

a forest to be learned jointly. The variants of deep neural

decision trees have been successfully applied for the task of

human age estimation [49] and monocular depth estimation

[41]. Most of the aforementioned works formulate the last

few fully connected layers in a classification neural network

with the decision tree structure, and hence are significantly

different from our algorithm.

3. NeuralRouting

3.1. Overview

The input to our algorithm is a training sequence of

<RGB-D image, camera pose> and a test frame for cam-

era relocalization. Our algorithm can be separated into two

steps, scene coordinate regression and camera pose estima-

tion. The former step is conducted by learning a neural tree

that takes a query point along with its neighbor context as

input, and regresses its scene coordinate in the world space

to build a 3D-3D correspondence, based on which, the latter

step estimates the camera pose via iterative optimization

followed by an optional ICP refinement. The neural tree is

constructed via performing an explicit space partition in the

scene environment, and learns to reject the dynamic points as

outliers during the hierarchical routing process. In this way,

our algorithm learns to build the 3D-3D correspondence only

within the confident static region for accurate camera pose

optimization. We firstly revisit the decision tree and its adap-

tation for camera relocalizatoin in Sec. 3.2, and introduce

our outlier-aware neural tree developed for relocalization in

dynamic environments in Sec. 3.3. Finally, we describe the

camera pose optimization and refinement details in Sec. 3.4.

3.2. Decision Tree for Camera Relocalization

Depending on whether the target is continuous or discrete,

the decision tree can be used for either regression or classifi-

cation tasks. A decision tree consists of a set of split nodes

and leaf nodes. Each split node is assigned with a routing

function, which learns the decision rules for the input sample

partition, and each leaf node contains a probability density

distribution fitted for the partitioned data. Given an input

sample, inference starts from the root node and descends

level-by-level until reaching the leaf node by evaluating the

routing functions. A standard decision tree is binary, and

employs greedy algorithms to learn the parameters at each

split node to achieve locally-optimal hard data partition.

For the task of camera relocalization, the decision tree

[11] is used to build the 3D knowledge of the known environ-

ment using the provided training sequence. Each split node

takes a query point (RGB-D) sampled from the captured im-

age as input and routes it into one child node. The leaf node

fits a distribution over a set of 3D points in the world space

3



that are projected from the training images using the ground

truth camera pose and calibration parameters. Therefore,

when evaluating a test frame with a decision tree, by routing

an input point from root node to leaf node, a 3D-3D point

correspondence can be easily established and further used

for camera pose optimization.

3.3. Outlier­aware Neural Tree

3.3.1 Hierarchical Space Partition for Decision Tree

For the existing decision trees [51, 35, 36, 37, 12, 11] de-

veloped for the camera relocalization problem, as there is

no ground truth label for supervised training, the decision

tree becomes ultimately a clustering strategy for the training

data as observed in previous works [11, 10]. The decision

rules at split nodes are learned via CLUS algorithm [3] that

uses variance reduction as the split criterion and achieves

local-optimal hard data partition. In this paper, we propose

to perform a hierarchical space partition for the target scene

environment to construct our decision tree. We represent the

entire scene as the root node, and iteratively partition the

scene until reaching predefined depth. Each split node is re-

sponsible for a geometric region in the scene, and partitions

this region into sub-regions of equal size for its child nodes.

Each leaf node contains a set of 3D world coordinates in its

covered local geometric region. The space partition strategy

is illustrated in Figure 2 and detailed below.

Given a 3D scene model constructed in world space using

the training sequence of <RGB-D image, camera pose>, we

build an m-way decision tree, where m is the zth power of

2. To perform a hierarchical space partition, we start from

the root node which represents the entire scene environment.

Then we compute the tight bounding box of the scene in

the world coordinate system. We conduct iterative z cuts to

divide the bounding box into m sub-boxes of equal volume

size. In order to avoid the corner cases, such as long and

narrow sub-boxes which may create challenges to learn the

routing function, the decision rule is designed to encourage

the divided bounding box to be similar to a cube. Specifically,

to perform one cut on the bounding box of size (w, h, l), we

find the longest edge over (w, h, l) and divide the box into

two identical halves from the middle point of the edge. We

iterate over such a process on the divided box until z cuts

are achieved. We perform such a top-down data partition

iteratively for the nodes among all the levels.

