
Rethinking Sampling in 3D Point Cloud

Generative Adversarial Networks

He Wang1∗ Zetian Jiang2∗ Li Yi3 Kaichun Mo1 Hao Su4 Leonidas J. Guibas1

1Stanford University, 2Shanghai Jiao Tong Univeristy,
3Google Research, 4University of California, San Diego

Abstract

In this paper, we examine the long-neglected yet important effects of point sam-
pling patterns in point cloud GANs. Through extensive experiments, we show
that sampling-insensitive discriminators (e.g. PointNet-Max) produce shape point
clouds with point clustering artifacts while sampling-oversensitive discriminators
(e.g. PointNet++, DGCNN) fail to guide valid shape generation. We propose
the concept of sampling spectrum to depict the different sampling sensitivities
of discriminators. We further study how different evaluation metrics weigh the
sampling pattern against the geometry and propose several perceptual metrics form-
ing a sampling spectrum of metrics. Guided by the proposed sampling spectrum,
we discover a middle-point sampling-aware baseline discriminator, PointNet-Mix,
which improves all existing point cloud generators by a large margin on sampling-
related metrics. We point out that, though recent research has been focused on
the generator design, the main bottleneck of point cloud GAN actually lies in the
discriminator design. Our work provides both suggestions and tools for building
future discriminators. We will release the code to facilitate future research.

1 Introduction

Point cloud, as the most common form of 3D sensor data, has been widely used in a variety of
3D vision applications due to its compact yet expressive nature and its amenability to geometric
manipulations. It is natural to consider how to generate point cloud through deep learning approaches,
which has been a popular research topic recently. The previous research efforts in the community have
been mainly devoted to conditional generation of point clouds with 3D supervision. The condition
could either be images [3, 4, 13] or partial point clouds [9, 22].

Generating 3D point clouds with GANs in an unsupervised manner is an important but less explored
problem. 3D point cloud GAN learns to transform a random latent code into a 3D surface point cloud
by playing an adversarial game. Its development is still in an early stage compared with 2D image
GANs. While existing works such as [1, 19, 17] have developed a variety of generators, they all use
PointNet [14] with max pooling (PointNet-Max) as their discriminator. PointNet, which is essentially
a pointwise MLP followed by a global pooling operation, is too limited in capturing shape details
for a successful GAN. However, advanced networks, e.g. PointNet++[15], DGCNN[20], which
leverage relative positions between points and hierarchical feature extraction, may not help. From our
empirical study, we find they both fail to be a functioning discriminator. Understanding their failure
mechanism and further improving discriminator design are hence important and urgent.

To design a better discriminator, we first need to answer the following question: what should the
discriminator examine for improving the generation quality? Or, even more fundamentally, what
does it mean by the quality of generated point clouds?

∗ denotes equal contributions.

Preprint. Under review.

a
rX

iv
:2

0
0
6
.0

7
0
2
9
v
1

[c

s.
C

V
]

 1
2
 J

u
n
 2

0
2
0

the generator design, people should invest more time into discriminator and seek for more powerful
sampling-aware discriminators.

2 Point Cloud GAN Landscape

In this section, we review the current state of point cloud GAN covering the generators, the discrimi-
nators, and the evaluation metrics we are examining in this work.

2.1 Point Cloud GAN Generators

Recent point cloud GAN works primarily focus on the generator design. The existing generators
can be categorized into two classes: fully-connected (FC) generators and graph convolutional
generators. The first point cloud GAN, r-GAN [1], simply uses an FC network as its generator.
GraphCNN-GAN [19] and TreeGAN [17] are the rest two published works in this field that use graph
convolutional generators. The two methods are very similar in principle. The main difference lies
in how they build graphs. GraphCNN-GAN builds a dynamic k-nn graph based upon feature space
distance while TreeGAN enforces a tree structure throughout its sequential graph expansion and the
messages can only be passed from ancestors vertices to descendants vertices.

Deformation-based decoders [4, 22] are widely used in the point cloud auto-encoder networks for 3D
shape reconstruction. The decoders leverage Multiple-layer Perceptrons (MLP) to deform template
surfaces into shape surfaces taking as inputs the concatenation of template point coordinates and the
latent shape feature vectors. Though the decoders can truly act as generators for point cloud GANs,
they have not yet been used in unconditioned point cloud GAN literature. Recently, Mo et al. [11]
use deformation-based decoder as part generators for structure-conditioned point cloud GAN.

