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ABSTRACT

Recent work has highlighted the role of initialization scale in determining the structure of the
solutions that gradient methods converge to. In particular, it was shown that large initialization leads
to the neural tangent kernel regime solution, whereas small initialization leads to so called “rich
regimes”. However, the initialization structure is richer than the overall scale alone and involves
relative magnitudes of different weights and layers in the network. Here we show that these relative
scales, which we refer to as initialization shape, play an important role in determining the learned
model. We develop a novel technique for deriving the inductive bias of gradient-flow and use it to
obtain closed-form implicit regularizers for multiple cases of interest.

1 Introduction

Gradient descent (GD) is the main optimization tool used in deep learning. A wealth of recent work has highlighted the
key role of this specific algorithm in the generalization performance of the learned model, when it is over-parameterized.
Namely, the solutions that gradient descent converges to do not merely minimize the training error, but rather reflect the
specific implicit biases of the optimization algorithm.

In light of this role for GD, many works have attempted to precisely characterize the implicit bias of GD in over-
parameterized models. Technically, these exact characterizations amount to identifying a function QQ(w) of the model
parameters w such that GD converges to a minimizer (or, more generally, a stationary point) of Q(w) under the
constraint of having zero training error. The form of Q(w) can depend on various hyper-parameters (e.g., initialization,
architecture, depth) and its dependence sheds light on how these hyper-parameters affect the final solution. This
approach worked very well in several regimes.

The first regime is the "Neural Tangent Kernel" (NTK) regime, which arises in networks that have an unrealistically
large width (Du et al., 2019; Jacot et al., 2018; Nguyen, 2021) or initialization scale (Chizat et al., 2019). In this regime,
networks converge to a linear predictor where the features are not learned, but determined by the initialization (via
the so-called “Tangent Kernel”), and in this case Q(w) is just the RKHS norm for the linear predictor. Therefore, it
is not surprising that models trained in this regime typically do not achieve state-of-the-art empirical performance in
challenging datasets where deep networks perform well. Accordingly, this regime is typically considered to be less
useful for explaining the success of deep learning.

The second regime is the diametrically opposed “rich” regime, which was analyzed specifically for classification
problems with vanishing loss (Lyu & Li, 2020b; Chizat & Bach, 2020). In this regime, the parameters converge to a
stationary point (or sometimes a global minimum) of the optimization problem for minimizing Q(w) = ||w/||? subject
to margin constraints. This has been shown, under various assumptions, for linear neural networks (Gunasekar et al.,
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2018b; Ji & Telgarsky, 2019) and non-linear neural networks (Nacson et al., 2019; Lyu & Li, 2020a; Chizat & Bach,
2020). This regime is arguably more closely related to the performance of practical neural networks but, as Moroshko
et al. (2020) show, reaching this regime requires unrealistically small loss values, even in toy problems.

Understanding the implicit bias in more realistic and practically relevant regimes remains challenging in models with
more than one weight layer. Current results are restricted to very simple models such as diagonal linear neural networks
with shared weights in regression (Woodworth et al., 2020) and classification (Moroshko et al., 2020), as well as
generalized tensor formulations of networks (Yun et al., 2021). These results show exactly how the initialization scale
determines the implicit bias of the model. However, these models are quite limited. For example, when the weights in
different layers are shared, we cannot understand how the relative scale between layers affects the implicit bias.

Extending these exact results to a more realistic architectures is a considerable technical challenge. In fact, recent
work has provided negative results with the square loss, for ReLU networks (even with a single neuron) (Vardi &
Shamir, 2020) and for matrix factorization (Razin & Cohen, 2020; Li et al., 2021). Thus, finding scenarios where such
a characterization of the implicit bias is possible and deriving its exact form is an open question, which we address here,
making progress towards more realistic models.

Previous work (Woodworth et al., 2020; Gunasekar et al., 2018a; Yun et al., 2021; Vaskevicius et al., 2019; Amid &
Warmuth, 2020a;b) that analyzes the exact implicit bias in such scenarios mostly focuses on least squares regression.
All these analyses can be shown to be equivalent to expressing the dynamics of the predictor (which is induced by
gradient flow on the model parameters) as Infinitesimal Mirror Descent (IMD), where the implicit bias then follows
from Gunasekar et al. (2018a). This approach severely limits the model class that we can analyze because it is not
always clear how to express the predictor dynamics as infinitesimal mirror descent. In fact, we can verify this is
impossible to do even for basic models such as linear fully connected networks.

Our Contributions: In this work, we sidestep the above difficulty by developing a new method for characterizing the
implicit bias and we apply it to obtain several new results:

* We identify degrees of freedom that allow us to modify the dynamics of the model so that it can be understood
as infinitesimal mirror descent, without changing its implicit bias. In some cases, we show that this modification
is equivalent to a non-linear “time-warping” (see Section 5).

* Our approach facilitates the analysis of a strictly more general model class. This allows us to investigate
the exact implicit bias for models that could not be analyzed using previous techniques. Specific examples
include diagonal networks with untied weights, fully connected two-layer' linear networks with vanishing
initialization, and a two-layer single leaky ReL.U neuron (see Sections 4, 6, and 8 respectively).

Our improved methodology is another step in the path toward analyzing the implicit bias in more realistic and complex
models. Also, by being able to handle models with additional complexities, it already allows us to extend the scope of
phenomena we can understand, shedding light on the importance of the initialization structure to implicit bias. For
example,

* We show that the ratio between weights in different layers at initialization (the initialization “shape”) has a
marked effect on the learned model. We find how this property affects the final implicit bias (see Section 7).

* We prove that balanced initialization in diagonal linear nets improves convergence to the “rich regime”, when
the scale of the initialization vanishes (see Section 7.1).

* For fully connected linear networks, we prove that vanishing initialization results in a simple #2-norm implicit
bias for the equivalent linear predictor.

Taken together, our analysis and results show the potential of our approach for discovering new implicit biases, and the
insights these can provide about the effect of initialization on learned models.

In what follows, Sections 4-6 present derivations of implicit biases for several models of interest, and Section 7 uses
these results to study the effect of initialization shape and scale on the learned models.

2 Preliminaries and Setup

Given a dataset of N samples X = (x(l),-~~ ,X(N)) € RN with N corresponding scalar labels y =

(y ),y ))T € R¥ and a parametric model f (x; ) with parameters 6, we consider the problem of minimizing

By "two-layers" we mean two weight layers.
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the square loss®
1 2
A - (n) _ (n).
L(0) = 5 n§:1 (y flx ,9)) :

using gradient descent with infinitesimally small stepsize (i.e., gradient flow)

do

— =-=VL(O)) .

= (01)
We focus on overparameterized models, where there are many solutions that achieve zero training loss, and assume that
the loss is indeed (globally) minimized by gradient flow.

Notation For vectors u, v, we denote by u o v the element-wise multiplication. In addition, ||-|| is the £2-norm.

3 Background: Deriving the Implicit Bias Using Infinitesimal Mirror Descent

i

We begin by describing the crux of current approaches to implicit bias analysis, and in Section 5 describe our “warping’
approach that significantly extends these.

‘We focus on linear models that can be written as

f(x;0) = WX,
where w = w(6) is the equivalent linear predictor. Note that the model is linear in the input x but not in the parameters
0. In Section 8, we show that our method can also be extended to non-linear models.

Our goal is to find a strictly convex function ()(W) that captures the implicit regularization in the sense that the limit
point of the gradient flow w(oo) is the solution to the following optimization problem

W(oo) = argminQ(w) st. X'w=y. ()

We now describe a method used in Moroshko et al. (2020); Woodworth et al. (2020); Gunasekar et al. (2017); Amid &
Warmuth (2020b) for obtaining @) (below, we explain that these use essentially the same approach), and in Section 5 we
present our novel approach. The KKT optimality conditions for Eq. (1) are that there exists v € RY such that

VQ(W(x0)) = Xv and X w(o0) =y. (2)

Note that if @ is strictly convex, Eq. (2) is sufficient to ensure that w(oo) is the global minimum of Eq. (1). Therefore,
our goal is to find a Q-function and v € RY such that the limit point of gradient flow W (oco) satisfies (2). Since we
assumed that gradient flow converges to a zero-loss solution, we are only concerned with the stationarity condition

VQ(W(x)) = Xv.
For the models we consider, the dynamics on w(¢) can be written as

dw(t) oo
— =B (W (0)Xr(t) 3)

for some r(t) € RY and “metric tensor” H : R? — R?*9, which is a positive definite matrix-valued function. In this
case, we can write

H(w (1) ™~ xr(r) @
and if H(w(t)) = V2Q(w(t)) for some Q, we get that
d

7 (VR(W())) = Xr(t).

