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Abstract— Robot design is a time-consuming process in-
volving repeated experiments in a variety of environments
to optimize multiple, possibly conflicting performance met-
rics. Moreover, the optimal robot performance for a given
design depends on how the robot adapts its behavior to its
environment. We propose a multi-objective Bilevel Bayesian
optimization (MO-BBO) technique to automate the process
of form-behavior co-design. The approach expands the Pareto
front of multiple metrics by simultaneously exploring the robot
design and behavior. MO-BBO uses a bilevel optimization of the
acquisition function with design and behavior parameters being
the high- and low-level decision variables, respectively. In the
low-level, we always choose environment-aware behaviors that
maximize each metric. We evaluate MO-BBO in applications
to grasping gripper design and bimanual arm placement, and
show that our method can efficiently focus samples on the
Pareto front and generate a diversity of designs.

I. INTRODUCTION

Robot design is difficult even for skilled engineers because
a robot’s performance is determined both by design and
runtime behavior in different environments. Hence, to com-
pletely understand the impact of a given design choice, the
designer must consider how the robot may adapt its behavior
to different environments, either exploiting favorable impacts
of the design choice or mitigating negative impacts. This
process requires tremendous trial and error and close collab-
oration with behavior software developers. Design automa-
tion tools are potentially useful for assisting designers, but
classical tools cannot be applied directly because they either
ignore one of the design and behavior parameters, or do not
model environment-dependence, leading to active research in
simultaneous robot and behavior co-design optimization.

In traditional robot design process, the robot’s design and
behavioral parameters are determined in two stages. During
the design time, we define the robot’s design parameters,
e.g. kinematics, materials, and actuator parameters. During
the test time, the robot’s performance is evaluated in a
number of environments, and for each environment and
design, the behavior is chosen separately. Further, multiple
conflicting performance metrics are used to evaluate the
robot’s performance, and the designer does not possess a
clear preference over metrics.

Prior robot optimization algorithms have failed to model
the two-stage, three-way coupling between the robot’s de-
sign, behavioral parameters, and the environments. For ex-
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Fig. 1: Gripper design problem, with (a–c) showing example de-
signs with parameters (finger length (m), #fingers, finger curvature
(m−1)). (d): The set of graspable objects. (e) Metric values of 200
gripper designs explored by MO-BBO, of which 16 designs are on
the Pareto front.

ample, the evolutionary optimization [6] jointly searches
for design and behavioral parameters but only for a single
task in a single environment. This method also requires
a vast number of experiments, which is not tractable if
experiments are costly. Similarly, topological robot shape
and controller can be optimized simultaneously guided by a
local gradient in [1], but they are optimized in a single stage
instead of two stages. In addition, gradient-based methods
are incapable of handling uncertainty and non-smooth objec-
tive functions. Contextual Bayesian optimization (CBO) [4]
or contextual bandit algorithm [16] are environment-aware
but do not address the multi-objective co-design problem.
Finally, Bayesian Optimization (BO) has been modified to
optimize both design and behavior parameters [15], but
their method does not consider multi-environments or multi-
objective settings.

We propose a Multi-Objective Bilevel Bayesian optimiza-
tion (MO-BBO) algorithm that accounts for all the features of
the robot / behavior co-design problem. BO minimizes the
number of costly metric evaluations by approximating the
mapping from design & behavior variables to performance
metrics via a cheaper Gaussian process surrogate model.
At each iteration, it proposes new design candidates by
maximizing an acquisition function that depends on the
surrogate model. This acquisition function is selected to grow
the Pareto front of the achievable performance metrics. Our
main contribution is a bilevel optimization of the acquisition



function, where design parameters are optimized at the
high-level, which is followed by optimizing the behavior
parameters on the low-level for each environment.

