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Figure 1: Learned meta-handles for a single chair. Each column indicates a meta-handle and shows three deformations along the direction
of that meta-handle, with red arrows highlighting the deformed region. Our method learns intuitive and disentangled meta-handles in an
unsupervised fashion, which factorize all the plausible deformations for the shape.

Abstract

We propose DeepMetaHandles, a 3D conditional gen-
erative model based on mesh deformation. Given a col-
lection of 3D meshes of a category and their deformation
handles (control points), our method learns a set of meta-
handles for each shape, which are represented as combina-
tions of the given handles. The disentangled meta-handles
factorize all the plausible deformations of the shape, while
each of them corresponds to an intuitive deformation. A
new deformation can then be generated by sampling the co-
efficients of the meta-handles in a specific range. We em-
ploy biharmonic coordinates as the deformation function,
which can smoothly propagate the control points’ transla-
tions to the entire mesh. To avoid learning zero deforma-
tion as meta-handles, we incorporate a target-fitting mod-
ule which deforms the input mesh to match a random tar-
get. To enhance deformations’ plausibility, we employ a
soft-rasterizer-based discriminator that projects the meshes
to a 2D space. Our experiments demonstrate the superiority
of the generated deformations as well as the interpretabil-
ity and consistency of the learned meta-handles. The code
is available at https://github.com/Colin97/
DeepMetaHandles.

1. Introduction

3D Meshes can store sharp edges and smooth surfaces
compactly. However, Learning to generate 3D meshes is

much more challenging than 2D images due to the irregu-
larity of mesh data structures and the difficulty in designing
loss functions to measure geometrical and topological prop-
erties. For such reasons, to create new meshes, instead of
generating a mesh from scratch, recent work assumes that
the connectivity structure of geometries is known so that the
creation space is restricted to changing the geometry with-
out altering the structure. For example, [37, 36, 48] create
new shapes by deformations of one template mesh. They,
however, limit the scope of the shape generation to possible
variants of the template mesh. We thus propose a 3D condi-
tional generative model that can take any existing mesh as
input and produce its plausible variants. Our approach in-
tegrates a target-driven fitting component and a conditional
generative model. At test time, it allows both deforming
the input shape to fit the given target shape and exploring
plausible variants of the input shape without a target.

Our main design goals are two-fold: improving the plau-
sibility of the output shapes and enhancing the interpretabil-
ity of the learned latent spaces. To achieve the goals, the key
is to choose a suitable parameterization of deformations.
One option is to follow the recent target-driven deformation
network [39, 9, 46, 35], which parameterizes the deforma-
tion as new positions of all the mesh vertices. However,
such a large degree of freedom often results in the loss of
fine-grained geometric details and tends to cause undesir-
able distortions. Instead of following the above works, we
leverage a classical idea in computational geometry, named



deformation handles, to parameterize smooth deformations
with a low degree of freedom. Specifically, we propose to
take a small set of control points as deformation handles and
utilize a deformation function defined on the control points
and their biharmonic coordinates [41].

Not all the translations of the control points lead to plau-
sible deformations. Based on the control-point handles, we
aim to learn a low-dimensional deformation subspace for
each shape, and we expect the structure of this subspace
to exhibit interpretability. In contrast to typical genera-
tive models, where shape variations are embedded into a la-
tent space implicitly, our method explicitly factorizes all the
plausible deformations of a shape with a small number of
interpretable deformation functions. Specifically, for each
axis of our input-dependent latent space, we assign a defor-
mation function defined with the given set of control points
and offset vectors on them so that each axis corresponds to
an intuitive deformation direction. Since each axis is ex-
plicitly linked to multiple control-point handles, we thus
call them meta-handles. We enforce the network to learn
disentangled meta-handles, in the sense that a meta-handle
should not only leverage the correlations of the control-
point handles, but also correspond to a group of parts that
tend to deform altogether according to the dataset. We hope
that the disentangled meta-handles allow us to deform each
part group independently in downstream applications.

Beyond choosing the parameterization of deformations,
we have to overcome the challenge of examining the plau-
sibility. In the popular adversarial learning framework, a
straightforward approach would be converting the output
mesh to voxels or point clouds and exploiting voxel or point
cloud based discriminators. The conversions, however, may
discard some important geometric details. In our method,
we instead project the shapes into a 2D space with a differ-
entiable soft rasterizer [25] and employ a 2D discriminator.
We found that this architecture can be trained more robustly,
and it captures local details of plausible shapes.

Our deformation-based conditional generative model,
named DeepMetaHandles, takes random pairs of source
and target shapes as input during training. For the source
shape, the control points are sampled from its mesh ver-
tices by farthest point sampling, and the biharmonic coorid-
nates [4 1] for control-point handles are pre-computed. Our
network consists of two main modules: MetaHandleNet
and DeformNet. The MetaHandleNet first predicts a set of
meta-handles for the source shape, where each meta-handle
is represented as a combination of control-point offsets. A
deformation range is also predicted for each meta-handle,
describing the scope of plausible deformations along that
direction. The learned meta-handles, together with the cor-
responding ranges, define a deformation subspace for the
source shape. Then, DeformNet predicts coefficients multi-
plied to the meta-handles, within the predicted ranges, so

that the source shape deformed with the coefficients can
match the target shape. To ensure the plausibility of varia-
tions within the learned subspace, we then randomly sample
coefficients within the predicted ranges and apply both geo-
metric and adversarial regularizations to the corresponding
deformations.