Therefore,

VQ(W(E) — VQ(W(0)) = / Xr(t')dt'

2The analysis in this paper can be extended to classification with the exp-loss along the lines of Moroshko et al. (2020).
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Denoting v = [ r(t')dt’, if VQ(W(0)) = 0 then
VQ(w(o0)) = Xv,

which is the KKT stationarity condition. Thus, in this case, it is possible to find the ()-function by solving the differential
equation

H(w(t)) = V2Q(W(t)). (5)

The aforementioned papers now proceed to solve the differential equation H = V2@ for Q. However, this proof strategy
fundamentally relies on this differential equation having a solution, i.e., on H being a Hessian map. We emphasize
that H being a Hessian map is a very special property, which does not hold for general positive definite matrix-valued
functions.® Indeed, Eq. (5) only has a solution if H satisfies the Hessian-map condition (e.g., see Gunasekar et al.,
2020)

3H”(w) - 8Hz,k(w)
(9Wk a 8Wj '

Vi,j,k : (6)
As we discuss in Section 6, this condition is not met for natural models like fully connected linear neural networks, and
therefore a new approach is needed.

3.1 Relation to Infinitesimal Mirror Descent

The approach described above is a different presentation of the equivalent view of Gunasekar et al. (2018a). They show
that when the dynamics on W can be expressed as “Infinitesimal Mirror Descent” (IMD) with respect to a strongly
convex potential 1

dw(t)

S = —VRH((0) VLW () )

then the limit point w(oo) is described by

W(o00) = argmin Dy (w,w(0)) st. X'w=y,

w

where Dy, (w, w’) = ¢(w) —(w') — (Vip(w'), w — w’) is the Bregman divergence associated with . Furthermore,
when W is initialized with V(W (0)) = 0, then

W(oo) = argmint(w) st. X' w=y.
Comparing Egs. (3) and (7), we see that the infinitesimal mirror descent view is equivalent to the approach we have
described, with 1) corresponding exactly to ().

Although it may have been presented in different ways, these analysis techniques have formed the basis for all of the
existing exact* characterizations of implicit bias for linear models with square loss (outside of the NTK regime) that
we are aware of (e.g. Gunasekar et al. (2017); Woodworth et al. (2020); Amid & Warmuth (2020a); Moroshko et al.
(2020)). In Section 5 we show how to extend this analysis to cases where H is not a Hessian map.

4 Diagonal Linear Networks

All previous analyses of the exact implicit bias for linear models with square loss (outside of the NTK regime) are
limited to cases where the different layers share weights. In this section, we will remove this assumption, which allows
us to analyze the effect of the relative scales of initialization between different layers in Section 7.1. To begin, we
examine a two-layer “diagonal linear network™ with untied weights

Focugus, v, vo) = (wpovs —u_ovo) x=w'x, ®)

wherew =ujovy —u_ov_.

3Indeed, Gunasekar et al. (2020) show that the innocent-looking w — I + ww ' is provably not the Hessian of any function,
which can be confirmed by checking the condition Eq. (6).

“There are some statistical (i.e. non-exact) results for matrix factorization with vanishing initialization under certain data
assumptions (Li et al., 2018).
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Previous Results: Woodworth et al. (2020); Moroshko et al. (2020) analyzed these models for the special case of
shared weights where uy = v and u_ = v_, corresponding to the model

fxup,us) = (0 —u? )Tx.

Both of these works focused on unbiased initialization, i.e., u;(0) = u_(0) = au (for some fixed u). In Yun et al.
(2021) these results were generalized to a tensor formulation, yet one which does not allow untied weights (as in Eq.

(8)).

For regression with the square loss, Woodworth et al. (2020) showed how the scale of initialization « controls the limit
point of gradient flow between two extreme regimes. When « is large, gradient flow is biased towards the minimum
£5-norm solution (Chizat et al., 2019), corresponding to the kernel regime; when « is small, gradient flow is biased
towards the minimum ¢; -norm solution, corresponding to the rich regime; and intermediate « leads to some combination
of these biases. For classification with the exponential loss, Moroshko et al. (2020) showed how both the scale of
initialization and the optimization accuracy control the implicit bias between the NTK and rich regimes.

Our Results: In this work, we analyze the model (8) for the square loss and show how both the initialization scale and
the initialization shape (see Section 7.1) affect the implicit bias. To find the implicit bias of this model, we show how to
express the training dynamics of this model in the form Eq. (3), which enables the use of the IMD approach (Sec. 3).

To simplify the presentation, we focus on unbiased initialization, where u (0) = u_(0) and v4.(0) = v_(0), which
allows scaling the initialization without scaling the output (Chizat et al., 2019). See Appendix A for a more general
result with any initialization.

Theorem 1. For unbiased initialization, if the gradient flow solution W (o) satisfies X T w(oo) =y, then:

W(00) = argmin Q(w) st. X'w=y
w

where

d
Qr (W) = ai, (wi) , ©)
=1

1 (" 2z Vk 422 2z 2x
= — 1 —_— = —_— 1 —_ 1 RN R 1 -
qr. (z) 5 /0 arcsinh (\/E) dz 1 [ A1+ 3 + \/Earcsmh (ﬂ)]

and ki = 2 (u3 ; (0) + 03 , (0)).
The proof appears in Appendix A.

The function Qx(w) in (9) generalizes the implicit regularizer found by Woodworth et al. (2020) to two layers with
untied parameters. As expected, Eq. (9) reduces to Woodworth et al. (2020) when u, (0) = v (0) and u_(0) = v_(0).
Unlike the previous result, QQx(w) can be used to study how the relative magnitude of u versus v at initialization affects
the implicit bias. We present this analysis in Section 7.1, and highlight how initialization scale and shape have separate
effects on the resulting model.

5 Warping Infinitesimal Mirror Descent

Our next goal is to go beyond the simplistic “diagonal” architecture to a fully connected one. However, deriving the
implicit bias for non-diagonal models using the IMD approach (Section 3) is not always possible since the H in Eq. (3)
might not be a Hessian map. Indeed, this condition does not hold for linear fully connected neural networks. To sidestep
this issue, we next present our new technique for finding the implicit bias when H is not a Hessian map. We begin by
multiplying both sides of Eq. (4) by a smooth, positive function g : R? — (0, 00) to get
W
g B () T — gt xe(r).

Perhaps surprisingly, for the right choice of g, the differential equation g(w)H(w) = V2Q(w) can have a solution
even when H(w) = V2Q(w) does not! When such a g can be found, we can continue the analysis just as before,

g(W(t)H(w(t) = V2Q(W(t)) . (10)
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‘We see that

—(VQ(W(1))) = g(w(t))Xx(t) , (11)

and we conclude
VQU(1) = VQW(0) = [ g((t)Xe(t)at.

We require that for our chosen g function [ g(W(t'))r(t')d¢’ exists and is finite, in which case, as before, we denote
v=["y (t')dt’ so w(oo) satisfies the stationarity condition when VQ(w(0)) = 0:
VQ(W(x)) =Xv.

This establishes that () captures the implicit bias, and all that remains is to describe how to find a g such that Eq. (10)
has a solution. For example, for a two-layer linear fully connected network with single neuron, we begin from the
Ansatz that Q) (W(t)) can be written as

Q(W(t) = (W) +z" (1) (12)
for some scalar function ¢ and a fixed vector z € R¢.

By comparing Eq. (10) with the Hessian of Eq. (12), we solve for ¢ and g, and use the condition VQ(w(0)) = 0 to
determine z. For more than one neuron, the analysis becomes more complicated because we will choose different g
functions for each neuron.

The g Function as a “Time Warping”. The above approach can also be interpreted as a non-linear warping of the
time axis. The key idea is that rescaling “time” for an ODE affects neither the set of points visited by the solution nor
the eventual limit point. Our approach essentially finds a rescaling that yields dynamics that allow solving for Q).

