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ABSTRACT
The task of instance segmentation in videos aims to consistently
identify objects at pixel level throughout the entire video sequence.
Existing state-of-the-art methods either follow the tracking-by-
detection paradigm to employ multi-stage pipelines or directly
train a complex deep model to process the entire video clips as 3D
volumes. However, these methods are typically slow and resource-
consuming such that they are often limited to offline processing.
In this paper, we propose SRNet, a simple and efficient framework
for joint segmentation and tracking of object instances in videos.
The key to achieving both high efficiency and accuracy in our
framework is to formulate the instance segmentation and tracking
problem into a unified spatial-relation learning task where each
pixel in the current frame relates to its object center, and each object
center relates to its location in the previous frame. This unified
learning framework allows our framework to perform join instance
segmentation and tracking through a single stage while maintain-
ing low overheads among different learning tasks. Our proposed
framework can handle two different task settings and demonstrates
comparable performance with state-of-the-art methods on two dif-
ferent benchmarks while running significantly faster.
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1 INTRODUCTION
The problem of segmenting object instances in videos is becoming
a trending topic in the past years. It is closely related to a wide
range of multimedia applications such as video processing, video
understanding, robotics, autonomous driving, etc. Although the
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problem settings and task requirements may be slightly different
under different use cases, the main objective remains similar, i.e.,
to perform segmentation and tracking on one or multiple object
instance(s) throughout the entire video clip.

Comparing to static images, video sequences pose new chal-
lenges that raise the difficulty of instance segmentation and track-
ing, including but not limited to camera blur, fast motion, occlu-
sions, truncation, and the changes of object poses and appearances.
However, the temporal motions of objects across video frames also
provide strong clues for grouping pixels with similar motions and
segmenting objects from their backgrounds. Therefore, it will be
helpful to leverage temporal information when designing a frame-
work for segmenting instances from videos.

Among a variety of task configurations related to instance seg-
mentation in videos, the Semi-supervised Video Object Segmenta-
tion (SVOS) [32] was the first task that attracted a lot of interest in
the computer vision community. SVOS requires human interaction
to annotate an object of interest in the first frame, and the model is
required to perform segmentation of this particular object in the
subsequent frames. Although this task setting has its application
scenarios (e.g., video editing), it fails to apply to a wider range of
realistic scenarios because manually annotating the first frame is
still costly and time-consuming, and hence is usually infeasible for
real-world application scenarios.

In contrast, Unsupervised Video Object Segmentation (UVOS)
[32] was another relevant task setting that does not require human
annotations in any frame. This task was initially formulated as a
binary segmentation problem for salient objects in a video clip. It
has been later extended to differentiate different object instances
in [4]. The UVOS 1 task is also closely related to a more recent
task setting — Video Instance Segmentation [47] (VIS). Compar-
ing to UVOS, VIS additionally requires the model to classify the
objects into a set of predefined categories, e.g., person, vehicle, etc.
Practically, UVOS can also be seen as the class-agnostic version of
VIS. In this paper, we focus on the UVOS and VIS problems since
these two task settings are more realistic and have a wider range
of application scenarios.

Existing approaches for solving these two tasks typically fol-
low the tracking-by-detection paradigm in which the segmentation
and tracking are performed by a multi-stage pipeline. For exam-
ple, one can first run an object detector on every single frame and
then associate these detections using a tracking module. However,
these multi-stage methods involve multiple networks that are typ-
ically computationally demanding and not end-to-end trainable.
Another line of recent works considers an entire video clip as a
3D volume and directly trains an end-to-end model to generate
the spatial-temporal instance masks for the whole video clip at
1we refer UVOS to its multi-object setting in this work unless otherwise mentioned.
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Figure 1: High-level illustration of the unified Spatial Rela-

tion Learning. Pixels belonging to an instance point to their

instance center (Blue Solid Arrows) and each instance center

links to its previous location (Red Solid Arrows).

once. However, these models are often inevitably complicated and

resource-demanding. Moreover, when the whole video has a longer

duration than the predefined window length, these approaches still

need to apply an extra module for associating the tracks between

two consecutive sub-clips.

In this paper, we propose a simple and efficient framework for

single-stage instance segmentation in videos. Our approach solves

the problem from a new perspective in which we formulate the

instance segmentation and tracking problems using a unified learn-

ing objective. Concretely, we train our model to relate each pixel in

the current frame to the center of the object that it belongs to and

relate each object’s center to its location in the previous frame, as il-

lustrated in Figure 1. The benefit of unifying the learning objectives

is that we can combine these two tasks (tracking and segmenta-

tion) into a compact and efficient multi-task model with smaller

overheads for handling different tasks. The input to our framework,

namely SRNet, is an RGB image of the current frame, a compact

feature map from the previous frame, and a heat map indicating the

locations of previously detected objects. The model can then pro-

duce all information needed for instance segmentation and tracking

through a single pass. Finally, the instance mask and their track

IDs can be generated via a simple post-processing algorithm.