Fig. 1 shows examples of the learned meta-handles,
which interestingly resemble natural deformations of se-
mantic parts, such as lifting the armrests or bending the
back of a chair. Our experiments also show that the learned
meta-handles are consistent across various shapes and well
disentangle the shape variation space. Finally, we compare
our approach with other target-driven deformation tech-
niques [13, 39, 9, 46] and demonstrate that our method pro-
duces superior fitting results.

Key contributions:

* We propose DeepMetaHandles, a 3D conditional genera-
tive model based on mesh deformation.

* We employ a few control points as deformation handles.
Together with their biharmonic coordinates, we can pro-
duce smooth but flexible enough deformations.

* We propose to factorize the deformation space with
a small number of disentangled meta-handles, each of
which provides an intuitive deformation by leveraging the
correlations between the control points.

* We improve the plausibility of the deformations by ex-
ploiting a differentiable renderer and a 2D discriminator.

2. Related Work

Learning 3D Shape Deformations. 3D shape deforma-
tion is a classic subject in computational geometry that
has been studied extensively for decades. The problem is
typically formulated as an optimization problem minimiz-
ing the fitting error from the source to target shape and
also some regularization errors (e.g., local rigidity). Recent
work, however, has demonstrated how neural networks can
be leveraged in the shape deformation not only for improv-
ing the fitting accuracy but also for multiple other purposes
such as: to fit the source shape to a partial target shape [ 1]
or 2D images [15, 22, 39], to find point-wise correspon-
dences through deformation [8, 9], to predict customized
deformation handles for each input shape [46], to cluster
shapes given a collection [27], to learn semantic deforma-
tions [47], and to transfer deformations [44, 35]. While our
approach can also perform target-driven deformation, our
main goal is different: to learn a deformation-based condi-
tional generative model. We also remark that our method
does not utilize any semantic supervision such as part seg-
mentation, as done by some recent works [35, 45].

3D Shape Generative Models. In light of the success in
the 2D image case, deep generative models have also been
widely investigated for 3D data. Wu ef al. [42] was the
first proposing a 3D GAN with voxel representation, and



Achlioptas et al. [1] and their subsequent work [38, 34]
also proposed point-cloud-based GANs. However, these
approaches are not able to produce fine-grained geometric
details due to the limit of the resolution.While mesh is a
preferable representation, generating meshes is very chal-
lenging in particular when preventing the generation of non-
manifold faces or disconnected components [30]. Hence,
previous work, such as the one of Tan et al. [37, 36], con-
siders generating novel shapes by deforming a given tem-
plate mesh, limiting the scope of the generation to the pos-
sible variations of the template shape. We propose to over-
come this limitation with our conditional generative model,
which takes any 3D mesh as input to deform. Genera-
tive models for 3D shapes have also been investigated to
learn possible variations of compositional structures with
or without semantic annotations [7, 33, 4, 43, 45, 23, 29].
In this work, we focus on learning geometric variations of
the given shape while preserving its topological structure.

3. Method

In this section, we will first briefly review the
control-point-based deformation and the biharmonic coor-
dinates [4 1] technique we use, and introduce how the meta-
handles are defined with the control-point handles (Sec-
tion 3.1). We will then present how we learn the meta-
handles in an unsupervised fashion and our neural network
architectures (Section 3.2). Lastly, we will introduce our
loss functions that guide the emergence of plausible defor-
mations and intuitive factorizations (Section 3.3).

3.1. Biharmonic Coordinates and Meta-Handles

Mesh deformation through directly moving individual
vertex is cumbersome and may easily lead to unwanted dis-
tortions. We thus leverage deformation handles to parame-
terize the deformations with a low degree of freedom. The
key in the handle-based deformation is to define a proper de-
formation function that features several desired properties.
For instance, no change of handles should result in no defor-
mation; each handle should produce local and smooth de-
formation; the deformation function should be expressed in
closed form. Numerous previous work has introduced dif-
ferent handle-based deformation functions. Many of them
are based on solving the biharmonic equation defined over
the mesh with boundary constraints (given from handles).
The resulting deformation functions of these approaches
satisfy many desired properties [16, 19]. Also, closed-form
expressions with respect to the handles can be easily calcu-
lated after a pre-computation. (Please refer to Jacobson et
al. [17] for more details.)

In our method, we employ a subset of mesh vertices
as the deformation handles (control points) and restrict the
transformations of the handles to pure translations. Given
the mesh vertices V. € R™*3 (n vertices) and a set of ¢ con-

trol points C € R®*3, the linear map W € R™*¢ between
them (V = WCQ) is often called ‘generalized barycentric
coordinates’ [28, 21, 20, 26]. Wang et al. [41] proposed
one way to define W based on the biharmonic functions,
which is thus dubbed biharmonic coordinates, and we uti-
lize it as our deformation function. Without requiring that
control points form a cage enclosing the input shape, our
deformation handles are flexible and intuitive.

Specifically, we sample c control points from the mesh
vertices by farthest point sampling (FPS) over the geodesic
distances. The biharmonic coordinates W are also precom-
puted. However, the deformation function f : Rex3
R™*3 defined over the given control points C, f(C) =
WC, has 3c degrees of freedom. It may overparame-
terize the plausible shape variation space, which means
there may be lots of implausible deformations, if we ran-
domly translate the control points (see Fig. 2). Also, there
may exist strong corre- . . .
latic?ns across the defpr— ' T '! ". e '! ' e ’!
mations from  moving il dulndal
individual control points. IR RIA AW
For a specific shape (e.g., . ° ’ o
a chair), all the plausible
variants may reside in a
lower-dimensional sub-
space and can be factorized
into several meaningful deformation directions (e.g.,
scaling all chair legs and bending the chair back).

