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Fig. 1. We present a hierarchical neural path guiding framework which uses both path and photon samples to reconstruct high-quality sampling distributions.
This RACING CAR scene includes both complex direct and indirect illumination that are difficult for traditional path tracing to render. Traditional guiding
methods [Milller et al. 2017; Miiller 2019; Rath et al. 2020] can reconstruct hierarchical sampling distributions (quadtrees) via online learning for multi-bounce
path guiding. However, the online learning process is relatively slow, which results in noisy sampling maps for a long time, restricting the guiding efficiency.
Bako et al. [2019] leverages offline deep learning, but it can only guide the first bounce, which naturally cannot outperform traditional online methods for
such a scene with strong global illumination. Ruppert et al. [2020] introduces parallax compensation and uses mixture models (VMMs) to represent sampling
distributions. However, the use of analytical mixtures limits the capability to represent complex radiance field from sparse path samples, which requires
careful strategies for merging and splitting of mixture components. The recent photon-driven work [Zhu et al. 2020b] can support multiple bounces using an
offline-trained network, producing better renderings than many previous methods. However, this method uses standard regular 2D images (unlike quadtrees)
for representing lighting distributions, requiring the largest memory consumption, which limits its scalability to large-scale scenes. Our approach enables
neural reconstruction of the traditional hierarchical representation via an offline-trained novel network; we can effectively reconstruct accurate quadtree-based
sampling distributions, consuming less system memory than [Zhu et al. 2020b]. Our approach also combines both path and photon samples, which is more
robust against different light-transport scenarios. As a result, we can achieve better quantitative (reflected by lower rMSE- relative Mean Squared Error) and
qualitative results, with moderate memory cost comparable to traditional online methods that do not use deep neural networks.
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sampling distributions given a large amount of time and samples, the speed of
learning becomes a major bottleneck. In this paper, we accelerate the learning

Path guiding is a promising technique to reduce the variance of path tracing.
Although existing online path guiding algorithms can eventually learn good

of sampling distributions by training a light-weight neural network offline to
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reconstruct from sparse samples. Uniquely, we design our neural network to
directly operate convolutions on a sparse quadtree, which regresses a high-
quality hierarchical sampling distribution. Our approach can reconstruct
reasonably accurate sampling distributions faster, allowing for efficient path
guiding and rendering. In contrast to the recent offline neural path guiding
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techniques that reconstruct low-resolution 2D images for sampling, our novel
hierarchical framework enables more fine-grained directional sampling with
less memory usage, effectively advancing the practicality and efficiency of
neural path guiding. In addition, we take advantage of hybrid bidirectional
samples including both path samples and photons, as we have found this
more robust to different light transport scenarios compared to using only
one type of sample as in previous work. Experiments on diverse testing
scenes demonstrate that our approach often improves rendering results with
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better visual quality and lower errors. Our framework can also provide the
proper balance of speed, memory cost, and robustness.

CCS Concepts: » Computing methodologies — Ray tracing,.

Additional Key Words and Phrases: Global Illumination, Path Guiding, Ray
Tracing, Sampling and Reconstruction, Neural Rendering

ACM Reference Format:

Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer,
Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2021. Hierarchical
Neural Reconstruction for Path Guiding Using Hybrid Path and Photon
Samples. ACM Trans. Graph. 40, 4, Article 35 (August 2021), 16 pages. https:
//doi.org/10.1145/3450626.3459810

1 INTRODUCTION

The simple and flexible Monte-Carlo path tracing algorithm has
become the gold standard for physically-based rendering. However,
a major drawback is the slow convergence problem, leading to
unpleasant Monte Carlo noise in the rendered image. In recent years,
researchers have successfully tried many denoising and filtering
techniques to reduce the noise level [Chaitanya et al. 2017; Bako et al.
2017; Vogels et al. 2018]. However, the denoised image is no longer
unbiased, and sometimes has remaining low-frequency artifacts.

Path guiding is a promising direction to reduce path tracing vari-
ance while remaining unbiased. The key idea is to learn a better
sampling distribution (approximating the incident light field or some
variant of it) at arbitrary scene locations and guide camera rays to-
wards the light source. Previous methods [Miiller et al. 2017; Rath
et al. 2020; Ruppert et al. 2020] often require a slow online learning
process to obtain accurate sampling distributions for path guiding.
While some recent works [Bako et al. 2019; Zhu et al. 2020b] use
offline-trained neural networks, their methods require large system
memory and can only reconstruct sampling distributions at a low
resolution, restricting the accuracy and efficiency of path guiding.

In this work, we present a novel neural path guiding approach
that can effectively reconstruct accurate hierarchical high-resolution
sampling distributions, leading to efficient path guiding and ren-
dering. Our approach uses an offline-trained neural network to
accelerate the online learning in traditional path guiding. Unlike
previous offline neural methods that represent a distribution using
a uniform grid (as a 2D image), we consider the classical quad-tree
based representation, allowing for efficient high-resolution distri-
bution modeling. As shown in Fig. 1, our approach successfully
advances the efficiency of neural path guiding, leading to better
rendering quality with moderate memory costs.

We present a novel deep neural network for efficient hierarchical
distribution reconstruction. Our technique is inspired by the octree
networks [Wang et al. 2017] in 3D geometry processing. We pro-
pose to operate deep 2D convolutions directly on a sparse quadtree
that represents a 2D angular sampling distribution, enabling an
efficient hierarchical reconstruction. Our network can adaptively
adjust the tree structure in reconstruction, which learns the proper
angular resolution for each sampling solid angle bin. This results
in high-quality distributions that accurately express the incident
light fields. In contrast to the standard convolutional neural net-
works (CNNs) that can only regress low-resolution sampling maps
[Zhu et al. 2020b], our network hierarchically regresses a compact
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Table 1. Comparison of different path guiding algorithms. Our proposed
framework can achieve both fast and robust rendering by leveraging neural
networks and hybrid samples with a small memory consumption thanks to
the hierarchical representation of sampling distributions.

Hybrid Hierarchical Neural

[Vorba et al. 2014] | X(Photon) X(GMM) X

[Miller et al. 2017] | X(Path) (Quadtree) X

[Miiller 2019] X(Path) (Quadtree) X
[Bako et al. 2019] | X(Path, 15! bounce) ~X(Image)

[Rath et al. 2020] | X(Path) (Quadtree) X
[Zhu et al. 2020b] | X(Photon) X(Image)

Ours (Path + Photon) (Quadtree)

quadtree that represents the same distribution at a much higher res-
olution using less memory. The adaptivity and compactness of our
hierarchical reconstruction improves the scalability to large-scale
complex scenes where a large number of sampling distributions
need to be stored on numerous mesh surfaces.

Previous path guiding work uses either path samples [Miiller et al.
2017; Miiller 2019; Rath et al. 2020; Ruppert et al. 2020] or photons
[Jensen 1995; Vorba et al. 2014, 2019] to reconstruct an incident
radiance field which is then converted to a sampling distribution
at any scene location. Our hierarchical neural reconstruction can
potentially support either input samples independently. However,
path samples and photons can perform differently depending on
the actual light transport cases (see extreme examples in Fig. 3).
When the scene contains caustics produced by transparent objects
or tiny light sources, photons are more efficient since it is difficult
for path samples to quickly find a valid direction towards the light.
On the other hand, path samples are a better choice when some
light sources do not illuminate the visible regions of the scene,
since many photons can be invisible and useless in this case. In this
work, we use both of them and let the neural network figure out
how to effectively combine the hybrid samples into a single output
sampling distribution. Therefore, our approach is more robust to
general scenes with unknown light transport scenarios.

In summary, our main contributions are:

o We propose a novel learning-based framework that can re-
construct a hierarchical sampling distribution from sparse
samples with a moderate memory cost;

o We consider hybrid input samples including both path sam-
ples and photons for path guiding, leading to higher robust-
ness and generality on diverse light transport cases.