The decision tree constructed in this way features several

properties: (a) our constructed tree structure relies on the

explicit space partition over the 3D scene environment in

the world space, not on the data partition of the visual obser-

vations (RGB+D) in the 2D camera space, then it requires

the routing function to have more 3D understanding ability;

(b) each split node is physically meaningful, and covers a

specific geometric region, which is spatially related to other

father or child nodes; (c) the decision rules are predefined

by the z-cut space partition strategy introduced in the above

paragraph and stay constant for all the nodes, instead of

optimized via greedy algorithms to behave differently for

different nodes; (d) the decision tree is more tolerant to an

m-way tree implementation, not limited to a standard bi-

nary decision tree; (e) the constructed tree structure is

scene-dependent, and may contain empty nodes that cover

no geometric regions in the scene. Overall, the constructed

decision tree via hierarchical space partition is more flexi-

ble in structure and physically meaningful compared to a

standard decision tree in previous works.

3.3.2 Outlier-aware Neural Routing Function

Given an input sample, the purpose of the routing function

at each split node is to send it to one of the child nodes. In

our problem setting, the input sample is from the observed

2D RGB-D frame, and its ground truth label is determined

by its corresponding location in the 3D world space. For

purpose of accurate prediction, the routing function needs

to understand the 3D scene context from 2D observations.

Therefore, inspired by many previous works regarding point

cloud classification [39, 40] and point generation from 2D

images [17], we take advantage of the point cloud process-

ing framework to implement a neural routing function. We

introduce the formulation of the input and network structure

in detail below.

Input representation and sampling. The input to the

neural routing function is a query point xq that needs to be

localized in the 3D world space, along with a set of context

points {xoi}
N
i=1 in the neighbourhood of the query point.

The input point is associated with color and depth, which are

however both highly viewpoint dependent. In order to obtain

better generalization ability in different viewpoints, given

an input RGB-D frame, We augment its depth channel via

transforming it into the rotation-invariant geometric feature

following PPF-FoldNet [15]. To be specific, we firstly com-

pute the oriented point cloud by projecting the full-frame

depth into 3D camera space using camera calibration param-

eters, and calculating the pointwise normals in a 17-point

neighbourhood [25]. Then we encode the query point and

its context points into pair features,

{(x(p)
q , x(n)

q , x(p)
o1

, x(n)
o1

), (x(p)
q , x(n)

q , x(p)
o2

, x(n)
o2

), · · · ,

(x(p)
q , x(n)

q , x(p)
oN

, x(n)
oN

)} ∈ R
12×N (1)

where p and n denotes the camera coordinate and normal,

which form a 12-channel vector for each pair of oriented

points (xq, xoi). Each pair feature (x
(p)
q , x

(n)
q , x

(p)
oi , x

(n)
oi )

is then transformed into the rotation-invariant geometric

representation [15] that consists of three angles and one pair

4



distance,

r = {∠(x(n)
q , x(p)

q − x(p)
oi

),∠(x(n)
oi

, x(p)
q − x(p)

oi
),

∠(x(n)
q , x(n)

oi
), ‖x(p)

q − x(p)
oi

‖2} ∈ R
4 (2)

Overall, for each input context point, it consists of both

color c and transformed rotation-invariant information r, rep-

resented as {x
(c)
oi , x

(r)
oi } ∈ R

7. Since the rotation-invariant

feature for all context points is computed in the local refer-

ence frame with query point as origin, we omit the geometric

feature and only take the color information as input for query

point x
(c)
q ∈ R

3.

Given an input image, the query point for a split node

is randomly sampled among the 2D image pixels whose

projected 3D world coordinates belong to the split node.

The context points are randomly sampled within the 3D

neighbourhood ball of the query point. Ball query defines

a radius, which is adaptively changed from level to level

due to the varying size of covered 3D geometric region in

our problem setting. In the implementation, we calculate

the radius as the length of the longest edge of the covered

bounding box.

Routing function design. The routing function consists

of two parts, the feature extraction module and classification

module. The feature extraction module leverages the point-

wise multi-layer perception (MLP) to learn the features from

both query point and context points inspired by the recent

popular point cloud processing network PointNet [39], while

the classification module combines the deep features from

query point and context points to learn which child node the

query point should be routed to.

As the query point and context points are different in

input channel, point number and impact for the classification

task, we use different network parameters to encode their

feature, specifically,

hq = ffeatQ(x
(c)
q ) (3)

ho = ffeatO({x
(c)
oi

, x(r)
oi

}Ni=1) (4)

where ffeatQ and ffeatO are implemented with a 3-layer

pointwise MLP (64-128-32/512), and extract the internal

deep features (hq ∈ R
32, ho ∈ R

512) for query and context

points respectively. ffeatO is followed with a max pooling

layer to extract the global context feature.