2.2 Point Cloud GAN Discriminators

All existing works on unconditioned point cloud GANs use PointNet [14] with max-pooling (PointNet-
Max) as their discriminators. PointNet learns a function h that maps each point pi in the point cloud
to a per-point feature h(pi) ∈ R

d and then extracts a permutation-invariant global feature F ∈ R
d

by pooling the per-point features across all points using a symmetric function g, which can be max
pooling, average pooling, etc. Namely, we have F = g({h(p1), h(p2), · · · , h(pN)}).

PointNet-Max/Avg. Though g can be any symmetric function, most existing works use max-
pooling. In PointNet [14], the authors show that max-pooling outperforms average-pooling on 3D
shape classification tasks. They further show that the global feature F obtained from max-pooling is
determined by only a sparse subset of the points, namely critical points CS , bringing PointNet-Max
with robustness against small data perturbation and corruption. However, this property may limit its
discriminative power on telling the density variations and classifying different sampling patterns. To
investigate how different aggregation operations affect the sampling sensitivity and generation quality,
we study the two common choices of the symmetric function g, max-pooling, and average-pooling, in
this paper. We will show in Sec. 3 that using different aggregation operations makes huge differences
when adapting PointNet-based networks as point cloud GAN discriminators.

PointNet-Mix. By simply concatenating the max-pooling feature and the average pool feature,
we obtain another permutation-invariant feature. We name this PointNet-Mix. Formally, Fmix =
[max{h(p1), ..., h(pN)}; avg{h(p1), ..., h(pN)}] ∈ R

2d. The mix-pooling operation is a special
choice of the symmetric function g. We will show in our experiments that PointNet-Mix, though
simple, surprisingly improves the performance for most point cloud GANs by a large margin on
sampling-aware metrics.

PointNet-Attention. A recent point cloud upsampling work [9] incorporates a self-attention module
into PointNet for its discriminator and shows improved point density in the upsampled point cloud. We
denote this discriminator as PointNet-Attention. The self-attention module learns three separate MLPs
to transform each h(pi) into f(pi), l(pi), k(pi) ∈ R

d correspondingly. Then an attention weight ma-
trix is formed by W = SoftMax

(

[f(p1), ..., f(pN)]T [(l(p1), ..., l(pN))]
)

∈ R
N×N . A weighted fea-

tures is then obtained through w(pi) = h(pi) +WT k(pi). The final aggregated features of PointNet-
Attention is a max-pooling of the weighted feature, namely Fattention = max{w(p1), ..., w(pN)}.
Note that PointNet-Attention allows the per-point features to communicate with each other according
to their similarity, which is more sensitive to sampling patterns than PointNet-Max. We investigate
this strategy in our paper as well.

Discriminators beyond PointNet. Recently, there have been many works [14, 10, 20, 6, 18]
extending PointNet to more advanced 3D deep learning architectures on point clouds. They improve

3

PointNet by extracting more local or hierarchical geometric features via point cloud convolutions or
point cloud graph learning. Though proven to be effective on shape classification and segmentation
tasks, no published work examines adapting them as point cloud GAN discriminators. In this paper,
we investigate two exemplar beyond-PointNet discriminators: PointNet++ [15] and DGCNN [20].

2.3 Point Cloud GAN Evaluation Metrics

Achlioptas et al. [1] introduces two distance metrics in the Euclidean space for evaluating point cloud
GAN: the coverage scores (COV) computing the fraction of the point clouds in B that are closed
to the point clouds in A using either Earth Mover’s distance (EMD) or Chamfer distance (CD), and
the Minimum matching distance (MMD) scores measuring the fidelity of A with respect to B using
either EMD or CD. In the field of 2D image GAN, it is common to use perceptual metrics, such as the
Frechét distance [7] between real and fake Gaussian measures in the feature spaces, for evaluating the
generated image results. Formally, Frechet Distance = ||µr − µg||

2 + Tr(Σr +Σg − 2 (ΣrΣg)
1/2

),
where µ and Σ are the mean vector and the covariance matrix of the features calculated from either
real or fake data distribution, and Tr is the matrix trace. For point clouds, Shu et al. [17] proposes
Frechét Point Cloud Distance (FPD), which uses the features extracted from a pre-trained PointNet-
Max model. In this paper, we position the existing metrics on a sampling spectrum according to their
sampling sensitivity and propose novel sampling-aware metrics to augment the spectrum.