We employ this framework in two problem domains:
grasping gripper design and arm placement for a bimanual
mobile manipulator. Experiments demonstrate that the frame-
work is able to efficiently disregard ineffective designs and
focus its efforts on expanding the Pareto front. Moreover, it
is able to generate a diversity of designs in which each design
obtains high scores along one or more metric dimensions.

II. RELATED WORK

Robot design optimization plays a role in many appli-
cations including optimization of gaits and policies [15],
[25], geometric shape [1], [17], reconfigurable and modular
robots [12], [28], and actuation mechanisms [5].

Local algorithms update the robot design and behavior
in a neighborhood of an initial guess. Guided by gradient
information, these methods are relatively fast and scalable to
high dimensions. However, these typically use application-
dependent algorithms that do not generalize. Topology opti-
mization [1], [27] based on the Method of Moving Asymp-
totes (MMA) and its variants [23] has found applications
in robot link-shape design. The policy gradient method is
a form of local optimization usually applied to behavior
parameters, but it can be augmented to optimize both design
parameters and behavior [11]. However, these approaches
yield only local improvements and cannot easily generalize
to optimize behavior over many environments.

To address global optimization, search-based methods may
be applied to discrete design spaces but with continuous
behaviors [12], [28]. In mutually continuous design and and
behavior space where experimental costs are low, evolution-
ary algorithms [7] have been used for designing soft robots
[6], legged walkers [19], and grippers [20].

Bayesian optimization (BO) approaches have applied to
co-design problems with great success. Liao et al apply a
hierarchical Bayesian design and behavior factorization to
design a legged robot structure and its behavior policies,
using sparse evaluations from real experiments [15]. This
is the same general bilevel framework as in our method, but
we address the cases of multi-objective optimization with
environment-dependent behaviors. Conditioning the behavior
parameters on the environment or task in BO is known as
contextual BO, and has been considered in contextual policy
search for (single-objective) robot reinforcement learning
tasks [18], but has not, to our knowledge, been used in
multiobjective co-design problems.

Our approach guides the co-design optimization problem
using techniques from the multi-objective BO literature.
Multi-objective BO has been used in robotics for gait policy
optimization [2], [24] but prior work is non-contextual and
has not been applied to co-design problems. To our knowl-
edge, ours is the first work for mechanism / behavior co-
design that is simultaneously multi-objective and contextual.

III. PROBLEM DEFINITION

We assume that a designer establishes a design space
D, a finite set of environments E, and a behavioral space
Θ. Behaviors are specified either using a parameterized
control policy or trajectory. The designer also establishes
one or more performance measures, some or all of which
depend jointly on the design and behavior. The goal of our
framework is to generate a limited set of candidate designs
that spans the Pareto front in the metric space.

A. Performance measures

A performance measure (hereby referred to as a “mea-
sure”) is defined as a numerical score of the fitness of
a design and/or behavior along some criterion that may
depend on the chosen environment. Our convention assumes
that larger measure values correspond to better designs.
Measures come in two forms: 1) design measures, where
the score is only dependent on the design, such as the mass
of a gripper, and 2) behavior measures, where the score is
evaluated as a function of the environment (e ∈ E, E finite)
as well as the chosen design (d ∈ D, D continuous) and
behavior (θ ∈ Θ, Θ continuous), such as the grasp quality
of the gripper for a given object. We assume N design
measures {fn(d)∣n = 1, . . . ,N} and M behavior measures
{gm(d, e, θ)∣m = 1,⋯,M}.