2 RELATED WORK

Path Guiding. Monte-Carlo path tracing [Kajiya 1986] has been
the fundamental solution for solving the light transport in a complex
scene. However, during path tracing, the incident light distribution
is unknown at each 3D point. Thus, most of the path tracing variants
sample the space only based on the geometry and reflectance prop-
erties. Instead, path guiding algorithms [Vorba et al. 2019] estimate
sampling distributions based on the local incoming light field during
path tracing, so that they can use the information to perform better
importance sampling and accelerate the rendering process.
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Several path guiding algorithms (Table 1) have been proposed
to efficiently estimate the local light field information in order to
better sample the space. Vorba et al. [2014] fitted a Gaussian-Mixture
model (GMM) to represent the incoming radiance at each spatial
cache point during ray tracing. With very few parameters, a GMM
can efficiently model the light distribution, and is then applied to
other rendering algorithms [Herholz et al. 2016; Ruppert et al. 2020].
However, GMMs fail to accurately represent high-frequency light
distributions, which are common in scenes with complex lighting.
Miiller et al. [2017, 2019] proposed to use hierarchical quadtree struc-
tures to record the incoming light field in the space, which is more
efficient and practical than a GMM [Vorba et al. 2014] or simple
regular grid [Jensen 1995]. This hierarchical representation was also
extended to primary space [Guo et al. 2018], product sampling [Di-
olatzis et al. 2020], and variance-aware importance sampling [Rath
et al. 2020]. However, until now, such a hierarchical representation
can only be reconstructed via traditional online learning without
any neural network components, and requires relatively large num-
ber of samples. Our neural approach can directly reconstruct an
accurate hierarchical quadtree representation from sparse input
samples, using an offline-trained novel deep neural network.

Recently, deep learning techniques have been used to facilitate
the learning of local light distributions and importance sampling of
light paths (e.g., in primary sample space [Zheng and Zwicker 2019]).
Miller et al. [2019] used an online-learnt neural network to perform
the importance sampling. The network can estimate the distribution
accurately, but can be potentially expensive in practice due to the re-
peated network inference and online optimization. Bako et al. [2019]
trained an offline-learnt network to guide the first bounce, where
regular images are used to represent the incoming light distribution.
While images are convenient for neural networks, they consume
more memory when detailed light distributions are needed. Huo
et al. [2020] used a reinforcement learning technique to guide the
samples, but their method is also limited to the first bounce. Zhu
et al. [2020b] used photons as the primary source to estimate the
local light distributions, and use them to guide all bounces. Again,
standard images are used to represent the distributions, which is
less memory efficient and limited to low resolutions compared to
the quadtree. In this paper, we learn the light distribution on hierar-
chical structures, which are both detailed and memory-efficient. Our
approach takes advantage of using both path and photon samples,
leading to better generality on different scenes. We believe these
are important steps to make neural path guiding practical.

Hierarchical Learning. Hierarchical structures can represent sparse
data in an efficient way [Miiller et al. 2017; Miiller 2019]. However,
learning on the hierarchical structures has been a particular chal-
lenge. Recently, there have emerged plenty of studies that focus
on the learning and understanding on hierarchical structures, es-
pecially in the 3D geometry processing community. Wang et al.
[2017, 2018] proposed O-CNN to analyze 3D shapes represented
by octrees; Graham [2015] developed sparse convolution for 3D
understanding, which is similar to sparse matrix representation.
On the other hand, there are also works on generating hierarchi-
cal structures [Tatarchenko et al. 2017; Chitta et al. 2020; Riegler
et al. 2017]. These algorithms were then extended to perform 3D

shape completion [Wang et al. 2020], 3D segmentation [Graham
and van der Maaten 2017; Graham et al. 2018], and sketch under-
standing [Kumar Jayaraman et al. 2018]. Besides convolutional op-
erators, multi-layer perceptrons [Li et al. 2017, 2019] and graph
networks [Mo et al. 2019] are also used for hierarchical learning. In
this work, we extend these hierarchical 3D learning techniques to
the problem of 2D sampling distribution reconstruction. We intro-
duce a novel light-weight network that can effectively regress an
accurate quadtree distribution for high-quality path-guiding.

Hybrid samples. Both paths and photons are efficient tools to
explore the scene and compute the radiance in the 3D space. While
path tracing [Kajiya 1986] algorithms are particularly good at explor-
ing complex geometry setups, photon mapping algorithms [Shirley
et al. 1995; Jensen 1996; Hachisuka et al. 2008; Knaus and Zwicker
2011; Zhu et al. 2020a] can be very effective when indirect light-
ing dominates the scene. Aiming at a rendering algorithm that can
work on both cases, researchers proposed bidirectional approaches
[Lafortune and Willems 1993; Veach and Guibas 1995a; Georgiev
et al. 2012; Kfivanek et al. 2014], which combine the benefits of both
path tracing and photon mapping. Similarly, in our paper we use
both path samples and photons as the sources to learn the local light
distributions in the scene. Compared to the previous path guiding
works that use only path samples [Milller et al. 2017; Bako et al. 2019;
Rath et al. 2020] or photons [Vorba et al. 2014; Zhu et al. 2020b], our
algorithm can render more efficiently and is more robust across a
wide range of difficult scenes with complex light transports. In fact,
Vorba et al. [2014] also use both path and photon samples. However,
they train with two separate cache records, where path tracing is
guided by local photons and path samples do not directly affect
camera path guiding. Our neural system instead takes the hybrid
of two types of samples as direct inputs; they directly contribute to
the same forward sampling distribution.

As shown in Table 1, our path guiding algorithm uniquely utilizes
the hybrid samples. Additionally, previous works either perform
learning on image-based sampling distributions, or use hierarchical
structures to represent the distributions (because of the difficulty of
applying neural networks to irregular quad-tree structures), but not
both. In contrast, our path guiding algorithm successfully applies
an offline-learnt neural network on hierarchical structures.

3 BACKGROUND

Rendering equation. To render a scene using light transport simula-
tion, our goal is to solve the rendering equation [Kajiya 1986]:

L(x, wo) = Le(x, o) +‘/£;L,~(x,coi)fr(x, wj, W) cos Bidw;, (1)

where the outgoing radiance L(x, w,) in direction w, at each surface
point x equals the sum of the surface emission L. (x, w,) and the
reflection from the incoming radiance L; (x, ;) of every direction w;
that has angle 6; to the surface normal over the hemisphere Q. The
Bidirectional Scattering Distribution Function (BSDF) f; (x, wj, wo)
describes how much radiance can be scattered to w, from w;.

The integration L, (x, wo) = fQ Li(x, w;) fr (%, wj, 0o) cos Oidw;
in Eqn. 1 is computed by Monte Carlo (MC) estimation [Veach 1997]
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in the path tracing algorithm:

1 N Li(x, w;) fr(x, wi, 0o) cos 0;
Lr(x,00) = - Z; o (2)

where N is number of samples and p(w;) is the probability density
function (PDF) of sampling direction w; (i.e., importance sampling).
When N is sufficiently large, the variance of L, (x, w,) reduces, and
path tracing gradually converges to the noise-free result.

In many challenging light transport scenarios, the convergence
is very slow, which is the major drawback of Monte Carlo path
tracing. Fortunately, we can greatly speed up the variance reduction
by sampling from a better PDF p(w;) that resembles the integrand
Li(x, wj) fr (%, wj, wo) cos B;. However, the incident radiance field
L;(x, w;) is unknown in the beginning, so standard path tracing
only leverages the BSDF for importance sampling:

pBsDE(@i) o fr(x, i, o) ®)

Guiding using path samples. In contrast, path guiding is a method

to evaluate the incident light L; (x, w;) and set the PDF to be propor-

tional to some terms related to it. Many previous papers [Miiller et al.

2017; Miiller 2019] use early (or extra) Monte Carlo path samples to
compute a sampling distribution as:

Pguide (@) o Li(x, w;) cos 6;, 4)
which expresses the incident light field (the cosine term is sometimes
associated to the BSDF sampling in Eqn. 3). In practice, this guided

sampling is often combined with BSDF sampling, using one-sample
Multiple Importance Sampling (MIS) [Veach and Guibas 1995b]:

p(@i) = appspr(@i) + (1 = @) pguide (@i) (5)
where the coefficient a determines the chance of selecting BSDF
over guiding for importance sampling.