SRNet can process videos from the first frame without buffering

due to the nature of its design. Thus it is well-suited for application

scenarios that require real-time processing. Although our approach

intuitively trades off the ability to reconnect long-range tracks as we

only consider the local temporal information from the immediately

previous frame, our experimental results show that such cases

have minimal impact on the performance. For example, on the

YoutubeVIS benchmark, our performance is only 2.3% lower than

StemSeg’s 16-frames model while running 10x faster.

Our framework is originally designed for the UVOS task but can

be easily extended to the VIS task by adding a lightweight head to

predict the object categories. Our experimental results show that

SRNet can achieve comparable performance with state-of-the-art

methods in these two tasks while being significantly faster than

existing methods.

We summarize our contributions as follows:

• We proposed a novel approach for efficient instance segmen-

tation in videos.

• We tackle the problem from a novel perspective to formulate

the learning of segmentation and tracking using a unified

learning framework.

• Our approach can be adapted to both UVOS and VIS tasks

and achieves comparable performance with state-of-the-art

methods while running significantly faster.

2 RELATEDWORK

Instance Segmentation on Static Images. Many existing works

that tackle the instance segmentation problem are proposal-based

and are typically extended from an object detection framework.

These approaches first use their detection module to generate ob-

ject proposals, and then refine these proposals into instance masks

[8] [21] [33] [34]. A few recent works simplify the pipeline by di-

rectly predicting the masks on the proposal region via an additional

branch [13] [24]. However, these methods typically suffer from

relatively coarse prediction since the mask branch processes low-

resolution inputs. Another line of works tackle the problem from

the perspective of dense-prediction [11] [28] [18] [9]. These meth-

ods are often extended from a semantic segmentation framework

and train their models to encourage pixels belonging to the same

instance to be close to each other in the embedding space analo-

gous to the learning objective of semantic segmentation. However,

directly learning to map input images/videos into such an instance

embedding space is difficult due to the spatial-invariant nature of

CNNs. To overcome the challenges, recent works [22] [16] [29] [39]

have shown that learning a more meaningful Spatial Embedding

for each pixel that serves as a displacement vector from instance

centers can reduce the learning difficulties and alleviate the prob-

lem of appearance ambiguities. Based on the same concept, Neven

et al. [27] further proposed to learn both the spatial embedding

and instance bandwidth simultaneously and incorporate the clus-

tering step into the loss function such that directly optimizing the

intersection-over-union of the final mask becomes possible. We

took inspiration from [27] and followed their suggestions when

designing the components for relating pixels to instance centers in

our framework.

Semi-supervisedVideoObject Segmentation. SVOS is a task

that extends the object tracking problem from bounding box level

to pixel level. The task assumes the annotation for the objects of

interest is given in the first frame and asks to keep tracking of these

object masks in the subsequent frames at the pixel level. State-of-

the-art methods for SVOS [3] [31] [44] [38] [41] [30] [46] [48] [51]

[7] typically utilize the first-frame annotation to do online fine-

tuning or try to directly propagate the masks to the subsequent

frames. The SVOS task can be applied to some applications which

require pixel-wise tracking (e.g. video editing); however, the an-

notation of the first frame is typically not available in real-world

application scenarios.

Unsupervised Video Object Segmentation. UVOS removes

the requirement of the first frame annotation. The goal is to perform

segmentation and tracking for all object instances that consistently

appear throughout the entire video sequence and have predominant

motion in the scene. A branch of prior works [14] [15] [35] [36]

[38] [49] [17] [20] [42] follow the original setting [32] which only

requires a binary foreground-background segmentation. RVOS [40]



Figure 2: The architecture of our framework. Zoom in for more details. Best view in color.

is the first work that designs an end-to-end model to tackle the

multi-object segmentation setting of UVOS by applying a set of

RNNs to generate the mask for each instance in sequential order.

Luiten et al. [25] design a proposal-detection-based framework

with heuristic post-processing and obtained first place in the Davis-

2019 challenge. However, [1] shows that their method is highly

tailored to the challenge and does not generalize to other datasets.

StemSeg [1] is another method that closely relates to our work.

They extend the aforementioned instance segmentation methods

[27] to handle video input as 3D volume, and train the model to

group each pixel to a spatial-temporal object center in such a 3D

volume. In contrast, we focus on first linking the pixels to the spatial

center in the current frame, and then link each object center to

its previous location. Although their approach has the ability to

exploit longer temporal information (16 frames), their method is

inevitably slow and resource-demanding. It is worth mentioning

that Stemseg still requires an additional association process if the

video is longer than its predefined input length.

Video Instance Segmentation. The task of VIS is first intro-

duced with the YouTube-VIS dataset [47]. Compared to UVOS, VIS

also requires classifying the object instances into a set of predefined

categories. Apart from releasing the YTVIS benchmark, Yang et al.