B. Mapping behavior measures to design space

The primary optimization will take place in a multi-
objective design metric space. We map behavior metrics to
design space as follows. Given a design and an environment,
the robot can choose an optimal behavior to maximize a
behavior measure by solving the following optimization:

θ⋆d,e,m ≜ argmax
θ∈Θ

gm(d, e, θ). (1)

Provided with optimized behaviors for each measure and en-
vironment, we can factor out the environment variables. One
simple approach is to take the average of gm(d, e, θ⋆d,e,m)
over every e ∈ E. However, we observe that designers can
prioritize some environments over others. Designers may
also categorize environments into groups and measure the
performance of each group as separate metric functions. To
address these use cases, we introduce a designer-defined
weighting matrix W with P rows and ∣E∣ columns. For
example, when designing a grasping gripper, there can be
five different objects to be grasped (∣E∣ = 5), the first 2 being
cylinders and the last 3 being boxes of different shapes, then
W could be set as:

W = [1/2 1/2 0 0 0
0 0 1/3 1/3 1/3] , (2)

to measure the two kinds of objects separately. The M ∣E∣
behavior measures are mapped to PM design measures

fN+M(j−1)+m(d) =Wj

⎡⎢⎢⎢⎢⎢⎣

gm(d, e1, θ
⋆
m(d, e1))
⋮

gm(d, e∣E∣, θ⋆m(d, e∣E∣))

⎤⎥⎥⎥⎥⎥⎦
, (3)

where Wj is the jth row of W . In summary, given behaviors
we can define R = N+PM design measures, with the first N
being behavior-independent and the last PM being behavior-



and environment-dependent. This yields the following defini-
tion of a metric vector, for which larger values are preferable.

Definition 3.1: The design metric f ∶ D → RN+PM maps
a design to a metric vector f(d) = (f1(d), . . . , fR(d)).
Note that from the perspective of the high-level optimization
the metric is only dependent on design d, but the metric
vector is also dependent on the decisions chosen for each
environment and behavior measure. If an algorithm chooses
suboptimal decisions then its calculated metric vector will
be an underestimate.

C. Pareto Front

Multi-objective problems have a set of solutions that are
plausibly “high quality” in the Pareto sense. For a Pareto
optimal design, one metric cannot be increased without de-
creasing another. Formally, this is expressed as the following
Pareto dominance relation:

Definition 3.2: For two designs a, b ∈ D and a metric
f , we say a dominates b or a ≻ b if and only if fi(a) ≥
fi(b)∀i = 1, . . . ,R and fi(a) > fi(b) for some i. A design
a is non-dominated with respect to a set S ⊆D if no design
b ∈ S dominates a. A Pareto optimal design a ∈ D is non-
dominated with respect to D. The set of Pareto optimal
designs is denoted as DPO. The image of the set DPO is
called the Pareto front PF = {f(d)∣d ∈DPO}.

IV. MO-BBO

Most metrics have no simple closed-form, but rather must
be evaluated through simulation or some costly numerical
computation. BO is an efficient way to optimize unknown
functions with high evaluation costs. BO learns probabilistic
surrogate functions to approximate the performance mea-
sures and sequentially generates designs based on the sur-
rogates. At the tth iteration, we select the design dt that
maximizes the acquisition function α(d), which evaluates
the design’s utility as estimated by the surrogate models. We
then evaluate the metrics for design dt, add the result to the
dataset, re-fit the surrogate functions, and repeat.

Multi-objective BO models a separate surrogate func-
tion for each objective, and chooses candidates to evaluate
based on the optimization of an acquisition that promotes
expansion of the Pareto front towards the currently non-
dominated region. One natural acquisition function is the
expected hypervolume increase [8], but its analytic evalua-
tion is complex. Recent works have shown that many simpler
uncertainty-aware acquisition functions, such as uncertainty
volume of GP-(L)UCB [3] and predictive entropy [13], can
also encourage exploration of the Pareto front. We use a
function called Likelihood of Pareto Expansion (LPE), which
is relatively computationally inexpensive yet still yields good
performance.

In co-design, behavior variables should be optimized for
each metric and environment, so that maximizing the ac-
quisition function α(d) over design candidates becomes a
bilevel optimization problem. We accommodate the inner
optimization in this setting using surrogate models that
capture design, environment, and decision-dependent effects.