However, since L;(x, w;) is also from the noisy Monte Carlo sam-
ples [Miiller et al. 2017], the estimates are also noisy and can have
high variance, making the sampling inefficient. Recently, Rath et
al.[2020] introduce a variance-aware guiding technique, leveraging
a new target sampling function that considers the variance:

Peuide-var (1) o \JELL (x, 01)] cos? 6; ©)

where E[-] represents the expectation. Additionally, they also take
the surface material into account, resulting in the BSDF marginalized
product sampling [Rath et al. 2020] used for path guiding:

pguide—var—prod(wi) & \/Ew(, [f;*z (x, wi, wo)E[LiZ (%, ;)] cos? 0;]
™
Our framework generally supports various sampling functions. We
take advantage of the advanced variance-aware technique (Eqn. 7)
to generate our results by default, leading to better quality than our
results with the traditional distribution (Eqn. 4).

Guiding using photons. In some special light transport cases such
as caustics from transparent objects or tiny light sources that are
hard to find through Monte Carlo sampling, most path samples
are terminated before reaching any light, leading to more noisy
L;(x, w;) estimation. Compared to path samples, photons are often
a better choice in these scenarios, which have been used for path
guiding by previous work [Jensen 1995; Vorba et al. 2014; Zhu et al.
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2020b]. Each photon p carries a small portion of the emitter power
(radiant flux) A®;, and its direction w, indicates where the light
comes from. The power ®(x, AQ) that flows through a solid angle
footprint AQ in local surface area A is computed via integrating the
incident radiance L;(x, w;) where w; € AQ:

D(x,AQ) = / / Li(x, w;) cos O;dw;dx. (8)
A JAQ
The target distribution can be expressed as [Zhu et al. 2020b]:
Pguide-photon (©1) & (X, AQ)/AQ = )" A®/AQ  (9)
wp€EAQ,XEA

This sampling distribution similarly approximates Eqn 4, but it
is evaluated by the summation of the surrounding photon power,
instead of the Monte Carlo estimation of path samples.

In practice, it is hard to know whether a path sample or photon
is better for an unknown scene; two extreme examples are shown
in Fig. 3. Therefore, in this paper, we choose to use both of them
(i.e., hybrid samples), although our framework also directly applies
to a single type of sample. Combining path samples and photons
is challenging since they distribute very differently and there is
no obvious and cheap way to combine them through re-weighting
(VCM [Georgiev et al. 2012] and its concurrent work [Hachisuka
et al. 2012] design specific techniques to address a similar issue in
radiance estimation, which however cannot be easily extended to
distribution estimation). Therefore, we use a neural network that
learns to combine their values and reconstructs a single sampling
distribution (Sec. 6) that is then used for path guiding.

4 OVERVIEW

The entire framework is illustrated in Fig. 2. We trace both photon
and path samples (i.e., hybrid samples), and deposit them into a
local quadtree representation of the sampling distribution stored in
a local spatial caching node as shown in Fig. 2(a) and (b). This step
is similar to the online quadtree construction in [Miiller et al. 2017];
it leads to noisy distributions unless a large number of samples
are deposited. We instead propose to use a deep neural network
(pre-trained) to hierarchically reconstruct accurate quadtree distri-
butions from the noisy ones in Fig. 2(c). In the following sections,
we first describe the steps of building an initial quadtree at arbitrary
scene locations and depositing hybrid samples into it (Sec. 5). Next,
Sec. 6 presents the key component of our framework: a novel neural
network to reconstruct high-quality hierarchical sampling distri-
butions using both the initial noisy path and photon distributions
as input. Finally, we discuss the details of adaptively caching the
reconstructed distributions at different locations in the scene and
rendering of the final image (Sec. 7). Thereafter, Sec. 8 provides
the implementation details of neural training, sample tracing, and
rendering. Experiments on diverse testing scenes in Sec. 9 justify
the effectiveness of our proposed framework.

5 HIERARCHICAL STRUCTURE FOR HYBRID SAMPLES

As we discussed in Sec. 3, we need to collect path samples and/or
photons to learn a directional sampling distribution that resembles
the incident radiance field at arbitrary scene locations. Compared to
the previous neural path guiding work [Bako et al. 2019; Zhu et al.
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Fig. 2. High-level illustration of the proposed neural path guiding framework. The scene is partitioned into many spatial caching nodes (voxels). Each voxel
collects all the samples that arrive at it (a) and uses the sample information to adatpively construct a quadtree Qy, (b), parameterized in the cylindrical

coordinates w; to (z,¢). Each sample contains its value along with some auxiliary features including the relative position p, direction w;, distance d, normal

n, and sample count ¢ = 1, which leads to a feature vectorfthat will be accumulated into a leaf I of the quadtree Qy, (Sec. 6.2). The accumulation is applied
separately to path samples and photons, resulting in two independent feature vectors ]T‘"*path and ]?phomn (Egn. 11). We propose a novel neural network that can
directly operate convolutions on quadtree distributions (Sec. 6.3), which has an architecture with hierarchical encoder and decoder (Sec. 6.4). We train our
network offline that learns to hierarchically regress accurate sampling distributions from noisy inputs. The pre-trained network can reconstruct a high-quality
quadtree Q, (c) from the input Qp; the reconstructed Q, is stored in the spatial voxel and later used for path guiding (Sec. 7).

2020b], we hierarchically build a quadtree instead of a uniform 2D
grid (image) to represent the distribution. Hybrid samples are traced
and stored in the tree, which are later provided to our hierarchical
neural network for sampling distribution reconstruction (Sec. 6).

Our quadtree-based distributions are stored in small spatial caching
nodes distributed within the scene, as shown in Fig. 2(a). Later in
Sec. 7, we discuss the details of adaptively partitioning the scene
space into local regions of different sizes for efficient spatial caching.
We keep two quadtrees in each spatial node: one records the online
traced hybrid samples, representing a noisy distribution and used as
network input; the other is the output of the network, representing
an accurate sampling distribution for path guiding. The initial noisy
quadtree collects local samples that arrive at the node, containing
rich information of the local incident radiance field.

Quadtree representation. We use the 2D cylindrical coordinates to
parameterize the angular space; each unit vector (x, y, z) is mapped
to (z, ¢), where ¢ = arctan(y/x). A quadtree Qp, is built to hier-
archically cover the space of (z € Z,¢ € ®) at each spatial node,
recording the hybrid samples traced at rendering time (Fig. 2(b)).

Accumulating hybrid samples. Once a sample S (either path or
photon), carrying a sample quantity Vs, arrives at a particular spatial
node, we convert its incident direction w; = (x,y, z) to the cylindri-
cal space mentioned above, and deposit it to a corresponding leaf
node [ of the quadtree Qp,. In particular, we leverage a stochastic
box filter [Miller 2019], which deposits the sample value Vg into a
single neighboring tree leaf | around its original direction w;; this is
equivalent to splatting the sample with a box filter into the quadtree.

Since path samples and photons have different radiometric units
(Sec. 3), we keep two separate accumulators Allj atp @nd Al

photon:
1 _ 1
A\path - Z Vgpalh

1 _ i
AphOLon - Z Vsphoton

are splatted sample quantities in leaf [.

oton

(10)

where V! and V!
Spath Sph

Quadstree subdivision. Initially, the tree Qp, has a single node. To
effectively construct Qy, as a hierarchical structure, we iteratively

trace samples (Sec. 7) and subdivide the tree accordingly. Specifically,
Qy, is adaptively refined after the samples in the current iteration
are deposited based on a criterion [Miller et al. 2017]: if a node

value Allo ath OF Al is greater than k% (we empirically find that

photon
0.5% ~ 1% is a reasonable threshold) of its total value (3; [-\\llD ath ©F

W] Aé hoton) 1 Qp, the node is split into four equal-sized child nodes
where each of them is assigned 1/4 of the parent value, otherwise it
remains as a leaf node. This criterion is applied recursively to each
node in the tree. After Qp is updated, it is used to collect future
samples in the next iteration, so that Q can be repeatedly refined to
better versions. This strategy allows Qy, to have higher directional
resolution when the radiance of an incident direction is large. Note
that if only path samples are considered (as in previous work [Miller
et al. 2017]), then only Af) i, 15 used to build and refine Q.