[47] also proposed a framework for VIS, namely MaskTrack-RCNN,

by extending the MaskRCNN with an additional tracking branch. A

few of the aforementioned works [1] [41] [48] are also compatible

with the VIS task. Wang et al. [43] proposed a transformer-based

framework for VIS which is extended from a recently proposed

transformer-based object detection framework [6]. Similar to [1],

their approach directly inputs an entire video clip with predefined

length (36 frames) and predicts the spatial-temporal instance masks

for the whole sequence. While this is a new promising direction

based on Transformer, at this stage their approach is resource-

demanding and cannot be applied to videos with longer duration

than the predefined window length (see 4.4 for more discussion).

3 PROPOSED METHOD

The core idea of our approach is to formulate the learning of in-

stance segmentation and tracking into a unified spatial relation

problem. The network takes inputs as an RGB image at frame 𝑡 and
information from its immediate previous frame 𝑡 − 1 and is trained

to relate each pixel to its instance center and relate each instance

center to its location in the previous frame. This is achieved by

learning offset vectors for each pixel, pointing to its desired loca-

tion. With this unified learning framework, our problem can be

solved using a simple, compact, and efficient network architecture.

Our network architecture is illustrated in Figure 2 and is explained

in Section 3.1. More details about the training scheme are explained

in Section 3.2 - 3.6. Our approach is an end-to-end single-stage

method that predicts everything needed by the video instance seg-

mentation and tracking association through a single pass. A simple

post-processing algorithm is sufficient to aggregate the predictions

and generate the final results, which is explained in Section 3.7.

3.1 Architecture

The network architecture of SRNet follows the encoder-decoder

framework that has been widely used in dense-prediction problems.

The encoder consists of a backbone connected to a Feature Pyramid

Network (FPN) following the practice of He et al. [13]. The FPN

takes as input the featuremaps from different stages of the backbone

and produces compressed feature maps at four different scales

{𝐹𝑠 , 𝑠 = 4, 8, 16, 32} which are used as the input to our decoder.
Our decoder is a standard multi-head decoder with skip con-

nections except that we modify the first convolution block to han-

dle spatial-temporal features. Concretely, our decoder additionally

takes as input the features at 1/32 scale from the previous frame

𝐹 𝑡−132 and stacks it with 𝐹 𝑡32 along the temporal dimension. We apply
a 3D convolution layer with (2 × 3 × 3) kernel size on this stacked

feature map to capture spatial-temporal features such as the object

motions. Since the dimension of this feature map is very small

(256× 𝐻
32 ×

𝑊
32 ) in our case, it drastically reduces the computational

cost of performing expensive 3D convolutions and has low mem-

ory usages. We experimentally analyze the impact of involving

temporal information in Section 4.3.

The output of our decoder is produced by several lightweight

output heads consists of only two convolution layers. All output

heads operate on the feature map X produced by the last decoder

block at 1/4 resolution except the input of the tracking head is a

concatenation of X and an instance heatmapH𝑡−1 rendered from



the previous prediction, using the Gaussian rendering function de-
scribed in [19]. We provide this clue to the tracking head to alleviate
the ambiguity of center location when predicting the tracking vec-
tor. The effectiveness of adding this clue is experimentally analyzed
in Section 4.3.

3.2 Spatial Grid Construction
We start by constructing a unified Spatial Grid for our spatial learn-
ing framework. The Spatial Grid encodes the positional information
for each pixel such that the predicted offset vectors are meaningful.
Although it is possible to directly use the pixel coordinates as the
spatial grid [52], the resulting grid becomes scale-variant, e.g., the
offset vectors predicted at different scales have different magnitudes
and hence cannot be directly interpolated when up-sampling. To
avoid this problem we construct our Spatial Grid S ∈ R𝐻𝑠×𝑊𝑠×2

using Equation (1).

S𝑖, 𝑗 = [
2𝑇𝑥 · 𝑖
𝑊𝑠 − 1

−𝑇𝑥 ,
2𝑇𝑦 · 𝑗
𝐻𝑠 − 1

−𝑇𝑦], (1)

where 𝑇𝑥 =𝑚𝑎𝑥 (1,𝑊𝑠/𝐻𝑠 ) and 𝑇𝑦 =𝑚𝑎𝑥 (1, 𝐻𝑠/𝑊𝑠 ).
This equation creates a normalized spatial grid that is scale and

size invariant. It is easy to show that bilinearly upsamples S to
a higher resolution is equivalent to creating a new spatial grid at
that target resolution. The constructed spatial grid serves as the
spatial coordinates and is used for both instance segmentation and
tracking task.

3.3 Learning Pixel Offsets for Segmenting
Object Instances

The pixel-offset head in our framework predicts an offset vector
E𝑖, 𝑗 ∈ R2 for each pixel that points to its instance center. Ideally,
we would expect the following holds for every pixel belonging to
the instance 𝑛: E𝑖, 𝑗 + S𝑖, 𝑗 − 𝑐𝑛 ≤ 𝜖, (2)
where E𝑖, 𝑗 is the output from our Pixel-offset Head at location (𝑖, 𝑗),
𝑐𝑛 is the center of instance 𝑛 and 𝜖 is the acceptable error since the
prediction can never be perfectly accurate.