A. Surrogate Functions

We use Gaussian Processes (GP) to model the surrogate
functions. GP gives us the conditional distribution of the
objective on points that have not been evaluated. The con-
ditional distribution of function values is used to select the
next design. GP approximates N design measures and M
behavior measures for each of E environments. The total
number of GPs needed is (N +M ∣E∣):

fn(d) ∼GPn(d;Bn) (4)
gm(d, e, θ) ∼GPm,e([d, θ];Bm,e). (5)

The notation y∗(x) ∼ GP∗(x;B∗) indicates that at the
query point x, y∗ is assumed to take on a Gaussian dis-
tribution given the dataset B∗ of prior input-output pairs
B∗ = {⟨x(i), y(i)∗ ⟩∣i = 1 . . . , n}. Specifically, given a co-
variance function k(⋅, ⋅), the GP posterior is given by y∗ ∼
N (µ∗(x), σ∗(x)) where:

µ∗(x) = kT∗,xK∗,∗y (6)

σ2
∗(x) = k(x,x) − kT∗,xK−1

∗,∗k∗,x, (7)

and y = [y(1)∗ , y
(2)
∗ , . . . , y

(n)
∗ ]T is the set of observations,

K∗,∗ is an n × n matrix of kernel values with Ki,j =
k(x(i), x(j)), and k∗,x = [k(x(1), x), . . . , k(x(n), x)]T is a
vector of kernel values evaluated between B∗ and x. The
GP fitting step takes B∗ as input, optimizes the covariance
function parameters, and precomputes the matrix inverse in
(6) and (7).

B. Acquisition Function & Candidate Optimization

The Likelihood of Pareto Expansion (LPE) metric scores
a potential design by estimating the probability that it is
non-dominated given the surrogate function estimates. We
estimate it in Monte-Carlo fashion as follows.

Consider a candidate design d ∈D. For each environment-
independent metric fn, n = 1, . . . ,N , we directly evaluate the
mean µn(d) and variance σ2

n(d) of GPn. For behavior met-
ric gm, we select a design θ∗d,e,m and then evaluate the mean
µm,e(d) and variance σ2

m,e(d) of GPm,e at [d, θ⋆d,e,m].
For each weight matrix row Wj , the mean and variance of
the metric fN+M(j−1)+m are Wj[µm,e1 , . . . , µm,e∣E∣]T and
Wj[σ2

m,e1 , . . . , σ
2
m,e∣E∣

]T , respectively. Overall, this gives us
a mean µ and diagonal covariance matrix Σ for the metric
space vector f ∼N (µ,Σ). To evaluate the LPE, we draw K
samples {f (k)(d) ∣k = 1, ...,K} from the posterior Gaussian
distribution and α(d) is the ratio of the number of non-
dominated samples by the current Pareto front PF:

α(d) = 1

K

K

∑
k=1

1[f (k)(d) ≻ PF]. (8)

Selecting θ∗d,e,m is pivotal to the performance of BBO.
Inspired by [21], we select θ∗d,e,m that optimizes upper bound
of a confidence interval of GPm,e:

θ∗d,e,m = argmax
θ

µm,e(d, θ) + κσm,e(d, θ), (9)

where κ ≥ 0 trades off exploration and exploitation. Eqn. 9
can be interpreted as a surrogate optimization of Eqn. 1.
Putting things together, BBO finds the next design candidate



Algorithm 1 MO-BBO
Input: Iteration count T , initial data set Bn,Bm,e

Input: Upper-level sample size S, LPE sample size K
Input: Exploration-exploitation trade off κ

1: Fit GPn from Bn and GPm,e from Bm,e

2: Set Pareto front PF from initial data
3: for iteration t = 1, . . . , T do
4: Randomly sample S designs Dt uniformly from D
5: for d ∈Dt, e ∈ E, m = 1, . . . ,M do
6: Solve θ∗d,e,m from Eqn. 9
7: Compute µ(d), Σ(d) from GPs and θ∗d,e,m
8: dt ← argmaxd∈Dt