Then hq and ho are concatenated and inputted into the

classification module,

p = fclass(hq, ho) (5)

where fclass is also implemented as a three-layer MLP

(2048-1024-k), and outputs the probability (p ∈ R
k) for

all the child nodes. Since the constructed tree structure is

scene dependent as mentioned in Sec. 3.3.1, the number

of child nodes k is adaptively changed from node to node

and from scene to scene. As for supervision, we apply a

cross entropy loss between the predicted probability p and

the ground truth label y for supervision,

L = −

k∑

i=1

✶{yi = i} log
exp(pi)∑k

i=1 exp(pi)
(6)

where yi is the label for the ith child node.

Outlier rejection. The aforementioned neural routing

function is designed to route the input sample into one of the

child nodes that are bound to 3D geometric regions. Given a

query point belonging to dynamic regions in the test frame,

the hierarchical routing functions will send it into one of the

leaf nodes that contain the 3D world coordinates only from

the static training scene, and it may establish an inaccurate

3D-3D correspondence for camera pose optimization. In

order to solve this issue, we propose to reject the query

points from dynamic regions as outlier, hence the established

correspondence will be maintained in the confident static

region.

In order to achieve this goal, we further improve the

neural routing function to output the probability vector p

of k + 1 channels, where the additional channel refers to

the outlier class. To generate the training samples for each

split node from a given input image, the routing function

considers any image pixel belonging to the current split node

as inlier input query point, which should be routed into child

nodes. As the dynamic points in test environments are highly

unpredictable, irregular, and do not exist in the training

data, we simply consider any image pixel not covered by

the current split node as outlier input query point, which

simulates the dynamic points and should be rejected without

further routing. To train the routing function for each split

node, the inlier and outlier input query points are sampled to

be 3:1. Notice the outlier rejection strategy is incorporated

into the neural routing function from the second level, since

for the root node, all the image pixels belong to the inlier

input.

3.3.3 HyperNetwork for the Routing Functions

In order to construct a t-level m-way tree, there are at most

mj−1 neural routing functions at level j except for the

bottom level that contains leaf nodes, and totally at most
mt−1

−1
m−1 routing functions for the whole tree. It is both time-

consuming and storage-inefficient to train so many deep

networks. In order to decrease the training time and stor-

age space for efficient deep learning, the previous works

[24, 18] unify the learnable parameters among different con-

volution layers in a network, time steps in a RNN, or hyper-

parameters in an image filter within a standalone network,

mostly known as HyperNetwork. More recent work [19]

further discovers that learning the normalization parameters

5



with the HyperNetwork has similar performance as learn-

ing the convolution parameters, while the former case is

more storage and running time friendly due to much less

learnable parameters in the normalization layer compared to

convolution layer.

Inspired by these previous works, in this paper, we pro-

pose to leverage HyperNetwork to learn a single neural rout-

ing function for all the split nodes in the same level of a

decision tree. Specifically, given the one-hot value xnode

that indicates the split node index, we learn to predict the

learnable scale θscale and shift θshift parameters in the nor-

malization layer of the classification module in the neural

routing function,

θscale, θshift = fhyper(xnode) (7)

where fhyper refers to the HyperNetwork, and is imple-

mented a three-layer MLP. The size of θscale and θshift
depends on the channel number in the normalization layer.

Then the normalization parameters in the classification mod-

ule is replaced with the predicted ones from the HyperNet-

work,

p = fclass(hq, ho; θscale, θshift) (8)

Therefore, for a t-level tree, we only need to learn totally t

neural routing functions.

3.4. Camera Pose Estimation

The core of our algorithm is a decision tree, which is the

same as many previous camera relocalization works [12, 11].

Therefore, we inherit similar optimization and refinement

steps following [11] for camera pose computation, which

are introduced below. In order to generate the camera pose

in SE(3), we firstly fit modes in the leaf nodes and then

optimize the pose by leveraging the established 3D-3D cor-

respondences. Each leaf node covers a set of 3D points

(XYZ+RGB) in the world space projected from the 2D im-

age pixels captured in the training sequence. Following [55],

we detect the modes of the empirical distribution in each

leaf node via mean shift [14], and then construct a Gaussian

Mixture Model (GMM) via iteratively estimating a 3D Gaus-

sian distribution for each mode. After mode fitting of the

leaf nodes, we leverage the preemptive locally-optimized

RANSAC [13] for camera pose optimization. We start by

generating 1024 pose hypotheses, each of which is computed

by applying the Kabsch algorithm [27] on three randomly

sampled 3D-3D point correspondences that relate the cam-

era and world space. Given an observed point in camera

space, its corresponding world coordinate is sampled from

one random mode in the fitted GMM of the routed leaf node.

We filter out the hypotheses that do not conform to the rigid

body transformations following [12], and regenerate the al-

ternatives until they satisfy the above requirement. The final

camera pose is selected by iteratively re-evaluate and re-rank

the hypotheses using the Mahalanobis distance, and discard

the worse half until only one pose hypothesis is left.