Setting the value of 𝜖 to be stricter will increase the learning
difficulty, while a more relax 𝜖 may result in inaccurate predictions.
A good practice is to set the value of 𝜖 to be proportional to the size
of the objects since it ismore difficult for large objects to relate pixels
near the edges to its object center due to the Effective Receptive
Field Decay [26] nature of CNNs. To alleviate this problem, we
adopt the suggestions from [27] to learn the instance bandwidth
Σ𝑖, 𝑗 ∈ R2 for each pixel, and it is predicted by our Bandwidth Head.

Equation 2 defines a decision boundarywhere pixels (after adding
the offset vectors) that fall within a certain range from an instance
center should belong to this instance. Since this is a hard decision
boundary that is not suitable for training, a Gaussian function can
be used to model the decision boundary as a smoothed probabil-
ity distribution that is differentiable. With this formulation, the
probability of pixel (𝑖, 𝑗) belongs to instance 𝑛 is:

P𝑛𝑖,𝑗 = 𝑒𝑥𝑝 (−
E𝑖, 𝑗 + S𝑖, 𝑗 − 𝑐𝑛2

2Σ2𝑛
), (3)

where Σ𝑛 is the predicted bandwidth of instance 𝑛.
During training, Σ𝑛 is set as the average of all Σ𝑖, 𝑗 ∈𝑀𝑛

, where𝑀𝑛

is the set of foreground pixels in the ground truth mask of instance
𝑛. Similarly, we set 𝑐𝑛 equals to the average of E𝑖, 𝑗 ∈𝑀𝑛

+ S𝑖, 𝑗 ∈𝑀𝑛

during training. During inference, 𝑐𝑛 and Σ𝑛 can be obtained by:

𝑐𝑛 = E𝑐′𝑛 + S𝑐′𝑛
Σ𝑛 = Σ𝑐′𝑛 ,

(4)

where 𝑐 ′𝑛 is the location of predicted instance center from the Ob-
jectiveness Head (described in Section 3.5).

Finally, the learning of pixel offset E can be optimized along with
the predicted instance bandwidth Σ using any dense-prediction
loss that maximizes the Intersection-Over-Union (IOU) between
the prediction and ground truth instance mask.

L𝑠𝑒𝑔 =
1
𝑁

𝑁∑
𝑛

(L𝐼𝑂𝑈 (P𝑛, 𝑀𝑛) +
1
|𝑀𝑛 |

∑
𝑖, 𝑗 ∈𝑀𝑛

Σ𝑖, 𝑗 − Σ𝑛), (5)

where 𝑀𝑛 is the ground truth binary mask for instance 𝑛. |𝑀𝑛 |
denotes the number of foreground pixels of the instance mask.
The second term is a smooth loss that encourages the predicted
bandwidth to have similar values within an instance. For more
detail about the smooth term, we refer to [27].

We have experimentally tested different choices of L𝐼𝑂𝑈 in-
cluding two popular surrogate functions to approximate the IOU
— Dice Loss [37] and Lovást Hinge Loss [50]. The impact of these
two choices [2] is further discussed in Section 4.3.

Extra Dimensions. The above formulation describes process of
learning 2D pixel offsets for grouping pixels of instances. Athar et al.
[1] found that allowing the network to predict extra dimensions is
beneficial. Such extra dimensions provide free representation space
for network to learn and do not have a geometric interpretation.
While they validated the effectiveness of this extension in the case of
3D space-time volume, we found that adding such extra dimensions
is also helpful in our spatial-relation learning. For example, to
extend the current formulation with two extra dimensions, we
change E𝑖, 𝑗 from R2 to R4, and extend S𝑖, 𝑗 to

[
S𝑖, 𝑗 0 0

]
.

The bandwidth Σ𝑖, 𝑗 is extended to
[
Σ𝑖, 𝑗 𝜙1 𝜙2

]
, where 𝜙1

and 𝜙2 are the predefined bandwidths in the two extra dimensions
and are part of the hyper-parameters. We choose to use two extra
dimensions in our final model. The effectiveness of extra dimensions
is studied in Section 4.3.

3.4 Learning Tracking Vector
The tracking offset is learned in a similar manner as the pixel-offset
under the same spatial coordinate defined by the Spatial Grid S.
We train the network to predict a tracking vector T for each pixel,
and expect the predicted vector links each center 𝑐𝑡𝑛 to 𝑐𝑡−1𝑛 :

T𝑐𝑡𝑛 + S𝑐𝑡𝑛 = S𝑐𝑡−1𝑛
(6)

Compared to Equation 2, we did not consider the error term 𝜖 in
Equation 6. This is because we consider tracking as a one-to-one
association problem and we always associate the best match.



L𝑡𝑟𝑎𝑐𝑘 =
1
𝑁

𝑁∑
𝑛

T𝑐𝑡𝑛 + S𝑐𝑡𝑛 − S𝑐𝑡−1𝑛

 (7)

During both training and testing, 𝑐𝑡𝑛 and 𝑐𝑡−1𝑛 in Equation 7 is
set as the mass center of𝑀𝑡

𝑛 and𝑀𝑡−1
𝑛 , respectively. Note that this

is different from Equation 3 as we found that using the mass center
is more stable for tracking. We discuss the impact of using different
centers in our supplementary material.

