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Fig. 1. We present a hierarchical neural path guiding framework which uses both path and photon samples to reconstruct high-quality sampling distributions.

This Racing Car scene includes both complex direct and indirect illumination that are difficult for traditional path tracing to render. Traditional guiding

methods [Müller et al. 2017; Müller 2019; Rath et al. 2020] can reconstruct hierarchical sampling distributions (quadtrees) via online learning for multi-bounce

path guiding. However, the online learning process is relatively slow, which results in noisy sampling maps for a long time, restricting the guiding efficiency.

Bako et al. [2019] leverages offline deep learning, but it can only guide the first bounce, which naturally cannot outperform traditional online methods for

such a scene with strong global illumination. Ruppert et al. [2020] introduces parallax compensation and uses mixture models (VMMs) to represent sampling

distributions. However, the use of analytical mixtures limits the capability to represent complex radiance field from sparse path samples, which requires

careful strategies for merging and splitting of mixture components. The recent photon-driven work [Zhu et al. 2020b] can support multiple bounces using an

offline-trained network, producing better renderings than many previous methods. However, this method uses standard regular 2D images (unlike quadtrees)

for representing lighting distributions, requiring the largest memory consumption, which limits its scalability to large-scale scenes. Our approach enables

neural reconstruction of the traditional hierarchical representation via an offline-trained novel network; we can effectively reconstruct accurate quadtree-based

sampling distributions, consuming less system memory than [Zhu et al. 2020b]. Our approach also combines both path and photon samples, which is more

robust against different light-transport scenarios. As a result, we can achieve better quantitative (reflected by lower rMSEś relative Mean Squared Error) and

qualitative results, with moderate memory cost comparable to traditional online methods that do not use deep neural networks.

Path guiding is a promising technique to reduce the variance of path tracing.
Although existing online path guiding algorithms can eventually learn good
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sampling distributions given a large amount of time and samples, the speed of
learning becomes amajor bottleneck. In this paper, we accelerate the learning
of sampling distributions by training a light-weight neural network offline to
reconstruct from sparse samples. Uniquely, we design our neural network to
directly operate convolutions on a sparse quadtree, which regresses a high-
quality hierarchical sampling distribution. Our approach can reconstruct
reasonably accurate sampling distributions faster, allowing for efficient path
guiding and rendering. In contrast to the recent offline neural path guiding
techniques that reconstruct low-resolution 2D images for sampling, our novel
hierarchical framework enables more fine-grained directional sampling with
less memory usage, effectively advancing the practicality and efficiency of
neural path guiding. In addition, we take advantage of hybrid bidirectional
samples including both path samples and photons, as we have found this
more robust to different light transport scenarios compared to using only
one type of sample as in previous work. Experiments on diverse testing
scenes demonstrate that our approach often improves rendering results with
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better visual quality and lower errors. Our framework can also provide the
proper balance of speed, memory cost, and robustness.

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: Global Illumination, Path Guiding, Ray

Tracing, Sampling and Reconstruction, Neural Rendering
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1 INTRODUCTION

The simple and flexible Monte-Carlo path tracing algorithm has
become the gold standard for physically-based rendering. However,
a major drawback is the slow convergence problem, leading to
unpleasant Monte Carlo noise in the rendered image. In recent years,
researchers have successfully tried many denoising and filtering
techniques to reduce the noise level [Chaitanya et al. 2017; Bako et al.
2017; Vogels et al. 2018]. However, the denoised image is no longer
unbiased, and sometimes has remaining low-frequency artifacts.

Path guiding is a promising direction to reduce path tracing vari-
ance while remaining unbiased. The key idea is to learn a better
sampling distribution (approximating the incident light field or some
variant of it) at arbitrary scene locations and guide camera rays to-
wards the light source. Previous methods [Müller et al. 2017; Rath
et al. 2020; Ruppert et al. 2020] often require a slow online learning
process to obtain accurate sampling distributions for path guiding.
While some recent works [Bako et al. 2019; Zhu et al. 2020b] use
offline-trained neural networks, their methods require large system
memory and can only reconstruct sampling distributions at a low
resolution, restricting the accuracy and efficiency of path guiding.
In this work, we present a novel neural path guiding approach

that can effectively reconstruct accurate hierarchical high-resolution
sampling distributions, leading to efficient path guiding and ren-
dering. Our approach uses an offline-trained neural network to
accelerate the online learning in traditional path guiding. Unlike
previous offline neural methods that represent a distribution using
a uniform grid (as a 2D image), we consider the classical quad-tree
based representation, allowing for efficient high-resolution distri-
bution modeling. As shown in Fig. 1, our approach successfully
advances the efficiency of neural path guiding, leading to better
rendering quality with moderate memory costs.

We present a novel deep neural network for efficient hierarchical
distribution reconstruction. Our technique is inspired by the octree
networks [Wang et al. 2017] in 3D geometry processing. We pro-
pose to operate deep 2D convolutions directly on a sparse quadtree
that represents a 2D angular sampling distribution, enabling an
efficient hierarchical reconstruction. Our network can adaptively
adjust the tree structure in reconstruction, which learns the proper
angular resolution for each sampling solid angle bin. This results
in high-quality distributions that accurately express the incident
light fields. In contrast to the standard convolutional neural net-
works (CNNs) that can only regress low-resolution sampling maps
[Zhu et al. 2020b], our network hierarchically regresses a compact

Table 1. Comparison of different path guiding algorithms. Our proposed

framework can achieve both fast and robust rendering by leveraging neural

networks and hybrid samples with a small memory consumption thanks to

the hierarchical representation of sampling distributions.