Multi-leaves. Given an input query point, the aforemen-

tioned pose optimization process fits modes only from the

routed leaf node, which is common for the existing decision

tree implementations as their routing function performs hard

data partition and hence the input point can only be routed

into a single leaf node. In contrast, the proposed neural

routing function performs a “soft” data partition with pre-

dicted probability p, hence the input point can be “routed”

to all the leaf nodes with different accumulated probabilities

through probability multiplication of all routed split nodes.

Motivated by the above observation, to achieve more robust

pose optimization, we fit the mode by combining the world

coordinates from multiple routed leaf nodes with highest

accumulated probabilities, instead of a single leaf node. In

the implementation, we use four leaf nodes, which works

the best experimentally, for mode fitting.

Pose refinement. Last but not least, we follow [11] to

incorporate our camera relocalizer into a 3D reconstruction

pipeline for further camera pose refinement, which mainly

consists of ICP [2] and model-based hypothesis ranking.

4. Experiments

4.1. Implementation Details

Tree structure. For all the experiments in this paper, we

implement the 5-level 16-way tree for scene partition, thus

a perfect tree structure consists of 4369 nodes in this case.

During our implementation, according to the specific scene

geometry, such a tree contains about 2000 to 3000 valid

nodes.

Training details. The neural routing functions are imple-

mented in PyTorch. Benefited from the design of HyperNet-

work, we only train 5 neural routing functions. Each routing

function is trained for 60 epochs with a batch size of 256.

The network weights are optimized with Adam [30] whose

initial learning rate is 0.001 and betas are (0.9,0.999). The

initial learning rate is halved every 20 epochs until the end.

The number of context points is set as 600 all the time.

4.2. Dataset

We test our proposed algorithm on two camera relocaliza-

tion benchmarks, RIO-10 [57] and 7-scenes [51], which are

developed for dynamic and static indoor scenes respectively.

The RIO-10 dataset includes 10 real indoor environments,

each of which is scanned several times over different time

periods, and demonstrates the common geometric and illu-

mination changes in dynamic environments. This dataset

is separated into training/validation/test split, while the test

results should be obtained via submission to their online

benchmark. The 7-scenes dataset contains only training

and test set, and is the most popular camera relocalization

6



Method Score ↑ DCRE(0.05) ↑ DCRE(0.15) ↑ Pose(0.05m,5◦) ↑ Outlier(0.5) ↓ N/A

HFNet [42] 0.373 0.064 0.103 0.018 0.360 0.000

HF-Net Trained [42] 0.789 0.192 0.300 0.073 0.403 0.000

NetVLAD [1] 0.575 0.007 0.137 0.000 0.431 0.000

DenseVLAD [53] 0.507 0.008 0.136 0.000 0.501 0.006

Active Search [46] 1.166 0.185 0.250 0.070 0.019 0.690

Grove [12] 1.240 0.342 0.392 0.230 0.102 0.452

Grove V2 [11] 1.162 0.416 0.488 0.274 0.254 0.162

D2Net [16] 1.247 0.392 0.521 0.155 0.144 0.014

NeuralRouting (Ours) 1.441 0.538 0.615 0.358 0.097 0.227

Table 1. Comparison on the test split of the RIO-10 benchmark w.r.t. the average score (1 + DCRE (0.05) - Outlier (0.5)), DCRE errors,

camera pose accuracy and outlier ratio. N/A denotes invalid/missing predictions. The red and blue numbers rank the first and second for each

metric.

Pose(0.05m,5◦) ↑ Chess Fire Heads Office Pumpkin Kitchen Stairs Average

Shotton et al. [51] 92.60% 82.90% 49.40% 74.90% 73.70% 71.80% 27.80% 67.60%

Guzman-Rivera et al. [23] 96.00% 90.00% 56.00% 92.00% 80.00% 86.00% 55.00% 79.30%

Valentin et al. [55] 99.40% 94.60% 95.90% 97.00% 85.10% 89.30% 63.40% 89.50%

Brachmann et al. [5] 99.60% 94.00% 89.30% 93.40% 77.60% 91.10% 71.70% 88.10%

Schmidt et al. [48] 97.75% 96.55% 99.80% 97.20% 81.40% 93.40% 77.70% 92.00%

Grove [12] 99.40% 99.00% 100.00% 98.20% 91.20% 87.00% 35.00% 87.10%

Grove V2 [11] 99.95% 99.70% 100.00% 99.48% 90.85% 90.68% 94.20% 96.41%

NeuralRouting (Ours) 99.85% 100.00% 100.00% 99.80% 88.80% 90.96% 84.20% 94.80%

Table 2. Comparison on the 7-scenes dataset w.r.t. the camera pose accuracy. The red and blue numbers rank the first and second for each

scene.