Specifically, if w(t) € R? is a solution to the ODE

Sw(t) = f(w(t)) a3

for any “time warping” 7 : R — R such that 7(0) = 0, lim;_, o 7(t) = 00, and J¢ > 0 : ¢ < 7/(t) < o0, then w(7(t))
is a solution to the ODE

d /
V() =T () f(w(r(®))). (14)

Therefore, the set of points visited by w(¢) and w (7(¢)) are the same, and so are their limit points w(oco) = w(7(0)).
All that changes is the time at which these points are reached. Furthermore, since 7/ > 0, T is invertible so, conversely,
a solution for Eq. (14) can also be converted into a solution for Eq. (13) via the warping 7 1. In this way, we can
interpret g as a time warping function which transforms the ODE

LYQ(w(r)) = Xr(r) (1s)

into Eq. (11), which is equivalent in the sense that it does not affect the set of models visited by gradient flow (it only
affects the time they are visited). In particular let w(T ) be a solution to Eq. (15), then w(7(t)) is a solution for Eq. (11)

for (¢ fo ))dt’. Solong as T(c0) = [ g ))dt' = oo so that w(7(t)) does not “stall out,” we conclude
that the limit p01nts of Egs. (11) and (15) are the same

6 Fully Connected Linear Networks

In this section we examine the class of fully connected linear networks of depth 2, defined as
f(x;{ai}, {wi}) = ZaiwiTx =w'x,
i=1

where w = Z _, W;, and w; 2 a;w;.

For this model, the Hessian-map condition (Eq. (6)) does not hold and thus our analysis uses the “warped IMD”
technique described in Section 5. In addition, our analysis of the implicit bias employs the following balancedness
properties for gradient flow shown by Du et al. (2018):
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Theorem 2.1 of Du et al. (2018) states that
Wt af () — [wi(t)l* = aF (0) — [wi(0)||* £ 6
In addition, Theorem 2.2 (a stronger balancedness property for linear activations) of Du et al. (2018) states that
vt: a(t)a(t)” — W(t)TW(t) = a(0)a(0)” — W(0)'W(0) £ A,
where A € R™*™ a = (ay,...,ap,) " and W = (W1, ..., wp,) € RX™,

First, we derive the implicit bias for a fully connected single-neuron assuming d; > 0 (which ensures that we can
write the dynamics in the form (4) for invertible H), and then expand our results to multi-neuron networks under more
specific settings.

Theorem 2. For a depth 2 fully connected network with a single hidden neuron (m = 1), any § > 0, and initialization
w(0) = a(0)w(0) # 0, if the gradient flow solution W(oo) satisfies X "W (o0) =y, then:

w(00) = arg min gs w (o) (W) s.t. X'w=y

where s v 0)(W) = g5 (||wl|) + z ' w for

(-3 (54 e 7))y Vo e 5 -3
): x
Y R
z——2\/ (W (0)] +I_§H

The function g5 (0)(W) above again reveals interesting tradeoffs between initialization scale and shape, which we
discuss in Section 7.2.

ds(x

=B

(0)
O

sh

The proof appears in Appendix B.

In order to extend this result beyond a single neuron we require additional conditions to be met. For a multi-neuron
network, in contrast to the single neuron case, we cannot use globally the “time warping” technique since it requires
multiplying each neuron by a different g function. However, for the special case of strictly balanced initialization,
A = 0, we can extend this result to m > 1.

Proposition 1. For a multi-neuron network (m > 1) with strictly balanced initialization (A = 0), assume w(0) # 0.
If the gradient flow solution W(co) satisfies X "W (o) =y, then:

W(o0) = argmin | [|w|>/? — g 1% () 2w (0)Tw| st XTw=y

The proof appears in Appendix C.

Next, we show that for infinitesimal nonzero initialization, the equivalent linear predictor of the multi-neuron linear
network is biased towards the minimum #5-norm.

Theorem 3. For a multi-neuron network, and for nonzero infinitesimal initialization, i.e. i : 0 # ||w;(0)|| — 0, if the
gradient flow solution W(oc) satisfies X W(oo) =y, then:

W(oo) = argming, ||w| s.t. X 'w=1y.

The proof appears in Appendix D.

Note that for infinitesimal initialization, as above, the training dynamics of fully connected linear networks is not
captured by the neural tangent kernel (Jacot et al., 2018), i.e., the tangent kernel is not fixed during training, so that we
are not in the NTK regime (Chizat et al., 2019; Woodworth et al., 2020). Yet, the implicit bias is towards a solution that
can be captured by a kernel (¢2-norm). Though in other models, this limit coincides with the "rich" regime (Woodworth
et al., 2020), in these cases the () function is not an RKHS. Since in our case the ) function is an RKHS, calling this
regime "rich" is problematic. Therefore, we propose to call this vanishing initialization regime as the Anfi-NTK regime
— since this limit is diametrically opposed to the NTK regime, which is reached at the limit of infinite initialization
(Chizat et al., 2019; Woodworth et al., 2020). This regime coincides with the "rich" regimes in models where the ()
function is not an RKHS norm in that limit.
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Figure 7.1: The population error of the gradient flow solution for a diagonal linear network as a function of initialization
scale o and shape s, in the sparse regression problem described in Section 9.

To the best of our knowledge such an {2 minimization result as in Theorem 3 was not proven for fully connected
linear nets in a regression setting, even under vanishing initialization. However, for classification problems (e.g. with
exponential or logistic loss) it was proven that the predictor of fully connected linear nets converges to the max-margin
solution with the minimum ¢ norm (Ji & Telgarsky, 2019), in the regime where the loss vanishes. This regime is
closely related to the Anti-NTK regime since in a classification setting, vanishing loss and vanishing initialization can
yield similar @ function (Moroshko et al., 2020).

7 The Effect of Initialization Shape and Scale

Chizat et al. (2019) identified the scale of the initialization as the crucial parameter for entering the NTK regime, and
Woodworth et al. (2020) further characterized the transition between the NTK and rich regimes as a function of the
initialization scale, and how this affects the generalization properties of the model. Both showed the close relation
between the initialization scale and the model width.

However, we identify another hyper-parameter that controls this transition between NTK and rich regimes for two-layer
models, the shape of the initialization, which describes the relative scale between different layers.

We first demonstrate this by using the example of two-layer diagonal linear networks described in Section 4.

7.1 Diagonal Linear Networks

We denote the per-neuron initialization shape s; and scale «; as

vei (O] _ 4
g = O = Jur (0)] g (0)] -
[0 O] : :

\u+,i(0)\

We can notice from Theorem 1 that v/k; = 2 (u? ; (0) + v ; (0)) controls the transition between the NTK and rich
regimes. Using the definitions of the initialization shape and scale we write

1 2
\ kl :4a17+ Sé .
1—s

%
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Since —1 < s; < 1, we can more accurately say that k; = ~%i; is the factor controlling the transition.
For simplicity, we next assume that o; = o, s; =5 Vi € [d] We can notice that for k — oo, i.e. %5 — oo we get
that

d d
Q(w) ; ZQU+7 0)+U+Z(0))w127

i=1

which is exactly the minimum RKHS norm with respect to the NTK at initialization. Therefore, k — oo leads to the
NTK regime. However, for k — 0, i.e. 1%z — 0 we get that

d
w) = lwil = |wl, .
i=1

which describes the rich regime. The proof for the above two claims appears in Appendix E.

Therefore, both the initialization scale « and the initialization shape s affect the transition between NTK and rich
regimes. While o — 0 pushes to the rich regime, |s| — 1 pushes towards the NTK regime. Since both limits can take
place simultaneously, the regime we will converge to in this case is captured by the joint limit

k= -

lim 72 .
a—0,|s|»11—s

Intuitively, when o — O faster than s — 1 we will be in the rich regime, correspondmg to k* = 0. However, when

s — 1 faster than o — 0 we will be in the NTK regime, corresponding to * = oo. For any 0 < k* < oo the
Q-function in Eq. (9) captures the implicit bias.

