
Bayesian Streaming Sparse Tucker Decomposition

Shikai Fang, Robert M. Kirby, Shandian Zhe

School of Computing, University of Utah
Salt Lake City, UT 84112

shikai.fang@utah.edu, kirby@cs.utah.edu, zhe@cs.utah.edu

Abstract

Tucker decomposition is a classical tensor factor-
ization model. Compared with the most widely
used CP decomposition, Tucker model is much
more flexible and interpretable in that it accounts
for every possible (multiplicative) interaction be-
tween the factors in different modes. However, this
also brings in the risk of overfitting and compu-
tational challenges, especially in the case of fast
streaming data. To address these issues, we de-
velop BASS-Tucker, a BAyesian Streaming Sparse
Tucker decomposition method. We place a spike-
and-slab prior over the core tensor elements to au-
tomatically select meaningful factor interactions so
as to prevent overfitting and to further enhance the
interpretability. To enable efficient streaming fac-
torization, we use conditional moment matching
and delta method to develop one-shot incremental
update of the latent factors and core tensor upon
receiving each streaming batch. Thereby, we avoid
processing the data points one by one as in the
standard assumed density filtering, which needs
to update the core tensor for each point and is
quite inefficient. We explicitly introduce and up-
date a sparse prior approximation in the running
posterior to fulfill effective sparse estimation in
the streaming inference. We show the advantage of
BASS-Tucker in several real-world applications.

1 INTRODUCTION

Multiway or multi-relation data are ubiquitous in real-world
applications. Those data are naturally represented by tensors.
For example, we can use a three-mode tensor, (customer,
product, page), to describe online shopping records. In order
to analyze these tensors, tensor factorization provides a
fundamental framework, which introduces a set of latent

factors (or properties) to represent the nodes/entities in each
mode. These latent factors are estimated by minimizing the
reconstruction error of the observed tensor entries. Given the
latent factors, we can discover the hidden patterns among
the tensor nodes, such as communities and outliers. We
can also use these latent factors as effective features for
downstream tasks, such as commodity recommendation and
click-through-rate prediction.

The most commonly used tensor decomposition approach
is (probably) the CANDECOMP/PARAFAC (CP) decom-
position [Harshman, 1970], which demands all the tensor
nodes (across different modes) have the same number of
latent factors R. CP assumes each tensor element is calcu-
lated by a summation of R products, where the r-th product
is computed from the r-th latent factor of each involved
node (1 ≤ r ≤ R). Despite the convenience, CP model
can be quite restrictive in that it only considers R possible
interactions between the latent factors. By contrast, Tucker
decomposition [Tucker, 1966] is much more expressive.
It allows the nodes in each mode k to have a different
factor number Rk, and uses a linear combination of all
possible R1 × · · · × RK interactions across the factors to
model each entry value. The weights can be organized as
an R1 × · · · × RK core tensor W , and jointly estimated
with the latent factors. CP decomposition can therefore be
viewed as a special instance of Tucker decomposition with
R1 = . . . = RK and W being diagonal. Hence, Tucker
decomposition enables more flexibility and interpretability
than CP decomposition.

However, in the mean time, Tucker decomposition also
brings challenges in both modeling and computation. First,
assuming that every possible interaction of the latent factors
is taking effect might make the model overly complex, and
enhance the risk of overfitting. Second, the model estimation
is much more expensive (considering a relatively large core
tensor W), especially in the case of fast streaming data,
which are ubiquitous in real-world applications [Du et al.,
2018]. It is very costly to estimate the latent factors and core
tensor from scratch every time when a batch of new entries

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

are received. Some applications that stress on privacy (e.g.,
SnapChat) even forbid us from re-accessing previous data.
Therefore, an efficient incremental update is in urgent need.

To address these issues, we develop BASS-Tucker, a
Bayesian streaming sparse Tucker decomposition approach.
We propose a Bayesian formulation of the Tucker decompo-
sition, and assign a spike-and-slab prior over each element of
the core tensorW so as to identify the effective factor inter-
actions in the generation (reconstruction) of the entry values.
Accordingly, we can reduce the model complexity and fur-
ther enhance the interpretability. Second, to efficiently deal
with streaming data, we extend the assumed density filter-
ing (ADF) framework [Boyen and Koller, 1998] to jointly
process each batch of incoming tensor entries. We use the
conditional moment matching and delta method [Bickel and
Doksum, 2015] to address the intractable moment calcu-
lation, and develop one-shot incremental posterior update
for the latent factors and core tensor upon receiving each
streaming batch. In so doing, we avoid sequentially process-
ing every data point as in standard ADF, which requires
us to repeatedly construct new approximations, match the
moments, and is much more expensive. Next, to enable
effective sparse estimation, we explicitly introduce a spike-
and-slab approximation in the running posterior. By up-
dating the approximation every a few batches, the sparse
regularization of the spike-and-slab prior is constantly trans-
mitted and reinforced in the running posterior, with which
we can effectively select meaningful factor interactions dur-
ing the streaming decomposition. Our incremental updates
are closed-form, reliable and efficient.

We examined BASS-Tucker in four real-world applications.
We compared with the state-of-the-art multilinear streaming
decomposition algorithm, POST [Du et al., 2018], and static
CP/Tucker decomposition algorithms that need to repeat-
edly access the data. In both running and final predictive
performance, BASS-Tucker consistently outperforms POST,
often by a large margin. The final prediction accuracy of
BASS-Tucker is even significantly better than the state-of-
the-art static decomposition algorithms. BASS-Tucker also
enjoys a linear scalability in the data size. Finally, BASS-
Tucker identifies sparse structures in the core tensor, which
reflects interesting patterns within the factor interactions in
reconstructing the tensor entries.