Hybrid Hierarchical Neural
[Vorba et al. 2014] ✗(Photon) ✗(GMM) ✗

[Müller et al. 2017] ✗(Path) ✓(Quadtree) ✗

[Müller 2019] ✗(Path) ✓(Quadtree) ✗

[Bako et al. 2019] ✗(Path, 1st bounce) ✗(Image) ✓

[Rath et al. 2020] ✗(Path) ✓(Quadtree) ✗

[Zhu et al. 2020b] ✗(Photon) ✗(Image) ✓

Ours ✓(Path + Photon) ✓(Quadtree) ✓

quadtree that represents the same distribution at a much higher res-
olution using less memory. The adaptivity and compactness of our
hierarchical reconstruction improves the scalability to large-scale
complex scenes where a large number of sampling distributions
need to be stored on numerous mesh surfaces.

Previous path guiding work uses either path samples [Müller et al.
2017; Müller 2019; Rath et al. 2020; Ruppert et al. 2020] or photons
[Jensen 1995; Vorba et al. 2014, 2019] to reconstruct an incident
radiance field which is then converted to a sampling distribution
at any scene location. Our hierarchical neural reconstruction can
potentially support either input samples independently. However,
path samples and photons can perform differently depending on
the actual light transport cases (see extreme examples in Fig. 3).
When the scene contains caustics produced by transparent objects
or tiny light sources, photons are more efficient since it is difficult
for path samples to quickly find a valid direction towards the light.
On the other hand, path samples are a better choice when some
light sources do not illuminate the visible regions of the scene,
since many photons can be invisible and useless in this case. In this
work, we use both of them and let the neural network figure out
how to effectively combine the hybrid samples into a single output
sampling distribution. Therefore, our approach is more robust to
general scenes with unknown light transport scenarios.

In summary, our main contributions are:

• We propose a novel learning-based framework that can re-
construct a hierarchical sampling distribution from sparse
samples with a moderate memory cost;

• We consider hybrid input samples including both path sam-
ples and photons for path guiding, leading to higher robust-
ness and generality on diverse light transport cases.

2 RELATED WORK

Path Guiding. Monte-Carlo path tracing [Kajiya 1986] has been
the fundamental solution for solving the light transport in a complex
scene. However, during path tracing, the incident light distribution
is unknown at each 3D point. Thus, most of the path tracing variants
sample the space only based on the geometry and reflectance prop-
erties. Instead, path guiding algorithms [Vorba et al. 2019] estimate
sampling distributions based on the local incoming light field during
path tracing, so that they can use the information to perform better
importance sampling and accelerate the rendering process.
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Several path guiding algorithms (Table 1) have been proposed
to efficiently estimate the local light field information in order to
better sample the space. Vorba et al. [2014] fitted a Gaussian-Mixture
model (GMM) to represent the incoming radiance at each spatial
cache point during ray tracing. With very few parameters, a GMM
can efficiently model the light distribution, and is then applied to
other rendering algorithms [Herholz et al. 2016; Ruppert et al. 2020].
However, GMMs fail to accurately represent high-frequency light
distributions, which are common in scenes with complex lighting.
Müller et al. [2017, 2019] proposed to use hierarchical quadtree struc-
tures to record the incoming light field in the space, which is more
efficient and practical than a GMM [Vorba et al. 2014] or simple
regular grid [Jensen 1995]. This hierarchical representation was also
extended to primary space [Guo et al. 2018], product sampling [Di-
olatzis et al. 2020], and variance-aware importance sampling [Rath
et al. 2020]. However, until now, such a hierarchical representation
can only be reconstructed via traditional online learning without
any neural network components, and requires relatively large num-
ber of samples. Our neural approach can directly reconstruct an
accurate hierarchical quadtree representation from sparse input
samples, using an offline-trained novel deep neural network.
Recently, deep learning techniques have been used to facilitate

the learning of local light distributions and importance sampling of
light paths (e.g., in primary sample space [Zheng and Zwicker 2019]).
Müller et al. [2019] used an online-learnt neural network to perform
the importance sampling. The network can estimate the distribution
accurately, but can be potentially expensive in practice due to the re-
peated network inference and online optimization. Bako et al. [2019]
trained an offline-learnt network to guide the first bounce, where
regular images are used to represent the incoming light distribution.
While images are convenient for neural networks, they consume
more memory when detailed light distributions are needed. Huo
et al. [2020] used a reinforcement learning technique to guide the
samples, but their method is also limited to the first bounce. Zhu
et al. [2020b] used photons as the primary source to estimate the
local light distributions, and use them to guide all bounces. Again,
standard images are used to represent the distributions, which is
less memory efficient and limited to low resolutions compared to
the quadtree. In this paper, we learn the light distribution on hierar-
chical structures, which are both detailed and memory-efficient. Our
approach takes advantage of using both path and photon samples,
leading to better generality on different scenes. We believe these
are important steps to make neural path guiding practical.