α(d) (Eqn. 8)
9: Evaluate measures fn(dt), gm(dt, e, θ∗dt,e,m)

10: Update Pareto front PF
11: Add ⟨dt, fn(dt)⟩ to Bn

12: Add ⟨[dt, θ∗dt,e,m], gm(dt, e, θ
∗

dt,e,m)⟩ to Bm,e

13: Re-fit GPn from Bn and GPm,e from Bm,e

14: return PF

by performing the following bilevel optimization:
argmax
d,θ∗

d,e,m

α(d) s.t. Eqn. 9 holds. (10)

C. Algorithm Pipeline

MO-BBO (Alg. 1) starts by initializing the surrogate func-
tions. We draw a set of random design and behavior samples
and evaluate the metric vectors. The surrogate functions and
initial Pareto front are then trained with this data before the
outer loop (lines 1–2). Each outer iteration attempts to find
the globally optimal solution to Eqn. 10. We approximate
the solution to the high-level problem by restricting the
design space to a sampled dataset of size S. For the low-
level problem (lines 5–6) we solve for each θ∗d,e,m usnig
an optimization of Eqn. 9. In our experiments we compare
two methods: brute force uniform random sampling, and a
gradient-free global optimization method (DIRECT). Lines
7–13 are the same as a standard multiobjective Bayesian
Optimization, except that the decision metrics and their
surrogate functions are updated separately.

D. Performance Discussion

Let us assume that C is the cost of evaluating each
metric, which may be rather high in general. We analyze
the computational cost of Alg. 1. At the tth iteration, the
cost of evaluating a surrogate function is O(t). If θ∗d,e,m
are known, the cost of evaluating the acquisition function is
O((N+M ∣E∣)Kt) because PF may contain O(t) points and
K samples are drawn to evaluate α(d). Re-fitting a surrogate
function costs O(t3). Excluding the low-level optimization,
the running time of each iteration is O((N +M ∣E∣)(KtS +
C + t3)). Note that the t3 re-fitting term involves small
constant factors, and can also be reduced to t2 using efficient
GPU implementations of GPs ( [10]). In Alg. 1, low-level
optimization is solved for SM ∣E∣, which incur a cost of
O(SM ∣E∣J), which tends to dominate complexity. Here J
is the cost of solving global optimization using DIRECT.
The overall running time of each iteration of Alg. 1 is thus
O((N +M ∣E∣)(KtS+C + t3)+SM ∣E∣J) and the total run-
ning time is O((N +M ∣E∣)T (KTS+C+T 3)+TSM ∣E∣J).

E. Subsampling

As a postprocessing step, we select a representative subset
of design candidates from the computed PF. This is im-
portant because BBO may return a large number of Pareto-
optimal designs, many of which exhibit similar performance
characteristics. The sub-sampling step provides users with a
manageable number of design candidates with a relatively
uniform distribution across PF. Our subsampling algorithm
uses a heuristic for solving the p-dispersion problem called
Greedy construction heuristic [9]. Let the Pareto optimal de-
signs and their metric values be ⟨d(1), f (1)⟩, . . . , ⟨d(Q), f (Q)⟩.
We select p out of Q designs to form our subset. The subset is
initialized by choosing two farthest points in PF as measured
by their weighted Euclidean distance between metric vectors,
with each dimension normalized to the range [0,1]. During
each iteration, we add the point that maximizes the minimum
distance to the points already in the subset. This continues
until the subset contains p points.

V. EXPERIMENTS

Using two exemplary problems, we evaluate how well
BBO returns a Pareto front PF that populates the design
space. We use two metrics, HyperVolume (HV) and Metric
Spread (MS) (larger values imply beter performance). HV
measures the volume of points f ≤ f⋆ that are dominated by
PF, with respect to a lower origin f⋆. MS measures the gap
between the minimum and maximum metric value of points
in PF, for each metric dimension i = 1, . . . ,R. There are R
such gaps, each given by maxd∈DPO

fi(d)−mind∈DPO
fi(d).