3 Sampling Spectrum of Discriminators

While recent works propose many advanced generator improvements for point cloud GANs, we find
that designing a good discriminator is of equal importance, if not more. In this section, we introduce
the sampling spectrum of discriminators, on which we thoroughly examine the positions of different
discriminators that explain their behaviors when training point cloud GANs.

3.1 Sampling Sensitivity of Discriminators

The sampling sensitivity of a discriminator depicts how much it responds to a change in the point
density or sampling pattern of an input point cloud. We find it extremely hard to quantitatively
measure this sensitivity given the difficulty of measuring changes in the sampling patterns. Naively
using Euclidean metrics (e.g. CD or EMD) to measure the distance between two sampled point sets is
not a solution, since given the same distance budget, the discriminator’s responses can be dramatically
different depending on how the sampled points move. Instead, we can set landmarks in the continuous
spectrum of sampling sensitivity by examining the discriminative power of the discriminators against
different sampling patterns under a series of experiments from easy to hard. Specifically, we design
two experiments to test whether a discriminator could tell clustering artifacts in point clouds and
whether it could distinguish between FPS and uniform sampling patterns. Accordingly, we divide the
spectrum into three regimes: sampling-insensitive, sampling-aware, and sampling-oversensitive, as
shown in Fig.1.

A sampling-insensitive discriminator does not respond to local point density changes if the overall
shape remains roughly the same. This kind of discriminators can’t tell clustering artifacts in the
generated point clouds, i.e. Fig.1 (b), and thus may cause the non-uniform density in the generated
point clouds.

A sampling-aware discriminator can notice the significant point non-uniformity and is hence
capable of supervising the generator to enforce a similar sampling distribution to the training data,
while being ignorant to subtle changes when the sampling is already uniform in an intermediate scale.
Such discriminator will judge Fig.1 (b) as fake but can’t tell the difference between Fig.1 (c) and (d).

A sampling-oversensitive discriminator can tell very subtle changes in the sampling patterns, e.g.
the difference between FPS and uniform sampling even if the shape of two point clouds are the same
(Fig.1 (c) and (d)).

3.2 Sampling Sensitivity Examination Results

We design diagnostic experiments to categorize point cloud GAN discriminators on the sampling
spectrum: sampling-insensitive (PointNet-Max [14]), sampling-aware (PointNet-Avg [14], PointNet-
Mix, PointNet-Attention [9]), and sampling-oversensitive (PointNet++ [15] and DGCNN [20]).
The Discriminating Power against Clustering Artifacts. To examine whether the discriminators
can tell clustering artifacts or not, we create a diagnostic classification dataset from ShapeNet [2].
Taking 100 shapes from the chair class, we uniformly sample 2048 points from each shape, forming

4

Experiment PointNet-Max PointNet-Avg PointNet-Mix PointNet-Attention PointNet++ DGCNN
Clustering artifacts 56%/53% 98%/99% 97%/96% 94%/93% 100%/98% 100%/99%

FPS vs. uniform 50%/50% 50.3%/50% 51.5%/50% 50.1%/50% 100%/97% 100%/96%

Table 1: Evaluating the discriminating power of the discriminators against clustering artifacts and
sutble change in sampling patterns. In each cell, the number on the left show the training accuracy
while the number of the right shows the test accuracy.

a set of real point clouds. To form a fake set of point clouds, for each chair, we first uniformly sample
1024 points, and then densely sample another 1024 points around a random position on the chair
within a 0.1 radius. The real/fake point clouds are used as the labeled training dataset. We repeat the
same process to generate a test dataset using a different set of 100 chairs.

We supervisely train each discriminator to classify the real/fake point clouds. We train them 200
epochs until convergence. The training and test accuracies are shown in the first row of Table 1.
Despite the huge density variation and the remarkable clustering artifacts, PointNet-Max is just barely
better than a random guess while the rest of the discriminators are very successful in telling the fake
from the real. This indicates that PointNet-Max is sampling-insensitive. Note that the discriminating
power of a network towards certain artifacts is maximized under such supervised training scheme. A
network will fail to identify such artifacts in an adversarial training scheme if it fails in a supervised
training scheme. We will see in Sec. 5.2, point clouds generated by GAN using PointNet-Max as the
discriminator indeed suffer from non-uniform density artifacts.