2 BACKGROUND

Tensor Decomposition. Denote a K-mode tensor by Y ∈
Rd1×...×dK , where mode k contains dk nodes (or enti-
ties). Each tensor entry is indexed by a K-element tuple,
i = (i1, . . . , iK), where each ik (1 ≤ k ≤ K) is the index
of the involved node in mode k. The entry value is denoted
by yi. To conduct tensor decomposition, we introduce a set
of latent factors to represent the nodes in each mode. These
factors may correspond to intrinsic properties or features of

the nodes. Suppose in each mode k, we have Rk latent fac-
tors for every node. We can arrange these latent factors into
K factor matrices, U = {U1, . . . ,UK}, where each Uk is
of size dk ×Rk and each row corresponds to one node. Our
goal is to estimate U to recover the observed entry values in
Y . The most commonly used tensor decomposition model
is CANDECOMP/PARAFAC (CP) decomposition [Harsh-
man, 1970] which assumes R1 = . . . = RK = R, and
Y ≈

∑R
r=1 λr ·

(
U1(:, r)⊗ . . .⊗UK(:, r)

)
, where ⊗ is

the Kronecker product, and Uk(:, r) is the r-th column of
Uk. The element-wise form is

yi ≈
R∑
r=1

λr

K∏
k=1

ukik,r, (1)

where ukik,r = [Uk]ik,r. To estimate the latent factors U ,
we can minimize a loss function, which is typically the
mean squared error of using U to reconstruct the observed
entries in Y . Despite the simplicity and convenience, CP
only considers the interaction between every r-th factor
across the K modes, namely, {

∏K
k=1 u

k
ik,r
}r, and ignores

all the other interactions in reconstructing the entries.

A much more expressive model is Tucker decomposition
model [Tucker, 1966], which takes into account all possible
factor interactions. Specifically, we introduce an R1× . . .×
RK core tensorW and assume that

Y ≈ W ×1 U1 ×2 . . .×K UK ,

where ×k the mode-k tensor matrix product [Kolda, 2006],
W ×k Uk results in an R1 × . . .× Rk−1 × dk ×Rk+1 ×
. . .×RK tensor and each element is calculated by

[
W ×k Uk

]
i1,...,iK

=

Rk∑
j=1

w(i1,...,ik−1,j,ik+1,...,iK) · ukik,j .

The element-wise form is given by

yi ≈
R1∑
r1=1

. . .

RK∑
rK=1

[
w(r1,...,rK) ·

K∏
k=1

ukik,rk

]
. (2)

Now, we can see that all R1 × · · · ×RK factor interactions
across the K modes are considered in the generation of the
entry values, weighted by the elements of the core tensor
W . Therefore, Tucker model is much more expressive in
capturing the interactions in data than the CP model, and
can give more interpretable results.

Streaming Model Inference. Streaming variational Bayes
(SVB) [Broderick et al., 2013] is a popular approach to
conduct incremental posterior inference given data streams.
It is based upon the incremental Bayes’ rule,

p(θ|Dold ∪ Dnew) ∝ p(θ|Dold)p(Dnew|θ) (3)

where θ are the latent random variables in the probabilis-
tic model we use, Dold all the data points that so far have

been accessed, and Dnew the newly received data points.
SVB uses the variational inference framework to conduct a
cyclic update of the current posterior p(θ|Dold). Specifically,
SVB introduces a tractable variational posterior qcur(θ) that
is usually from the exponential family to approximate the
current posterior p(θ|Dold). When Dnew arrives, SVB multi-
plies qcur(θ) with the likelihood ofDnew to obtain a blending
distribution,

p̃(θ) = qcur(θ)p(Dnew|θ), (4)

which is considered as approximately proportional to the
joint distribution p(θ,Dold ∪ Dnew). The latter, however,
is infeasible to compute in the streaming scenario. There-
fore, SVB uses p̃(θ) to construct a variational evidence
lower bound (ELBO) [Wainwright et al., 2008], L(q(θ)) =

Eq
[
log
(
p̃(θ)
q(θ)

)]
, and maximizes the ELBO to update the

posterior, qcur ← argmaxq L(q). This is equivalent to min-
imizing Kullback-Leibler (KL) divergence between q and
p̃. We continue this procedure to conduct incremental up-
dates for the new incoming data. At the beginning, we
set qcur = p(θ), the original prior in the model. For effi-
ciency and convenience, we usually use a mean-field vari-
ational posterior, q(θ) =

∏
j q(θj), and alternately update

each q(θj), which is often closed-form. The state-of-the-art
streaming CP decomposition algorithm, POST [Du et al.,
2018], applies SVB in a Bayesian CP model to incremen-
tally update the posterior of the factors upon receiving new
tensor entries.

3 BAYESIAN SPARSE TUCKER
DECOMPOSITION

Tucker decomposition is much more flexible than the most
commonly used CP decomposition in that it combines all
possible (multiplicative) factor interactions across the modes
(see (2)) to reconstruct the tensor entries. Therefore, Tucker
decomposition can capture as many effective and inter-
pretable patterns as possible. However, such flexibility can
also cause significant challenges in modeling and computa-
tion. First, assuming every factor interaction is taking effect
in generating the entry values can make the model overly
complex, especially given that in most applications, the data
are extremely sparse, i.e., the number of observed entries is
far less than the tensor size. This modeling assumption can
increase the risk of overfitting. Second, we have to estimate
an extra parametric core-tensorW , of size R1 × . . .×RK ,
which is relatively large. The joint estimation ofW and U
can be much more costly, especially when we handle stream-
ing data, where each newly observed entry might incur a
whole update ofW . To address these challenges, we pro-
pose a Bayesian sparse Tucker decomposition model and
develop an efficient one-shot streaming posterior inference
algorithm (see Sec. 4).

Specifically, we formulate the Tucker decomposition in a

Bayesian framework. We first sample the latent factors in
each mode from the standard Gaussian prior distribution,

p(U) =

K∏
k=1

dk∏
j=1

N (ukj |0, I). (5)

Next, to sample the core tensorW , we place a spike-and-
slab prior over each element ofW ,

p(S|ρ0) =

(R1,...,RK)∏
j=(1,...,1)

Bern(sj|ρ0),

p(W|S) =
∏
j

sjN (wj|0, σ2
0) + (1− sj)δ(wj), (6)

where S is a binary tensor of the same size withW , Bern(·)
is the Bernoulli distribution, and δ(·) is the Dirac-delta func-
tion.