Figure 7.1 demonstrates the interplay between the scale and the shape of initialization. See Section 9 for details. The
figure shows the population error (i.e., test error) of the learned model for different choices of scale o and shape s.
Since in this case the ground truth is a sparse regressor, low error corresponds to the rich regime whereas high error
corresponds to the NTK regime. It can be seen that as the shape s approaches 1, the model tends to converge to a
solution in the NTK regime, or an intermediate regime even for very small initialization scales. These results give
further credence to the idea that the learned model will perform best when trained with balanced initialization (s = 0).

7.2 Fully Connected Linear Networks

We begin by characterizing the effect of the initialization scale and shape for a single linear neuron with two layers,
analyzed in Section 6. Our characterization is based on the gs (o) (w) function in Theorem 2. Due to the lack of space
we defer the detailed analysis to Appendix F and provide here a summary of the results.

Similarly to the diagonal model, we again define the initialization shape parameter s and scale parameter « as

ja(0)

_ Twor !
[a(0)] ’
Twior 1

Note that Theorem 2 is correct for 0 < s < 1 and any a > 0. We also employ the initialization orientation, defined as

u= %. Given «, s, u we identify a few limit cases.

First, consider some fixed shape 0 < s < 1. When o« — 0 we will be in the Anti-NTK regime, where we obtain the
minimum ¢5-norm predictor. However, when a — oo we will be in the NTK regime, where the tangent kernel is fixed
during training, and the implicit bias is given by the minimum RKHS norm predictor. Indeed, in this case we show in
Appendix F that
~ ~ ~ T ~ ~

q(w) o< (W —w (0)) B(w—w(0)) ,

where )
1—
B=1I- Quu—r
2(1+s?)

and it is easy to verify that the tangent kernel is given by K (x,x’) = x B~ 1x’

Therefore, for any fixed shape, taking « from 0 to co we move from the Anti-NTK regime (with ¢, implicit bias)
to the NTK regime where the bias is given by a Mahalanobis norm that depends on the shape and initialization
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Figure 7.2: Contour plots of g5 o) (W) presented in Theorem 2 for the case of d = 2, w(0) = « - [0.6, 0.8]. Top row:
a =2and s = [0,0.2,0.8] (left to right in order). Bottom row: s = 0.1 and o = [0.01, 1, 2.5] (left to right in order).
The red dot marks the vector w(0).

orientation. Note that when s =~ 1, we have B ~ I, and thus we obtain the /5 bias about the initialization, namely
arg ming, ||w — w(0)|. In the bottom row of Figure 7.2 we illustrate the ¢ function for s = 0.1 and different values of
a. Note that for intermediate o we obtain non-kernel implicit bias.

On the other hand, for any fixed scale «, taking s — 1 we will be in the NTK regime. This is because in this case
the gradients of a are much smaller that the gradients of w, and thus effectively, only the w parameters will optimize.
Therefore, in this case we obtain a linear model (linear in the parameters) and the /> bias about the initialization,
arg ming, ||w — w(0)||. This phenomenon is illustrated in the top row of Figure 7.2.

To sum-up, in order to achieve non-kernel bias for fully connected networks we prefer balanced initialization (s ~ 0).
This observation is in line with our observation for diagonal models in Section 7.1.

8 Two-Layer Single Leaky ReLU Neuron

We further extend our analysis to the class of fully connected two-layer single neuron with Leaky ReLU activations,
o(z) = max(x, px) for p > 0. This is a first step in analyzing the implicit bias of practical non-linear fully connected
models for regression with the square loss.

We follow Dutta et al. (2013) in the definition of KKT conditions for non-smooth optimization problem (see the
definition in Appendix G).

Theorem 4. For a single-neuron network with Leaky ReLU activation o of any slope p > 0, and for any § > 0, assume
a(0)w(0) # 0. If the gradient flow solution (a(cc), w(00)) satisfies a(00)o (X w(oc)) =y, then (a(c0), w(oo))
satisfies the KKT conditions (according to definition 1) of the following optimization problem:

(a(o0), w(00)) = argmin gs(aw) s.t. ac(X w) =y

a,w
and qs(w) is identical to the definition given in Theorem 2.

The proof appears in Appendix G.

Recently, Vardi & Shamir (2020) proved a negative result for depth 2 single ReLU neuron with the square loss. They
showed that it is impossible to characterize the implicit regularization by any explicit function of the model parameters.

10



A PREPRINT - FEBRUARY 22, 2021

We note that Theorem 4 does not contradict the result of Vardi & Shamir (2020) since it does not include the ReLU case
(p=0).

9 Numerical Simulations Details

In order to study the effect of initialization over the implicit bias of gradient flow, we follow the sparse regression
problem suggested by Woodworth et al. (2020), where x(V), ..., x(N) ~ A(0,1) and y™ ~ N((5*,x(™),0.01)
and (3* is 7*-sparse, with non-zero entries equal to 1//7*. For every N < d, gradient flow will generally reach a
zero training error solution, however not all of these solutions will be the same, allowing us to explore the effect of
initialization over the implicit bias.

This setting was also shown by Woodworth et al. (2020) to be tightly linked to generalization in certain settings, since
the minimal ¢; solution has a sample complexity of N = Q(r* log d), while the minimal ¢5 solution has a much higher
sample complexity of N = Q(d). Throughout all the simulations, unless stated otherwise, we have used N = 100,
d = 1000, r* = 5.

See Figure 7.1 for results, and Section 7.1 for discussion.

10 Conclusion

Understanding generalization in deep learning requires understanding the implicit biases of gradient methods. Much
remains to be understood about these, and even a complete understanding of linear networks is yet to be attained. Here
we make progress in this direction by developing a new technique, which we apply to derive biases for diagonal and
fully connected networks with independently trained layers (i.e., without shared weights). This allows us to study the
effect of the initialization shape on implicit bias.

From a practical perspective it has been previously observed that balance plays an important role in initialization.
For example, Xavier initialization (Glorot & Bengio, 2010) is roughly balanced by construction, and our results now
provide additional theoretical support for the practical utility of this commonly used approach. We believe it is likely
that further theoretical results like those presented here, can lead to improved initialization methods that lead to more
effective convergence to rich regime solutions.
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Appendices

A Proof of Theorem 1

Proof. We examine a two-layer “diagonal linear network” with untied weights

f(X7 u+,u_,v+,v_) = (u"r OVy —u- OV_)TX = ‘XITX7

where
W=UujovVy—u_ov_. (16)

The gradient flow dynamics of the parameters is given by:
N

= —— = zt ) t
= v+,<><n§_1:xl r(2)

where we denote the residual

From Eq. 16 we can write:

d'lj}z du+,i + dU+’Z' dui,i d’l},j
= Vg Uy 4 — V_; — U_; )
dt — dt VT T T Tar T M
N N N N
=via Z "™ 4 ui Z e w2, Z 2™ u? Z 2
n=1 n=1 n=1 el

N
= (uiﬂ + Ui,i + u277i + IUE’,L-) Z :L‘gn)r(n) .

n=1

Thus,

1 di;

i (n),.(n)

W v b o2, dt DL AR
2 2 X3 2 n=1

We note that the quantity u4 ;u—_ ; + vy ;v_ ; is conserved during training, since

d ( + ) d’ul+’7; + d'LL,’Z' + d’UJni + d’l),’i
— (U4 ;U_ 4 ViV ;) = U_ 4 Uy j— V_ 4 Vyi—
de T TR T et d
N N N N
=U_ V44 Z .’E,En)r(n) — U4 V-4 Z SL'?(n)T'(n) + Uy V4 Z xgn)r(") —VyU— Z 5[,'7(”)7‘(”)
n=1 n=1 n=1 n=1
=0.
So
g i+ v v =ty (0)u; (0) + vy (0)v_; (0) £ ¢ 7)

Combining Eq. 16 and Eq. 17 we can write:

T 52 2 2 2,2
{wi T Uil T U= iU {wz uy U3 U 0T = 2Ug Uy U U

— 2
Ut gU— 5+ Vy VU— 5 = C

2,2 2 2 U Ve U s —
uf Ut 0y T 2ug U iy iU = G

13
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2 .2 2 .2 2 2 2 2 -2 2
= uiul oy vl +ul vl Ful el —wp =0 (18)
‘We also know that:
2 2 _ 2 N
vy —ug; = vy, (0) —ui;(0) =04,
2 2 2 2 A
o2 —ut =07 (0) —ul ; (0) =0