Pose(0.05m,5◦) ↑

Ours w/o outlier labels 25.14%

Ours w/o multi-leaves 25.80%

5-level 8-way Tree 24.60%

3-level 16-way Tree 16.75%

4-level 16-way Tree 25.31%

Ours (5-level 16-way Tree) 27.05%

Ours w. pose refinement 31.99%

Table 3. Ablation study on the validation set (10 scenes) of the

RIO-10 benchmark. Ours is the full pipeline of our algorithm.

benchmark for the static indoor environments in the past.

4.3. Evaluation Metrics

In order to evaluate the quality of estimated cam-

era pose, we adopt the common camera pose accuracy

Pose(0.05m,5◦), which is computed as the proportion of

test frames whose translation error is within 5 centime-

ters and angular error is within 5 degrees. In the RIO-10

benchmark [57], we further adopt their proposed new met-

ric DCRE, short for Dense Correspondence Re-Projection

Error, which is computed as the average magnitude of the

2D correspondence displacement normalized by the image

diagonal. The displacement is calculated between 2D pro-

jections of the underlying 3D model using the ground truth

and predicted camera poses. DCRE depicts an error that cor-

relates with the visual perception, not only with the absolute

camera pose. Then DCRE(0.05) and DCRE(0.15) are the

percentage of test frames whose DCRE is within 0.05 or

0.15, while Outlier(0.5) describes the opposite case, which

is the percentage of test frames whose DCRE is above 0.5.

4.4. Numerical Results

We compare our algorithm with all the other approaches

on the test split of the RIO-10 dataset, shown in Table 1.

Among all the metrics that evaluate the quality of camera

pose estimations, our algorithm ranks the first except for

Outlier(0.5), where our performance is the second best. Re-

garding the camera pose accuracy Pose(0.05m,5◦), which

is more common and directly measures the pose quality,

our result (0.358) surpasses the state-of-the-art approaches

(0.274) significantly by about 30%. It demonstrates the effec-

tiveness and robustness of our proposed outlier-aware neural

tree on the dynamic indoor environments.

We further test our algorithm on the popular camera re-

localization benchmark 7-scenes for static indoor scenes,

shown in Table 2. Our algorithm ranks the second place on

the averaged camera pose accuracy among all the existing

7





6. Appendix

The appendix provides the additional supplemental ma-

terial that cannot be included into the main paper due to its

page limit:

• More Space Partition Strategies.

• Extension to Neural Forest.

• Unified Neural Routing Function – PointNet++.

• Ablation for HyperNetwork.

A. More Space Partition Strategies

In the main paper, we evaluate different space partition

strategies by varying the hyper-parameters in a t-level m-

way tree. In this section, we conduct more experiments by

constructing the covered bounding boxes in different man-

ners, which is another important factor that influences the

tree structure. To be specific, we firstly follow the axis of

world coordinate system and compute the axis-aligned mini-

mum bounding box (AABB) of the entire scene as the root

node for space partition. This is our original implementation

in the main paper. To explore more space partition strategies,

we rotate the scene model along the x and y axis by 30◦, and

calculate the new AABB. Similarly, we also obtain a version

by rotating 60◦. The bounding boxes constructed above all

follow the world coordinates, and may leave many blank

3D spaces in the box, which does not make full use of the

neural routing functions. To resolve this issue, we obtain the

compact box by recalculating the world coordinate system

of the scene using PCA [38], and fit the tightest bounding

box along the new axis. In order to alleviate the potential

influence of coordinate axis to camera pose optimization as

observed in [6, 4], we further rotate the compact box to align

with the default world coordinate axis for a fair comparison

with other boxes.

We illustrate the different bounding box constructions

in Figure 5. We observe that regarding the compactness

between the bounding box and 3D scene model, compact

box > original box > rotation 60◦ > rotation 30◦. The cor-

responding numerical results of the above space partition

strategies are shown in Table 4. Consistent with the compact-

ness, the camera pose accuracy also follows the same order:

compact box > original box > rotation 60◦ > rotation 30◦. It

indicates an interesting observation that the more compact

the box is, the higher the pose accuracy can be achieved by

our algorithm. This is mainly because in a compact box, the

geometric regions are more uniformly sampled among all

the split nodes in the decision tree, which strengthens the

utilization of the neural routing functions.