To this end, we propose to find a smaller number of meta-
handles to factorize the subspace covering all the plausible
deformations. Specifically, each meta-handle M; € R¢*3
is represented as offsets over the ¢ control points:

M; = [, i)' M
where ﬂj € R3 indicates the offset of the j-th control point
for the i-th meta-handle. In contrast to a single control
point that mainly affects a local region of the mesh, each
meta-handle is expected to provide a more intuitive defor-
mation direction, which may even correspond to some se-
mantic meanings (See Figs. 1 and 8).

We now use the linear combination of the meta-handles
to represent a deformation. Specifically, a new deforma-
tion function g : R™ — R™*3 is defined with respect to
the meta-handles {M,; };—1...,,, and their linear combination
coefficients a = [a1, -+ , am]:

9(@{Mi}iz1.m) = W(Co + Y _a:Mi),  (2)
i=1

Figure 2: Two deformations re-
sulted from moving the red con-
trol point along the arrow direc-
tions.

where Cy € R*3 denotes the rest positions of the given
control points. In the context of the conditional generative
model, it can be interpreted as that each shape has a m-
dimensional input-dependent latent space, where each axis
corresponds to a meta-handle describing a specific defor-
mation function in 3D space. A latent code a can thus be
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Figure 4: Overview of our method. We learn the meta-handles in
an unsupervised fashion.

directly decoded to a deformation of the input mesh as a
linear combination of the meta-handles.

Along with the meta-handles, our method also predicts
ranges {[L;, R;]}i=1...m of the coefficients associated with
each meta-handle. The ranges describe the scope of plau-
sible deformations along the direction of each meta-handle.
Any set of coefficients within the ranges {[L;, R;|}i=1...m
is thus expected to produce a plausible deformation.

We utilize a small number of meta-handles to learn a
low-dimensional compact deformation space. The degrees
of freedom of the deformation function g is typically much
smaller than that of the deformation function f, i.e., m <
3c. As a result, the meta-handles are required to not only
leverage the correlations of the control-point handles, but
also discover the underlying properties of the shape struc-
ture (e.g., chair legs are symmetric and should thus be de-
formed together).

3.2. Network Architecture

We propose to learn the meta-handles in an unsupervised
fashion without taking semantic annotations or correspon-
dences across the shapes as input or supervision. As shown
in Fig. 4, our method mainly includes three networks: Meta-
HandleNet, DeformNet, and a discriminator network (dis-
cussed in Section 3.3). Taking a pair of randomly sampled
shapes within the same category as input, the method pre-
dicts a deformation space for the source shape, and finds
a deformation within the space to match the target shape.
Specifically, MetaHandleNet takes a source shape, its con-

trol points, and the precomputed biharmonic coordinates as
input and predicts a set of meta-handles as well as the cor-
responding coefficient ranges. DeformNet then predicts co-
efficients of the meta-handles so that the resulting deforma-
tion of the source shape matches the target shape.

To ease encoding, in MetaHandleNet, we convert the in-
put source mesh to a point cloud (denoted as P € RP*3)
by uniformly sampling p points over the mesh surface. The
precomputed biharmonic coordinates are also interpolated
from the mesh vertices to the point cloud (i.e., W € RP*¢)
according to the barycentric coordinates. Fig. 3 illustrates
the architecture of MetaHandleNet. It first encodes the point
cloud with PointNet [31] and obtains 64-dimensional fea-
tures per point, which is denoted as D € RP*%4, Then, the
point features D, the biharmonic coordinates W, and the
rest positions of the control points Co € R*3 are consol-
idated in a 3D tensor (a purple volume in Fig. 3). Specifi-
cally, the 3D tensor has a size of p X ¢ X 68, and the first
p X ¢ x 64 is packed with the point features D (repeating
for the control points), the next p X ¢ x 1 is filled with the
biharmonic coordinates W, and the last p x ¢ x 3 is filled
with the rest positions of the control points Cq (repeating
for the point cloud). Hence, in this tensor, each pair of a
point in P and a control point has a 68-dimensional feature,
which is processed with an MLP. We then aggregate the fea-
tures across the points through a symmetric function (i.e.,
max-pooling) to produce 64-dimensional features per con-
trol point. The control-point feature is combined again with
the rest position of the control point and is then converted
to a 3m-dimensional vector through another MLP, which
becomes the offsets for the m meta-handles. We then nor-
malize each metal-handle to unit length to facilitate train-
ing. The predicted meta-handles and the 67-dimensional
control-point features are then fed into a range prediction
module, which outputs a coefficient range [L;, R;] for each
meta-handle. Please refer to the supplementary materials
for the details of the module.

As for the DeformNet, it takes the source shape, tar-
get shape, the predicted meta-handles with the coefficient
ranges, and the control-point features (extracted from Meta-
HandleNet) as input, and predicts a coefficient vector a €
R™ within the predicted ranges II[”,[Li, Ri]. The pre-
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dicted coefficient vector and the meta-handles are then fed
into the deformation function g (Equation 2) to decode
the deformation for the source shape, which is expected to
match the target shape. Similar to MetaHandleNet, Deform-
Net also builds a 3D tensor to incorporate all the informa-
tion and utilize shared-weight MLPs and max-pooling to
process and aggregate the features. Please refer to the sup-
plementary materials for the details.