2

which can be easily shown since % (v ; — w2 ;) = 0and £ (v2 ; — u? ;) = 0. So using Eq. 18 we can write:

—

ui u? 4 (0 +ud ) (0 +u” ) +ud; (O +udy) +ul, (- +u?,) —wf =cf

2 ~
= (“iz + U%,i) + (04 +0-4) (Uiz + U%,i) + 040 — Wi —c; =0

L a0 G 00— 4GS — 0 — )
—i D)
— (6+,i + (5_71') + \/(6+,i - (5_71')2 + 4612 + 4@12

= 5 . (19)

2
=ui;+u

Coming back to u? ; + v3 ; + u? ; + v ; we have using Eq. 19 that:
wh ol bt =2 (uh bl ) 40 0

= (65— 500 + 402 + 402

Therefore,
N

1 dw; _ sz(_n)r(n) .
\/(5+,i — (57’1')2 + 4612 + 4@72 dt n=1

We follow the IMD approach for deriving the implicit bias (presented in detail in Section 3 of the main paper) and try
and find a function ¢(w;) such that:

1
Vg (wi(t) = ; (20)

VG — 600 + 42 + 4

which will then give us that

N
d

2 ~ i _ (n) (n)

V3 (@i(t)) (1) Z::lx r
or
d )
o (Va @) = "
n=1

Integrating the above, we get

Den(;).ti.ng v = fooo (") (#)dt', and assuming g also satisfies Vg (;(0)) = 0, will in turn give us the KKT stationarity
condition

N
Vg (wi(00)) = 3 alMv™ .
n=1

Namely, if we find a g that satisfies the conditions above we will have that gradient flow (for each weight w;) satisfies
the KKT conditions for minimizing this q.
We next turn to solving for this ¢, beginning with Eq. 20:
1 1
(.~
q" (wi) = = —
\/(5+,z‘ —o_ )% A paap VR A

14
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where k; 2 (6, —0_ ;)% +4c2.

Integrating the above, and using the constraint ¢’ (0) = 0 we get:

| log (VAT + T+ 2i:) — log (VE)

2

q (;)
Simplifying the above we obtain:
1 VAw? + k; + 2w, 1 40?  2wy; 1 2w;
q (;) = = log withitawi) 1 log 14 =2y 2% ) aresinh ( wi) .

2 ki VEi 2
Finally, we integrate again to obtain the desired q:

1 [ 2 k; A2 20, 2,
Qk; (117@):5/0 arcsinh <\/ZT> dz = { 1— /14 ]:z i \/%arcsinh(\/%) ,

2

where
ki = (00— 0-0)* +4c2 = (v, (0) — w2 ; (0) = 0% ; (0) +u® ; (0))”+4 (g (0) u_; (0) + v s (0) v (0))° .
For the case u4 ; (0) = u_; (0), v+, (0) = v_ (0) (unbiased initialization of w; (0) = 0) we get
2
ki =4 (u3 ,; (0) + 07 ;(0))

(67 32
VR =2, 0+ 2, ) = 220 E)

1—s?
Next, if we denote Qi (W) = Zle qr, (W;), we can write
N
VQi(W(00)) = (Vg (@1(00)) .o, Va (@a(00))) T = 3 x)
n=1

Therefore, we get that gradient flow satisfies the KKT conditions for minimizing this (), which completes the proof. [

B Proof of Theorem 2

Proof. We start by examining a general multi-neuron fully connected linear network of depth 2, reducing our claim at
the end to the case of a network with a single hidden neuron (m = 1).

The fully connected linear network of depth 2 is defined as
f(x;{a;i}, {wi}) = Zaiw;rx =w'x,
i=1

~ A m ~ ~ A
where w = >~ | W;, and W; = a;w;.

The parameter gradient flow dynamics are given by:

(.11' = 7aai£ =W,

=
I/~
(=

xﬂ

2

ﬁ/\

3

~

N
%V\N/i =a;w; + a;w; = (CLZZI + WLW;F) (Z X(n),,,(n)) s
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where we denote the residual
(n)( ) y n) _ ( )x (n)

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we can write

Gwitt) = (5 + Iwi0lP) 1+ wilw] (1) (Z xr “”) : @

or also

n=1

o; + ||WZ(25)||2 I+ W,(t)w?(t) - iﬁ/’,(t) — iv: x (™) ()
dt
(

where assuming J; > 0, a non-zero initialization w(0) = a O)W( ) # 0 and that we converge to zero-loss solution,

gives us that the expression (((5z + ||w(t) ||2) I+w;(t)w] (t) exists.

Using the Sherman-Morisson Lemma, we have

N
9; Wi ) I- wi(t)wj(t) iVNVz' - ( X(")T(n)> )
(65 + Iwie) ) G~ 2iwo) ) @ >

or

i+ [lwa ()12 . LAGLALD) ivh: X(n)r(n)>
(s mF) {1 (6 + Iwi(0)1?) (8 + 211w 0)]17) ) 4 (Z =

where we again employed Theorem 2.1 of Du et al. (2018).
Also, since

I (017 = a2(0) [iwi (8)] = 1w (0)” (8 + 1wi (1)) .

we can express w as a function of w:

—d; 52
Iwi(t)|* = =% 4 %+ )

2
2 P

Since ||w;(t)]|* > 0 we choose the (+) sign and obtain

[[wi(t) ¢

s 2\ Wi ()T (8) d
=+ s (@) ) I— : i : —w;(t) = Zx(n)r(n)(t) .
<2 ! (5 +VF+ 9P ) VE 4 Imol | 0=

Therefore, we can write Eq. 22 as:

(23)

We follow the "warped IMD" technique for deriving the implicit bias (presented in detail in Section 5 of the main text)
and multiply Eq. 23 by some function g (W;(t))

' : - Wi ()T
g (Wi(t)) <i+ (Z+||v~vi(t)|2> (W, (1) d

— —w,(t)
2 (4 +VF+ 1) VE 1ol )

= Xy (wa(1) 1)

n=1
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Following the approach in Section 5, we then try and find q (W;(t)) = ¢ (|[W;(t)||) + z"W;(¢) and g (W;(t)) such that

1
- - di 67 = Wi (1w, (t
V2q (Wz(t)) = g(wl(t)) (2 + T + ||W1(t)|2> I— = \i4 ( )Wz( ) = 2 ’
(5 + 1wl ) V5 + 1w
(24)
so that then we’ll have,
N d . N 3
Vi (i(t) Wi(t) = ; x(" g (W;(1)) ) (2)
d N
—_ (n) (n)
it ¢ 2 (1
N

Vi (3(0) = Va (#(0) = X x / g (,(¢)) ™) (¢)at

Requiring V¢ (W;(0)) = 0, and denoting 1/ ="y (M) (t')dt’, we get the condition:

N
o)) = 3 xMy"
n=1

To find g we note that:

and

wi ()W, [
VR (1) = |1 () = (15901 iy | e+ U501

CUOD [, e 200D (0% 0
0] lI - O G X0k ]

Comparing the form above with the Hessian in Eq. 24 we require
- ¢ ([w:@l) [ 6 02 e (12
g (Wit)) = —= > +\ 7 HlIwa@ll
Wil \ 2 4
and

- (1% (@O1)
_ w1 G (LI

1
i 62 ~ 2 52 - 2 i
2(‘3+\/4‘+wi(t)|| )\/4+||wi(t) 1% (0)]”
1— [l ()11
5; 52 . 5 5 _ ,
N AGIY (%+\/%+Hwi(t)\l > 8244, (¢) |

¢ (Iw:(l) Wi (t)]|

=

Integrating that we get
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2 6
5 — 24 it
=¢ (z)=C )
<x2_62L(61+ xz_,_l)) [ 22 %_%
=q4(z)=C . +C".
Therefore,
- s _ 52 _ 5z 5,
(15?5 (5 + iw0P + 7)) iP5 - 5
q(wi(t))=C +z Wi(t) +C

Now, from the condition V¢ (w;(0)) = 0 we have
w;(0)
7. (0 v -
Va (#:(0)) = w0¢ I,

I P10 \/ (0
2 ||~ Ol

We canset C' =1, C' = 0 and get

~ 2 . .
@mwn—%(%+wl

_%
2

pu\s,\,

?'