Give the latent factors U and core tensor W , we sample
each observed entry value yi from

p(yi|U ,W, τ)

= N
(
yi|W ×1

(
u1
i1

)> ×2 . . .×K
(
uKiK

)>
, τ−1

)
, (7)

= N

yi| R1∑
j1=1

. . .

RK∑
jK=1

[
w(j1,...,jK) ·

K∏
k=1

ukik,jk

]
, τ−1

 ,

where τ is the inverse of the noise variance. Now, com-
bining with (6), we can see that according to the selection
indicators in S, ineffective or useless core-tensor elements
will concentrate around 0, and hence deactivate the corre-
sponding factor interactions (i.e.,

∏K
k=1 u

k
ik,jk

). Through
the posterior inference of S, we can automatically identify
effective interactions, discarding the ineffective ones, to re-
duce the model complexity, alleviate overfitting, and also to
enhance the interpretability. Throughout this paper, we fo-
cus on continuous entry values, and hence use the Gaussian
distribution. It is straightforward to extend our model and
inference algorithm with other likelihoods or link functions.

We then assign a Gamma prior over τ , p(τ) =
Gam(τ |a0, b0). Denote the observed tensor entries by F .
The joint probability of our model is given by

p(S,W,U ,Y, τ) =
∏
k

∏
j

N (ukj |0, I)Gam(τ |a0, b0)

·
∏
j

Bern(sj|ρ0)
(
sjN (wj|0, σ2

0) + (1− sj)δ(wj)
)

(8)

·
∏
i∈F

N (yi|W ×1

(
u1
i1

)> ×2 . . .×K
(
uKiK

)>
, τ−1).

4 STREAMING INFERENCE

We now present our streaming inference algorithm. We
assume the observed entries are streamed in a series of small

batches, {B1,B2, . . .}. These batches can have a varying
number of tensor entries. Upon the arrival of each batch Bn,
our goal is to incrementally update the posterior of the latent
factors U , the core tensorW , the selection indicators S , and
the inverse of the noise variance τ , without revisiting the
previous batches {B1, . . . ,Bn−1}.

One might consider applying the SVB framework discussed
in Sec. 2. However, a severe problem is that SVB cannot
well integrate the spike-and-slab (SS) prior in (6) with the
streaming data to effectively estimate the sparse posterior
of the core tensorW . The reason is that the spike-and-slab
prior is a mixture prior and we cannot set qcur to the SS
prior at the beginning. Instead, we have to choose a much
simpler form for qcur (in the exponential family) to ensure
a tractable update, e.g., a mean-field form qcur(W,S,U) =
qcur(W)qcur(S)qcur(U). The SS prior will only take effect
in dealing with the very first batch of entries to obtain the
first estimate of qcur. After that, the prior will be replaced
by qcur, which will repeatedly integrate with the subsequent
streaming batches to update itself (see (3)). Hence, in the
subsequent updates, the SS prior is separated from the data
likelihoods, and cannot perform any sparse regularization
in the model update. The regularization is performed by qcur
itself, which is much weaker than the original SS prior. For
example, if we use the aforementioned mean-field form for
qcur, the selection indicators S and core tensor elementsW
are assumed to be independent. It does not encourage any
sparsity inW . In addition, for each streaming batch, SVB
needs to iteratively update each component in the mean-
field posterior until convergence, and hence can be quite
expensive, especially for the relatively large core-tensorW .

To address these issues, we explicitly introduce an approx-
imation term of the SS prior in the current posterior qcur.
After every a few streaming batches, we update the approxi-
mation term via moment matching. In this way, the sparse
regularization of the SS will be constantly injected and rein-
forced in the current posterior qcur, which further integrates
with the new data, to improve the sparse posterior estimation
ofW . Furthermore, we extend the assumed-density-filtering
(ADF) [Boyen and Koller, 1998] framework to perform one-
shot incremental posterior update for U ,W and τ in parallel,
avoiding the expensive iterative, alternating updates.

4.1 REFINING SPIKE-AND-SLAB PRIOR
APPROXIMATION IN THE RUNNING
POSTERIOR

Specifically, we approximate the current (or running) poste-
rior with

qcur(W,U , τ) ∝ p(S)ξ(W,S) ·
K∏
k=1

dk∏
j=1

N (ukj |µkj ,Vk
j)

· N (vec(W)|µ,Σ) Gam(τ |a, b), (9)

where ξ(W,S) is an approximation to the SS prior in (6),

ξ(W,S) =
∏

j
ξj(wj, sj)

=
∏

j
Bern (sj|c(ρj))N (wj|mj, ηj) (10)

∝∼ p(W|S),

and c is the sigmoid function, ∝∼ means “approximately pro-
portional to”, and vec(·) denotes vectorization. Contrasting
to the joint probability of our model in (8), we can see that
the terms other than p(S)ξ(S,W) in (9) essentially inte-
grate (or summarize) the prior of U and τ and the likelihood
of all the data points that have been seen so far.

Similar to (4), given an incoming batch Bn, we combine the
current posterior with the new data likelihood to construct a
blending distribution,

p̃(U ,W, τ) = qcur(U ,W, τ)
∏
i∈Bn

p(yi|U ,W, τ), (11)

which is an approximation to the joint distribution of all the
data (see (8)). We use the idea of moment matching and pro-
jection to update N (vec(W)|m,Σ), Gam(τ |a, b), and the
associated N (ukj |µkj ,Vk

j). The details will be discussed in
Sec. 4.2. Then after every a few batches, we update ξ(W,S)
to find the best approximation of the SS prior under the
current data context (reflected in the other terms in qcur).
In this way, the sparse regularization effect of the SS prior
can be injected and reinforced in qcur, and leveraged in the
subsequent posterior updates.