Hierarchical Learning. Hierarchical structures can represent sparse
data in an efficient way [Müller et al. 2017; Müller 2019]. However,
learning on the hierarchical structures has been a particular chal-
lenge. Recently, there have emerged plenty of studies that focus
on the learning and understanding on hierarchical structures, es-
pecially in the 3D geometry processing community. Wang et al.
[2017, 2018] proposed O-CNN to analyze 3D shapes represented
by octrees; Graham [2015] developed sparse convolution for 3D
understanding, which is similar to sparse matrix representation.
On the other hand, there are also works on generating hierarchi-
cal structures [Tatarchenko et al. 2017; Chitta et al. 2020; Riegler
et al. 2017]. These algorithms were then extended to perform 3D

shape completion [Wang et al. 2020], 3D segmentation [Graham
and van der Maaten 2017; Graham et al. 2018], and sketch under-
standing [Kumar Jayaraman et al. 2018]. Besides convolutional op-
erators, multi-layer perceptrons [Li et al. 2017, 2019] and graph
networks [Mo et al. 2019] are also used for hierarchical learning. In
this work, we extend these hierarchical 3D learning techniques to
the problem of 2D sampling distribution reconstruction. We intro-
duce a novel light-weight network that can effectively regress an
accurate quadtree distribution for high-quality path-guiding.

Hybrid samples. Both paths and photons are efficient tools to
explore the scene and compute the radiance in the 3D space. While
path tracing [Kajiya 1986] algorithms are particularly good at explor-
ing complex geometry setups, photon mapping algorithms [Shirley
et al. 1995; Jensen 1996; Hachisuka et al. 2008; Knaus and Zwicker
2011; Zhu et al. 2020a] can be very effective when indirect light-
ing dominates the scene. Aiming at a rendering algorithm that can
work on both cases, researchers proposed bidirectional approaches
[Lafortune and Willems 1993; Veach and Guibas 1995a; Georgiev
et al. 2012; Křivánek et al. 2014], which combine the benefits of both
path tracing and photon mapping. Similarly, in our paper we use
both path samples and photons as the sources to learn the local light
distributions in the scene. Compared to the previous path guiding
works that use only path samples [Müller et al. 2017; Bako et al. 2019;
Rath et al. 2020] or photons [Vorba et al. 2014; Zhu et al. 2020b], our
algorithm can render more efficiently and is more robust across a
wide range of difficult scenes with complex light transports. In fact,
Vorba et al. [2014] also use both path and photon samples. However,
they train with two separate cache records, where path tracing is
guided by local photons and path samples do not directly affect
camera path guiding. Our neural system instead takes the hybrid
of two types of samples as direct inputs; they directly contribute to
the same forward sampling distribution.

As shown in Table 1, our path guiding algorithm uniquely utilizes
the hybrid samples. Additionally, previous works either perform
learning on image-based sampling distributions, or use hierarchical
structures to represent the distributions (because of the difficulty of
applying neural networks to irregular quad-tree structures), but not
both. In contrast, our path guiding algorithm successfully applies
an offline-learnt neural network on hierarchical structures.

3 BACKGROUND

Rendering equation. To render a scene using light transport simula-
tion, our goal is to solve the rendering equation [Kajiya 1986]:

𝐿(𝒙, 𝜔𝑜 ) = 𝐿𝑒 (𝒙, 𝜔𝑜 ) +

∫

Ω

𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖 , (1)

where the outgoing radiance 𝐿(𝒙, 𝜔𝑜 ) in direction𝜔𝑜 at each surface
point 𝒙 equals the sum of the surface emission 𝐿𝑒 (𝒙, 𝜔𝑜 ) and the
reflection from the incoming radiance 𝐿𝑖 (𝒙, 𝜔𝑖 ) of every direction𝜔𝑖

that has angle 𝜃𝑖 to the surface normal over the hemisphere Ω. The
Bidirectional Scattering Distribution Function (BSDF) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 )

describes how much radiance can be scattered to 𝜔𝑜 from 𝜔𝑖 .
The integration 𝐿𝑟 (𝒙, 𝜔𝑜 ) =

∫

Ω
𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖

in Eqn. 1 is computed by Monte Carlo (MC) estimation [Veach 1997]
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in the path tracing algorithm:

𝐿𝑟 (𝒙, 𝜔𝑜 ) =
1

𝑁

𝑁
∑

𝑖=1

𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖
𝑝 (𝜔𝑖 )

(2)

where 𝑁 is number of samples and 𝑝 (𝜔𝑖 ) is the probability density
function (PDF) of sampling direction 𝜔𝑖 (i.e., importance sampling).
When 𝑁 is sufficiently large, the variance of 𝐿𝑟 (𝒙, 𝜔𝑜 ) reduces, and
path tracing gradually converges to the noise-free result.
In many challenging light transport scenarios, the convergence

is very slow, which is the major drawback of Monte Carlo path
tracing. Fortunately, we can greatly speed up the variance reduction
by sampling from a better PDF 𝑝 (𝜔𝑖 ) that resembles the integrand
𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖 . However, the incident radiance field
𝐿𝑖 (𝒙, 𝜔𝑖 ) is unknown in the beginning, so standard path tracing
only leverages the BSDF for importance sampling:

𝑝BSDF (𝜔𝑖 ) ∝ 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) (3)

Guiding using path samples. In contrast, path guiding is a method
to evaluate the incident light 𝐿𝑖 (𝒙, 𝜔𝑖 ) and set the PDF to be propor-
tional to some terms related to it. Many previous papers [Müller et al.
2017; Müller 2019] use early (or extra) Monte Carlo path samples to
compute a sampling distribution as:

𝑝guide (𝜔𝑖 ) ∝ 𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖 , (4)

which expresses the incident light field (the cosine term is sometimes
associated to the BSDF sampling in Eqn. 3). In practice, this guided
sampling is often combined with BSDF sampling, using one-sample
Multiple Importance Sampling (MIS) [Veach and Guibas 1995b]:

𝑝 (𝜔𝑖 ) = 𝛼𝑝BSDF (𝜔𝑖 ) + (1 − 𝛼)𝑝guide (𝜔𝑖 ) (5)

where the coefficient 𝛼 determines the chance of selecting BSDF
over guiding for importance sampling.

However, since 𝐿𝑖 (𝒙, 𝜔𝑖 ) is also from the noisy Monte Carlo sam-
ples [Müller et al. 2017], the estimates are also noisy and can have
high variance, making the sampling inefficient. Recently, Rath et
al.[2020] introduce a variance-aware guiding technique, leveraging
a new target sampling function that considers the variance:

𝑝guide-var (𝜔𝑖 ) ∝
√

E[𝐿2𝑖 (𝒙, 𝜔𝑖 )] cos2 𝜃𝑖 (6)

where E[·] represents the expectation. Additionally, they also take
the surfacematerial into account, resulting in the BSDFmarginalized
product sampling [Rath et al. 2020] used for path guiding:

𝑝guide-var-prod (𝜔𝑖 ) ∝
√

E𝜔𝑜 [𝑓
2
𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 )E[𝐿

2
𝑖 (𝒙, 𝜔𝑖 )] cos2 𝜃𝑖 ]

(7)
Our framework generally supports various sampling functions. We
take advantage of the advanced variance-aware technique (Eqn. 7)
to generate our results by default, leading to better quality than our
results with the traditional distribution (Eqn. 4).

Guiding using photons. In some special light transport cases such
as caustics from transparent objects or tiny light sources that are
hard to find through Monte Carlo sampling, most path samples
are terminated before reaching any light, leading to more noisy
𝐿𝑖 (𝒙, 𝜔𝑖 ) estimation. Compared to path samples, photons are often
a better choice in these scenarios, which have been used for path
guiding by previous work [Jensen 1995; Vorba et al. 2014; Zhu et al.

2020b]. Each photon 𝑝 carries a small portion of the emitter power
(radiant flux) ΔΦ𝑝 and its direction 𝜔𝑝 indicates where the light
comes from. The power Φ(𝒙,ΔΩ) that flows through a solid angle
footprint ΔΩ in local surface area 𝐴 is computed via integrating the
incident radiance 𝐿𝑖 (𝒙, 𝜔𝑖 ) where 𝜔𝑖 ∈ ΔΩ:

Φ(𝒙,ΔΩ) =

∫

𝐴

∫

ΔΩ

𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖𝑑𝒙 . (8)

The target distribution can be expressed as [Zhu et al. 2020b]:

𝑝guide-photon (𝜔𝑖 ) ∝ Φ(𝒙,ΔΩ)/ΔΩ =

∑

𝜔𝑝 ∈ΔΩ,𝒙∈𝐴

ΔΦ𝑝/ΔΩ (9)

This sampling distribution similarly approximates Eqn 4, but it
is evaluated by the summation of the surrounding photon power,
instead of the Monte Carlo estimation of path samples.
In practice, it is hard to know whether a path sample or photon

is better for an unknown scene; two extreme examples are shown
in Fig. 3. Therefore, in this paper, we choose to use both of them
(i.e., hybrid samples), although our framework also directly applies
to a single type of sample. Combining path samples and photons
is challenging since they distribute very differently and there is
no obvious and cheap way to combine them through re-weighting
(VCM [Georgiev et al. 2012] and its concurrent work [Hachisuka
et al. 2012] design specific techniques to address a similar issue in
radiance estimation, which however cannot be easily extended to
distribution estimation). Therefore, we use a neural network that
learns to combine their values and reconstructs a single sampling
distribution (Sec. 6) that is then used for path guiding.

4 OVERVIEW

The entire framework is illustrated in Fig. 2. We trace both photon
and path samples (i.e., hybrid samples), and deposit them into a
local quadtree representation of the sampling distribution stored in
a local spatial caching node as shown in Fig. 2(a) and (b). This step
is similar to the online quadtree construction in [Müller et al. 2017];
it leads to noisy distributions unless a large number of samples
are deposited. We instead propose to use a deep neural network
(pre-trained) to hierarchically reconstruct accurate quadtree distri-
butions from the noisy ones in Fig. 2(c). In the following sections,
we first describe the steps of building an initial quadtree at arbitrary
scene locations and depositing hybrid samples into it (Sec. 5). Next,
Sec. 6 presents the key component of our framework: a novel neural
network to reconstruct high-quality hierarchical sampling distri-
butions using both the initial noisy path and photon distributions
as input. Finally, we discuss the details of adaptively caching the
reconstructed distributions at different locations in the scene and
rendering of the final image (Sec. 7). Thereafter, Sec. 8 provides
the implementation details of neural training, sample tracing, and
rendering. Experiments on diverse testing scenes in Sec. 9 justify
the effectiveness of our proposed framework.