q(wi(t)) =

+i))¢ IO + % - %
0]
0

52 6 V~V -
_\/ ”Wz ZZ 5 ‘7V Wz(t)

Finally, for the case of a fully connected network with a single hidden neuron (/m = 1), the condition

N
)= xy

n=1

can be written as
N
Vg (W(o0)) = Z x(M ()
n=1

which since (™ has no dependency on the index i is a valid KKT stationarity condition for the ¢ we found above.
Therefore, the gradient flow satisfies the KKT conditions for minimizing the ¢ we have found. O

B.1 Validation of the use of the function g as a “Time-Warping”

First, we show that Eq. 23 cannot take the form suggested by Eq. 4 (as in the standard IMD approach described in
Section 3):

H(v?r(t))d‘zit(t) = Xr(t)

where H(w(t)) = V2Q(w(t)) for some Q.
From Eq. 23 we get that H(w) takes the form

T

—1
0 62 wWwW
H(w) = <2+ 4+||w|2>
2 (54 \/F+InP) 5+ 1wl
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Suppose H(w) is indeed the Hessian of some ((w), then is must respect the Hessian-map condition (see Eq. 6) for
any 6 > 0. Specifically, for § = 0 we get
1 T
) = o (1 57 )

2||w|?

which does not satisfy the Hessian-map condition

8Hz71(W) _ U)j 3’[1) wj 7& + §’LUZ2U.)] o 8Hm(w)
Ow; Tw? © 2 wl? 2IIWII3 2 |lw|® Ow;

Therefore, Eq. 23 cannot be solved using the standard IMD approach, and requires our suggested “warped IMD”
technique (see Section 5).

Second, we write g (W;(t)) explicitly and show it is positive, monotone and bounded.

From Eq. 23 we have

g (e = T (‘; o ||v~vi<t>2> - ”Wl(tw ol + % - % (‘; Hy ||v~vz-<t>||2> .

We can see that g (W;(t)) = g (||w;(t)]|) where

52 )
\/x2+416£<5i 52 )

i Zi 2
2+ 4+:1c

x
We notice that §(x) is smooth and positive for Vo > 0, and since lim,_,o+ §(z) = /J; (see Lemma 3) it is also
bounded for any finite x.

Also, using

2\/22 + 2% — 4,
4 K2

§'(x) =

67 o2 9;

42?4+ 5 \/x2+z—7

we see that ¢'(z) > 0, Vz > 0 and so §(z) is monotonically increasing.

Further we show that the KKT condition we got using the function g is valid by showing that v(™) =

15 g (W () r™ (¢')dt’ is finite.

Since we constructed g(w(t)) s.t. Vq(w(t)) — Vq(w(0)) = f(f g(w(t")Xr(t')dt', we get that if the RHS is infinite at
t — oo then V¢(w(o0)) is infinite. However, assuming we converge to a finite weight vector w(oo), which is correct
for the square loss, we get a contradiction since V(W) is bounded for any finite input.

Finally, we show that g(W(¢))H (W (t)) does satisfy the Hessian-map condition. We note that this is immediate from
the construction of ¢, but provide it here for completeness.

1 / 62 4 ww |
g(W)H<W) = ||W|| \/ ||WH2 + Z - 5 I- > 5 5 3
2 (54 IwP?) E + v

We denote f(z) = 14/1/22+ % — S and h(z) = f(@)

* 2<%+\/%+m2>\/%+x2'
Without loss of generality it is enough to observe the following settings:

i FJF ks

8Hi7j (W) o
6‘wk o

_ OH, i (w)
H H ow;

W
—wiw; ' ([wl) 7= = —wiwph (|| w]))

[[wll
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i=jF#k:
OH,; ;(w) / W 271 Wk
— = w7 — wik ([[wl])
oWy [[wll [[wll
6Htk(w) / Wi 277/ Wi
— = —wph([wl)) —wiwph (W) 7= = —wrh((|w]]) — wih' ([wl) ==
ow; [[wl] [[wll
Therefore, if Vz , # = —h(z) we get that afg;iW) = 6H¢;QEW)'

Using the derivative of f(x) we can write:

f/(x) = - 2

2+ -4
) 62 )
2 $2+4< 2+4+2)

=—x-h(z),
and so g(w)H(w) respects the Hessian-map condition.
C Proof of Proposition 1

Proof. We recall that the fully connected linear network of depth 2 is defined as
m

fxs{ai}Awi}) =D aiw/x=w'x,
i=1

~ A ~ ~ A
where w = " w;, and w; £ a;w;.

Returning to the dynamics of model parameters (Eq. 21) we have

d

N
~ . . 2 T m
£Wi(t) = a;w; + a;w; = (a; T+ w;w, ) (; x (MWl L)> .

Therefore,

%W(t) = (i a?I + zm: wiw:> (Z X(n)r(n))
m m 1 v
(Z a; ()1 + Z w; (t)Wi(t)T> %ﬁ,(t) — <Z x(n)r(n)> .

i=1 i=1
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We can notice that we can express

zm: aZ ()T + i wi(t)yw;(t)" = A(t) + U(t)CV ()

- )

C=1L,xm
U(t) = W(t) £ [wi(t), ..., W (t)] € R&™
V) =W =[wi(t) ;. iwn(t)] e R™m*E,
By using the Woodbury matrix identity we can write

where

(Z ai ()T + iwi(t)wi(t)T> =A'-AU(I+VATIU) VATl =

oo ((Saa)reve) v

From Theorem 2.2 of Du et al. (2018) (stated in Section 6) we get that
at)-a(t)! =W(@Et) W)+ A,
where A € R™*™,

For the case of strict balanced initialization we have A = 0, and therefore

L (e
((Za )I+a ta <>T>

LA a(t)a(t)"
= a;(t I- ——
(Z 3 )> 2 (30, a3(1)”

where in the last transition we used the Sherman-Morrison lemma. It follows that

‘We continue and write

(Z af(t)I+ Z Wi(t)wi(t)—r> =
:<Za?<t)> 1—<Za ) W ()W <Za ) (W(HW(H T

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we know that

ai(t)? = [wi(t)]% .
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Therefore,

[0l = la(@)llws (0] = s
PIHOEDSIIAC

and

So, we can write

m m -1
(Z a2t + Z wi(t)wi(t)—r> —

- (Z a?(t)) (I— <Z a?(t)) (Zwi(t)wi(t)'r> +% (Z a?(t)> <Zwi(t)wi(t)T> ) -
i=1 i=1 i=1 i=1 i=1

= (iwmo_ (I— (i ||vm-<t>||>_ (i W) +3 (i HW@“)_ (i W) ) |
i=1 i=1 i=1 ' = = Z

Now, since
a(t)a(t)” = W(t)"W(t),

we can say that W (¢) "W/ (¢) is a rank one matrix, and therefore also W (t), and also W (¢).
Therefore, all w; are equal up to a multiplicative factor,

w;(t) = c;(t)w(t)

ici(t) =1.
i=1

where from definition

Therefore,
()] = eI )]
:»anz |—<Z|cz ) I (1)
m ‘X]Z 7] m ‘x/ "X/(t)T
- Y el (Zc’ ') W@l
giving us
(Z a; (L + Zwi(t)wl(tf) %w(t) =
_ 1 1 _WOWOT L WOROTN 4 )
= O O Tl (I o * 1 (T >>dt 0 =2,
1 ! CAWOWO T d S ) o)
> 7 @) el (-3 ) i =2 |

where in the last transition we used

<W(t)W(t)T)2 _ W)W TWOwE) T w()w(t) "

W (@) W @) RO

We follow the "warped IMD" technique (presented in detail in Section 5) and multiply the equation by some function

g (Wi(t))
gW(0) 1 [ 1ww)T O (32
Oy les@)]) 1w (@)l (I 2 [[w(®)I? ) (Z '
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Following the approach in Section 5, we then try and find q (W;(t)) = (HWZ( ) +z"W;(t) and g (W;(t)) such that