This iteratively-refined quadtree Qj, can in fact model an accurate
sampling distribution when the number of accumulated samples is
large enough. However, this requires a large number of iterations
and a long time for accumulation, which cannot promptly provide
reliable sampling distributions. Especially at the beginning of ren-
dering, the accumulated sampling quadtrees are highly noisy and
inadequate for path guiding. In Sec. 6, we design a novel neural
network to handle the hybrid input samples stored in each leaf I.

6 NEURAL RECONSTRUCTION OF SAMPLING
DISTRIBUTIONS

In this section, we introduce our novel hierarchical neural network
that can effectively convert the deposited hybrid samples (Sec. 5)
to a high-quality sampling distribution for path guiding. We first
discuss the motivation of applying neural networks in the context
of sampling distributions (Sec. 6.1). Next, we present our network
input (Sec. 6.2), the convolutional module applied on a quadtree
(Sec. 6.3), and the detailed neural architecture (Sec. 6.4). Finally, we
introduce our loss function to train the neural network (Sec. 6.5).

6.1 Motivation of neural reconstruction framework

As discussed in Sec. 5, directly reconstructing an accurate quadtree
distribution Qy, via online accumulation usually requires a long time
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rMSE  0.8666 0.4149 0.3562 0.0834
Mem 0.076 GB 0.200 GB 0.319 GB 3.212 GB 0.655 GB
; 1° Spot Light
, . =
rMSE  0.3351 0.0549 0.2423 0.0162
Mem 0.076 GB 0.327 GB 0.317 GB 2.300 GB 0.438 GB

Directional
Light
Tiny Hole
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Fig. 3. Extreme conditions. We compare our method with previous path guiding methods, running with equal time, on two Cornell Box scenes that have
two different extreme light transport settings. We turn on the next event estimation for all methods in this experiment. Previous methods utilize either path
samples [Miiller et al. 2017; Miiller 2019; Rath et al. 2020] or photons [Zhu et al. 2020b] as input for path guiding, which cannot work well on both cases at the
same time. In the first row, the scene is illuminated by a very small 1° spotlight (facing upwards) located very close to the roof. This setting is extremely hard
for path-based methods [Miiller et al. 2017; Miiller 2019; Rath et al. 2020] since the light is hard to connect to; yet, the photon-based method [Zhu et al. 2020b]
still works well. On the other hand, the second row shows a scene illuminated by a directional light coming from the top, while the roof only has a very tiny
hole that can receive this light. While path-based methods can still be effective for this setting, the photon-based method [Zhu et al. 2020b] cannot work well
(even empowered by deep learning) since most photons will be blocked by the roof and not useful at all. Our novel neural approach leverages both path and
photon samples as input, and can successfully work on both challenging cases. We also show the corresponding sampling distributions reconstructed by all
methods. Note that these methods may have different ground-truth target sampling distributions (see Sec. 3). We only show our ground truth (the target of
[Rath et al. 2020]) as the reference. While the target sampling functions are different, we can still observe our neurally reconstructed quadtrees are of higher
quality than the noisy quadtrees reconstructed traditionally by [Miiller et al. 2017; Miller 2019; Rath et al. 2020]; ours also contain sharper details than the
regular image representation of [Zhu et al. 2020b]. Our quadtrees are reasonably accurate compared to the reference.

to trace a large number of samples, leading to low quality of sam-
pling at early rendering times (as appears in previous work [Jensen
1995; Miiller et al. 2017]). We therefore seek to directly reconstruct
an accurate quadtree distribution from the initial noisy quadtree;
this can be seen as a traditional image reconstruction task (like
denoising, inpainting, or restoration) in the (Z, ®) space, except
that now the task is applied on hierarchical trees instead of regular
2D images. Therefore, the standard CNN on a 2D grid image (e.g.,
[Bako et al. 2019; Zhu et al. 2020b]) is no longer applicable, and
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we aim to design a new neural architecture that extends CNNs to
hierarchical inputs and outputs. Meanwhile, prior works have been
addressing a similar task in 3D geometry processing. They apply
CNNs on octrees [Wang et al. 2017, 2018] and hierarchical MLPs on
grammar trees [Li et al. 2017, 2019] to achieve highly efficient 3D
learning. We extend these 3D learning techniques to reconstruction
of sampling distributions and we propose to apply neural convo-
lutional operations on the 2D sampling quadtrees. Note that our
neural framework can not only denoise the values of the input Qp,
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Table 2. List of notations used in Sec. 5, Sec. 6, and Sec. 7.

Notation Meaning
S Sample
1 Quadtree leaf
Hierarchical Wi Sample direction
input (Z, ) Directional sampling space
structure Vs Sample value
(Sec. 5) A Accumulated sample value
Qn input quadtree from online accumulation
Q- Reconstructed quadtree from the neural network
Qgt Target (groundtruth) quadtree
f Per-sample feature vector
F Per-leaf feature vector
Feony Convolution result
M Per-level feature map
Neural A\ Predicted relative value to the parent node

network Pleaf Predicted probability of node being a leaf
framework m,n Encoding and decoding tree level
(Sec. 6) q. 9c¢ Decoded tree node and one of its children
Lo, Loss function
P Pooling
N Convolution
u Upsampling
T Node type classifier
R Value regressor
Finit Initial grid resolution
Sampling G Adaptive hierarchical hash grid
and Bipt KD-tree in each voxel
rendering kspt Spatial subdivision threshold
(Sec. 7) t, T Current and total iteration(s)

a One-sample MIS coefficient

but also create a completely separate hierarchical structure Q, that
can be different from Qp, better representing the target distribu-
tion. Our hierarchical neural reconstruction leverages the sparsity
of the sampling distribution, processing and modeling directly on
quadtrees; this allows for high-resolution modeling using low mem-
ory, which is not achievable when using regular images with CNNs.
In addition, we also design our network to be compact enough for
high computational and memory efficiency; this is ideal for path
guiding, since it needs to simultaneously reconstruct sampling dis-
tributions at many different scene locations without introducing
too much overhead to the rendering algorithm.

6.2 Input hybrid samples

As described in Sec. 5, when a new path sample or photon arrives,
we convert its w; into (z, ¢) and search Qy, to find its corresponding
leaf node. Two separate value accumulators (Apan and Appoton in
Eqn. 10) are used for adaptively refining Qj,. However, using only
one-channel sample values is insufficient for reconstructing a better
quadtree. In this work, we collect additional auxiliary per-sample
information and form a hybrid multi-channel feature vector, as
illustrated in Fig. 2(a). Specifically, each sample contains value V
and additional features which include the local sample position
P, the sample direction w;, the distance d to the next bounce, the
surface normal directions 7 of the current and next bounce, and the

sample count ¢ = 1. For path samples, we also append the BSDF
value f; to the vector. Finally, as shown in Fig. 2(b), sample features

fpath and fphoton are accumulated on each leaf [ at tree level m, and

then concatenated into a single feature vector Fml.
Joath = (V, 01, p.d, 7, ¢, fr) fohoton = (V, wi, p, d, 7, ¢)
B¢ = (Z fpath’ Z fi)hoton)

macc Jace (11)
path photon

=m,l _
F" = (—=—,—=
max Fa‘;‘tzh max Fafl‘; ton

On P On p

where (,) means vector concatenation, and summations are com-
puted for each leaf. max F2<¢ is the feature-wise maximum value

h
within the entire quad?ree Qyp, after the summation, which is used for
separately normalizing the input of path samples and photons. This
normalization effectively removes the radiometric unit difference
between path samples and photons. The sample direction w; is also
implicitly included in the (z, ¢) coordinates of S.

6.3 Convolution on a quadtree

We propose to directly apply convolutions on the quadtree to process
and regress the hierarchical feature data. In general, given a leaf / on
level m in Qp, a convolutional layer outputs a new feature Fg’;;fv via
a linear operation that is applied on its neighbors (empty neighbor
nodes are regarded as zeros) on the same tree level m:

i lg) = 2" 30> Wijelg) - B
c i

M™g111] = Figa 9]
where i and j are 2D indices of the neighbors inside the convolu-
tional kernel W, ¢ represents the channel index of input features,
and g is the index of kernels (also the channel index of the output
feature). Here M™ is a sparse 2D feature map, containing the output
features of all valid leaves. Note that, this convolution on a quadtree

(Eqn 12) is not much different from the standard convolutional
1

5J,C
quadtree leaf node instead of a standard pixel; unlike an image, leaf

nodes on a single tree level m can distribute very sparsely, where
only a few leaves contain actual features that require convolutions.