5 HIERARCHICAL STRUCTURE FOR HYBRID SAMPLES

As we discussed in Sec. 3, we need to collect path samples and/or
photons to learn a directional sampling distribution that resembles
the incident radiance field at arbitrary scene locations. Compared to
the previous neural path guiding work [Bako et al. 2019; Zhu et al.
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Table 2. List of notations used in Sec. 5, Sec. 6, and Sec. 7.

Notation Meaning

Hierarchical
input

structure
(Sec. 5)

S Sample
𝑙 Quadtree leaf
𝜔𝑖 Sample direction

(Z,Φ) Directional sampling space
𝑉S Sample value
A Accumulated sample value
Qℎ input quadtree from online accumulation

Neural
network

framework
(Sec. 6)

Q𝑟 Reconstructed quadtree from the neural network
Qgt Target (groundtruth) quadtree
®𝑓 Per-sample feature vector
®F Per-leaf feature vector

𝐹conv Convolution result
M Per-level feature map
V Predicted relative value to the parent node

𝑝leaf Predicted probability of node being a leaf
𝑚, 𝑛 Encoding and decoding tree level
𝑞, 𝑞𝑐 Decoded tree node and one of its children
L𝑄𝑟 Loss function
P Pooling
S Convolution
U Upsampling
T Node type classifier
R Value regressor

Sampling
and

rendering
(Sec. 7)

𝑟init Initial grid resolution
G Adaptive hierarchical hash grid
Bspt KD-tree in each voxel
𝑘spt Spatial subdivision threshold
𝑡 , T Current and total iteration(s)
𝛼 One-sample MIS coefficient

but also create a completely separate hierarchical structure Q𝑟 that
can be different from Qℎ , better representing the target distribu-
tion. Our hierarchical neural reconstruction leverages the sparsity
of the sampling distribution, processing and modeling directly on
quadtrees; this allows for high-resolution modeling using low mem-
ory, which is not achievable when using regular images with CNNs.
In addition, we also design our network to be compact enough for
high computational and memory efficiency; this is ideal for path
guiding, since it needs to simultaneously reconstruct sampling dis-
tributions at many different scene locations without introducing
too much overhead to the rendering algorithm.

6.2 Input hybrid samples

As described in Sec. 5, when a new path sample or photon arrives,
we convert its 𝜔𝑖 into (𝑧, 𝜙) and search Qℎ to find its corresponding
leaf node. Two separate value accumulators (Apath and Aphoton in
Eqn. 10) are used for adaptively refining Qℎ . However, using only
one-channel sample values is insufficient for reconstructing a better
quadtree. In this work, we collect additional auxiliary per-sample
information and form a hybrid multi-channel feature vector, as
illustrated in Fig. 2(a). Specifically, each sample contains value V
and additional features which include the local sample position
®𝑝 , the sample direction 𝜔𝑖 , the distance 𝑑 to the next bounce, the
surface normal directions ®𝑛 of the current and next bounce, and the

sample count 𝑐 = 1. For path samples, we also append the BSDF
value 𝑓𝑟 to the vector. Finally, as shown in Fig. 2(b), sample features
®𝑓path and ®𝑓photon are accumulated on each leaf 𝑙 at tree level𝑚, and

then concatenated into a single feature vector ®F𝑚,𝑙 :

®𝑓path = (V, 𝜔𝑖 , ®𝑝,𝑑, ®𝑛, 𝑐, 𝑓𝑟 ) ®𝑓photon = (V, 𝜔𝑖 , ®𝑝,𝑑, ®𝑛, 𝑐)

®Facc = (
∑

®𝑓path,
∑

®𝑓photon)

®F𝑚,𝑙
= (

®Facc
path

max
𝑄ℎ

®Facc
path

,

®Facc
photon

max
𝑄ℎ

®Facc
photon

)

(11)

where (, ) means vector concatenation, and summations are com-
puted for each leaf. max

𝑄ℎ

®Facc is the feature-wise maximum value

within the entire quadtreeQℎ after the summation, which is used for
separately normalizing the input of path samples and photons. This
normalization effectively removes the radiometric unit difference
between path samples and photons. The sample direction 𝜔𝑖 is also
implicitly included in the (𝑧, 𝜙) coordinates of S.