3.3. Loss Functions

We consider three objectives when training our network:
1) the deformed input (source) shape matches the given tar-
get shape; 2) any deformation sampled from the learned
ranges is plausible; 3) the learned meta-handles properly
disentangle the deformation space. We thus train our net-
work with the following joint loss function:

L= Efzt + Egeo + ACa,dv + Edisen- (3)

Among the four terms, the fitting loss L ¢;; corresponds
to the first objective and minimizes the Chamfer distance [5]
between the deformed source point cloud and the target
point cloud.

Lgeo and L4, are geometry loss and adversarial loss,
respectively, added for the second objective. In each iter-
ation, we randomly sample a deformation within the pre-
dicted ranges, and apply these two losses to penalize im-
plausible deformations.

Specifically, L ge, is further decomposed into:

‘Cgeo = Esymm + Enor + ELapa “4)

where Lgymm is symmetry loss minimizing the Chamfer
distance [5] between the deformed point cloud and its re-
flection along the x-axis (also used in previous works [39,

]). Given the mesh connectivity, normal loss £, and
Laplacian loss L, are computed to prevent distortions.
Lo minimizes the angle difference between the face nor-
mals of the source mesh and the deformed mesh. Lr,4, min-
imizes [1-norm of the difference of Cotangent Laplacian.

It is not enough to guarantee plausible deformation with
only geometric regularization. We thus leverage an adver-
sarial loss L4, Which is defined with a soft rasterizer and
a 2D discriminator. (A similar adversarial training idea us-
ing 2D projection is also introduced by Li et al. [24].) As

shown in Fig. 5, we feed both randomly deformed shapes
and shapes without deformation into a soft rasterizer [25].
The renderer captures a soft silhouette image for each shape
from a random view. The images are then fed into a sim-
ple 2D convolution neural network to predict whether they
come from a deformed shape or not. The 2D discriminator
network is jointly trained with MetaHandleNet and Deform-
Net with a classification loss function. The output probabil-
ities for deformed shapes are used to penalize implausible
deformations.

For the third objective, we introduce a disentanglement
loss Lg;sen- Inspired by Aumentado-Armstrong et al. [2],
L gisen 18 defined with four terms:

Ediscn = Esp + Ecov + Em“l,ho + ESVD- @)

Specifically, L, encourages the meta-handles M; and
the coefficient vector a to be sparse by penalizing their [1-
norm. L., penalizes the covariance matrix (calculated for
each batch) of the coefficients a. L+, encourages meta-
handles to cover different parts of the control-point offsets
by penalizing “dot products” between the meta-handles.
Lsyp encourages the control points to translate in a sin-
gle direction within each meta-handle. Please refer to the
supplementary materials for the details of Lg;sen.-

Note that we do not incorporate any explicit loss func-
tion for the coefficient ranges. While L¢;; motivates the
coefficient ranges to expand to cover more plausible defor-
mations, Lge, and L4, prevent the ranges from excessive
expansion by penalizing implausible deformations. The co-
efficient ranges are thus motivated to learn a trade-off.

4. Experiments
4.1. Target-Driven Deformation

We evaluate our methods on the ShapeNet dataset [3].
We choose 15,522 models from the dataset, which cover
three categories: chair, table, and car. Shapes are normal-
ized to fit in a unit sphere. For each shape, we sample
¢ = 50 control-point handles by FPS, in order to generally
cover most of the surface and allow flexible deformations.
We uniformly sample point clouds of the size p = 4096 to
represent the shapes. We set the number of meta-handles
to be m = 15. This should be an upper bound since
the network can use part of them by setting some ranges
to zero. As tetrahedral meshes are required as input to
compute the biharmonic weights [40], all the ShapeNet [3]
triangular meshes are first fed into Huang et al.’s algo-
rithm [14] to become watertight manifolds, and are then
fed into TetWild [12] to produce tetrahedral meshes. We
use libigl’s [ 18] implementation to compute the biharmonic
coordinates, which are then interpolated from the mesh ver-
tices to the sampled point cloud. For the differentiable ren-
derer, we use an implementation from Pytorch3D [32]. We
reserve 10% models for testing and the rest for training. For
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Figure 7: Quantitative comparison of the target-driven deforma-
tion. Each 2D point represents one method. The coordinates cor-
respond to the alignment error and the distortion, with the origin
being ideal. ‘NoDef” indicates undeformed source shapes.

each category, we train a separate model and test it on 3, 000
randomly sampled source-target pairs.

We compare our method to non-rigid ICP (NRICP) [13],
a non-neural registration technique which aligns two point
clouds by minimizing a smooth deformation energy; 3D de-
formation network (3DN) [39] and cycle-consistent defor-
mation (CC) [10], two learning-based methods that directly
infer per-vertex displacements; and Neural Cages [46], a
learnable cage-based deformation method.