Moreover, accessing a neighbor within the convolutional ker-
nel requires searching in the quadtree Qy, to get its stored features
Fmd (Eqn. 11). This is non-trivial and can be much slower than
the standard CNN on a regular image where any element in an ar-
ray is immediately accessible. Fortunately, this neighboring search
problem has been addressed by the 3D shape processing commu-
nity using a faster hash table implementation [Graham et al. 2018;
Wang et al. 2017, 2018] with an optimization on reducing hash table
lookup times. In this work, we apply the same technique to speed
up our CNN on quadtrees, enabling efficient quadtree convolutional
operations. The same neighboring search is also naturally applied
to pooling layers in our network. Note that, because of the sparsity
of a quadtree, the network layers are applied only to the sparse
nodes in each tree level m, which actually reduces the amount of
computation compared to the standard dense CNNs.

(12)

-
. m, .
layer on a 2D image. However, each ;' represents a feature in a
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Fig. 4. Our proposed hierarchical encoder-decoder architecture for reconstructing an accurate quadtree representation of sampling distributions. Here, we
show an example containing only 4 levels. In practice, the input and output tree can have different levels ranging from 1 to 20. First, on each level m of the
noisy input quadtree Qy,, we apply a series of convolutional and pooling layers to encode the sample features F™™ to a neural feature map MZ? . By repeatedly
applying these operations hierarchically from the bottom level to the root node, we eventually encode and compress the whole Qy, into a single feature vector
MY, The decoder can be seen as the reverse of the encoder, which includes a series of convolutional and upsampling layers to extract new features M}, and
reconstruct a new quadtree Q, that has new tree structure and values. On each decoding level n, we use convolutions followed by a SoftMax operation to
regress a relative value Vi for each node g with respect to its parent node value (therefore the summation of every four child nodes satisfy 2q Vied = 1).
Meanwhile, a MLP classifier 7, predicts the type of each decoded node on that level, and sends all the intermediate nodes into the (n + 1)-th level for further
processing. Finally, the predicted values Vied are converted and merged into the output quadtree Q. Note that encoding and decoding operations are applied

only to the sparse nodes on each level, which is more computationally efficient compared to the standard CNNs that operate on dense image grids.

6.4 Hierarchical architecture The entire decoder can be seen as an inverse process of the en-
coder. After the multi-scale features M} are hierarchically ex-
tracted from Qy, via the encoder (Eqn. 13), we apply a series Sy, of
convolutions and ReLU activations to compute the feature Mj_ at
each decoding level n (n = m = 0 is the tree root). A 2 X 2 upsam-
pling layer Uy, on level n is also applied, subdividing a node into
four equal-sized children, which reverses the operation of average
pooling Py, in the encoder when m = n.

In order to obtain the final outputs, we apply final layers S, to

Our proposed neural architecture (Fig. 4) contains a hierarchical
encoder and decoder, with the skip links in between (Figure 2(c)).
Each hierarchical processing layer represents a corresponding tree
level in the input Qj, or the output Q.

Neural hierarchical quadtree encoder. We take Qy, as the input
and process the leaves from the bottom (finest) level to the top level.
On each level m, we apply a series Sy, of convolutions (Eqn. 12) and

nonlinear ReLU activation functions on the accumulated feature
vectors F™!_ The output feature map M™ (Eqn. 12) is downsampled
to the (m — 1)-th quadtree level after the 2 X 2 average pooling Py,
and is then fused with the feature map M1 at the (m — 1)-th level.
This iterative encoding can be expressed as:

M7l = (P (M™), M™ 1) (13)

where M} is the fused feature at level m. In summary, we start
with the bottom tree level mpy,x in Qp, and combine the features
from every coarser level until reaching the 0-th level (tree root).

Neural hierarchical quadtree decoder. Our goal is to reconstruct a
tree Q,, which can better represent the target sampling distribution
from hybrid sample inputs. To do so, we design our decoder to not
only regress the output distribution values at each tree level but also
determine if every node needs to be a leaf node or requires further
subdivision. This allows the decoder to simultaneously build a new
tree structure and reconstruct (denoise) leaf values.
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regress the distribution values and 7y to classify node types. In
particular, 7, on level n predicts the type of each decoded node
q, outputting the probability plnégf of the node being a leaf node.

During inference, when plne’gf > 0.5 then the node is decoded as

a leaf node, otherwise (plr:;gf < 0.5) the current node is split into
four children nodes in the next tree level. R}, is applied to regress a
relative distribution value Vyod for each node g to its parent node at
each level n; we apply the SoftMax in R, to output the final relative
values, ensuring 3, Vied = 1 for the four child nodes. This whole
iterative decoding process is written as:

Mn+1 =Sn((L{n(Mn ),Mn+1 .

dec dec enc />
n, n,

Vre(c] = Rn(Mdi) (14)
ng _ n,q

Pleat = %(Mdec)
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Fig. 5. Illustration of the loss computation. After the tree Q, is hierarchically
reconstructed by the network, we compute a loss value for every node g
at every level n from the top to the bottom. We compute the expected
distribution value (Eqn. 16) depending on how probable p is a leaf (i.e.,
Pleaf) predicted by the node classifier 7,. Note that, when p is a leaf, the
corresponding distribution values for the next level are just %‘

Here, Sp, takes both the upsampled feature U, (Ma’ec) atthe (n+1)-
th level (upsampling increases n by one) and the skip-link feature
M2 from the same level of the encoder. This skip-link is inspired
by the traditional U-Net [Ronneberger et al. 2015] architecture and
it makes the neural network more robust to spatial size variations
through pooling and upsampling. Without skip links, we have to
decode an entire Q, from only the last layer feature M, which is
much more difficult and can end up having a shallow tree.

In summary, the decoding process starts from the coarsest 0-
th level and gradually builds Q, until reaching nmax = 20. If all
the nodes are leaves when reaching a level, the decoding process
terminates early. In practice, the input and output tree can have
different numbers of levels. Note that our neural network only
predicts the relative value Viod (= 1 if q is the root node) for every
node q on every level n with respect to its parent node value, and
actual absolute values in the trees are reconstructed by unrolling the
relative values using a series of multiplications. This hierarchical
encoder and decoder architecture efficiently extends U-Net style
CNNss to quadtrees that are naturally more sparse than image grids.

6.5 Loss function

We train the network to output accurate quadtree distributions as
close to the ground-truth quadtrees as possible. The ground-truth
trees are generated in the same way as our input trees Q, (Sec. 5), by
tracing and accumulating a large number of samples until converged
(more details in Sec. 8). As a result, for each spatial location, we
have its ground-truth quadtree Qg with node type label yl'; ,aqf and
distribution value Vgiq for each node. Here, ylr; ’gf represents the node
type in the ground-truth tree, which is deterministic and binary.
Therefore, we can supervise our network output p, ’ - ™4 and Vied
with the ground-truth y, "% "9 and V ’q respectively. However, since
the ground-truth tree Qgt is generated using a lot of samples, its
structure can be very deep and fine-grained corresponding to a
high-resolution distribution; enforcing the network to reconstruct
such a deep quadtree structure from sparse input samples is highly

challenging and even unrealistic, especially at the beginning of
rendering. Therefore, we let the network put more emphasis on
regressing accurate distribution values; we seek to allow a different
tree structure as long as its final distribution is close to the ground
truth. To this end, we focus on the expected distribution value for
each node, without directly supervising the tree structure.