A. Gripper Design Problem

We first consider a gripper design problem in which
the goal is to reduce gripper mass while improving the
robustness of grasping a diverse range of objects. The design
parameters include finger shape and count, and our object
set consists of 13 objects with varying shapes and difficulty
of grasping as shown in Fig. 1 (a). Our object set is created
using geometric primitives to represent a wide range of grasp
types. This is a relatively small-scale design problem that we
use to explore the effect of algorithm parameters on overall
performance. Nevertheless, each optimization takes on the
order of a few hours to complete.

This problem designates 3 design parameters d: finger
length (range [0.1 m,0.4 m]), num fingers (2, 3, or 4), and fin-
ger curvature (range [-3,3], in m−1). These are illustrated in
Fig. 1 (bcd). The 3 behavior variables indicate the approach
orientation of a grasping motion and gripper’s rotation along
z-axis, designated by the angles θ ≜ (θ, φ, β ). The gripper
approaches the center of the object from a standoff distance
3m in direction (− cos θ cosφ, − sin θ cosφ, − sinφ). φ has
range [π

4
,0.99π

2
] so that the gripper starts above the table.

Metrics include the reciprocal of the mass of the gripper
f1(d) = Gripper-Mass(d)−1 (design metric) and elapsed time
g1, which measures the time elapsed until the gripper drops
an object during lifting and shaking (behavior metric). To
evaluate g1, we simulate the gripper approaching, grasping,
lifting with a 0.5 s vertical motion, and finally shaking objects



Object 1 2 3 4 5 6 7 8 9 10 11 12 13

Design 1
Mass 168.8

Elapsed-Time 2.274 3.0 2.908 3.0 2.347 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Design 2
Mass 130.2

Elapsed-Time 2.521 3.0 3.0 3.0 3.0 3.0 2.427 1.641 3.0 3.0 3.0 3.0 3.0

Design 3
Mass 111.7

Elapsed-Time 0.5 3.0 2.9 3.0 3.0 2.409 0.5 1.564 1.686 1.278 3.0 3.0 3.0

Design 4
Mass 98.53

Elapsed-Time 3.0 3.0 3.0 2.145 1.360 1.251 0. 0. 0. 0. 1.205 0. 0.

TABLE I: Four gripper designs from the Pareto Front of Fig. 1e. Images captured during lifting and shaking. Elapsed-Time indicates how long the object
stays held during shaking, in seconds (max 3 s).

Metrics Baseline Sample size (S) Confidence Bound (κ) #func. evals. (maxf )

(50,2.0,1k) 100 20 10 0.0 1.0 5.0 10.0 10000 100 10

Inner Optimization via Uniform sampling / DIRECT

HV 2.703/2.746 2.646/2.693 2.684/2.759 2.713/2.776 2.784/2.871 2.753/2.787 2.580/2.706 2.438/2.543 2.694/2.747 2.624/2.749 2.502/2.553
MS(100/Gripper-Mass) 0.328/0.346 0.248/0.299 0.371/0.290 0.346/0.391 0.245/0.209 0.242/0.329 0.320/0.331 0.436/0.395 0.281/0.321 0.265/0.308 0.296/0.374
MS(Elapsed-Time) 1.739/1.793 1.659/1.718 1.758/1.790 1.755/1.822 1.748/1.825 1.729/1.773 1.658/1.797 1.526/1.656 1.720/1.764 1.632/1.802 1.543/1.621

TABLE II: The hypervolume (HV) and metric spread (MS) metrics of optimization performance at various parameter settings, averaged
over four trials. The reference point used for HV computation is (0,0). Bold indicates the top 25% of the observed range.

along a sinusoidal wave with amplitude 0.2m and period 0.5 s
for 5 periods. We halt the simulation once the object slips
off the gripper and record the elapsed time. We set W to
[ 1
∣E∣ ⋯

1
∣E∣], so that the ultimate metric space is 2D:

f1(d) = Gripper-Mass−1(d) and

f2(d) =
1

∣E∣ ∑e∈E
Elapsed-Time(d, e, θ⋆d,e).