3.5 Objectiveness
Our network also predicts an objectiveness map O via the Objec-
tiveness Head to provides clues for locating the potential instances.
During training, we encourage pixels that are close to the center of
an instance to have higher objectiveness scores and pixels that do
not belong to any object to have lower scores.

L𝑠𝑐𝑜𝑟𝑒 =
1
|𝑆 |

∑
𝑖, 𝑗

𝟙{𝑖, 𝑗 ∈𝑀 }
O𝑖, 𝑗 − P𝑖, 𝑗 2 + 𝟙{𝑖, 𝑗∉𝑀 } O𝑖, 𝑗 2 (8)

where𝑀 =
⋃𝑁

𝑛=1𝑀𝑛 is the set of all foreground pixels.
Unlike the object heatmap in [52] or the seed map in [27] that

splits the objects into different channels based on their categories,
our objectiveness map is learned in a class-agnostic fashion. There-
fore the model is more flexible and can be reused for different
datasets without having to retrain the model (or only finetune the
category head if doing VIS task).

3.6 Extension to Video Instance Segmentation
So far the framework is already capable of doing the UVOS task, and
it can be further extended to the VIS task by adding a lightweight
category head that predicts the category for each pixel Y𝑖, 𝑗 . Our
category head is trained using a standard Cross-entropy Loss.

L𝑐𝑎𝑡 = 𝐶𝐸 (Y𝑃𝑟𝑒𝑑 ,Y𝐺𝑇 ) (9)

3.7 Inference
During inference, we first feed the inputs (frame 𝑡 , previous feature
𝐹 𝑡−132 and instance heatmapH𝑡−1) to the network and collect the
outputs from each head. For the first frame (𝑡 = 0) in the sequence
when no previous frame is available, we let 𝐹 𝑡−132 = 𝐹 𝑡32 and set
H𝑡−1 to be all zeros. Then, a simple and efficient post-processing
algorithm is used to produce the final output. The post-processing
algorithm in our framework is modified from the Sequential Clus-
tering in [27] where we extend the algorithm to involve the com-
ponents for tracking association and category classification. The
detail of our post-processing algorithm is described in Algorithm 1.

In brief, our post-processing algorithm first locates the center
of potential instances using the information from Objectiveness
Head. Then, the algorithm clusters all pixels belonging to each in-
stance based on the predicted pixel offsets and bandwidths. Finally,
the information from the tracking head is used to determine the
instance IDs by linking new instances with existing tracks. In the
VIS task, the information from the category head is used to classify
the objects.

Algorithm 1: Post-processing

Input: Spatial Grid: S ∈ R𝐻𝑠×𝑊𝑠×2

Pixel Offsets: E ∈ R𝐻𝑠×𝑊𝑠×2

Bandwidth: Σ ∈ R𝐻𝑠×𝑊𝑠×2

Tracking Vectors: T ∈ R𝐻𝑠×𝑊𝑠×2

Objectiveness: O ∈ R𝐻𝑠×𝑊𝑠×1

Classification: Y ∈ R𝐻𝑠×𝑊𝑠×𝐶

𝐷𝑒𝑡𝑠𝑡−1: List of instance in previous frame.
1 𝐷𝑒𝑡𝑠𝑡 ← [] ;
2 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 ← ones_like(O);
3 while𝑚𝑎𝑥 (O & 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑝𝑖𝑥𝑒𝑙𝑠) > 𝑚𝑖𝑛_𝑠𝑐𝑜𝑟𝑒 do
4 𝐼 ← new Instance;
5 𝑐 ′𝑛 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (O & 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑝𝑖𝑥𝑒𝑙𝑠) ;
6 𝑐𝑛, Σ𝑛 ← Solving equation (4) ;
7 P𝑛 ← Solving equation (3) ;
8 𝐼 .𝑚𝑎𝑠𝑘 ← P𝑛 > 0.5 ;
9 𝐼 .𝑐𝑒𝑛𝑡𝑒𝑟 ← mass_center(I.mask) ;

10 𝐼 .𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔← 𝐼 .𝑐𝑒𝑛𝑡𝑒𝑟 + T𝐼 .𝑐𝑒𝑛𝑡𝑒𝑟 ;
11 𝐼 .𝑐𝑙𝑎𝑠𝑠 ← 𝑎𝑟𝑔𝑚𝑎𝑥 ( ∑

𝑖, 𝑗 ∈𝐼 .𝑚𝑎𝑠𝑘

Y𝑖, 𝑗 ) ;

12 𝐷𝑒𝑡𝑠𝑡 .append(I) ;
13 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑝𝑖𝑥𝑒𝑙𝑠[𝐼 .𝑚𝑎𝑠𝑘]← 0 ;
14 end
15 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← pairwise distance between each of
{𝐼 .𝑐𝑒𝑛𝑡𝑒𝑟 ∈ 𝐷𝑒𝑡𝑠𝑡−1} and each of {𝐼 .𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∈ 𝐷𝑒𝑡𝑠𝑡 } ;