Our insight why PointNet-Avg/Mix can tell the artifacts but PointNet-Max fails is that the average
pooling feature computes the center of the mass of the points in feature space and is hence aware to
certain global non-uniform density distributions. PointNet-Attention leverages a learnable weighted
averaging and is hence capable to identify the difference.

Distinguishing between FPS and Uniform Sampling. We construct another diagnostic dataset
with real and fake data which are the same in their shapes but only differ in their sampling patterns.
Specifically, we perform uniform sampling to generate real data and use FPS to generate fake data
from 100 chairs. Figure 1 (c) and (d) illustrate the different sampling pattern outcomes.

We present the training and test accuracies in the second row of Table 1 and show that both PointNet++
and DGCNN can perfectly distinguish the subtle difference in sampling patterns while the rest
discriminators make no progress even on the training set. The experiment indicates that PointNet-
Avg/Mix/Attention are sampling-aware while PointNet++ and DGCNN are sampling-oversensitive.

We believe, for PointNet++ and DGCNN, their capability of distinguishing FPS from uniform
sampling owes to their usage of relative point positions or edge information, which are highly
sensitive to any change in sampling. We will show in Sec. 5.3 that this remarkable discriminating
power of PointNet++ and DGCNN on sampling patterns actually leads to their failures as a functioning
discriminator to train point cloud GANs.

4 Sampling Spectrum of Evaluation Metrics

Similar to the discriminator design, it is very important to understand how different evaluation metrics
weigh the differences in sampling patterns against geometry quality. Thus, we introduce the sampling
spectrum of evaluation metrics, which exactly resembles the sampling spectrum of discriminators
introduced in Sec. 3. On the spectrum, we have sampling-insensitive metrics that measure only
the shape geometry and are ignorant of the sampling patterns, and sampling-sensitive metrics that
measure both at the same time.

For perceptual metrics, i.e. Frechét distances in feature spaces, the sampling sensitivity of the metric
purely depends on the sampling sensitivity of its feature extractor. Frechét distance measured in
different feature spaces may respond very differently to changes in point density and sampling
patterns. In this work, we examine three Frechét distance metrics that extract features using PointNet-
Max, PointNet-Mix, and DGCNN, respectively. We denote them as Frechét PointNet-Max Distance
(FPD-Max), Frechét PointNet-Mix Distance (FPD-Mix), and Frechét DGCNN Distance (FGD). We
pretrain all the three feature extraction networks on ModelNet40 [21] shape classification.

To examine the sampling sensitivity of FPD-Mix/Max and FGD, we create several copies of the
training split of our ShapeNet chair dataset (see Sec.5.1), each of which uses a different sampling
strategy to obtain the shape point clouds. The reference one used as the ground truth is using uniform
sampling. Then we consider 1) uniform sampling with a different random seed; 2) FPS; and 3)

5

Data FPD-Mix ↓ FPD-Max↓ FGD↓ MMD-E↓ MMD-C↓ COV-E↑ COV-C↑
Uniform re-sampling 0.1153 0.0926 0.8141 0.1104 0.00145 70.69 72.16

Farthest point sampling 0.1700 0.1558 1.8833 0.1064 0.00137 67.74 69.36
Biased sampling 2.8631 0.3524 9.6719 0.2469 0.00145 23.12 71.28

Table 2: Examining sampling sensitivity of evaluation metrics.

biased sampling with clustered artifacts (as described in Sec. 3.2). We use all the available metrics to
evaluate their distances to the ground truth data. The results are shown in Table 2.

We observe that the Frechét distance metrics share the same sampling sensitivity of their correspond-
ing discriminators. For example, since PointNet-Max is sampling-insensitive, FPD-Max remains
very low even on biased sampling data, hence FPD-Max serves as a perceptual geometry metric,
which is ignorant to sampling patterns. Similarly, we find that FPD-Mix is sampling-aware since it
clearly detects the biased sampling patterns while not being able to distinguish the uniform sampling
and FPS, while FGD is sampling-oversensitive in that it can tell apart FPS and uniform sampling.

For Euclidean distance metrics, results in Table 2 show that COV-EMD and MMD-EMD are sampling-
aware, which is intuitively reasonable since EMD enforces a one-to-one matching and is aware of the
point density, while COV-CD and MMD-CD are sampling-insensitive.