The update of ξ(W,S) resembles standard expectation prop-
agation [Minka, 2001]. We update each ξj in parallel. We
first divide the marginal posterior by the prior approximation
to obtain the calibrated (or context) distribution,

q\(wj, sj) ∝
qcur(wj, sj)

ξj(wj, sj)
= Bern(sj|ρ0)N (wj|µ\j , v

\
j).

We then combine the calibrated distribution and the exact
prior to obtain a tilted distribution (which is similar to the
blending distribution in the streaming case),

p̃(wj, sj) ∝ q\(wj, sj)
(
sjN (wj|0, σ2

0) + (1− sj)δ(wj)
)
.

We project p̃ to the exponential family to obtain the updated
posterior. This is done by moment matching. That is, we
compute the moments of p̃, with which to calculate the
natural parameters to construct the updated posterior in the
exponential family. It is well known that moment matching
is equivalent to minimizing the KL divergence from p̃ to the
approximate posterior.

q∗(wj, sj) = Bern(sj|c(ρ∗j))N (wj|µ∗j , v∗j), (12)

where ρ∗j = log
(
N (µ

\
j |0, σ2

0 + v
\
j)/N (µ

\
j |0, v

\
j)
)

, µ∗j =

c(ρ̂j)µ̂j, v∗j = c(ρ̂j)
(
v̂j + (1 − c(ρ̂j))µ̂

2
j

)
, where ρ̂j =

ρ∗j + c−1(ρ0), v̂j =
((
v
\
j

)−1
+ σ−2

0

)−1
, and µ̂j = v̂j

µ
\
j

v
\
j

.

Finally, we update the prior approximation by

ξj(wj, sj)← q∗(wj, sj)/q
\(wj, sj). (13)

4.2 ONE-SHOT INCREMENTAL UPDATE

Now, let us look at how to update the remaining terms in (9).
As mentioned in Sec. 4.1, upon the arrival of a streaming
batch Bn, we will construct the blending distribution in (11),
which combines the prior, the information of the previous
data (reflected in qcur), and the information of new data. We
use the ADF framework that projects the blending distri-
bution onto the exponential family to obtain the updated
posterior. This essentially is to minimize KL(1

Z p̃‖q) where
Z is the normalization constant. The optimal q is obtained
by moment matching. Standard ADF only subsumes one
data point at each step to construct the blending distribution
and perform projection. Hence, it needs to sequentially pro-
cess each entry in Bn and repeatedly match moments. This
one-by-one strategy is inefficient, because we need to match
the moments of the core tensorW many times, which can
be very costly. In addition, repeatedly constructing approx-
imations by projection can affect the quality of posterior
updates. Therefore, we jointly integrate the whole stream-
ing batch Bn via (11), and perform moment-matching only
once. Our one-shot posterior update not only is much more
efficient, but also avoids multiple approximation steps and
hence can improve the quality of posterior estimation.

However, a critical bottleneck is that the moment of the
blending distribution p̃ in (11) is analytically intractable, due
to the complex coupling of U andW in the likelihood (see
(7)). To overcome this problem, we first perform conditional
moment matching, and then seek to calculate the expected
conditional moments. Specifically, let us consider the update
of N (vec(W)|µ,Σ) in (9). We denote by Θ all the latent
random variables in our model, and define Θ\W = Θ\{W}.
Our key observation is

Ep̃ [φ(W)] = Ep̃(Θ\W)Ep̃(W|Θ\W)

[
φ(W)|Θ\W

]
, (14)

where φ(W) are the required moments of W , including
the first and second-order moments here. Therefore, we can
calculate the inner expectation first, namely, the conditional
moments. Since it is under the conditional blending dis-
tribution (i.e., given all the remaining variables fixed), the
computation can be much easier. Specifically, we derive that

p̃(W|Θ\W) ∝ N (vec(W)|m,diag(η))N (vec(W)|µ,Σ)

·
∏
i∈F

N
(
yi|
((

uKiK
)> ⊗ . . .⊗ (u1

i1

)>)
vec(W), τ−1

)
,

where m is the concatenation of all {mj} and η is the con-
catenation of all {ηj} (see (10)). Note that the mean in the
Gaussian of yi is obtained from the tensor algebra [Kolda,

2006]. Together this gives another Gaussian distribution,
and we can immediately derive the closed-form conditional
moments,

E
[
vec(W)|Θ\W

]
= Ω−1

(∑
i

τyibi + diag

(
m

η

)
+ Σ−1µ

)
,

E
[
vec(W)vec(W)>|Θ\W

]
= Ω−1 + E

[
vec(W)|Θ\W

]
E
[
vec(W)|Θ\W

]>
, (15)

where Ω = τ
∑

i∈F bib
>
i + diag(η−1) + Σ−1 and bi =

uKiK ⊗ . . .⊗ u1
i1

.

To obtain the moment, we need to take the expectation of
the conditional moment under the marginal blending dis-
tribution, p̃(Θ\W), namely the outer expectation in (14).
However, this is infeasible, because p̃(Θ\W) is analytically
intractable. To overcome this problem, we observe that due
to the factorization structure of qcur in (9), we also main-
tain the moment matching between qcur(Θ\W) and p̃(Θ\W),
hence we can assume they are close in high-density regions.
In addition, since p̃ is an integration of qcur and a small batch
of new data points, when many streaming batches have been
processed, adding one more batch is unlikely to significantly
change the current posterior, especially in the high-density
regions. Therefore, we can use qcur(Θ\W) to approximate
p̃(Θ\W), and calculate the expected conditional moments.
For notional convenience, we denote all the conditional
moments ofW by h(Θ\W). We now resort to calculate

Ep̃ [φ(W)] ≈ Eqcur(Θ\W)

[
h(Θ\W)

]
.