Pose(0.05m,5◦) ↑

original + rotation 30◦ 51.05%

original + rotation 60◦ 52.98%

original box 54.93%

compact box 56.68%

forest 58.29%

PointNet++ 1.93%

Table 4. Camera pose accuracy on the scene 01 in the validation set

of RIO-10 dataset.
original compact

rotation 30° rotation 60°

Figure 5. Different space partition strategies via bounding box

construction.

B. Extension to Neural Forest

In the existing camera relocalization works implemented

with decision trees [12, 11], they usually train a number

of trees on the same scene to obtain a forest for the pose

optimization. In this way, the final prediction of the for-

est is simply the union of the fitted modes among all the

trees. In these works, the decision rule for each split node is

adaptively learned as either color or depth comparison from

the training data. Hence by simply sampling different input

samples in the same scene, they are able to learn different

decision trees.

Motivated by the previous works, we further extend our

proposed neural tree to neural forest by training multiple

trees. However, in our work, the decision rules are prede-

termined by the space partition strategy. In order to enable

the diversity of multiple trees, we adopt the four different

space partition strategies introduced in Section 6, and unify

their predictions to form a neural forest. The numerical re-

sults are shown in Table 4. We are glad to observe that the

performance can be further upgraded by the utilization of a

forest.

C. Unified Neural Routing Function – PointNet++

The main paper employs the hierarchical node-wise neu-

ral routing functions to classify each input query point into

9



w. HyperNet w/o HyperNet

level 2 level 3 level 4 level 2 level 3 level 4

node 1 58.1% 75.9% 70.5% 60.5% 79.5% 75.0%

node 2 57.9% 66.5% 69.5% 56.8% 62.6% 69.3%

node 3 23.6% 48.5% 49.3% 28.9% 66.7% 50.0%

average 46.5% 63.63% 63.1% 48.7% 69.9% 64.7%

Table 5. Ablation study of HyperNetwork on the scene 01 in the

validation set of RIO-10 dataset. For each level, we collect three

split nodes to evaluate their classification accuracy on the validation

set.

one of the leaf nodes. This can be naturally viewed as the

point-wise segmentation task, where each segmentation la-

bel refers to one leaf node. As the input is formulated as

the form of point cloud, we can achieve a unified neural

routing function by directly leveraging the popular state-of-

the-art point cloud segmentation network PointNet++ [40].

In our problem setting, the PointNet++ takes the colored

point cloud from a single frame as input, and outputs the

point-wise segmentation mask. In this case, each input point

is the query point and also serves as the context point for the

other query points. In this unified neural routing function,

the outlier rejection is not an option anymore and excluded

from the segmentation label. We adopt the MSG as the

PointNet++ backbone in the implementation.

Its numerical result is shown in Table 4, which performs

much worse compared to our neural routing function imple-

mentation. It demonstrates the effectiveness of our unique

neural tree design.

D. Ablation for HyperNetwork

In our algorithm, HyperNetwork unifies the network pa-

rameters of all the neural routing functions from the same

level into a single network, and hence saves much storage

space and training time. However, as observed in the previ-

ous work [19], HyperNetwork may potentially degrade the

performance compared to the version that separately trains

each network. To investigate the potential influence of Hy-

perNetwork on the performance of neural routing functions,

we select three split nodes for each level in our neural tree,

and compare their classification accuracy between the im-

plementations with and without HyperNetwork as shown in

Table 5. Interestingly, we observe that the usage of Hyper-

Network only degrades the performance within a reasonable

range similar to the past experience [19].

References

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly

supervised place recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

5297–5307, 2016. 2, 7

[2] Paul J Besl and Neil D McKay. Method for registration

of 3-d shapes. In Sensor fusion IV: control paradigms and

data structures, volume 1611, pages 586–606. International

Society for Optics and Photonics, 1992. 6

[3] Hendrik Blockeel, Luc De Raedt, and Jan Ramon. Top-down

induction of clustering trees. Proceedings of the Fifteenth

International Conference on Machine Learning, 1998. 4

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie

Shotton, Frank Michel, Stefan Gumhold, and Carsten Rother.

Dsac-differentiable ransac for camera localization. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6684–6692, 2017. 2, 9

[5] Eric Brachmann, Frank Michel, Alexander Krull, Michael

Ying Yang, Stefan Gumhold, et al. Uncertainty-driven 6d

pose estimation of objects and scenes from a single rgb image.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3364–3372, 2016. 2, 7

[6] Eric Brachmann and Carsten Rother. Learning less is more-6d

camera localization via 3d surface regression. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4654–4662, 2018. 2, 9

[7] Eric Brachmann and Carsten Rother. Expert sample consen-

sus applied to camera re-localization. In Proceedings of the

IEEE International Conference on Computer Vision, pages

7525–7534, 2019. 2

[8] Eric Brachmann and Carsten Rother. Neural-guided ransac:

Learning where to sample model hypotheses. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4322–4331, 2019. 2

[9] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,

and Jan Kautz. Geometry-aware learning of maps for cam-

era localization. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2616–2625,

2018. 2

[10] Lauriane Castin and Benoit Frénay. clustering with decision

trees: divisive and agglomerative approach. In ESANN, 2018.