5 Experiments

Aware of both the sampling spectrums, we conduct experiments to further evaluate the performance
of point cloud GANs under various evaluation metrics. We show that the point cloud GANs
using sampling-insensitive discriminators may produce point clustering artifacts, while sampling-
oversensitive discriminators fail to supervise point cloud GAN training at all. We further devise a
diagnostic "no-generator" experiment that factors out the generators to better illustrate our discoveries
on discriminators. More interesting, we find that the simple PointNet-Mix paired of any generator,
even with the most naive fully-connected one, achieves the state-of-the-art performance.

5.1 Setting and Datasets

We provide a thorough comparison of all the discriminators investigated in Sec.3 combining with all
the available generators in the published literature, including the FC generator proposed in r-GAN [1],
and graph convolutional generators used in TreeGAN [17]. We also add a deformation-based
generator into the comparison given its popularity for supervised point cloud reconstruction [4, 22].

We use two datasets to evaluate the GANs. One is a single-category dataset containing point clouds
sampled from all 6,778 chair meshes in ShapeNet [2]. The other is a multi-category dataset combining
shapes from airplane, car, chair, rifle, sofa, table, vessel categories in ShapeNet. The multi-category
dataset contains 34,313 shapes in total. We uniformly sample 2048 points from each shape to form the
two datasets. We follow the 85%/5%/10% train/validation/test split in [1] and use WGAN-gp [?, 5]
for the GAN training, similar to previous works [1, 19, 17].

5.2 Evaluating PointNet-based Discriminators with Various Generators

We report the performance for point cloud GANs that combine PointNet-Max/Min/Attention discrim-
inators and FC/Deform/TreeGAN/Graph-CNN generators in Table 3. We observe that GANs using
PointNet-Mix as the discriminator outperform the ones using PointNet-Max/Attention across all differ-
ent generators. On sampling-aware/sensitive metrics (i.e. FPD-Mix, FGD, MMD-EMD, COV-EMD),
PointNet-Mix is always significantly better than PointNet-Max and is better than PointNet-Attention
mainly on FPD-Mix and FGD. Regarding geometry quality evaluated using sampling-insensitive
metrics (i.e. FPD-Max, MMD-CD, COV-CD), PointNet-Mix is always significantly better than
PointNet-Attention on FPD-Max and COV-CD while remaining on a par with PointNet-Max.

In Figure 2, we present the generated point clouds for all the experiments with color-coding for
the local point density. We see that the generators trained using PointNet-Max usually suffer from
non-uniform density, except for the deformation generator. On the chair class, points are usually
clustering around the seat area while being sparse at the back. On the contrary, PointNet-Mix enforces
a globally uniform point density and hence greatly improves the visual quality of the generated point
clouds. PointNet-Attention is in the between.

With PointNet-Mix, we observe that the most naive FC generator works the best outperforming the
previously state-of-the-state generators on almost of metrics. This showcases the importance of being

6

be more discriminative in shape and aware but not oversensitive to sampling patterns. For the sanity
check of any novel discriminators, our proposed "no generator" experiment can be used.

Acknowledgments and Disclosure of Funding

This research is funded in part by Kuaishou Technology and supported by NSF grant IIS-1764078,
NSF grant CHS-1528025, a grant from the SAIL-Toyota Center for AI Research, a Vannevar Bush
Faculty Fellowship, and a gift from Amazon Web Services.

A Training Details

For WGAN training, we set the gradient penalty coefficient λgp = 1. In each iteration, the discrimina-
tor gets updated ten times while the generator gets updated one time (ncritic = 10). The latent vector
z ∈ R

512 is sampled from a standard normal distribution N (0, I). We used the Adam optimizer for
updating all the generator and discriminator networks with a learning rate 10−4 and other coefficients
of β1 = 0.5 and β2 = 0.999. We train all the GANs for 6000 epochs on chair dataset and 1500
epochs on multi-category dataset. We observe all GANs converge at the end of training.

Our networks are implemented using PyTorch. We use one NVIDIA Titan-Xp to train a GAN model.
We will release our code to facilitate research in this field.

B Network Architectures

B.1 Discriminators

PointNet Discriminator For all our experiments, we use a fixed PointNet architecture as below.
Note that mix pooling will double the feature dimension while max pooling and average pooling
keep it unchanged. For each FC layer in the MLPs except the last one before the final output, we use
LeakyRELU as the activation function. To constrain the range of the discriminator output, we use a
Sigmoid activation at the end, which we find helpful for stabilizing the training in our experiments.