This is still intractable, because the conditional moments h
is a nonlinear function of the remaining variables Θ\W (see
(15)). However, with the nice form of qcur, we can use the
delta method [Oehlert, 1992, Bickel and Doksum, 2015] to
calculate the expectation. We present h with the first-order
Taylor approximation at the mean,

h(Θ\W) ≈ h
(
Eqcur [Θ\W]

)
(16)

+ J
(
Eqcur [Θ\W]

) (
vec
(
Θ\W

)
− vec

(
Eqcur [Θ\W]

))
,

where J(·) is the Jacobian matrix. We now take the expecta-
tion over the Taylor approximation of h and obtain

Eqcur(Θ\W)

[
h(Θ\W)

]
≈ h

(
Eqcur [Θ\W]

)
. (17)

Therefore, we can simply substitute the current expectation
or moments for Θ\W in the conditional moments of W .
The computation is convenient and efficient. The theoretical
analysis and guarantees about the delta method is discussed
in Oehlert [1992], Wolter [2007].

We then use the moments calculated from (17) to
construct the updated marginal posterior q∗(W) =
N (vec(W)|β∗,G∗). Contrasting to (9), we update

N (vec(W)|µ,Σ) ∝ N (vec(W)|β∗,G∗)
N (vec(W)|m,diag(η))

. (18)

Algorithm 1 BASS-Tucker
1: Initialize the spike-and-slab prior approximation and multiply

it with all the other priors to initialize qcur(·).
2: while a new batch of tensor entries Bn arrives do
3: In parallel updateN (vec(W)|m,Σ), Gam(τ |a, b), and re-

latedN (uk
j |µk

j ,V
k
j) in (9) via conditional moment match-

ing and delta method.
4: if T streaming batches have been processed then
5: Update the spike-and-slab prior approximation following

(12) and (13).
6: end if
7: end while
8: return the current posterior qcur(·).

In parallel, we use the same approach to update Gam(τ |a, b)
and all the Gaussian terms N (ukj |µkj ,Vk

j) in (9) associated
with the current batch Bn, namely, those corresponding to
the entries of Bn. Note that if a latent factor has no relevant
tensor entries observed in Bn, we do not update its posterior,
because we do not have data to improve it.

In this way, we only perform one moment matching in
parallel to update the approximate terms of qcur, without the
need for sequentially processing each entry in the streaming
batch or cyclically update each term in many iterations. Our
one-shot update is analytical, efficient and reliable. The
streaming inference is summarized in Algorithm 1.

4.3 ALGORITHM COMPLEXITY

The time complexity of our incremental inference in each
streaming batch isO(C3 +BC+B

∑K
k=1R

3
k), whereC =∏K

k=1Rk is the size of the core tensor and B is the batch
size. Note that if we use the standard ADF to sequentially
process each data point, the time complexity will increase to
O(BC3). The space complexity isO(C+C2 +

∑K
k=1(dk+

d2
k)), which is to store the posterior mean and covariance of

the latent factors and core tensor.

5 RELATED WORK

As a natural extension of matrix decomposition, tensor de-
composition is a classical and important topic in machine
learning. Canonical approaches include CP [Harshman,
1970] and Tucker [Tucker, 1966] decomposition. Although
numerous other methods have also been developed, such
as [Shashua and Hazan, 2005, Chu and Ghahramani, 2009,
Bader and Kolda, 2008, Sutskever et al., 2009, Acar et al.,
2011, Hoff, 2011, Kang et al., 2012, Yang and Dunson, 2013,
Rai et al., 2014, Choi and Vishwanathan, 2014, Hu et al.,
2015, Rai et al., 2015, Schein et al., 2015, 2016, Oh et al.,
2018, Du et al., 2018], the majority of these methods still
inherit the CP or Tucker form, not only for their elegance
and convenience, but also due to the model transparency
and interpretability. Recently, a few efforts have been made
to develop nonlinear decomposition models based on Gaus-

sian processes [Rasmussen and Williams, 2006] or neu-
ral networks, such as [Xu et al., 2012, Zhe et al., 2016b,
2015, 2016a, Liu et al., 2019]. Despite their power, these
methods rely on black-box models and hence sacrifice the
interpretability.

Expectation propagation [Minka, 2001] is a deterministic ap-
proximate inference approach that unifies assumed-density-
filtering (ADF) [Boyen and Koller, 1998] and (loopy) belief
propagation [Murphy et al., 1999]. EP approximates the
prior and likelihood of each data point by a term from the
exponential family. ADF can be considered as an online
version of EP — it maintains a holistic posterior, and applies
EP to update the model with one incoming data point at a
time. Hence, ADF does not need to keep approximation
terms for the past data points. EP is problematic when the
moment computation is intractable. Recently, Wang and Zhe
[2019] proposed conditional EP to address this problem by
conditional moment matching, Taylor approximation and
numerical quadrature with fully factorized posteriors. Our
work extends ADF to perform one-shot posterior update
upon receiving a batch of streaming entries. Hence, we do
not need to repeatedly conduct moment matching, which is
quite expensive and might also impair the inference qual-
ity. To fulfill an efficient, tractable moment calculation, we
use similar ideas as in [Wang and Zhe, 2019]. In addition,
another important difference from ADF is that we explic-
itly maintain the approximation term of the spike and slab
prior in the running posterior, rather than absorb everything
in a singleton term in the exponential family. In so doing,
we are able to constantly update the prior approximation,
transmit and reinforce the regularization effect of the origi-
nal prior to ensure a high-quality sparse posterior estimate
under streaming data.