Given a parent node g and its four potential child nodes gq., we
compute the expectation of the dlstrlbutlon value Vrec e for each
qc utilizing the node type probability pleaf of the parent node:

+1,9c +1.qc
E[V?ec a 1= pleaf 4 + ¢! _pleaf) V;1e(: e, (15)

Note that, our regressed distribution value Vrec is a relative value,
i.e. a ratio of its actual value to its parent node value. If the parent
node q is a leaf node, the distribution is assumed uniform inside the
node and thus the corresponding relative value for the same region
of each g, is just exactly %, multiplying plr:gf, which is the relative
distribution value if q is a leaf and g, does not exist. We propose
to supervise the expected value E[V?;l’q“] with the ground-truth

n+1,qc

value Ve for all children nodes g, of g. This loss is given by:

n+1,qc _ n+l,qc
value Z”E rec 1 Vgt l (16)

Similar to the above discussion for Eqn. 15, if the ground-truth node
qisaleaf (y) ¢ ™4 = 1) and g, does not exist, we just use VnH’qC = 4.
This loss (Eqn 16 with Eqn. 15) jointly supervises the predicted
node type probabilities and the distribution values. However, we
find in our experiments that using this loss only can be unstable in
the early training time. We therefore provide direct supervision for
the tree structure at the beginning of the training, using a binary
cross entropy loss Ldass that supervises plne’gf with ylr; ’aqf. We apply
deep supervisions to every generated tree node output on all the

levels and sum their losses up. Our full loss function is expressed by

nQV
Lo, = D, ) (ALl +1ik) a7

n=0 4€qn
where Lo, denotes the loss of the whole reconstructed tree Qr
summed over every node g on every decoding level n. Here, gy, is
the set of nodes on the n-th level, ng, is the actual maximum de-
coding level, and f is a weight factor. During training, we start with
B =1in Eqn. 17 to stabilize the early optimization by supervising
both the structure (with Lj,s) and values (with Ly,)ue), and then
gradually reduce f to zero. Therefore, eventually, we supervise the
sampling map implicitly using Ly,jue Without forcing the network to
output the same target quadtree structure Qgt (an over-strong regu-
larization and often impossible to achieve). Our neural network can
generalize well to new scenes since it mainly operates on the local
sample input without any strong global scene-level dependency.

7 PATH GUIDING AND RENDERING

We use an iterative algorithm to trace and deposit samples, accu-
mulate the initial quadtrees Qy, reconstruct the accurate quadtrees
Qy as sampling distributions, and use the learned distributions for
rendering the final image. Here, we share a similar design with
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Fig. 6. lllustration of iterative learning and rendering. We show the pipeline
of our path guiding and rendering process (Sec. 7). It starts by building
a coarse grid G, which is later iteratively refined online. We trace a set
of path samples to detect valid spatial voxels in G for storing sampling
distributions, as well as accumulating their input features into per-voxel
quadtrees Qp (Eqn. 10); these path samples also contribute radiance to the
rendering result. We then trace photons from the light and deposit them
to the corresponding quadtrees Qy, in their arriving spatial voxels. These
accumulated quadtrees Qy, are adaptively subdivided (Sec. 5) based on the
sample information they accumulate in this iteration. We then send Qy, to
our neural network and reconstruct accurate quadtrees Q,, which will be
used as sampling distributions to guide the path tracing in the next iteration.
Afterwards, we refine the voxels of the spatial grid G as needed. Before
moving to the next-iteration path tracing, we reset the values in Qy, to zero,
while retaining their tree structure to continue to accumulate samples and
possibly obtain further refined quadtrees in the next iteration.

many state-of-the-art path guiding works [Miiller et al. 2017; Miiller
2019; Rath et al. 2020; Zhu et al. 2020b], as presented in Fig. 6.

Spatial caching of the sampling distributions. We use a hierarchical
hash grid G [Zhu et al. 2020b] in the scene to receive the hybrid
samples, store the input Qj, and output Q, in individual voxels. In
the first iteration, the traced path samples are collected to determine
the bounding box of our spatial grid, which covers the visible part of
the scene. Next, we start from a discrete 3D volume that uniformly
partitions the visible scene space where each voxel is a cube with a
side length Ry /rinir where Ry is the diagonal length of the initial
estimated bounding box; each voxel receives hybrid samples and
builds sampling quadtrees, which can be further sub-partitioned to
a KD-tree as needed. This leads to a hierarchical spatial grid with
per-voxel sampling distributions. Here, each voxel is iteratively
subdivided to a KD-tree based on a simple but effective criterion:
if the total number of samples Nsp¢ within a spatial voxel is larger
than a pre-defined threshold kspy (i.e., Nspt > kspt), then we split
the voxel into two sub-voxels through the middle plane along an
alternating dimension. This subdivision is applied recursively to sub-
voxels until all voxels do not satisfy the subdivision criteria, similar
to the strategy proposed by Muller et al. [2017]. Therefore, when a
new sample arrives, we first search within the hierarchical spatial
grid G to find the voxel that covers the sample, then deposit the
sample to its stored quadtree Qy, (Sec. 5). In practice, we also jitter
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the sample across neighboring spatial voxels (similar to depositing
a sample into the angular quadtree in Sec. 5), which creates a spatial
stochastic box filtering as is done in Miiller [2019].

Importance sampling from the quadtree. When guiding paths, the
importance sampling of w; is done by traversing the Q, from the top
to the bottom similar to [Miiller et al. 2017; Rath et al. 2020]. From
the root node of the quadtree, we iteratively sample one from the
four child nodes based on their relative value Vyod, until reaching
a leaf node. We then uniformly sample the leaf node. Suppose the
leaf has a solid angle bin Az - A¢ in the (Z, ®) space, then the final

sampling PDF corresponds to pjear = 1/(Az - Ag).

Iterative sample tracing and rendering. Similar to most of the pre-
vious work [Miiller et al. 2017; Rath et al. 2020; Zhu et al. 2020b], we
iteratively trace samples (though our samples are uniquely hybrid)
to refine our quadtrees over time. Specifically, in the t-th iteration
(t =0,1,2,...,T), we trace 2! sample-per-pixel (SPP) camera and
light rays; each bounce point of the ray yields a path sample or a
photon, which is deposited into the quadtree in a corresponding
spatial voxel as discussed above. Each spatial voxel stores an in-
put online accumulated quadtree Q, and a neurally reconstructed
quadtree Q; for path guiding. After each iteration, we reconstruct a
new Q, from the current Qy,; the values of the input quadtree Qy, are
then cleared to zero, and Qj, continues to accumulate new samples
in the next iteration, while inheriting the same tree structure.

After T iterations, we discontinue learning distributions and
initiate a final pass where we use the most recent reconstructed
quadtrees Q, from the (T)-th iteration for guiding the rest of the
path samples. Since our approach allows the learning to stop earlier
because of high-quality reconstructed distributions, we can save
more samples for the final-pass rendering. The final rendered image
combines the radiance of all samples from ¢ > 2 iterations weighted
by the inverse of their estimated per-pixel variances [Miiller 2019].

Combining sampling strategies. The learned guiding sampling is
combined with BSDF sampling via the one-sample MIS (Eqn. 5).
In the iterative process (t < T), we use @ = 0.5 for the one-
sample MIS. For the final rendering pass, we follow Zhu et al.
[2020b] to compute the blending coefficient « adaptively: a =
BEupw; [LE)?)D(E,] /(Ewg,w,- [Lgﬂ)&i] +Ewg,0; [Litl,if,]) Here, Bq,,,0; []
is the expected radiance sent back to the viewing direction using
one of the two sampling strategies, which is statistically estimated
from the previously traced path samples in past iterations.

8 IMPLEMENTATION

In this section, we discuss some details in dataset generation, neural
network training, and rendering.