MLP([3, 64, 128, 1024]) → Max/Avg/Mix-Pooling() → C ∈ R
N×1024/1024/2048

→ MLP([1024/1024/2048, 512, 1]) → Sigmoid()

Attention-Max/Mix The network structures are shown below.

MLP([3, 32, 64]) →F ∈ R
N×64 →MLP([64, 32]) → G ∈ R

N×32

→F ∈ R
N×64 →MLP([64, 32]) → H ∈ R

N×32

→F ∈ R
N×64 →MLP([64, 64]) → K ∈ R

N×64

F + ωSoftMax(GHT)K →MLP([64, 256, 1024]) →Max/Mix-Pooling()

→MLP([1024/2048, 512, 1]) →Sigmoid()

ω ∈ R is a learnable weight to balance between the original feature F and the feature GHTK from
self attention unit.

Original attention implementation in PU-GAN[9] PU-GAN[9] performs an additional early
fusion after the first MLP, basically it performs max pooling to obtain T = Max(F) ∈ R

1×64 and
per-point concatenates T to F forming F ′ = [F, tile(T)]. Other than replacing F by F ′, it is almost
same to our implementation. We modify the dimensionality of its final feature after the second max
pooling to be 1024 for a fair comparison to other discriminators. Since this structure leverages two
pooling layers, it is unfair to compare it with other discriminators and hard to see the effect of its
self-attention unit, which is why we introduce our PointNet-Attention.

PointNet++ To speed up the training, we use a slightly simplified version of PointNet++[15] with
the architecture shown below. Same to the original implementation, we use LeakyReLU and batch

9

normalization for each FC layer in the set abstraction layers (SA), and only LeakyReLU for the FC
layers in the final MLP.

SA(512, 0.1, [3, 64, 64, 128]) → Max-Pooling()

→ SA(128, 0.2, [128 + 3, 128, 256, 256]) → Max-Pooling()

→ GlobalSA([256 + 3, 256, 512, 1024]) → Max-Pooling()

→ MLP([1024, 512, 1]) → Sigmoid()

DGCNN To speed up the training, we use a slightly simplified version of DGCNN[15] with the
architecture shown below. Same to the original implementation, we use LeakyReLU and batch
normalization for each convolutional layer in the EdgeConv layers.

EdgeConv([6, 64]) → Max-Pooling()

→ EdgeConv([64× 2, 64]) → Max-Pooling()

→ EdgeConv([64× 2, 128]) → Max-Pooling()

→ EdgeConv([128× 2, 256]) → Max-Pooling()

→ EdgeConv([512, 1024]) → Max-Pooling()

→ MLP([1024× 2, 512, 256, 1]) → Sigmoid()

B.2 Generators

We used the officially released code of TreeGAN[17] and GraphCNN-GAN[19]. We implement the
FC generator and the deformation generator with the architectures shown below. For each FC layer
except the last one in the second MLP, we use LeakyReLU as the activation function.

Note that our ground truth data are normalized point clouds with a zero center and a unit length
diagonal. We hence use a Sigmoid activation at the last layer. And we translate the Sigmoid output
by (−0.5,−0.5,−0.5) to produce the final point cloud.

FC Generator The structure of FC generator is shown below:
MLP([512, 512, 512, 512, 2048, 2048× 3]) → Sigmoid()− (0.5, 0.5, 0.5)

Deformation Generator In our experiments, we use a unit sphere as our template surface, because
all of our real point clouds are sampled from closed surfaces. In addition to a latent code, we input
2048 uniformly sampled points on the unit sphere to our deformation generator. We randomly
generate the points for each point cloud simply by normalizing random variables drawn from 3-
dimension normal distribution into unit vectors[12]. We add a batch normalization layer to the last
FC layer in the first MLP, which we find important for its generation quality.

MLP([3 + 512, 512, 512, 512, 512]) → MLP([512, 64, 3]) → Sigmoid()− (0.5, 0.5, 0.5)

C More Results of PointNet-based Discriminator Variants

In Table.5, we provide more results of other variants of PointNet-based discriminators.