6.3 Convolution on a quadtree

Wepropose to directly apply convolutions on the quadtree to process
and regress the hierarchical feature data. In general, given a leaf 𝑙 on

level𝑚 in Qℎ , a convolutional layer outputs a new feature 𝐹𝑚,𝑙
conv via

a linear operation that is applied on its neighbors (empty neighbor
nodes are regarded as zeros) on the same tree level𝑚:

𝐹𝑚,𝑙
conv [𝑔] =

∑

𝑐

∑

𝑖

∑

𝑗

𝑊𝑖, 𝑗,𝑐 [𝑔] · ®F
𝑚,𝑙
𝑖, 𝑗,𝑐

M𝑚 [𝑔] [𝑙] = 𝐹𝑚,𝑙
conv [𝑔]

(12)

where 𝑖 and 𝑗 are 2D indices of the neighbors inside the convolu-
tional kernel𝑊 , 𝑐 represents the channel index of input features,
and 𝑔 is the index of kernels (also the channel index of the output
feature). HereM𝑚 is a sparse 2D feature map, containing the output
features of all valid leaves. Note that, this convolution on a quadtree
(Eqn 12) is not much different from the standard convolutional

layer on a 2D image. However, each ®F𝑚,𝑙
𝑖, 𝑗,𝑐 represents a feature in a

quadtree leaf node instead of a standard pixel; unlike an image, leaf
nodes on a single tree level𝑚 can distribute very sparsely, where
only a few leaves contain actual features that require convolutions.
Moreover, accessing a neighbor within the convolutional ker-

nel requires searching in the quadtree Qℎ to get its stored features
®F𝑚,𝑙 (Eqn. 11). This is non-trivial and can be much slower than
the standard CNN on a regular image where any element in an ar-
ray is immediately accessible. Fortunately, this neighboring search
problem has been addressed by the 3D shape processing commu-
nity using a faster hash table implementation [Graham et al. 2018;
Wang et al. 2017, 2018] with an optimization on reducing hash table
lookup times. In this work, we apply the same technique to speed
up our CNN on quadtrees, enabling efficient quadtree convolutional
operations. The same neighboring search is also naturally applied
to pooling layers in our network. Note that, because of the sparsity
of a quadtree, the network layers are applied only to the sparse
nodes in each tree level𝑚, which actually reduces the amount of
computation compared to the standard dense CNNs.
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Fig. 7. Multiple sets of training scenes, including diverse procedural random

scenes from the previous work [Zhu et al. 2020b] and complex indoor and

outdoor scenes designed by researchers and modeling artists.

generated training scenes, created by combining multiple random-
ized geometry primitives under area lights and environment maps.
We hold out 12 (from the 50) complex scenes as testing scenes to
evaluate our method. The remaining scenes are used for training.
We use the same method (described in Sec. 5) to create the in-

put (noisy) and output (ground-truth) quadtrees, from the training
dataset. In particular, we iteratively emit 2𝑡 SPP camera and light
rays in iteration 𝑡 ∈ [0,T] to create path and photon samples and
accumulate them in the spatial grid G in the scene, similar to the
rendering process in Sec. 7. We obtain the input quadtrees Qℎ by ac-
cumulating hybrid samples in the spatial voxels at every 𝑡in ∈ [0, 12]
iteration. For every input Qℎ at iteration 𝑡in, we freeze the spatial
cacheG for the following iterations 𝑡 > 𝑡in, continue collecting more
samples and repeatedly refine Qℎ to create the Qgt when reaching
𝑡 = 𝑡gt = 20. When accumulating hybrid samples, we use the BSDF
marginalized variance-aware sampling function (Eqn. 7) for the path
samples, unless otherwise stated in ablation studies (Sec. 9). As for
photons, we simply use their power (Eqn. 8) as the input values.
We also apply additional data augmentation designs to increase

the generalization ability of the neural networks. Since the hierar-
chical hash grid G has KD-trees Bspt containing spatial voxels of
different sizes (Sec. 7), we augment the training data by selecting 10
different initial resolutions 𝑟init equally spaced between 𝑟min

init = 10
and 𝑟max

init = 200, which can cover diverse voxel sizes. We also further
augment the input by randomly rotating the global frames.

Neural network training. Our network architecture is designed to
be compact for fast inference in rendering. The maximum number
of feature channels in our neural network is set to be 128. While this
leads to efficient sampling reconstruction, it is still challenging for
such a single network to handle diverse inputs with various num-
bers of input samples or very different sparsity levels. Therefore, we
train five separate versions of the same network as is done in [Zhu
et al. 2020b], where each one only needs to handle the input Qℎ that
contains a certain range of sample numbers (i.e., [0, 100), [100, 500),

[500, 1000), [1000, 5000), [5000,∞)). During both training and test-
ing, we split the set of Qℎ into these smaller groups, and these
networks are executed on GPUs in parallel to reconstruct the set of
Q𝑟 . We train these networks using the ADAM optimizer [Kingma
and Ba 2014] with a learning rate of 1.0 × 10−4 until convergence.