Dataset generation. We create a large-scale dataset to train our
neural network. We collect 50 complex indoor and outdoor scenes
either used by researchers in previous papers [Vorba et al. 2014;
Miiller et al. 2017; Rath et al. 2020; Bako et al. 2019; Zhu et al. 2020b]
or designed by artists from online resources [Bitterli 2016; Jakob
2010; Evermotion 2012; Trader 2020; Squid 2020; Blend Swap 2016].
Following Zhu et al. [2020a,b], we also add additional procedurally
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Fig. 7. Multiple sets of training scenes, including diverse procedural random
scenes from the previous work [Zhu et al. 2020b] and complex indoor and

outdoor scenes designed by researchers and modeling artists.

generated training scenes, created by combining multiple random-
ized geometry primitives under area lights and environment maps.
We hold out 12 (from the 50) complex scenes as testing scenes to
evaluate our method. The remaining scenes are used for training.
We use the same method (described in Sec. 5) to create the in-
put (noisy) and output (ground-truth) quadtrees, from the training
dataset. In particular, we iteratively emit 2/ SPP camera and light
rays in iteration t € [0, T] to create path and photon samples and
accumulate them in the spatial grid G in the scene, similar to the
rendering process in Sec. 7. We obtain the input quadtrees Qj, by ac-
cumulating hybrid samples in the spatial voxels at every ti, € [0, 12]
iteration. For every input Qy, at iteration t;,, we freeze the spatial
cache G for the following iterations t > t;,, continue collecting more
samples and repeatedly refine Qj, to create the Qgt when reaching
t = tgr = 20. When accumulating hybrid samples, we use the BSDF
marginalized variance-aware sampling function (Eqn. 7) for the path
samples, unless otherwise stated in ablation studies (Sec. 9). As for
photons, we simply use their power (Eqn. 8) as the input values.
We also apply additional data augmentation designs to increase
the generalization ability of the neural networks. Since the hierar-
chical hash grid G has KD-trees Bgpt containing spatial voxels of
different sizes (Sec. 7), we augment the training data by selecting 10
different initial resolutions riyi; equally spaced between rlll‘llg‘ =10
and rirﬁftx = 200, which can cover diverse voxel sizes. We also further
augment the input by randomly rotating the global frames.

Neural network training. Our network architecture is designed to
be compact for fast inference in rendering. The maximum number
of feature channels in our neural network is set to be 128. While this
leads to efficient sampling reconstruction, it is still challenging for
such a single network to handle diverse inputs with various num-
bers of input samples or very different sparsity levels. Therefore, we
train five separate versions of the same network as is done in [Zhu
et al. 2020b], where each one only needs to handle the input Qy, that
contains a certain range of sample numbers (i.e., [0, 100), [100, 500),

[500,1000), [1000, 5000), [5000, 00)). During both training and test-
ing, we split the set of Qj, into these smaller groups, and these
networks are executed on GPUs in parallel to reconstruct the set of
Q. We train these networks using the ADAM optimizer [Kingma
and Ba 2014] with a learning rate of 1.0 x 10~* until convergence.

Rendering. When rendering, we stop learning distributions after
5 ~ 10 iterations depending on the actual light transport complexity
of each scene, and guide the remaining path samples in the final-
pass rendering. Experiments are rendered on a workstation with
an Intel Core 19-7960X CPU and two Nvidia Titan RTX GPUs re-
quired to run our neural networks. For some simple testing scenes,
one GPU is sufficient. Sample tracing and rendering are performed
on the Mitsuba engine [Jakob 2010]. The neural network is inte-
grated into the rendering engine using the TensorFlow C++ API
with acceleration libraries, and other standard C++/CUDA libraries
for efficient data streaming. To utilize the potential parallelization
between the CPU and GPUs, the CPU keeps ray tracing and ren-
dering the current-pass result using the previously reconstructed
sampling distributions until the GPU finishes computing a new set
of Q, and updating those distributions. This effectively keeps the
CPU and GPU running busy and staying at high utilization. Our
quadtree-based neural networks are efficient to evaluate. The GPU
processing time is about 6% ~ 15% (varying across scenes) of the
CPU processing time in our experiments. In the future, implement-
ing our proposed neural path guiding framework into a GPU-based
rendering engine leveraging hardware ray-tracing (e.g., [Parker et al.
2010]) can possibly result in higher efficiency in practice.

9 RESULTS

We present extensive evaluation in this section. Additional experi-
ments can be found in the supplementary material.

Configuration. We evaluate our method on 12 complex testing
scenes, each containing complex global illumination and diverse
geometric variations. When rendering each scene, we limit the
maximum number of bounces to 20; Next Event Estimation (NEE)
is turned off (except for Fig. 3) to clearly show the effectiveness of
path guiding for ours and all comparison methods. We compare
our methods with several traditional online path guiding methods
[Miller et al. 2017; Miiller 2019; Rath et al. 2020; Ruppert et al. 2020]
which do not leverage deep learning techniques (CPU-only) but
either use hierarchical quadtrees (similar to ours) or mixture models
as their sampling distribution representation. We also compare with
neural guiding methods, including one [Bako et al. 2019] that can
only guide the first bounce and a recent photon-driven approach
[Zhu et al. 2020b] that can guide multiple bounces; these previous
neural methods represent sampling distributions as regular images.
For quantitative results, we use the standard relative Mean Squared
Error (rMSE) widely used in previous work [Rath et al. 2020; Zhu
et al. 2020b]. All the numbers are computed on tone-mapped LDR
images. In addition, we also show the memory cost of each method.

Qualitative and quantitative comparisons. Figure 8, 9 and 10 show
equal-time comparisons between our method and previous path
guiding methods on various complex (indoor, outdoor, and object)
scenes. Note that, our approach often achieves better qualitative and
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Fig. 8. Equal-time comparisons. We compare our method with previous path guiding methods [Miiller et al. 2017; Miiller 2019; Bako et al. 2019; Rath et al.
2020; Zhu et al. 2020b; Ruppert et al. 2020] on complex indoor scenes. For each scene, we show visual comparisons on two crops with corresponding rMSE
numbers. We also show the rMSE of the full image and the memory usage for all the methods. Our approach often achieves better visual quality and lower
rMSE (on both crops and full images). Our method achieves this with memory cost that is comparable to traditional methods [Muller 2019; Rath et al. 2020]

and much less than the previous neural technique [Zhu et al. 2020b].

quantitative results. Our results of zoomed-in rendering crops are
smoother, showing less noticeable noise than other results, and are
visually closer to the reference. In contrast, the previous first-bounce
guiding method [Bako et al. 2019] cannot handle these challenging
cases very well, although it also leverages deep learning techniques;
it can only improve the primary bounce sampling thus performs
worse than the other guiding methods including the traditional on-
line ones on our testing scenes with strong indirect illumination. The
three traditional methods [Miiller et al. 2017; Miiller 2019; Rath et al.
2020] use pure path samples as input and reconstruct hierarchical
quadtree distributions online for multi-bounce path guiding. They
achieve effective path guiding and improve over the standard path
tracing; in particular, Rath et al. [2020] shows clear advantages over
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the other two because of its more efficient variance-aware sampling
distribution. Other than the quadtree, Ruppert et al. [2020] leverages
mixture models (VMMs) to fit path samples by an online adaptive
optimization framework, which outperforms many other techniques
due to the careful positioning of mixture components and a novel
parallax compensation module. However, these methods still lever-
age a slow online learning process, requiring a large number of path
samples and many iterations to achieve accurate distributions for
path guiding. The recent photon-driven neural method [Zhu et al.
2020b] uses a pre-trained network to relieve this slow online learn-
ing, leading to better results. However, this technique [Zhu et al.
2020b] (same to [Bako et al. 2019]) can only reconstruct sampling
distributions as regular 2D images (unlike quadtress) that have a
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Fig. 9. Equal-time comparisons. Similar to Fig. 8, we show more equal-time comparisons between our method and previous path guiding methods [Miller
et al. 2017; Miiller 2019; Bako et al. 2019; Rath et al. 2020; Zhu et al. 2020b; Ruppert et al. 2020]. Our method can also achieve better qualitative and quantitative

results using moderate memory costs.

fixed low resolution, hence restricting the accuracy and efficiency
of sampling. Our approach instead directly regresses hierarchical
quadtrees from hybrid samples for sampling and can represent more
fine-grained distributions under different light transport conditions.
As a result, our approach further outperforms [Zhu et al. 2020b].
We achieve better rendering quality without a large memory
overhead; the sparseness of our representation and the effectiveness
of our neural reconstruction lead to high memory-efficiency. The
recent neural technique [Zhu et al. 2020b] requires much larger
memory due to the use of grid representation (image). For most
scenes, our memory consumption is comparable to the traditional
methods [Miiller 2019; Rath et al. 2020] without deep learning.