PointNet-Max-2048 Note that PointNet-Max discriminator generates a 1024-D feature after max-
pooling while PointNet-Mix discriminator doubles the size to 2048-D due to the concatenation of max
and average pooling features. This difference affects the weights of the following MLP layers. For a
completely fair comparison, we also experiment with a PointNet-Max-2048 discriminator which has
the following network structure:

MLP([3, 64, 128, 2048]) → Max-Pooling() → MLP([2048, 512, 1]) → Sigmoid().
To highlight the difference, in Table 5, we change the name of our previous PointNet-Max dis-
criminator in the Table 3 from Max to Max-1024. When paired with FC generator, comparing to
PointNet-Max-1024, PointNet-Max-2048 shares a very similar performance. It gets slightly worse on
the chair dataset except for on COV-EMD metric while outperforming PointNet-Max-1024 slightly
on the multi-category dataset. Using both 2048-D feature, PointNet-Max-2048 is stil far behind
PointNet-Mix, which again demonstrates the advantage of Mix-Pooling over Max-Pooling.

10

PointNet-Attention-Mix and original PU-GAN Discriminator[9] In the Table 3, we show that
PointNet-Attention can improve the performance on sampling-related metrics comparing to PointNet-
Max, which means self-attention module does capture the point density distribution though its overall
generation quality is worse than PointNet-Mix. Note that PointNet-Attention also leverages a max
pooling before outputting scores, it would be interesting to know whether replacing the max pooling
by mix pooling can further improve its performance. In Table.5, we denote the two variants as
Attention-Max and Attention-Mix, correspondingly. We find that PointNet-Attention-Mix actually
performs worse than PointNet-Attention-Max. We argue that the mix-pooling’s density awareness
comes from average pooling, which computes the center of mass in the feature space and hence is
aware to certain baised sampling, but self-attention module degrades the density awareness in the
average feature. In PointNet-Attention-Mix, the mix pooling sees a weighted sum of the per-point
feature F and a blended feature GHTK from self-attention unit. Different with averaging, the
learned correlation coefficients between the points GHT no longer maintains the information of point
density distribution, and that’s why leveraging a mix-pooling in this case doesn’t help enforcing a
more uniform point density.

Our implementation of PointNet-Attention is different with the original implementation in PU-
GAN[9], which leverages two max pooling layers with one at an early stage and one at a later stage.
We experiment with the original implementation in PU-GAN[9] and find that it outperforms our
Attention-Max/Mix however is still fall behind PointNet-Mix by a large margin.

Dataset Generator Pooling FPD-Mix ↓ FPD-Max↓ FGD↓ MMD-E↓ MMD-C↓ COV-E↑ COV-C↑

Chair

FC Max-1024 1.571 0.211 7.030 0.1017 0.00164 23.56 72.75
FC Max-2048 1.638 0.224 7.926 0.1697 0.00144 42.26 70.98
FC Mix 0.184 0.209 2.124 0.0674 0.00196 73.64 74.96
FC Attention-Max 0.635 0.672 4.971 0.1156 0.00160 68.92 70.54
FC Attention-Mix 0.759 0.814 5.532 0.1167 0.00167 69.36 68.04
FC Attention[9] 0.582 0.602 4.945 0.1178 0.00164 70.98 71.72

Deform Max-1024 0.913 0.268 5.602 0.0908 0.00201 68.5 72.61
Deform Mix 0.534 0.373 2.836 0.0695 0.00200 76.29 75.11

Deform Attention-Max 0.696 0.755 2.987 0.1141 0.00160 68.77 69.36
Deform Attention-Mix 0.792 0.817 3.010 0.1141 0.00157 65.97 68.33

Multi

FC Max-1024 1.553 0.354 6.981 0.0842 0.00153 35.16 64.16
FC Max-2048 1.415 0.306 6.226 0.1253 0.00128 53.80 74.10

FC Mix 0.255 0.285 2.550 0.0656 0.00184 73.5 72.16
FC Attention-Max 0.414 0.453 4.234 0.1188 0.00134 72.19 69.63
FC Attention-Mix 0.531 0.581 4.555 0.1135 0.00139 69.95 68.93

-Cat FC Attention[9] 0.442 0.486 4.202 0.1191 0.001527 73.4 74.08
Deform Max-1024 1.072 0.633 3.845 0.0799 0.00179 62.5 64.5
Deform Mix 0.614 0.349 2.451 0.0670 0.00191 70.83 68.83
Deform Attention-Max 0.616 0.720 2.531 0.1113 0.00141 72.04 69.60
Deform Attention-Mix 0.447 0.492 2.120 0.1085 0.00132 73.12 70.56

Table 5: Evaluating more variants of PointNet-based discriminators. Here the new discrimina-
tors, Max-2048, Attention-Mix, and Attention[9], are in bold.