Qualitative results are shown in Fig. 6.  Although

NRICP [13], 3DN [39], and CC [10] do align the source
shape to the target shape in most cases, they fail to pre-
serve fine-grained details of the source shape and introduce
lots of distortions. The results of Neural Cages [46] look
more pleasing, but the cage-based deformation is less flex-
ible than our control-point based deformation. Compared
to the Neural Cages [46], our method can achieve more de-
tailed deformation of a local region, such as adjusting the
thickness of chair seats (first and fifth columns) and arm-
rests’ height (third column). Also, most alternative methods
produce unrealistic deformations when the source shape and
the target shape do not share similar structures. For exam-
ple, suppose the source shape has four chair legs, and the
target shape is a swivel chair (second and fourth columns).
In that case, the alternative methods tend to deform the
four chair legs toward the center under the fitting loss’s in-
fluence, resulting in undesirable deformations. Thanks to
the adversarial regularization we employed, our method can
avoid such implausible deformations while still aligning the
output to the target.

Inspired by Neural Cages [460], we also utilize Cham-
fer distance [5] between the deformed shape and the target
shape (computed over 100,000 uniformly sampled points)
to measure the alignment error; and use the difference be-
tween cotangent Laplacians of the source shape and the
deformed shape (/1-norm) to measure the distortion. The
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Figure 8: Learned meta-handles across different shapes. The fig-
ure includes six meta-handles, and each color indicates a distinct
one. For each meta-handle, the figure demonstrates the corre-
sponding deformations on three different shapes, with the red ar-
rows highlighting the deformation direction. The meta-handles are
consistent across various shapes.

quantitative results are shown in Fig. 7. As shown in the fig-
ure, although NRICP [13], 3DN [39], and CC [10] achieve
lower alignment errors, the distortions are much higher.
Compared to Neural Cages [46], our method achieves better
Chamfer distance with a similar cotangent Laplacian.

4.2. Meta-Handle Deformation Space

Another main contribution of our method is that, for each
shape, we learn a set of interpretable meta-handles with
the corresponding coefficient ranges, which factorize all the
plausible deformations for the shape.

Fig. 1 demonstrates some learned meta-handles of a sin-
gle shape. Each column shows the deformations along the
direction of a meta-handle, with the deformation scale uni-
formly sampled within the corresponding coefficient range.
The red arrows highlight the deformation direction of each
meta-handle. As shown in the figure, the learned meta-

Table 1: Coverage (higher is better) and MMD (<100, lower is
better) comparison between different methods.

\ Chair | Car | Table
[COVT [MMD | | COVT [MMD{ | COVT [ MMD |

3DN [39]| 32.0% 4.56 46.6% 291 30.6% 4.26
CC[10] | 51.0% 4.26 50.3% 2.79 50.2% 3.88
NC [46] | 54.4% 4.23 66.6% 2.65 44.7% 3.85

Ours 64.6% 4.28 76.5% 2.97 54.9% 3.70

handles are disentangled and factorize all the plausible de-
formations for the shape. Although we do not take any
semantic annotation or correspondences across different
shapes as input or supervision, our method is able to learn
some intuitive meta-handles. Specifically, the learned meta-
handles are not limited to global scaling. Many of them
align with some local semantic parts, such as adjusting the
thickness of the chair seat (first column), the height of arm-
rests (fourth column), the length of four chair legs (seventh
column), and the height of the chair back (eighth column).
Also, many of them involve non-rigid deformation of some
parts, such as bending the chair back (fifth column) and two
back legs (sixth column), which cannot be achieved through
the rigid bounding-box handles proposed by previous meth-
ods [6, 35]. To construct a low-dimensional compact de-
formation space, the learned meta-handles not only lever-
age correlations between the control-point handles, but also
discover the underlying hard constraints (e.g., symmetry) of
the shape structure. Meanwhile, the coefficient ranges learn
the underlying soft priors (e.g., ratios of part scales) and
provide reasonable deformation scopes for meta-handles.

We assume that, for different shapes, meta-handles with
the same index share similar deformations due to the struc-
ture feature of MetaHandleNet. As shown in Fig. 8, our
learned meta-handles are consistent across different shapes.
Despite geometry details and even global structures be-
ing different, each meta-handle can find corresponding re-
gions across various shapes and predict similar deforma-
tions, which is interesting as we do not provide any seman-
tic annotation or correspondence information.

Inspired by Achlioptas et al. [1], we also employ cov-
erage (COV) and minimum matching distance (MMD) to
evaluate our generative model. For a set of generated shapes
A and a set of ground truth shapes B, coverage measures
the fraction of the shapes in B that can be roughly repre-
sented within A, while MMD measures how well shapes
in B can be represented by shapes in A. For both met-
rics, closeness is computed using Chamfer distance [5]. For
each category, we separate 500 shapes for constructing the
set A, and the remaining shapes are regarded as set B. For
our method, we randomly sample 20 deformations within
the learned deformation space of each shape. For baseline
methods 3DN [39], CC [10], and Neural Cages [46], we
randomly sample 20 target shapes for each shape in A to
generate target-driven deformations. The quantitative re-



Table 2: Chamfer distance (x100) and Cotangent Laplacian
(x10) between different ablated versions (on chair category). For
both metrics, lower is better. DoF indicates degrees of freedom.

Meta-handle /Handle | DoF | Laq | CDJ | CotLapl
Handle 50 x 3 w/o 4.78 5.60
Meta-handle 15 w/o 5.76 8.61
Handle 50 x 3 w/ 7.98 7.69
Meta-handle 15 w/ 6.28 5.75

sults are shown in Table 1. While all the methods have sim-
ilar MMDs, our method achieves higher coverages, which
indicates that our method generates more diverse deforma-
tions, and more ground truth shapes can thus be represented
within our deformation space.