16 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ← GreedyAssignment(distances) ;
17 for (𝑎1, 𝑎2) in 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 do
18 𝐷𝑒𝑡𝑠𝑡 [𝑎2].𝐼𝐷 ← 𝐷𝑒𝑡𝑠𝑡−1 [𝑎1] .𝐼𝐷 ;
19 end
20 return 𝐷𝑒𝑡𝑠𝑡

4 EXPERIMENTS
4.1 Implementation Details
Network Details.We use the ResNet-101 architecture as the back-
bone in our encoder. We initialize the backbone and the FPN with
weights from Mask R-CNN [13] pretrained on MS-COCO dataset
[23]. The output channel of FPN is set to 256. The kernel size of the
3D convolution in decoder block 1 is set as (2 × 3 × 3). All output
heads use the same structure which consists of a 3 × 3 Conv2D
layer followed by a ReLU activation and a final 1 × 1 Conv2D layer.

Training. Our method is implemented using the PyTorch frame-
work. For training, we use a momentum optimizer with an initial
learning rate of 1e-3. The learning rate decays exponentially start-
ing from the 60K iteration and finally reduced to 1e-5. Our network
is trained on a single NVIDIA GTX 1080Ti GPU for 160K iterations
with a batch size of 4. The final optimization loss is the summa-
tion of all the aforementioned loss terms with each term being
equally weighted. Since our framework only considers 2 consecu-
tive frames, we augment our training data with synthesized data
generated from static images for better generalization following
the same practice of [1]. These synthesized data were produced
by applying random affine transformations on static images from



L𝐼𝑂𝑈 J&F J -Mean F -Mean

Dice 58.1 56.5 59.7
Lovast Hinge 59.7 58.2 61.3

Table 1: Impact of different choice for L𝐼𝑂𝑈

Experiment J&F J -Mean F -Mean

Baseline 59.7 58.2 61.3
w/o Instance Heatmaps 58.6 (-1.1) 57.1 60.1
w/o Temporal Features 56.9 (-2.8) 55.3 58.5
w/o Extra Dimensions 58.4 (-1.3) 56.7 60.0
w/o Synthesized Data 54.5 (-5.2) 52.7 56.3

Table 2: Effectiveness of different components.

Backbone J&F J -Mean F -Mean FPS

ResNet-50 58.1 56.3 59.9 44
ResNet-101 59.7 58.2 61.3 35

Table 3: Performance and speed using different backbone.

MS-COCO[23] and Pascal-VOC [10] dataset. We study the impact
of adding these synthesized data in Section 4.3.

4.2 Datasets
DAVIS: DAVIS is a popular benchmark for video object segmenta-
tion. It consists of 60 video sequences for training and 30 for valida-
tion. The dataset has many versions and different task settings, and
we use the DAVIS-2019 Unsupervised Multi-object Segmentation
[4] benchmark for evaluating our approach. This benchmark is
provided for the UVOS task where the goal is to perform instance
segmentation on tracking for all foreground objects. The evaluation
metrics includes J -score (IOU) and F -score (boundary precision).
The mean of these scores, namely J&F is used as the main score
for comparison.

YouTube-VIS: The Youtube-VIS dataset is a large-scale dataset
for video instance segmentation. This benchmark extends the image
instance segmentation task from the image domain to the video
domain. The dataset includes 2,238 video sequences for training and
302 video sequence for validation. The number of video sequences
is orders of magnitude greater than the DAVIS dataset but the
video sequence is shorter (the longest video in YTVIS only has
36 frames). Youtube-VIS employs the Average Precision (AP) and
Average Recall (AR) as the evaluation metrics.

4.3 Ablation Study
In this section, we perform ablation studies to analyze the impact
of alternating different components in our framework. We conduct
experiments on the DAVIS-19 benchmark for its validation set is
available for offline evaluation.

Choice of L𝐼𝑂𝑈 : We study the impact of choosing different
losses for L𝐼𝑂𝑈 . We experiments with Dice Loss [37] and Lovasz
Hinge loss [50] [2], both are widely used surrogate functions to
approximate the Intersection-Over-Union. Table 1 compare the
results of using these two losses. We can see that training with the
Lovasz Hinge loss achieves better results under both J measure
and F measure. We suspect that this is due to the inherent nature
of the Lovasz Hinge Loss which focuses more on optimizing the

samples outside the boundary and stops optimizing them once
they are within the decision boundary. This characteristic is very
suitable for our learning task since the predicted bandwidth defines
a tolerant range for clustering the instance pixels, and there is no
need to keep pushing them towards the center if they have fallen
within the bandwidth.