6 EXPERIMENT

6.1 PREDICTIVE PERFORMANCE

Datasets. We evaluated BASS-Tucker in four real-world ap-
plications. (1) Alog [Zhe et al., 2016b], a real-valued three-
mode tensor of size 200×100×200, representing three-way
resource management operations (user, action, resource). It
includes 0.66% observed entries. (2) MovieLen1M (www.
grouplens.org/datasets/movielens/), a two-
mode tensor of size 6, 040 × 3, 706, comprising con-
tinuous (user, movie) ratings. We have 1, 000, 209 ob-
served entries. (3) ACC [Du et al., 2018], a real-valued
tensor extracted from a large file-access log (user, ac-
tion, file), of size 3, 000 × 150 × 30, 000, including 0.9%
nonzero entries. In addition, we also tested a binary
tensor (4) Anime (www.kaggle.com/CooperUnion/
anime-recommendations-database), a two-mode
tensor about (user, anime) preferences, of size 25, 838 ×
4, 066, including 1, 300, 160 observed elements.

www.grouplens.org/datasets/movielens/
www.grouplens.org/datasets/movielens/
www.kaggle.com/CooperUnion/anime-recommendations-database
www.kaggle.com/CooperUnion/anime-recommendations-database

3 5 7 9

Number of Factors

1

1.5

 R
M

S
E

(a) ALOG

3 5 7 9

Number of Factors

0.4

0.6

0.8

 R
M

S
E

(b) ACC

3 5 7 9

Number of Factors

0.92

0.94

 R
M

S
E

(c) MovieLen1M

3 5 7 9

Number of Factors

0.7

0.75

0.8

A
U

C

(d) Anime

2
8
2

9
2

10
2

11

Batch Size

1

1.2

1.4

 R
M

S
E

(e) ALOG

2
8
2

9
2

10
2

11

Batch Size

0.35

0.4

0.45

 R
M

S
E

(f) ACC

2
8
2

9
2

10
2

11

Batch Size

0.92

0.94

 R
M

S
E

(g) MovieLen1M

2
8
2

9
2

10
2

11

Batch Size

0.7

0.75

0.8

A
U

C

(h) Anime

Figure 1: Predictive performance with different numbers of factors (top row) and streaming batch sizes (bottom row). In the top row, the
streaming bath size is fixed to 512; in the bottom row, the factor number is fixed to 5. The results are averaged over 5 runs. Note that the
performance of several baselines are missing or incomplete, because they are far worse than all the other methods and hence not included.

0 20 40

Number of Batches

1

1.5

2

R
M

S
E

(a) ALOG (R=5)

0 500 1000

Number of Batches

0.4

0.5

0.6

R
M

S
E

(b) ACC (R=5)

0 500 1500

Number of Batches

0.92

0.94

0.96

R
M

S
E

(c) MovieLen1M (R=5)

0 500 1000

Number of Batches

0.6

0.7

0.8

A
U

C

(d) Anime (R=5)

0 20 40

Number of Batches

1

1.5

2

R
M

S
E

(e) ALOG (R=7)

0 500 1000

Number of Batches

0.4

0.6

R
M

S
E

(f) ACC (R=7)

0 500 1500

Number of Batches

0.92

0.94

0.96

R
M

S
E

(g) MovieLen1M (R=7)

0 500 1000

Number of Batches

0.6

0.7

0.8

A
U

C

(h) Anime (R=7)

Figure 2: Running prediction accuracy along with the number of processed streaming batches. In the top row, the factor number is fixed
to 5; in the bottom row, the factor number is fixed to 7. The batch size is fixed to 512.

-0.05 0 0.05

1
st

 component

0.03

0

-0.03

2
n

d
 c

o
m

p
o

n
e

n
t

(a) BASS-Tucker

-1 0 1

1
st

 component

-1

0

1

2
n

d
 c

o
m

p
o
n
e
n
t

(b) P-Tucker

0.3 0.5 1

Training Ratio

100

1000

3000

T
im

e
 (

s
e

c
o

n
d

s
) R=3

R=5

R=7

R=9

(c) Scalability of BASS-Tucker

0.1 0.3 0.5 0.7 0.9
0.2

0.5

0.8

1

U
n

s
e

le
c
te

d
 R

a
ti
o

(d) Sparsity

Figure 3: The structures of the estimated core-tensor by BASS-Tucker and P-Tucker (a, b), the scalability of BASS-Tucker (c) and the
sparsity achieved by BASS-Tucker.

Competing methods. We compared with the state-of-the-
art (SOA) multilinear streaming tensor decomposition al-
gorithm (1) POST [Du et al., 2018], which is based on
SVB [Broderick et al., 2013]. In addition, we compared
with SOA static multilinear decomposition methods, includ-
ing (2) P-Tucker [Oh et al., 2018], a highly efficient Tucker
decomposition algorithm that conducts row-wise updates
in parallel, (3) CP-WOPT [Acar et al., 2011], CP decom-
position by conjugate gradient descent, (4) CP-ALS Bader
et al. [2015], CP decomposition via alternating least square
updates, (5) NNCP [Lee and Seung, 1999], non-negative CP
decomposition with multiplicative updates, and (6) Tucker-
ALS [De Lathauwer et al., 2000], Tucker decomposition
with alternating least square updates.

Settings and Results. We implemented BASS-Tucker with
MATLAB. To estimate a sparse core tensor W , we set
ρ0 = 0.5 and σ2

0 = 1 (see (6)). We used the original
implementation of all the competing approaches and their
default settings (e.g., the maximum number of iterations
for static decomposition). We first evaluated the final pre-
dictive performance, namely when all the streamed entries
have been processed. To this end, we randomly split the
observed entries of Alog into 75% for training and 25% for
test and the other datasets 90% for training and 10% for test.
For BASS-Tucker and POST, we randomly partitioned the
training entries into a stream of small batches. The other
methods conducted iterative static decomposition and need
to repeatedly access the whole data. We repeated the ex-
periment for 5 times, and calculated the average root-mean-
squared-error (RMSE) for the real-valued datasets and area
under ROC curve (AUC) for the binary dataset. The average
RMSE/AUC and standard deviation are reported in Fig. 1.
In Fig. 1 a-d, we fixed the streaming batch size to 512, and
show how the final predictive performance of each method
varied with different factor numbers, {3, 5, 7, 9}. In Fig. e-h,
we fixed the factor number to 5, and examined the perfor-
mance under different batch sizes, {28, 29, 210, 211}. The
more the factors/larger the streaming batch size, the more
expensive for BASS-Tucker to factorize each batch. Hence
these settings examined the trade-off between the accuracy
and computational complexity. In Fig. 2 of the supplemen-
tary material, we show the running time of BASS-Tucker
under different sizes of streaming batches. As we can see,
in all the cases BASS-Tucker outperforms SOA streaming
approach POST and SOA static decomposition methods
except that in Fig. 1 c, BASS-Tucker is slightly worse than
P-Tucker when the number factor is 9. In most cases, BASS-
Tucker shows an significant improvement (p<0.05). Note
that P-Tucker estimates a dense core-tensor and needs to
access the data many time. The results demonstrate the
advantage of BASS-Tucker (including sparse core tensor
estimation) in prediction accuracy.