4.3. Ablation Studies

Meta-Handles. Instead of predicting a set of meta-
handles, we can deform a shape by directly predict-
ing the offset of each control-point handle (deforma-
tion function f). We compare our method to this vari-
ant. As shown in Table 2, when there is no adver-
sarial loss (first and second rows), directly using 50
control-point handles can achieve better fitting error and
smaller distortion, since it allows more degrees of free-
dom for the deformation. However, when applied with
the adversarial loss (third and fourth rows), it is harder
for the network to find plausible deformations based on
50 control-point handles, while our learned meta-handles
provide intuitive deformations resulting in better results.
Also, without meta-  Typle 3: Coverage (higher is bet-
handles, we cannot directly ter) and MMD (x 100, lower is
sample plausible variants better) for different ablated ver-
of a input shape. The sions (on Chair category).
target-driven deformation COV1 | MMDJ
is less effective in gener- ‘w/o meta-handle| 484% | 4.69
ating diverse deformations w/0 Lady 56.3% | 4.64
and covering all the plau- _ W0 Ldisen | 64.1% | 4.14

sible variants (see the first Ours 64.6% | 428
row of Table 3).
Adversarial Regular-

ization. We use both
adversarial loss L,4, and
normal loss L, (part of
the geometric loss Lyeo)
to encourage plausible
deformations. Fig. 9
demonstrates a qualitative
comparison between them.
When there is no Lg4v,

the deformation may lose Figure 9: Comparison between
plausibility in order to Loor and Lagy. Both the third
match the target shape. column and the fourth column
Although L, can also have no £qq,, but the fourth col-
alleviate this issue to some umn has higher weight for Lor.

extent, strong L, (fourth column) may be too restrictive
for the deformation, while L£,4, achieves more realistic
results and still allows flexible deformations. When L g, is
applied, the fitting error increases (second and fourth row
of Table 2) in exchange for more plausible deformations.
As shown in Table 3, without £,g4,, both the coverage and
MMD become worse, indicating that L4, is important for
generating diverse and realistic deformations.

Disentanglement Regularization. We use Lg;sen, to en-
courage the intuitive factorization of the deformation space.
As shown in Fig. 10, when there is no Lg;sen, the defor-
mations along each learned meta-handle are still plausible,
since Lgeo and Lyq, are still applied to the random sam-
ples within the space to penalize unrealistic deformations.
However, the learned meta-handles are entangled, each
meta-handle may deform

multiple parts along differ-

ent directions, and there are 4 . .

overlappings between dif-

ferent meta-handles. In ’1’1 Tl ﬂ
o 8 ]

contrast, meta-handles in

Fig. 1 provide more intu-

itive and disentangled de- H,r -
formations. Table 3 quanti- —[_l l l
tatively verifies that £ g;sen

does not affect the diversity Figure 10: Results w/o Laisen,
and plausibility of the de- each row indicates a learned
formation space. meta-handle.

5. Conclusion

We presented DeepMetaHandles, a 3D conditional gen-
erative model based on mesh deformation. Our method
takes automatically-generated control points with bihar-
monic coordinates as deformation handles, and learns a la-
tent space of deformation for each input mesh. Each axis of
the space is explicitly associated with multiple deformation
handles, and it’s thus called a meta-handle. The disentan-
gled meta-handles factorize all the plausible deformations
of the shape, while each of them conforms to an intuitive
deformation. We learn the meta-handles unsupervisely by
incorporating a target-driven deformation module. We also
employ a differentiable render and a 2D discriminator to
enhance the plausibility of the deformation.

In our method, the expressibility of the deformation is
limited by the given control points. Technically, increasing
the number of input control points a lot will result in a mem-
ory issue and making the network training more difficult.
An interesting future direction would be developing another
network that can adaptively sample the control points at ap-
propriate locations and thus enable more fine-grained local
deformations.
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S. Supplementary Material

Please check out our webpage' for the animations of the
learned meta-handles. In this supplementary material, we
first discuss the network architecture details of the range
prediction module, DeformNet, and the discriminator net-
work (Sec. S.2), and also the training details (Sec. S.3). We
then present the details and ablation studies of the disen-
tanglement loss Lg;ser, (Sec. S.4). Moreover, we evaluate
the impact of the numbers of control points and the out-
put meta-handles (Sec. S.5) and also discuss the difference
between our differentiable-renderer-based 2D discrimina-
tor and 3D discriminator (Sec. S.6). We also examine the
effectiveness of our deformation generative model when it
is used for data augmentation (Sec. S.7). Lastly, we pro-
vide more results of the target-driven deformation and show
learned meta-handles for the laptop category (Sec. S.8).

S.1. Animations of the Learned Meta-Handles

We show the animations of the learned meta-handles in
our webpage. Chrome browser is preferred for the best
display. On the webpage, each row shows deformations
of meta-handles with the same index for different shapes.
Note that the learned meta-handles are consistent across the
shapes. The animations demonstrate that our learned meta-
handles properly factorize the plausible deformation space
of the shape while each of them corresponds to an intuitive
deformation direction.

S.2. Network Architecture

In this subsection, we describe the architectures of the
range prediction module, DeformNet, and the discriminator
network, which are introduced in Sec. 3.2.