)
o @) 1 w(Ow()
V50 = o e (U 3 el 2

|_|

so that then we’ll have

<
)
—
sh
—~
N—
SN—
<
)
—
sh
~~
=
N~—
I
[~]=
xf\
3
2 5=

Q
—_—
=B
~
N~—
N—
B
—
S—
IS

To find ¢ we note that

w =4¢ (|w w(t) z
and
ot < o e — o L RORTO ]
Vig(w(t)) = [ (W@ =4 (W@l e )d ETOIE +4q (Iw@®]l) ”~(t)”1
CUFOD |1 [1 e CUFED] F(OF ()
RO [I - 1901 I ] '
Comparing the form above with the Hessian in Eq. 25 we require
_9W®) g
S Jep ~ 4 IFOD-
nd
) L ey CUE@D 1
¢ (Wl 2
q"(x) _ 1
= q(r) 2z
logd' (z) = %lnx—i—C
i (2)=C\V.
Therefore,
q(W(1)) = C WD) + 2w (1) + O
and using the condition Vg (W(0)) = 0 we get
a (¥(1)) = C ()2 ~ O [ (0)| /2 (0) TW(t) + "
We canset C =1, C’ = 0 and get
a (W(1)) = WO = 5 [0/ (0) 5 (1)
Therefore, gradient flow satisfies the KKT conditions for minimizing this q. O
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D Proof of Theorem 3

We recall the proof of Theorem 2 given in Appendix B.
The form of the ¢ function described in the proof is ¢ (W;(t)) = ¢ (||W:(t)||) + z " W;(t), where

= 3w e
z— 2\/ 1% (0)]1? YT T awo

Under the limit ||w;(0)|| — 0 we can see that ||z|| — 0.

When the linear term captured by z in the ¢ function is equal to zero, we have
Vg (Wi(o0)) = ¢ (Wi(o0)])) ||w =2 <", "

(n) _ v |Wi(o0)]|

Defining ;7 = T o We get

o0) = Y xMiy"

‘We notice that

. 62 Y
q () = -

and so 7; is finite assuming we converge to a finite-norm weight vector W, (00), which is correct for the square loss.

Using the linear predictor definition of W(c0) = °, W;(0c), denoting (™ = 3", f/i(") and summing over i gives

7(o0) = 3 x ()

which is a valid KKT stationarity condition of the form Vg (W(c0)) = 3" x(™ () with Vg (w) = w.
Hence, gradient flow satisfies the KKT conditions for minimizing this g.

It follows that for a multi-neuron fully connected network with non-zero infinitesimal initialization,

W(oo) = argmin,, |[w|® st. X Tw=1y

which is equivalent to
W(oo) = argming, ||w| st. X Tw=1y.

E Characterization of the Implicit Bias Captured in Theorem 1

In this Appendix we provide a detailed characterization of the implicit bias for a diagonal linear network as described in
Theorem 1,
w(00) = argmin Qg (w) s.t. X'w=1y

where
d
Qr (W) = ar, (wi)
i=1
Vk 422 22 2x
qk (I’) = T 1 — 1 —+ 7 —+ ﬁarcmnh (\/E)
and

\/E: 4o (1 +512)

2
1-3s;
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For simplicity, we next assume o; = o, s; = s Vi € [d].

‘We can notice that for £ — oo, i.e. 1%2 — oo we get that:

() £225 2 : 2
W T 2L 0+ e, )
d d
1 2
= Q) =2 a0 =2 oo o

Calculating the tangent kernel at the initialization we get

K(x1,%x2) =(Vf (x1), V[ (x2))
(%1 0wy (0),3%1 0V (0), —x1 0u_ (0), ~x1 0 v_ (0)],
[x2 0wy (0),x2 0 vy (0), =xz 0u_ (0), =xz 0 v (0)])
=x/ diag (u? (0) + v3 (0) + u® (0) + v2 (0)) x .

For the case of unbiased initialization (u ; (0) = u_; (0) ,v4; (0) = v_ ; (0)) we have

K(x1,%2) = 2x/ diag (u? (0) + v7 (0)) x2 .

Therefore, using Lemma 4, we can see that Qg (w) is the RKHS norm with respect to the NTK at initialization.
Therefore, & — oo indeed describes the NTK regime.

For k — 0, i.e. ﬁ — 0 we get that:

Vk dw? 2w <2wi>
i) =—|1—4/1+—"+ arcsinh [ —
VEk

Eooow? ow 2w;
= — 14/ — 4+ —+ + —arcsinh | —

4 16 4 2 N
k—0_ |W; w; 4 |w;
— %—i—%log (\l/;)
— 3 |-l + g ()
2 3
1 1
— 5 [fualtos (72 ) + sl o 4 s - 1)

7 i 1 4 i —1
3108 () tog ()
1
= +0 [ —— | =i
log (ik)
Therefore,
d
Qi (W) = Z lwi| = |lwll;
i=1

and k£ — 0 describes the rich regime (Woodworth et al., 2020).
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F Characterization of the Implicit Bias Captured in Theorem 2

In this Appendix we provide a detailed characterization of the implicit bias for a two-layer fully connected neural
network with a single hidden neuron (m = 1) described in Theorem 2,

W(oo) = argming(w) st. X'w=y

where

Note that for the sake of simplicity the notations above are an abbreviated version of those found Theorem 2.

We will employ the initialization orientation, defined as u = %, and the initialization scale, ||W (0)| = .

F.1 Thecasea — Oforany (0 <s <1

Note that from Lemma 2 (part 2) we have

3 5 3 [, 5 5 3 [1-s
||Z||2\/ ||W(O)||+Z*§*§ at o575 s

and thus for any 0 < s < 1 when @ — 0 we get that ||z|| — 0. It follows that g5 (W) = ¢ (||W||) and since ¢ (z) is a
monotonically increasing function (for any §) we get the ¢ implicit bias,

W (00) = argénin (g5 (W)) = argvglin (q(Iwl)) = argénin Wl .

We call this regime the Anti-NTK regime.

F.2 Other special cases

Here we analyze the Taylor expansion of ¢ (W) around W (0). To this end, we know that

~) ~ o~ ~T
R AN Wi |

& — —
2(5+ 2 +1%0P) /5 + 15

and thus the third-order term is order of - @ (IIw(0)]]). Since we know that Vg (W (0)) = 0 we can write the Taylor
expansion as follows

By using Lemma 2 and



A PREPRINT - FEBRUARY 22, 2021

we calculate

o (w o)) ()% (0)
V2 (% (0) = L2 I-
W (0)]] <S+\/‘T+IIW )\/62+4||w Ol
w(0)|]> + 2 -2 7 (0) W
W ||(v~v)|<|0)|| (o % (0)% ()
2 (445 IR OIF) 5 + WO

Also, by using

q" (x) =
52 s 5
we have that
di@ §"@z—q (@)
dr = 2
2\/m2+%\/\/12+542 %
= =
52§
1 @+ T 3
= — . ;
52 52§
2 x2+j 2+j_§

24062 6
d q (z) 1 Vet T T3

-4 ;1.8532.5 (2(1+521) 1+3) '

{FE ( 111852)““T>] (W — W (0))+0 <(1 ;55)2-5 (2 (1+ 321> m>

We are interested in cases where the higher order terms vanish. Since 0 < s < 1, we only need to require
(1—s)*° < /1—5
alb @

<1. (26)

Therefore, the Taylor expansion is

il

0 (%) = 4 (¥ ()45 (¥
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(1-s)

In follows that when *— : < 1 we can approximate

— S —82
0(®) ~a(w (0) + 51/ [ @ - w o) (I—Mmﬁ) (W W (0))

In this case, minimizing ¢ (W) boils down to minimizing the squared Mahalanobis norm
(W —%(0) B(¥—w(0))

where

Note that B~ ! is related to the NTK at initialization, since it is easy to verify that
1
-1 _ 2 T
B = a(0)? (a(0)* T+ w(0)w(0)') ,
and the NTK at initialization is given by

K(x,x') =x" (a(0)’I + W(O)W(O)T) x' = a(0)? (XTBflx') .

27

More specifically, using Lemma 4, we can see that ¢ (W) is the RKHS norm with respect to the NTK at initialization.

Next, we discuss the cases when condition (26) holds.