Hybrid samples. To further demonstrate the effectiveness of using
hybrid samples, comparisons on two extreme light transport settings
are shown in Fig. 3 earlier in the paper. These two Cornell Box
scenes are specifically designed to make only one type of the input
samples (either paths or photons) useful. Previous methods that use
either path samples or photon samples cannot work effectively on
both challenging cases. In contrast, our approach uses a hybrid of
both path samples and photons with a novel hierarchical neural

reconstruction, leading to more robust rendering on both cases. Our
neural network learns to correlate the information and convert it
into a single high-quality hierarchical sampling distribution. As
demonstrated in other results of complex scenes (Fig. 1, 8 and 9),
our proposed framework with hybrid input can robustly work well
across various challenging light transport cases.

Convergence. We also evaluate how our method performs with an
increasing number of samples. In particular, we run our method on
two testing scenes (RACING CAR and K1TcHEN, shown in Fig. 1 and 8)
with different total numbers of traced rays (including both camera
and light rays) per pixel and compare the rMSEs with other methods
using the same budgets of sampling rays. The results are shown in
Fig. 11. We can see that our novel neural path guiding approach
consistently achieves lower errors with more samples; ours also has
smaller errors compared to previous methods. Note that, while the
recent neural method [Zhu et al. 2020b] can often achieve better
results than the other traditional methods with a moderate sampling
budget, its gain gets reduced with very large sampling budgets due
to the fixed resolution sampling map which intrinsically cannot
express the high-frequency lighting perfectly. On the other hand,
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Fig. 10. Equal-time comparisons with some best performing baseline methods [Miiller 2019; Rath et al. 2020; Ruppert et al. 2020] on two complex-visibility
scenes. The incident radiance fields of these scenes contain high-frequency details and repeated patterns. We can still achieve better results in such light

transport scenarios.
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Fig. 11. Convergence curves of two testing scenes (from 256 SPP to 16,384
SPP). We compare our approach with previous methods using different
numbers of samples. The sampling budget represents the total number of
rays (including both camera and light) per pixel through the entire guiding
and rendering process. Both the X (number of samples) and Y (rMSE) axes
are on a logarithmic scale. Our hierarchical neural path guiding performs
consistently better with the increasing samples on these two scenes. Because
some rays are used for guiding and the convergence is influenced by the
quality of the guiding distribution, these curves are not straight lines, as
expected for standard path tracing in a log-log plot. Also note that, the
recent previous neural method [Zhu et al. 2020b] may not be more effective
than the traditional methods when using a very large number of samples.

traditional quadtree-based methods [Miiller et al. 2017; Miiller 2019;
Rath et al. 2020] can be more fine-grained with a large number of
samples, leading to better results eventually. This example illustrates
the benefits of having a hierarchical representation. Our approach
successfully applies hierarchical quadtree-based sampling in neural
path guiding, leading to efficient rendering.

Hierarchical reconstruction. We show some examples of the re-
constructed sampling distributions in Fig. 3 and 13. Our regressed
quadtree distributions are accurate and fine-grained, and are close
to the reference. In contrast, [Rath et al. 2020] is reconstructing the
same target distribution as ours, but it leverages traditional online
accumulation, which often obtains more noisy quadtrees. Essen-
tially, our neural network is trained to denoise such noisy online-
accumulated quadtrees into the smooth and accurate quadtrees. On
the other hand, the neural techniques [Zhu et al. 2020b] that use
uniform grids (images) as the sampling representation can also re-
construct smooth sampling distributions. However, because of the
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Fig. 12. Target sampling distribution. Our approach by default uses the
variance-aware sampling function (Eqn. 7) as the target to train the network.
We can also use a simpler target sampling distribution (Eqn. 4) without
variance-awareness. We compare this with our default model and also
traditional methods using the two different sampling functions. Our full
model performs better, which justifies the variance-aware technique and
necessity of using an advanced target distribution for training.

limited image resolution, their sampling is less sharp and detailed
compared to our reconstructed quadtrees.

We further investigate the benefits of using the hierarchical net-
work, by training and comparing with a network that regresses 2D
images from hybrid samples without any hierarchical structure. In
particular, we use the recent network architecture of [Zhu et al.
2020b] and train it using the same hybrid samples as input and
the same variance-aware target distribution for path guiding. The
corresponding results compared with the results of our full model
and other methods are shown in Fig. 13, with corresponding sam-
pling distributions. This non-hierarchical network with the image
representation performs worse than our full model. Meanwhile, our
reconstructed hierarchical distribution contains more details and
is faster to compute than the uniform image representation, which
leads to more efficient path guiding and better rendering quality.
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Fig. 13. Hierarchical reconstruction. We compare with previous methods and show the corresponding sampling distributions of all methods for a scene point
(marked by the red point in the reference). Similar to Fig. 3, the ground-truth sample distribution is with respect to our method and [Rath et al. 2020] (and also
the "Ours-img" variant). We also compare with a non-hierarchical variant (labeled with Ours-img) that takes hybrid samples as input but regresses image grid
distributions using the same network architecture as [Zhu et al. 2020b]. Our full model leverages hierarchical reconstruction to regress accurate sampling

distributions and achieve better results compared to its non-hierarchical counterpart.

Target sampling distribution. Our framework has good flexibility;
it can support various target sampling distributions. By default, we
use the recent variance-aware function [Rath et al. 2020] (Eqn. 7) for
the better performance. In Fig. 12, we show results from a variant
of our model trained with the traditional target sampling function
without variance-awareness (Eqn. 7 as is used in [Miiller et al. 2017;
Miller 2019]). Note that, our approach still works well even with-
out the variance-aware technique, and can still outperform many
previous methods. Our full model can achieve better results, taking
advantage of the advanced target sampling function.

Limitations. Our approach leverages path and photon samples
and treats them equally, tracing the same number of rays for each
type of sample in guiding and rendering. However, the two types
of samples often do not contribute equally to the final distribution
(as in Fig. 3) and one of them can be less useful, which is a waste
of sampling budget. Addressing this may require future research
to support distributing the samples non-equally, adaptive to the
actual light transport cases. Besides, we believe guiding the photon
emission and tracing properly (e.g., [Vorba et al. 2014]) can be very
useful to our framework, which reduces the well-known photon
visibility issue and further increases the robustness of our approach.

Our framework utilizes discrete voxels to partition the scene and
cache the sampling distributions. Similar to previous methods that
use similar caching techniques [Miiller et al. 2017; Zhu et al. 2020b],
this spatial structure can have discontinuous sampling distributions
across neighboring voxels, leading to some aliasing artifacts that
are usually gone after a number of iterations. While our neural
framework accelerates the convergence of sampling reconstruction,
which alleviates this issue to some extent, some minor artifacts
can still appear in early iterations. Exploring an idea similar to the
parallax compensation [Ruppert et al. 2020] is left for future work.

Currently, we implement our approach in a hybrid CPU and
GPU fashion where tracing/shading and sampling reconstruction
are executed separately. The extra data copying overhead is still

non-negligible even if we carefully manage the data flow and paral-
lelization. In practice, it can be beneficial to put more modules on
GPUs directly and make use of the specialized processor cores.

10 CONCLUSION AND FUTURE WORK

In this paper, we present a novel path guiding framework that
is learning-based, hierarchical and hybrid. We present an unique
neural network that extends traditional CNNs to hierarchical rep-
resentations, and produces accurate sampling distributions faster
than traditional online accumulation methods. Our approach fur-
ther uses a hybrid of path samples and photons as input, allowing
for increased robustness and generality across different complex
light transport scenarios. We demonstrate extensive experiments on
diverse testing scenes. Our proposed neural path guiding framework
can achieve the state-of-the-art rendering quality with a reasonably
small memory cost compared to other existing approaches.

Our approach also inspires interesting future research. In this
work, we focus on making the local directional distribution recon-
struction neural and hierarchical. Future work can explore if the
spatial caching grid can also be hierarchically reconstructed via a
neural network, potentially making local distribution reconstruc-
tion aware of the global context. Another interesting direction is
to combine our offline neural framework with the online neural
techniques [Miiller et al. 2019, 2020] that regress a global and con-
tinuous sampling function. Meanwhile, combining with the adjoint
Russian roulette and splitting technique [Vorba and K¥ivanek 2016]
and extending our framework to product sampling can be the direct
next steps. Our approach leverages quadtree-based neural modeling
for local light field approximation; this technique can also inspire
other related research areas in computer graphics, such as lighting
estimation and light transport acquisition.
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