Range Module. As shown in Fig. S2, after predicting
the meta-handles, the range module predicts a coefficient
range [L;, R;] for each meta-handle. It takes the rest po-
sitions of the control points, 64-dimensional control point
features (predicted by MetaHandleNet), and the predicted
meta-handles as input. The module incorporates the infor-
mation by building a 3D tensor, where each pair of meta-
handle and control point has a 70-dimensional feature. The
module then applies an MLP to the 70-dimensional features,
resulting in a 2-dimensional feature for each pair of meta-
handle and control point. The module then utilizes a max-
pooling to aggregate the information across all the control
points, resulting in a m x 2 matrix. We then reverse the sign
of the first column (due to the max-pooling) to output the
final coefficient ranges.

DeformNet. After MetaHandleNet predicts a set of meta-
handles with the corresponding coefficient ranges for the

Inttp://
handles

cseweb . ucsd . edu/ ~mil070 / deep_meta _
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source shape, DeformNet finds a coefficient vector within
the deformation space so that the deformed source shape
matches the target shape. Fig. S1 shows the architecture of
DeformNet. It first utilizes PointNet [31] to process both
the source and target point clouds to obtain the global fea-
tures for the source and target shapes. The global features
are repeated for the control points and are then combined
with the 64-dimensional control point features (predicted by
MetaHandleNet) and the rest positions of the control points,
resulting in a 2,115-dimensional feature for each control
point. The features are fed into an MLP to output a 128-
dimensional feature for each control point. We then create
a 3D tensor to incorporate the control point features, pre-
dicted meta-handles, and the rest positions of the control
points. In this 3D tensor, each pair of meta-handle and con-
trol point has a 134-dimensional feature. We then apply an
MLP to the features to output a 128-dimensional feature for
each pair of meta-handle and control point. A max-pooling
is then applied to aggregate the features across all the con-
trol points, resulting in a 128-dimensional feature for each
meta-handle. The features are then combined with the pre-
dicted coefficient ranges and are fed into another MLP (with
Sigmoid as the final activation function) to output a ratio
within [0, 1] for each meta-handle. With both the ratios and
the coefficient ranges, we output a coefficient vector within
the ranges to represent the deformation.

Discriminator. We utilize a relatively simple 2D network
as the discriminator network to match the capability of the
deformation generation part. Specifically, the discriminator
network takes a 128 x 128 image as input and uses three
convolutional layers to process. Each convolutional layer is
followed by batch normalization and LeakyReLU. A fully
connected layer, along with the sigmoid function, is then
utilized to output the final probability.

S.3. Training Details

As described in Sec. 4.1, we use public code to convert
the mesh to tetrahedral mesh and then calculate the bihar-
monic coordinates. We found that the mesh conversion and
the coordinate computation are robust even to the shapes
with thin parts and complicated topology. Note that we
have an example with a complex wire structure in the 9th
column of Fig. 6. In the network training, however, we also
find that pruning some shapes that have large biharmonic
coordinates is helpful for faster convergence. We removed
10% of such shapes in the ShapeNet dataset.

We trained our models on 3 Nvidia RTX 2080 Ti GPUs
for 2.8 x 10* iterations (i.e., 1.1 x 10 pairs) with a batch
size of 39. Adam is used as the optimizer with a learning
rate of le-4. All loss terms have an individual weight, and
we empirically select the weights. For chair category, the
weights are setto 1, 1, 0.1, 3, 6e-3, le-3, le-3, le-3, and 0.3
for ﬁfit’ Esymms ‘Cnors ELap’ ‘Cad'us Esp’ £covy Eo’rtho» and
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Lsv p respectively.
S.4. Details of the Disentanglement Loss L ;.

Here, we introduce the four terms of the disentanglement
loss Lgisen (EQ. 5).

Ly, is a sparsity loss that encourages the meta-handles
M, and the coefficient vector a to be sparse by penalizing
their /1-norm:

1 m
Lop=— > IMilli + Jall. (6)
i=1
where m is the number of the meta-handles.

Leoy 1s a covariance penalty loss introduced by
Aumentado-Armstrong et al. [2] that encourages meta-
handles to be independent with each other. This loss cal-
culates the covariance matrix of the coefficients a for each
batch and penalizes the [1-norm of the matrix:

Leow = || cov(a,a)l|:.

(7

Lortho 18 an orthogonality loss that encourages the meta-
handles to cover different coordinates of control point off-
sets. It is calculated as:

Lortho = Z HM1 o Mj”%,l?
i#£]

®)

where ‘o’ denotes element-wise multiplication. Intuitively,
if two meta-handles have no overlap over the offset coor-
dinates, we regard them to be “orthogonal” and they have
zero contribution to Ly, ¢h0-
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Lastly, Lsy p is an SVD loss that encourages the control
points to translate along with similar directions within each
meta-handle. Specifically, for each meta-handle M;, we
regard the control-point offsets of M; as ¢ points in the 3D
space. Given the points, we find the best-fit plane and then
calculate the sum of the distances from the points to the
plane, which is equal to 03(MZ M) and o3 indicates the
smallest singular value of the matrix. Lgy p is defined as
minimizing the distances:

m

1
Lsvp=— os(M]M;). ©)
=1

Table S1 shows the quantitative comparison for the dis-
entanglement loss Lg;sen. We find that after removing
Lgisen, all the four terms increase a lot, which indicates
that Lg;sen is essential for the proper factorization of the
deformation space.