F.2.1 Thecasea — coforany(0 < s <1

In this case (26) holds and thus the implicit bias is given by

W (00) = arg min (g (W) = arg min (% — W (0)) " B(% — W (0))) ,

where B defined in (27).
F.2.2 The case s — 1 for any o > 0

In this case (26) also holds and thus the implicit bias is given by

% (0c) = arg min (g5 (W)) = argmin (% — % (0)) " B (%~ (0))) .

w

where B defined in (27). Since s — 1 we get that B — I and thus

W (00) = arg min (W =w (O)) -

G Proof of Theorem 4

Definition 1. (KKT point) (Dutta et al., 2013) Consider the following optimization problem (P) for x € R¢

min f(x) s.t. gn(x) <0 Vn € [N]

where f, g, : R? — R are locally Lipschitz functions. We say x € R? is a feasible point of (P) if g,,(x) < 0 Vn € [N].

Further, a feasible point x € R% is a KKT point if x satisfies the KKT conditions:
Ely(l), e y(N) >0 s.t.
1.0€d%f(x) + Z v(M°g, (x)

n€e[N]
2.¥n € [N]: v™g,(x) =0

where 0° is the local (Clarke’s) sub-differential.

28
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We follow the lines of the proof for Theorem 2 given in Appendix B.

As we do in Appendix B, we start by examining a general multi-neuron fully connected network of depth 2, reducing
our claim at the end to the case of a network with a single hidden neuron (m = 1).

The fully connected depth 2 network with Leaky ReLU activations is defined as
P fwid) = 3 e (wix)

where o is a leaky ReLU with parameter p,

o (w;rx(")> = ((1 —p)I {w x(™ > 0} +p> Tx(m),

The sub-gradient of o is

1 w/x(™ >0
A =L p1] wix™ =0
P w/x(™ <0

The gradient inclusion parameter dynamics are

a; € =0, L = w, (Z xMe (" (”)>
N
W; € —Ow, L = a; (Z x(n)cl(n)r(n)> (28)

n=1

where we denote the residual

0 & = S (wIx)

Defining w; £ 4, w,; we have
d - (n)
~ . . 2 T n n n
g Wi € 4w +a;w; = (a7T +wiw, ) <nzl xMei™ (t) )(t)> .
Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we can write
d N
Zwilt) € (0 + Iwi()?) T+ wi(yw] (1)) (Z xe™ (1) r™) <t>>
dt n=1

(5 + Iwal?) T wiltyw] () st wa ) (1)) 1)

where assuming J; > 0, a non-zero initialization w(0) = a(0)w(0) # 0 and that we converge to zero-loss solution,

-1
gives us that the expression (((5z + [lws ()]l ) I+ w;(t)w T(t)) exists.

Using the Sherman Morisson Lemma, we have

-1 WltWZTt n n n

or

~ ~ N
0; + ||w; (¢t 2)7 I- Wi(t)wj(t) iVNVi t x(")cgn) ) r(M () . (29)
(3 + Iwi(e)1) G i) (5. 2@ ) @ (0 € 3=l ()
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Next we use the relation proven in Appendix B,

MWPVjZ

6 7 o\ W, ()W) (1) e
<2+ 4+||Wi(t)||> I—( dt i z:: )(t)'

. 62 ~ W
LI \/j + ||wi(t)2) \/53 + 4%t

We follow the "warped IMD" technique for deriving the implicit bias (presented in detail in Section 5) and multiply the
equation by some function g (W;(¢))

52 - 9
+ 1 + || (t)]]

and together with Eq. 29 we can write

d; 67 Wi ()W, (1) d

M%®%+ +wxw> I- : Ewilt)
? (%+¢%+|~ H)¢¥+4W a

N
e 3" xMel™ (1) g (Wilt)) r(8) .
n=1

Following the approach in Section 5, we then try and find ¢ (W;(t)) = ¢ (||W(¢)||) + z " W;(t) and g (W;(t)) such that

-1
] N T . Wi (1) W] (1)
WﬂWﬁDﬂM@D<%‘HWNN> I- : U
2 (5 + V5 + 190l ) 5 + ool
(30)
and 9q (w;(0)) = 0. We therefore get
0%q (W,(1)) Zﬂ“” wi(1) ™ (¢)
00 (w:(0) Zﬂ“ (1) P 1)
dt

Integrating this equation, and recalling dq (W;(0)) = O, we obtain

N
e > xef” (s0) ",
n=1

where we denoted 1/ = [ dt 0 CAGERIG
0 (n)( )g 7 .

We take notice that this is made possible since for a Leaky ReLLU slope p > 0, we have that c(") (c0) > 0.

Since Eq. 30 is identical to the Hessian we got in the proof of Theorem 2 (Eq. 24), we end up with the same ¢(W;)
function as we describe there.

‘We define the linear model
) =3 aio (W] (c0)x") =y,
where

%) — [cgn) (c0) x(™; cén) (00) x™. cﬁ,’;) (c0) X(")}

W (00) = [Wy1 (00) ;... ; Wy, (00)] -
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So we have

can be written as

N
0q (W(t)) € Y xMy™ (31)

which since (™ has no dependency on the index i is a valid KKT stationarity condition for the ¢ we found above
(according to definition 1, where we notice that the second KKT condition of complementary slackness is not needed
for regression since we use an equality constraint).

Therefore, the gradient flow satisfies the KKT conditions for minimizing the ¢ we have found.

It follows that we can write
W (00) = argming(W) st. X w=y.

w

Additionally, from Eq. 31, using the chain rule, we get

N
awi(oo)%z‘ (al(oo)wz(oo)) = (awi(oo)wi(oo)) 8‘7‘/7‘,(00))(151‘ (~ ( 6 az Z e (n) v

~ T ~ n n n
Ba, (00)45: (@i(00)Wi(00)) = (Da,(00) Wi(00)) D, (00)) 85, (Wi(00)) € W00 ZX( ef" ),

which, together with the feasability of the solution are exactly the KKT conditions of thls (non—convex, non-smooth)
optimization problem

(a(o0), w(00)) = argmin gs(aw) s.t. aoc(X'w)=y.

a,w

H Auxiliary Lemmas

Lemmal. § = a2 (0) _ ||W (O)||2 _ 4as )

Proof. By the notation

|a(0)] — [[w(0)]]
|a(0)] + [[w(0)]]
we get
| _ g2 = AHaO)llw(O)]
(la(0)] + [Iw(0)[))?
and
das _ 1a(0)| = [w(0)] (Ja(0)] + Iw(0)[})?
1—s? a(0)[ + [[w(0)] 4o

|
|
=a*(0) — [w(0)]* = 6.

Lemma 2. The initialization scale o, initialization shape s and the balancedness factor § satisfy:
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1.
a2 52:a(1—|—52)
4 1—s2
2.
a2+i2_é_a1_3
V 4 2 l+s
3.
2+52+5 1+s
a2 L0
4 2 1-s
Proof. 1. Using Lemma 1 we get

2. Using part 1 and Lemma 1 we get

62 5 a(l+s?) 2as (1—s)° 1-s
a2 + — — - = — = = .
4 2 1—s2 1—s2 1— 52 1+s
3. Using part 1 and Lemma 1 we get
62 & a(l+s?)  2as (1+5)° 1+s
2 —_ —_ = frd = .
T T R T e e
O
Lemma 3. Let
. PAT 5 (5 @
o= PRI
be definedVx > 0, and V6 > 0. Then:
lim g(z) =0
Jim, 92
Proof.
22+ -8 w2+ 22
lim g(z) = lim ¢ = lim § 5 .
z—0t z—0t x z—0t X
Using L’Hopital’s rule we have
22+ 5 4 2 1 1
hm+ 5 = hm+ 5 = lim+ =3
x—0 x x—0 X x—0 52
2¢/x2 4
and so
1 = lim §y/> =0
A5 90 = 15, 0y5
O

Lemma 4. Let A be a positive definite matrix and f (x) a kernel predictor corresponding to a linear kernel K (x,x’) =
x " Ax'. Then )
1fll%x = wiA W,

where f (x) = w'x.
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Proof. Write K (x,x') = x T Ax’ = x| Az Azx/, then ¢ (x) = Azx is the corresponding feature mapping and

fx)=w'¢(x) = wlAZx =w'x

for w = A 3Ww. Therefore ,
2 < 12 _1 _
£l = 191 = [|Abw]" = wTAtw,

33
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