Instance Heatmap. To validate the effectiveness of providing
instance heatmapH𝑡−1 to the tracking head, we conduct an abla-
tion study where we set the values inH𝑡−1 to be all zeros before
feeding into the model. Note that modifyingH𝑡−1 will only affect
the tracking prediction and does not affect the predicted segmenta-
tion mask since there is no dependency between them (as shown
in Figure 2). As we can see in Table 2, if we remove the informa-
tion in H𝑡−1, the performance drops 1.1% in terms of the J&F
score. This shows that the tracking head is not completely relied
on the instance heatmapH𝑡−1 but providing such clues allows the
network to predict more precise tracking vectors.

Temporal Features.Temporal information provides strong clues
to perform segmentation on moving objects which is helpful espe-
cially for the UVOS task. To study the impact of using temporal
features, we run the inference process using our best model but
let 𝐹 𝑡−132 = 𝐹 𝑡32. This is equivalent to repeating the current frame so
that the previous frame is the same as the current frame. It is worth
mentioning that this strategy is already used during our normal
inference process for the first frame when no previous frame is
available, thus doing so will not break the model’s prediction. As we
can see in Table 2, involving temporal features brings 2.8% overall
improvements on the J&F score.

Extra Dimensions. We found that involving extra dimensions
in the predicted pixel offsets E is beneficial even our problem formu-
lation is purely 2D. Our final model involves two extra dimensions
following the suggestion from [1] such that E ∈ R4. As we can
see in Table 2, it brings 1.3% improvements compared to the model
without extra dimensions.

Synthesized Data. Our model is trained using a combination
of video data and synthesized data augmented from static images
as described in 4.1. This brings 5.2% improvements compared to the
model trained without synthesized data. Since our model performs
instance segmentation in a class-agnostic way and only uses short-
term temporal information, combining more synthesized training
data helps our model to generalize better without heavily relying
on temporal information.

Backbone: Our main model uses ResNet-101 as our backbone
but we also evaluate a variant of our model by changing the back-
bone to ResNet-50. The comparison is summarized in Table 3. We
can see that switching to a lighter backbone only has a minor perfor-
mance drop (1.6% on the J&F ) which validates the effectiveness
of our framework that is compatible with different backbones. In
addition, using a lighter backbone increases the inference speed
to 56 FPS. This shows that the time spent on backbone feature
extraction is a bottleneck in our framework and the speed could
potentially be further increases by using a faster backbone.

4.4 Comparison with state of the art
Since our approach is compatible with both UVOS and VIS tasks,
we compare our results with other state-of-the-art using both



Methods #Frames Proposal Flow Re-ID FPS J&F J-Mean J-Recall J-Decay F-Mean F-Recall F-Decay

UnOVOST † [25] 1 ✓ ✓ ✓ <1 67.0 65.6 75.5 0.3 68.4 75.9 3.7

STEm-Seg [1] 16 7 64.7 61.5 70.4 -4.0 67.8 75.5 1.2

OF-Tracker [1] 1 ✓ ✓ 1 54.6 53.4 60.9 -1.3 55.9 63.0 1.1
RI-Tracker [1] 1 ✓ ✓ <1 56.9 55.5 63.3 2.7 58.2 64.4 6.4
ALBA [12] 1 ✓ ✓ <1 58.4 56.6 63.4 7.7 60.2 63.1 7.9
AGNN [42] 1 ✓ ✓ <1 61.1 58.9 65.7 11.7 63.2 67.1 14.3

RVOS [40] 1 17 41.2 36.8 40.2 0.5 45.7 46.4 1.7
Ours 1 35 59.7 58.2 66.6 -3.7 61.3 68.2 -0.9

Table 4: Results on the Validation Set of DAVIS-2019 Unsupervised Track. Proposal: use proposals generated by separate pro-
posal network. Flow: use optical flow. Re-ID: perform additional Re-ID processing. †: Approaches that uses heuristic post-
processing (see 4.4 for more discussion).

Methods #Frames Proposal FPS mAP AP@50 AP@75 AR@1 AR@10

STEm-Seg [1] 16 3 34.6 55.8 37.9 34.4 41.6
VisTR [43] 36 12 38.6 61.3 42.3 37.6 44.2

IoUTracker+ [47] 1 ✓ - 23.6 39.2 25.5 26.2 30.9
DeepSORT [45] 1 ✓ - 26.1 42.9 26.1 27.8 31.3
OSMN [48] 1 ✓ - 27.5 45.1 29.1 28.6 33.1
SeqTracker [47] 1 - 27.5 45.7 28.7 29.7 32.5

MaskTrack R-CNN [47] 1 17 30.3 51.1 32.6 31 35.5
SipMask [5] 1 14 33.7 54.1 35.8 35.4 40.1
Ours 1 35 32.3 50.2 34.8 32.3 40.1

Table 5: Results on the Validation Set of Youtube-VIS Video Instance Segmentation task.

DAVIS-2019 Unsupervised benchmark and Youtube-VIS bench-
mark (2019 version).