Rendering. When rendering, we stop learning distributions after
5 ∼ 10 iterations depending on the actual light transport complexity
of each scene, and guide the remaining path samples in the final-
pass rendering. Experiments are rendered on a workstation with
an Intel Core i9-7960X CPU and two Nvidia Titan RTX GPUs re-
quired to run our neural networks. For some simple testing scenes,
one GPU is sufficient. Sample tracing and rendering are performed
on the Mitsuba engine [Jakob 2010]. The neural network is inte-
grated into the rendering engine using the TensorFlow C++ API
with acceleration libraries, and other standard C++/CUDA libraries
for efficient data streaming. To utilize the potential parallelization
between the CPU and GPUs, the CPU keeps ray tracing and ren-
dering the current-pass result using the previously reconstructed
sampling distributions until the GPU finishes computing a new set
of Q𝑟 and updating those distributions. This effectively keeps the
CPU and GPU running busy and staying at high utilization. Our
quadtree-based neural networks are efficient to evaluate. The GPU
processing time is about 6% ∼ 15% (varying across scenes) of the
CPU processing time in our experiments. In the future, implement-
ing our proposed neural path guiding framework into a GPU-based
rendering engine leveraging hardware ray-tracing (e.g., [Parker et al.
2010]) can possibly result in higher efficiency in practice.

9 RESULTS

We present extensive evaluation in this section. Additional experi-
ments can be found in the supplementary material.

Configuration. We evaluate our method on 12 complex testing
scenes, each containing complex global illumination and diverse
geometric variations. When rendering each scene, we limit the
maximum number of bounces to 20; Next Event Estimation (NEE)
is turned off (except for Fig. 3) to clearly show the effectiveness of
path guiding for ours and all comparison methods. We compare
our methods with several traditional online path guiding methods
[Müller et al. 2017; Müller 2019; Rath et al. 2020; Ruppert et al. 2020]
which do not leverage deep learning techniques (CPU-only) but
either use hierarchical quadtrees (similar to ours) or mixture models
as their sampling distribution representation. We also compare with
neural guiding methods, including one [Bako et al. 2019] that can
only guide the first bounce and a recent photon-driven approach
[Zhu et al. 2020b] that can guide multiple bounces; these previous
neural methods represent sampling distributions as regular images.
For quantitative results, we use the standard relative Mean Squared
Error (rMSE) widely used in previous work [Rath et al. 2020; Zhu
et al. 2020b]. All the numbers are computed on tone-mapped LDR
images. In addition, we also show the memory cost of each method.

Qualitative and quantitative comparisons. Figure 8, 9 and 10 show
equal-time comparisons between our method and previous path
guiding methods on various complex (indoor, outdoor, and object)
scenes. Note that, our approach often achieves better qualitative and
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Veach Ajar


(14min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
       Memory

0.8868 0.7439 0.0309 0.0257 0.0146 0.0076 0.0014

1.0459 1.0177 0.0536 0.0455 0.0162 0.0076 0.0022

0.5269 0.3635 0.0147 0.0113 0.0049 0.0025 0.0006
0.25 GB 2.01 GB 0.40 GB 1.47 GB 1.28 GB 5.37 GB 1.51 GB

0.5623 0.4198 0.1152 0.0988 0.0658 0.0417 0.0295

0.6939 0.4631 0.1135 0.0943 0.0766 0.0490 0.0352

Full-img (rMSE)
      Memory

0.5745 0.3804 0.1085 0.0896 0.0689 0.0402 0.0300
0.63 GB 2.46 GB 0.80 GB 1.55 GB 1.15 GB 15.27 GB 1.93 GB

Hotel Room


(12min)

0.1970 0.1137 0.0766 0.0594 0.0204 0.0101 0.0058

0.0938 0.0700 0.0522 0.0445 0.0150 0.0119 0.0055

Full-img (rMSE)
       Memory

Bathroom


(4min)
0.0709 0.0507 0.0340 0.0265 0.0098 0.0056 0.0032
0.35 GB 0.85 GB 0.39 GB 0.53 GB 0.54 GB 5.23 GB 0.57 GB

0.0221 0.0110 0.0044

0.0205 0.0153 0.0117

Full-img (rMSE)
       Memory

0.0732 0.0056 0.0034
0.60 GB 9.26 GB 0.86 GB

Kitchen


(3min)

0.1012 0.1050 0.0467 0.0328

0.2812 0.2745 0.0317 0.0331

0.0612 0.0144 0.0115 0.0073
1.12 GB 0.62 GB 0.78 GB 0.81 GB

Ruppert et al.

0.0038

0.0124

0.0107

0.69 GB

0.0459

0.0426

0.0484

0.74 GB

0.0030

0.0053

0.0049

0.48 GB

0.0215

0.0210

0.0083
0.77 GB

Fig. 8. Equal-time comparisons. We compare our method with previous path guiding methods [Müller et al. 2017; Müller 2019; Bako et al. 2019; Rath et al.