6.2 PREDICTION ON THE FLY

Next, we evaluated the running predictive performance of
BASS-Tucker. We fixed the batch size to 512, and randomly
streamed the training entries to BASS-Tucker and POST.
We tested the prediction accuracy after each streaming batch
was processed, with the factor number R = 5 and R = 7.
The running RMSE/AUC is shown in Fig. 2. As we can
see, at the beginning, POST is close to or event better than
BASS-Tucker in prediction accuracy. This is reasonable, be-
cause our Tucker model is much more complex than the CP
model. However, at later stages, BASS-Tucker consistently
outperforms POST, mostly by a large margin. Even in Fig.
2 c and g, while POST and BASS-Tucker overlapped quite
a long time, BASS-Tucker beat POST when the data stream
is about to be finished.

In addition, we examined the scalability of BASS-Tucker.
On ACC, we fixed the batch size to 512, and streamed 30%,
50% and 100% of observed entries to BASS-Tucker and
tested the streaming decomposition time. We varied the
factor number R from {5, 7, 9, 11}. As we can see in Fig.
3c, the running time of BASS-Tucker grows linearly in
the number of streamed entries, and the factor number R
determines the slope. Therefore, BASS-Tucker enjoys a
linear scalability to the data size.

To evaluate if BASS-Tucker can indeed estimate a sparse
core-tensor. We varied ρ0 from (0.1, 0.9) and ran BASS-
Tucker on Alog dataset. An element of core-tensor W is
viewed as selected if the posterior mean of its selection
probability is no less than 0.5. We showed how the ratio
of the unselected elements varies with ρ0 in Fig. 3 d under
different factor numbers. We can see that small ρ0 pruned
most of the elements while large ρ0 preserved most, showing
that BASS-Tucker can effectively achieve sparsity in the
streaming setting.

6.3 SPARSE STRUCTURE IN CORE TENSOR

Finally, we examined if the estimated sparse core-tensor
by BASS-Tucker can reflect some structure, as compared
with the standard Tucker decomposition. To this end, we set
the number of latent factors to 9, and ran BASS-Tucker and
P-Tucker on Alog dataset. The core tensor is of size 9×9×9.
Then, in each mode, we fold the core tensor to an 81 × 9
matrix, where each row indicates how strongly each factor
combination from the other modes interact with the 9 fac-
tors in the current mode. We then ran Principled Component
Analysis (PCA) and projected the interaction matrix onto
a plane. The positions of the points represent the first and
second principle components, which summarize how every
factor combination from the other modes interact with the
factors in the current mode. We show the results for the first
mode in Fig. 3 a and b. As we can see, from BASS-Tucker,
the interaction between the factors in the first mode and in

the other modes clearly exhibit clustering structures, imply-
ing different interaction patterns. To show the structures, we
ran the k-means algorithm and filled the cluster regions with
different colors. By contrast, the core-tensor estimated by
P-Tucker do not reflect apparent structures, and the inter-
action strengths are distributed like a symmetric Gaussian.
In the supplementary material, we show that the principled
components of BASS-Tucker for the second mode also ex-
hibit interesting structures while P-Tucker does not. While
all the datasets have been completely anonymized and we
are unable to look into the meaning of the patterns discov-
ered by BASS-Tucker, these results have demonstrated that
BASS-Tucker, as compared with standard Tucker decom-
position, can potentially discover more interesting patterns
and knowledge, and enhance the interpretability.

7 CONCLUSION

We have presented BASS-Tucker, a streaming Bayesian
sparse Tucker decomposition algorithm. Our method can
efficiently handle streaming data, provide one-shot posterior
update, and estimate a sparse core tensor online to alleviate
overfitting and to enhance knowledge discovery.

ACKNOWLEDGMENTS

This work has been supported by MURI AFOSR grant
FA9550-20-1-0358 and NSF IIS-1910983.

References

Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and
Morten Morup. Scalable tensor factorizations for in-
complete data. Chemometrics and Intelligent Laboratory
Systems, 106(1):41–56, 2011.

Brett W Bader and Tamara G Kolda. Efficient matlab com-
putations with sparse and factored tensors. SIAM Journal
on Scientific Computing, 30(1):205–231, 2008.

Brett W. Bader, Tamara G. Kolda, et al. Matlab ten-
sor toolbox version 2.6. Available online, Febru-
ary 2015. URL www.sandia.gov/~tgkolda/
TensorToolbox/.

Peter J Bickel and Kjell A Doksum. Mathematical statistics:
basic ideas and selected topics, volume I, volume 117.
CRC Press, 2015.

Xavier Boyen and Daphne Koller. Tractable inference
for complex stochastic processes. In Proceedings of
the Fourteenth conference on Uncertainty in artificial
intelligence, pages 33–42, 1998.

Tamara Broderick, Nicholas Boyd, Andre Wibisono,
Ashia C Wilson, and Michael I Jordan. Streaming

variational bayes. In Advances in neural information
processing systems, pages 1727–1735, 2013.

Joon Hee Choi and S Vishwanathan. Dfacto: Distributed fac-
torization of tensors. In Advances in Neural Information
Processing Systems, pages 1296–1304, 2014.