D FPD Implementation

We choose not to use the checkpoint of FPD metric in the released code[16] of TreeGAN[17] but
train our own FPD-Max/Mix. We found that, the released code [16] implements a PointNet-Max
network containing a spatial transformer network for feature extraction. We empirically found that
the spatial transformer network, which learns to rotate the real point clouds in ModelNet40[21],
can lead to a very large variance in the FPD scores of generated point clouds. So, we remove the
spatial transformer network from the PointNet feature extractor and stick to a vanilla PointNet in our
FPD-Mix/Max implementation.

Here we compare the original FPD and our FPD-Max, both of which use PointNet-Max features
of the generated point clouds from a deformation generator. This deformation generator is trained
using a PointNet-Mix discriminator. We always evaluate FPD using a set of 10K samples. To see
the variance between two closed checkpoints, we use one checkpoint at epoch 5990 and the other at
epoch 6000 in this experiment. To obtain the variance of different sets of samples, we generate 5 sets
of 10K samples for the checkpoint at epoch 6000 using different random seeds.

The comparison is shown in Table 6. Our FPD-Max has a lower relative standard deviation, which is
defined as the ratio of the standard deviation to the absolute value of the mean. Also, given that our
GAN is almost converged at epoch 6000, our FPD-Max only relatively changes 3.33% from epoch

11

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and
generative models for 3d point clouds, 2018.

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[3] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object reconstruction
from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 605–613, 2017.

[4] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 216–224, 2018.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. In Advances in neural information processing systems, pages 5767–5777,
2017.

[6] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski. Monte carlo
convolution for learning on non-uniformly sampled point clouds. In SIGGRAPH Asia 2018 Technical
Papers, page 235. ACM, 2018.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pages 6626–6637, 2017.

[8] Long Jin, Justin Lazarow, and Zhuowen Tu. Introspective classification with convolutional nets. In
Advances in Neural Information Processing Systems, pages 823–833, 2017.

[9] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-gan: a point cloud
upsampling adversarial network. In Proceedings of the IEEE International Conference on Computer Vision,
pages 7203–7212, 2019.

[10] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. In Advances in neural information processing systems, pages 820–830, 2018.

[11] Kaichun Mo, He Wang, Xinchen Yan, and Leonidas Guibas. PT2PC: Learning to generate 3d point cloud
shapes from part tree conditions. arXiv preprint arXiv:2003.08624, 2020.

[12] Mervin E Muller. A note on a method for generating points uniformly on n-dimensional spheres. Commu-
nications of the ACM, 2(4):19–20, 1959.

[13] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 165–174, 2019.

[14] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652–660, 2017.

[15] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pages
5099–5108, 2017.

[16] Dong Wook Shu. Treegan. https://github.com/seowok/TreeGAN, 2019. [Online; accessed 22-
November-2019].

[17] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d point cloud generative adversarial network based
on tree structured graph convolutions. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3859–3868, 2019.

[18] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE International Conference on Computer Vision, pages 6411–6420, 2019.

[19] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d point
clouds via graph convolution. 2018.

[20] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):146, 2019.

[21] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912–1920, 2015.

[22] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep grid
deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
206–215, 2018.

13

	1 Introduction
	2 Point Cloud GAN Landscape
	2.1 Point Cloud GAN Generators
	2.2 Point Cloud GAN Discriminators
	2.3 Point Cloud GAN Evaluation Metrics

	3 Sampling Spectrum of Discriminators
	3.1 Sampling Sensitivity of Discriminators
	3.2 Sampling Sensitivity Examination Results

	4 Sampling Spectrum of Evaluation Metrics
	5 Experiments
	5.1 Setting and Datasets
	5.2 Evaluating PointNet-based Discriminators with Various Generators
	5.3 Diagnosing Failures for PointNet-Avg, PointNet++ and DGCNN Discriminators

	6 Conclusion and Suggestions for Future Discriminator Design
	A Training Details
	B Network Architectures
	B.1 Discriminators
	B.2 Generators

	C More Results of PointNet-based Discriminator Variants
	D FPD Implementation
	E Visualization of Learnable Point Clouds during No Generator Training