2020; Zhu et al. 2020b; Ruppert et al. 2020] on complex indoor scenes. For each scene, we show visual comparisons on two crops with corresponding rMSE

numbers. We also show the rMSE of the full image and the memory usage for all the methods. Our approach often achieves better visual quality and lower

rMSE (on both crops and full images). Our method achieves this with memory cost that is comparable to traditional methods [Müller 2019; Rath et al. 2020]

and much less than the previous neural technique [Zhu et al. 2020b].

quantitative results. Our results of zoomed-in rendering crops are
smoother, showing less noticeable noise than other results, and are
visually closer to the reference. In contrast, the previous first-bounce
guiding method [Bako et al. 2019] cannot handle these challenging
cases very well, although it also leverages deep learning techniques;
it can only improve the primary bounce sampling thus performs
worse than the other guiding methods including the traditional on-
line ones on our testing scenes with strong indirect illumination. The
three traditional methods [Müller et al. 2017; Müller 2019; Rath et al.
2020] use pure path samples as input and reconstruct hierarchical
quadtree distributions online for multi-bounce path guiding. They
achieve effective path guiding and improve over the standard path
tracing; in particular, Rath et al. [2020] shows clear advantages over

the other two because of its more efficient variance-aware sampling
distribution. Other than the quadtree, Ruppert et al. [2020] leverages
mixture models (VMMs) to fit path samples by an online adaptive
optimization framework, which outperforms many other techniques
due to the careful positioning of mixture components and a novel
parallax compensation module. However, these methods still lever-
age a slow online learning process, requiring a large number of path
samples and many iterations to achieve accurate distributions for
path guiding. The recent photon-driven neural method [Zhu et al.
2020b] uses a pre-trained network to relieve this slow online learn-
ing, leading to better results. However, this technique [Zhu et al.
2020b] (same to [Bako et al. 2019]) can only reconstruct sampling
distributions as regular 2D images (unlike quadtress) that have a
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Caustics Egg


(4min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
       Memory

0.6473 0.0856 0.0199 0.0075 0.0061 0.0033 0.0008

0.5526 0.2993 0.0647 0.0418 0.0287 0.0094 0.0062

0.3384 0.1480 0.0276 0.0155 0.0125 0.0048 0.0027
0.05 GB 0.55 GB 0.10 GB 0.60 GB 0.40 GB 2.61 GB 0.64 GB

0.2987 0.2705 0.2610 0.2202 0.1734 0.1081 0.0336

0.5267 0.5192 0.3045 0.1340 0.1909 0.0319 0.0140

Full-img (rMSE)
       Memory

0.2734 0.1242 0.0952 0.0608 0.0665 0.0224 0.0080
0.22 GB 0.66 GB 0.23 GB 0.26 GB 0.24 GB 4.25 GB 0.38 GB

Spaceship


(2min)

0.0418 0.0070 0.0051 0.0052 0.0009 0.0014 0.0003

0.06680.0699 0.0101 0.0096 0.0029 0.0016 0.0006

Full-img (rMSE)
       Memory

0.1099 0.0464 0.0037 0.0034 0.0015 0.0010 0.0006
0.76 GB 1.67 GB 0.78 GB 1.18 GB 1.16 GB 3.81 GB 1.21 GB

Pool


(4min)

0.0031

0.0327

0.0072
0.27 GB

Ruppert et al.

0.0828

0.0868

0.0287
0.31 GB

0.0014

0.0038

0.0012
0.78 GB

Fig. 9. Equal-time comparisons. Similar to Fig. 8, we show more equal-time comparisons between our method and previous path guiding methods [Müller

et al. 2017; Müller 2019; Bako et al. 2019; Rath et al. 2020; Zhu et al. 2020b; Ruppert et al. 2020]. Our method can also achieve better qualitative and quantitative

results using moderate memory costs.

fixed low resolution, hence restricting the accuracy and efficiency
of sampling. Our approach instead directly regresses hierarchical
quadtrees from hybrid samples for sampling and can represent more
fine-grained distributions under different light transport conditions.
As a result, our approach further outperforms [Zhu et al. 2020b].

We achieve better rendering quality without a large memory
overhead; the sparseness of our representation and the effectiveness
of our neural reconstruction lead to high memory-efficiency. The
recent neural technique [Zhu et al. 2020b] requires much larger
memory due to the use of grid representation (image). For most
scenes, our memory consumption is comparable to the traditional
methods [Müller 2019; Rath et al. 2020] without deep learning.

Hybrid samples. To further demonstrate the effectiveness of using
hybrid samples, comparisons on two extreme light transport settings
are shown in Fig. 3 earlier in the paper. These two Cornell Box
scenes are specifically designed to make only one type of the input
samples (either paths or photons) useful. Previous methods that use
either path samples or photon samples cannot work effectively on
both challenging cases. In contrast, our approach uses a hybrid of
both path samples and photons with a novel hierarchical neural

reconstruction, leading to more robust rendering on both cases. Our
neural network learns to correlate the information and convert it
into a single high-quality hierarchical sampling distribution. As
demonstrated in other results of complex scenes (Fig. 1, 8 and 9),
our proposed framework with hybrid input can robustly work well
across various challenging light transport cases.

Convergence. We also evaluate how our method performs with an
increasing number of samples. In particular, we run our method on
two testing scenes (Racing Car and Kitchen, shown in Fig. 1 and 8)
with different total numbers of traced rays (including both camera
and light rays) per pixel and compare the rMSEs with other methods
using the same budgets of sampling rays. The results are shown in
Fig. 11. We can see that our novel neural path guiding approach
consistently achieves lower errors with more samples; ours also has
smaller errors compared to previous methods. Note that, while the
recent neural method [Zhu et al. 2020b] can often achieve better
results than the other traditional methods with a moderate sampling
budget, its gain gets reduced with very large sampling budgets due
to the fixed resolution sampling map which intrinsically cannot
express the high-frequency lighting perfectly. On the other hand,
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