Unsupervised Video Object Segmentation on DAVIS-2019.
Our results for the UVOS task compared with other state-of-the-art
are summarized in Table 4. We can see that our simple and efficient
framework can achieve comparable performance with other state-
of-the-art methods while being significantly faster. Most of the
existing methods on this table such as UnOVOST, ALBA, and AGNN
uses proposals generated by Mask-RCNN and information from
Optical Flow (typically also predicted by another network) apart
from their model. Such amulti-stage pipelinewith stacked networks
is usually beneficial to the performance but also greatly increases
the computation cost. As a result, we can see that most of these
approaches are running under 1 FPS. UnOVOST[25] is the winning
solution for the DAVIS challenge that achieves the best score on
the table by stacking several networks with heuristic-based post-
processing. Experimental results in [1] suggest that UnOVOST is
highly tailored to the DAVIS dataset and does not perform equally
well on other datasets.

Compared to other approaches that are not proposal-based or
using optical flow, STEm-Seg achieves the best performance by
using a 3D-volume-based model to process an entire video clip
with 16 frames. For videos longer than 16 frames, they perform an
additional step to associate the objects by setting an 8-frames over-
lap between two temporal windows. While their approach achieves
better performance by leveraging more temporal information, it
inevitably runs slower and is not suitable for online processing.

Video Instance Segmentation on Youtube-VIS. Table 5 sum-
marizes our results on the Youtube-VIS benchmark for the Video

Instance Segmentation Task. Our approach achieves the best speed-
accuracy trade-off among all methods on the table. Note that the
inference speed of STEm-Seg dropped to 3FPS compared to Table 4,
this is because they use an additional full-scale decoder to predict
the category, while our framework efficiently uses a lightweight
category head. VisTR[43] is a recently proposed VIS method based
on the powerful Transformer framework. It directly inputs an entire
video with a maximum of 36 frames and generates the results in an
end-to-end fashion. Although being a new promising direction for
this task, it still suffers from several weaknesses at this point: (1)
once the model is trained, it cannot process video longer than the
predefined window length (they set it as 36 the maximum video
length in YTVIS dataset); (2) it is not flexible and inefficient for
online processing as the computation cost for processing 1 frame is
equivalent to 36 frames because input clips shorter than 36 frames
is padded to 36 frames; (3) it is not scalable for a longer predefined
window due to the exponential growth of the computational cost
in the Transformer; (4) the training cost is expensive as it requires
multiple GPUs with at least 32GB memory for each GPU for train-
ing, while our model can be trained on a single NVIDIA 1080-Ti
GPU.

Among all the online methods in Table 5, our approach achieves
comparable results with top methods, while being at least 2X faster.
It is worth mentioning that these methods are typically designed
specifically for the VIS task, while our approach is compatible with
both UVOS and VIS tasks.

SpeedComparison.All the FPS number reported in Table 4 and
Table 5 are evaluated on a single NVIDIA 1080Ti GPU. We tried our
best to fairly compare the inference speed for all these methods by



Figure 3: Qualitative results generated by our model. First two rows are sequences from DAVIS-2019 validation set while the

last two rows are from Youtube-VIS validation set. Zoom in for more details. Best view in color.

Figure 4: Speed & Accuracy Trade-off on DAVIS-2019 UVOS

benchmark.

downloading their source code and running their inference under

the same hardware environments on our server. OF-Tracker and

RI-Tracker are two exceptions since we do not have access to their

source code but the speed reported in their paper was also tested

on an NVIDIA 1080Ti GPU so we quoted the numbers from their

paper [1].

Since several methods on the tables are not capable of perform-

ing online processing, we conduct all speed evaluations under the

offline setting for fair comparisons. For each approach, we use their

code to perform inference on at least 500 frames and divide it by

the total processing time. The time spent on data preparation and

results saving are excluded since they can usually be further op-

timized. Apart from the GPUs, our evaluation server is equipped

with an Intel Xeon E5-2620 v4 CPU running at 2.10GHz and 64GB

Memory. More detailed analysis and discussion of our inference

speed can be found in our supplementary materials.

4.5 Qualitative Analysis

We provide qualitative results generated from our model in Figure

3. Although being simple and efficient, our approach can generate

satisfying results in many challenging cases. The example in the

first row illustrates our framework’s ability to perform instance

segmentation and tracking for multiple objects simultaneously.

The second row shows a similar multi-object situation but is more

challenging since new objects are joining the scene as the video

proceeds. The sequence in the third row shows our model can keep

track of both large and small objects even when they are connected.

In the fourth row, two monkeys are staying together with similar

appearances while our model succeeds in separating them with a

clean and accurate boundary. For more qualitative results we refer

readers to our supplementary materials.

5 CONCLUSION

In this paper, we proposed an end-to-end single-stage framework

for instance segmentation in videos, targeting applications that

require efficient and high-speed processing. We achieved this by

formulating the problem of instance segmentation and tracking

from a novel perspective where these two tasks are learned under

a unified learning framework. This unified formulation allows us

to learn a multi-task network using a simple and efficient network

with minimum overheads among different tasks. We validate the

effectiveness of this framework on both the Unsupervised Video

Object Segmentation Task and the Video Instance Segmentation

Task and achieved comparable results with state-of-the-art methods

while being significantly faster.
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