Wei Chu and Zoubin Ghahramani. Probabilistic models for
incomplete multi-dimensional arrays. AISTATS, 2009.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
On the best rank-1 and rank-(r 1, r 2,..., rn) approxima-
tion of higher-order tensors. SIAM journal on Matrix
Analysis and Applications, 21(4):1324–1342, 2000.

Yishuai Du, Yimin Zheng, Kuang-chih Lee, and Shan-
dian Zhe. Probabilistic streaming tensor decomposition.
In 2018 IEEE International Conference on Data Mining
(ICDM), pages 99–108. IEEE, 2018.

R. A. Harshman. Foundations of the PARAFAC procedure:
Model and conditions for an”explanatory”multi-mode
factor analysis. UCLA Working Papers in Phonetics, 16:
1–84, 1970.

P.D. Hoff. Hierarchical multilinear models for mul-
tiway data. Computational Statistics & Data
Analysis, 55:530–543, 2011. ISSN 0167-9473.
URL http://www.stat.washington.edu/
hoff/Code/hoff_2011_csda.

Changwei Hu, Piyush Rai, and Lawrence Carin. Zero-
truncated poisson tensor factorization for massive binary
tensors. In UAI, 2015.

U Kang, Evangelos Papalexakis, Abhay Harpale, and Chris-
tos Faloutsos. Gigatensor: scaling tensor analysis up by
100 times-algorithms and discoveries. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 316–324.
ACM, 2012.

Tamara Gibson Kolda. Multilinear operators for
higher-order decompositions, volume 2. United States.
Department of Energy, 2006.

Daniel D Lee and H Sebastian Seung. Learning the parts of
objects by non-negative matrix factorization. Nature, 401
(6755):788–791, 1999.

Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu.
Costco: A neural tensor completion model for sparse
tensors. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 324–334, 2019.

Thomas P Minka. Expectation propagation for ap-
proximate bayesian inference. In Proceedings of
the Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369, 2001.

www.sandia.gov/~tgkolda/TensorToolbox/
www.sandia.gov/~tgkolda/TensorToolbox/
http://www.stat.washington.edu/hoff/Code/hoff_2011_csda
http://www.stat.washington.edu/hoff/Code/hoff_2011_csda

Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy
belief propagation for approximate inference: An empir-
ical study. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, pages 467–475.
Morgan Kaufmann Publishers Inc., 1999.

Gary W Oehlert. A note on the delta method. The American
Statistician, 46(1):27–29, 1992.

Sejoon Oh, Namyong Park, Sael Lee, and Uksong
Kang. Scalable tucker factorization for sparse tensors-
algorithms and discoveries. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE),
pages 1120–1131. IEEE, 2018.

Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen,
David Dunson, and Lawrence Carin. Scalable Bayesian
low-rank decomposition of incomplete multiway tensors.
In Proceedings of the 31th International Conference on
Machine Learning (ICML), 2014.

Piyush Rai, Changwei Hu, Matthew Harding, and Lawrence
Carin. Scalable probabilistic tensor factorization for bi-
nary and count data. In IJCAI, 2015.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning. MIT Press,
2006.

Aaron Schein, John Paisley, David M Blei, and Hanna Wal-
lach. Bayesian poisson tensor factorization for inferring
multilateral relations from sparse dyadic event counts.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1045–1054. ACM, 2015.

Aaron Schein, Mingyuan Zhou, David M. Blei, and
Hanna Wallach. Bayesian poisson tucker decomposi-
tion for learning the structure of international relations.
In Proceedings of the 33rd International Conference
on International Conference on Machine Learning -
Volume 48, ICML’16, pages 2810–2819. JMLR.org,
2016. URL http://dl.acm.org/citation.
cfm?id=3045390.3045686.

Amnon Shashua and Tamir Hazan. Non-negative ten-
sor factorization with applications to statistics and com-
puter vision. In Proceedings of the 22th International
Conference on Machine Learning (ICML), pages 792–
799, 2005.

Ilya Sutskever, Joshua B Tenenbaum, and Ruslan R
Salakhutdinov. Modelling relational data using bayesian
clustered tensor factorization. In Advances in neural
information processing systems, pages 1821–1828, 2009.

Ledyard Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279–311, 1966.

Martin J Wainwright, Michael I Jordan, et al. Graphical
models, exponential families, and variational inference.
Foundations and Trends® in Machine Learning, 1(1–2):
1–305, 2008.

Zheng Wang and Shandian Zhe. Conditional expectation
propagation. In UAI, page 6, 2019.

Kirk Wolter. Introduction to variance estimation. Springer
Science & Business Media, 2007.

Zenglin Xu, Feng Yan, and Yuan Qi. Infinite Tucker decom-
position: Nonparametric Bayesian models for multiway
data analysis. In Proceedings of the 29th International
Conference on Machine Learning (ICML), 2012.

Y. Yang and D.B. Dunson. Bayesian conditional tensor fac-
torizations for high-dimensional classification. Journal of
the Royal Statistical Society B, revision submitted, 2013.

Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi, and
Youngja Park. Scalable nonparametric multiway data
analysis. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics,
pages 1125–1134, 2015.

Shandian Zhe, Yuan Qi, Youngja Park, Zenglin Xu, Ian
Molloy, and Suresh Chari. Dintucker: Scaling up gaus-
sian process models on large multidimensional arrays.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016a.

Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih
Lee, Zenglin Xu, Yuan Qi, and Zoubin Ghahramani.
Distributed flexible nonlinear tensor factorization. In
Advances in Neural Information Processing Systems,
pages 928–936, 2016b.

http://dl.acm.org/citation.cfm?id=3045390.3045686
http://dl.acm.org/citation.cfm?id=3045390.3045686

	Introduction
	Background
	Bayesian Sparse Tucker Decomposition
	Streaming Inference
	Refining Spike-and-Slab Prior Approximation In the Running Posterior
	One-Shot Incremental Update
	Algorithm Complexity

	Related Work
	Experiment
	Predictive Performance
	Prediction On the Fly
	Sparse Structure in Core Tensor

	Conclusion