4

[11] Tommaso Cavallari, Stuart Golodetz, Nicholas Lord, Julien

Valentin, Victor Prisacariu, Luigi Di Stefano, and Philip HS

Torr. Real-time rgb-d camera pose estimation in novel scenes

using a relocalisation cascade. IEEE transactions on pattern

analysis and machine intelligence, 2019. 1, 2, 3, 4, 6, 7, 8, 9

[12] Tommaso Cavallari, Stuart Golodetz, Nicholas A Lord, Julien

Valentin, Luigi Di Stefano, and Philip HS Torr. On-the-fly

adaptation of regression forests for online camera relocali-

sation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4457–4466, 2017. 2, 4,

6, 7, 9

[13] Ondřej Chum, Jiří Matas, and Josef Kittler. Locally optimized

ransac. In Joint Pattern Recognition Symposium, pages 236–

243. Springer, 2003. 2, 6

[14] Dorin Comaniciu and Peter Meer. Mean shift: A robust

approach toward feature space analysis. IEEE Transactions

on pattern analysis and machine intelligence, 24(5):603–619,

2002. 6

10



[15] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet:

Unsupervised learning of rotation invariant 3d local descrip-

tors. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 602–618, 2018. 4

[16] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-

feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-net:

A trainable cnn for joint detection and description of local

features. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 2, 7

[17] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 605–613, 2017. 4

[18] Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai

Yu, and Baoquan Chen. Decouple learning for parameterized

image operators. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 442–458, 2018. 5

[19] Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai

Yu, and Baoquan Chen. A general decoupled learning frame-

work for parameterized image operators. IEEE transactions

on pattern analysis and machine intelligence, 2019. 5, 10

[20] Dorian Galvez-Lopez and Juan D Tardos. Real-time loop

detection with bags of binary words. In 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 51–58. IEEE, 2011. 2

[21] Andrew P Gee and Walterio W Mayol-Cuevas. 6d relocali-

sation for rgbd cameras using synthetic view regression. In

BMVC, volume 1, page 2, 2012. 2

[22] Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram

Izadi. Real-time rgb-d camera relocalization via randomized

ferns for keyframe encoding. IEEE transactions on visualiza-

tion and computer graphics, 21(5):571–583, 2014. 2

[23] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie

Shotton, Toby Sharp, Andrew Fitzgibbon, and Shahram Izadi.

Multi-output learning for camera relocalization. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 1114–1121, 2014. 7

[24] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.

International Conference on Learning Representations, 2017.

5

[25] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDon-

ald, and Werner Stuetzle. Surface reconstruction from unorga-

nized points. In Proceedings of the 19th annual conference on

Computer graphics and interactive techniques, pages 71–78,

1992. 4

[26] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick

Pérez. Aggregating local descriptors into a compact image

representation. In 2010 IEEE computer society conference on

computer vision and pattern recognition, pages 3304–3311.

IEEE, 2010. 2

[27] Wolfgang Kabsch. A solution for the best rotation to relate

two sets of vectors. Acta Crystallographica Section A: Crystal

Physics, Diffraction, Theoretical and General Crystallogra-

phy, 32(5):922–923, 1976. 6

[28] Alex Kendall and Roberto Cipolla. Geometric loss functions

for camera pose regression with deep learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5974–5983, 2017. 2

[29] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet:

A convolutional network for real-time 6-dof camera relocal-

ization. In Proceedings of the IEEE international conference

on computer vision, pages 2938–2946, 2015. 2

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[31] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and

Samuel Rota Bulo. Deep neural decision forests. In Proceed-

ings of the IEEE international conference on computer vision,

pages 1467–1475, 2015. 3

[32] Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho

Kannala. Hierarchical scene coordinate classification and

regression for visual localization. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2020. 1, 2