Fig. S3 further illustrates the impact of Lg;se, On the
sparsity of meta-handles. For the per-coordinate case, we
show the distribution of offsets of 50 x 3 coordinates. For
the per-control-point case, we first calculate the [2-norm of
the offsets for each control point and then show the distri-
bution of the [2-norms. For both cases, the values are nor-
malized within each meta-handle and averaged across all
the meta-handles and shapes. As shown in the figure, when
Laisen 18 applied, each meta-handle tends to be sparse, and
only a small part of coordinates (control points) are im-
pacted. When Lg;sc, is not applied, however, the meta-
handles are no longer sparse and tend to deform most of the
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Figure S3: The impact of Lgisen on the sparsity of meta-handles.
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Figure S4: Results without Lgisen: the figure shows six meta-
handles of two shapes, with arrows highlight the deformations.
Each meta-handle corresponds to multiple deformations, and there
are overlapping between the meta-handles.

control points.

Fig. S4 shows more results when L g;s,, is ablated. The
results demonstrate the importance of L g; ¢, for the proper
factorization of the deformation space.

S.5. Impact of the Numbers of Control Points and
Meta-Handles

We evaluate the impact of the number of control points
and meta-handles on the deformation. Please note that here
the number of meta-handles indicates the upper bound of
the size since the network can use part of them by setting
the ranges to zero. Table S2 shows the quantitative results
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Figure S5: In each pair, the left one shows the deformation with a
3D point cloud discriminator, while the right one shows the defor-
mation with our 2D discriminator.

of the chair category. As shown in the table, when we de-
crease the number of control-point handles from 50 to 25,
both the Chamfer distance and cotangent Laplacian increase
a little bit, since the degree of freedom of the deformation
drops. However, when we increase the number of control-
point handles from 50 to 100 and 200, both the Chamfer
distance and cotangent Laplacian increase a lot. There are
two possible reasons: (a) it is more difficult for the net-
work to deform shapes with such a large number of control
points; (b) due to the GPU memory bottleneck, we have to
reduce the batch size during training when there is a large
number of control points (we reduced the batch size from
39 to 12 when increasing the number of control points from
50 to 200). As for the meta-handles, when we double the
number of meta-handles, the Chamfer distance is similar,
which indicates that 15 meta-handles are already enough to
produce flexible deformations for the chair category. How-
ever, the cotangent Laplacian becomes worse, which sug-
gests that it is more difficult for the network to handle lots
of meta-handles, and they may introduce some unnecessary
distortions.

Table S2: Impact of the numbers of control points and meta-
handles. The last row is the model used in the rest of the exper-
iments. ‘CD’ indicates Chamfer distance, and ‘CotLap’ indicates
cotangent Laplacian.

# Control Points | # Meta-Handles ‘ CDhJ| ‘ CotLap |
25 15 0.0644 0.5955
100 15 0.0715 0.9101
200 15 0.0758 0.8777
50 30 0.0621 0.8948
50 15 0.0628 0.5751

S.6. Comparison with PointNet-based 3D Discrim-
inator

While we leverage a differentiable renderer and a 2D net-
work for the discriminator, one can consider directly feed-
ing the 3D deformed shape to a 3D processing network. To
compare our discriminator with the case of directly process-
ing 3D, we implemented another discriminator using Point-
Net [31] and fed the points sampled over the deformed 3D
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Figure S6: Qualitative comparison of our method with other deformation methods [13, 39, 10, 46]. (More examples of Figure 6.)

mesh as input. Figure S5 shows some comparisons. Al-
though the PointNet-based 3D discriminator can also pre-
vent large distortions, we found that our 2D discriminator
produces more visually pleasing deformations in practice.
This might happen since the 2D discriminator can capture
more subtle visual differences in the 2D space comparing
with taking only account with the 3D geometry.

S.7. Application: Data Augmentation

Table S3: Data augmentation for subcategory classification.

Test Accuracy

No Augmenation 88.3%
w/o Ladv 89.8%
Target-Driven 90.4%
Ours 91.6%

Our method learns a plausible deformation space for the
input shape and can thus be used for data augmentation. We
evaluate our approach as a tool of data augmentation with

a multi-label shape classification task. Specifically, we use
ten subcategories of ShapeNet [3] chair models, and each
model can belong to multiple subcategories (e.g., armchairs
and swivel chairs). We sample 50 ShapeNet chair models
as training data and 500 chair models as test data. To bal-
ance the data, while sampling, we ensure that each subcat-
egory appears at least five times in the training data and at
least 50 times in the test data. We employ PointNet [31]
as the classification network and train it with binary cross-
entropy loss for each subcategory. We test four different set-
tings: a) training on 50 shapes without data augmentation;
b) training on 50 x 20 augmented shapes, where we utilize
our method to randomly generate 20 variants within the de-
formation space of each shape; c¢) same with b) but without
the adversarial loss £,4,, when training our network; and d)
training on 50 x 20 augmented shapes, where we randomly
sample 20 targets for each shape and use our target-driven
deformation to generate the variants. For all the generated
deformations, we keep their original subcategory labels for
training. The results are shown in Table S3. The results ver-
ify that our method can improve the classification accuracy
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Figure S7: The learned meta-handles for the laptop category. Each
column shows the deformations along the direction of a meta-
handle.

and also that the adversarial loss L4, is essential to gener-
ate plausible deformations. The target-driven deformation
is less effective in sampling all the plausible variants.

S.8. More Results of Target-Driven Deformation
and Learned Meta-Handles on Laptops

Figure S6 shows more results of the target-driven defor-
mation, as also shown in Figure 6. Figure S7 also shows
the learned meta-handles on the laptop category. The re-
sults show that our method can learn the articulated motion
of the two parts.
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