[33] Xiaotian Li, Juha Ylioinas, and Juho Kannala. Full-frame

scene coordinate regression for image-based localization. In

In Robotics: Science and Systems (RSS), 2018. 2

[34] Hyon Lim, Sudipta N Sinha, Michael F Cohen, and Matthew

Uyttendaele. Real-time image-based 6-dof localization in

large-scale environments. In 2012 IEEE conference on com-

puter vision and pattern recognition, pages 1043–1050. IEEE,

2012. 2

[35] Daniela Massiceti, Alexander Krull, Eric Brachmann, Carsten

Rother, and Philip HS Torr. Random forests versus neural

networks—what’s best for camera localization? In 2017

IEEE International Conference on Robotics and Automation

(ICRA), pages 5118–5125. IEEE, 2017. 2, 4

[36] Lili Meng, Jianhui Chen, Frederick Tung, James J Little,

Julien Valentin, and Clarence W de Silva. Backtracking

regression forests for accurate camera relocalization. In 2017

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 6886–6893. IEEE, 2017. 2, 4

[37] Lili Meng, Frederick Tung, James J Little, Julien Valentin,

and Clarence W de Silva. Exploiting points and lines in

regression forests for rgb-d camera relocalization. In 2018

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 6827–6834. IEEE, 2018. 2, 4

[38] Karl Pearson. Liii. on lines and planes of closest fit to systems

of points in space. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 2(11):559–

572, 1901. 9

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017. 4, 5

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural information

processing systems, pages 5099–5108, 2017. 4, 10

[41] Anirban Roy and Sinisa Todorovic. Monocular depth esti-

mation using neural regression forest. In Proceedings of the

IEEE conference on computer vision and pattern recognition,

pages 5506–5514, 2016. 3

[42] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and

Marcin Dymczyk. From coarse to fine: Robust hierarchical

11



localization at large scale. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

12716–12725, 2019. 2, 7

[43] Paul-Edouard Sarlin, Frédéric Debraine, Marcin Dymczyk,

Roland Siegwart, and Cesar Cadena. Leveraging deep visual

descriptors for hierarchical efficient localization. In Con-

ference on Robot Learning, pages 456–465. PMLR, 2018.

2

[44] Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc

Pollefeys. Large-scale location recognition and the geometric

burstiness problem. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1582–

1590, 2016. 2

[45] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-

based localization using direct 2d-to-3d matching. In 2011

International Conference on Computer Vision, pages 667–674.

IEEE, 2011. 2

[46] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient

& effective prioritized matching for large-scale image-based

localization. IEEE transactions on pattern analysis and ma-

chine intelligence, 39(9):1744–1756, 2016. 2, 7

[47] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-

Taixe. Understanding the limitations of cnn-based absolute

camera pose regression. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3302–3312, 2019. 2

[48] Tanner Schmidt, Richard Newcombe, and Dieter Fox. Self-

supervised visual descriptor learning for dense correspon-

dence. IEEE Robotics and Automation Letters, 2(2):420–427,

2016. 7

[49] Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and

Alan L Yuille. Deep regression forests for age estimation. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2304–2313, 2018. 3

[50] Wei Shen, Kai Zhao, Yilu Guo, and Alan L Yuille. Label dis-

tribution learning forests. In Advances in neural information

processing systems, pages 834–843, 2017. 3

[51] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram

Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-

ordinate regression forests for camera relocalization in rgb-d

images. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2930–2937, 2013. 2,

4, 6, 7

[52] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea

Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-

ihiko Torii. Inloc: Indoor visual localization with dense

matching and view synthesis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 7199–7209, 2018. 2

[53] Akihiko Torii, Relja Arandjelovic, Josef Sivic, Masatoshi

Okutomi, and Tomas Pajdla. 24/7 place recognition by view

synthesis. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1808–1817, 2015.

7

[54] Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet

Kohli, Philip Torr, Shahram Izadi, and Cem Keskin. Learning

to navigate the energy landscape. In 2016 Fourth Interna-

tional Conference on 3D Vision (3DV), pages 323–332. IEEE,

2016. 2

[55] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew

Fitzgibbon, Shahram Izadi, and Philip HS Torr. Exploiting

uncertainty in regression forests for accurate camera relocal-

ization. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4400–4408, 2015. 2, 6,

7

[56] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sat-

tler, Sebastian Hilsenbeck, and Daniel Cremers. Image-based

localization using lstms for structured feature correlation. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 627–637, 2017. 2

[57] Johanna Wald, Torsten Sattler, Stuart Golodetz, Tommaso

Cavallari, and Federico Tombari. Beyond controlled environ-

ments: 3d camera re-localization in changing indoor scenes.

Proceedings of the European Conference on Computer Vision

(ECCV), 2020. 2, 6, 7, 8

[58] Bing Wang, Changhao Chen, Chris Xiaoxuan Lu, Peijun

Zhao, Niki Trigoni, and Andrew Markham. Atloc: Attention

guided camera localization. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2020. 2

[59] Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasu-

taka Furukawa, and Ping Tan. Sanet: Scene agnostic network

for camera localization. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 42–51, 2019.

2

12