(11)

Fig. 1e illustrates the metric space explored by the algo-
rithm under settings (S = 20, κ = 2,max f = 1,000). After
initialization, few poor designs are generated and most of
the optimization effort is focused near the Pareto front. Each
optimization takes between 1.5–3 hours. Tab. I examines
some of the optimal gripper designs in the Pareto front in
more detail. The Elapsed-Time metric for each of the objects
is shown with a representative grasping configuration.

To evaluate the effects of parameter settings, we use
(S,κ,max f) = (50,2.0,1000) as a baseline, and evaluate
the difference performance by changing each parameter.
Results in Tab. II are averaged over four trials to account
for some randomness. Overall, performance is relatively
insensitive to parameter settings. The metric HV and MS
tend to increase as S decreases. As κ increases, the MS for
the mass metric increases, but the HV and MS for the elapsed
time metric decrease. Changing max f does not affect the
Pareto front significantly, but a larger value increases compu-
tation time. DIRECT generally performs slightly better than
uniform sampling for the inner optimization, but DIRECT
takes slightly longer computation (2.97 h vs 1.66 h).

B. Robot Arm Design Problem

Next, we consider a real-world problem where a dual-
arm mobile manipulator is designed for human environments,
such as offices and hospitals. Two UR5 robot arms are
symmetrically mounted on a torso, and the design problem is
to choose the mounting orientation and shoulder width of the
arms to maximize reachability of grasping targets in typical
human environments. We designate 3 design parameters:
distance between shoulder (range [0.4 m, 0.65 m]), pan angle
(range [0○, 90○]), and tilt angle (range [0○, 180○]). We
define 5 manipulation scenarios (Fig. 2. d–h) for the left arm
only: 1) Ground, 2) Low-shelf, 3) Table-horizontal, 4) Table-
vertical, and 5) High-shelf. In each scenario, a discretized
uniform grid of position targets are defined. We also choose a
few scenario-dependent goal orientations to reach. In Ground
and Table-vertical, the gripper must meet a single vertical
orientation. For Low-shelf and High-shelf, we consider 3
horizontal orientations with {-60○, 0○, 60○} yaw. For Table-
horizontal, we consider 6 horizontal directions with yaws
evenly spaced from 0○ to 360○.

For performance evaluation, we use one behavior measure
g1, which measures the mean reachability index over all
target positions designated by e (similar to the reachability
index used in [26], defined as the fraction of reachable
orientations). The behavior parameters consist of 6 joint
angles of the left arm used as the IK seed for reachability
testing, and a local optimization (Newton-Raphson) method
is used to reach each 6DOF pose in the bounding box.
The number of GPs used is N +M ∣E∣ = 5. To inspect all
behavior metrics, we set W = I5×5, giving a 5D metric space:
fi(d) = Avg-Reachability(d, ei, θ∗d,ei,1), i = 1, . . . , 5.



(a) (0.4, 0, 35) (b) (0.5, 30, 80) (c) (0.65, 80, 130) (d) Ground (e) Low-shelf (f) Table-vertical (g) Table-horiz. (h) High-shelf
Fig. 2: Robot arm design problem. (a–c) show 3 illustrative designs with design parameters (shoulder width (m), pan (○), tilt (○) ). (d–h) show test scenarios.

Scenario Ground Low-shelf Table-vert Table-horiz High-shelf
Legend (# of target orientation reached) 0 1 0 3 0 1 0 6 0 3

Design 1
(0.53m, 73.2○, 84.2○)

Reachability-Index 0.660 0.591 0.159 0.422 0.617

Design 2
(0.49m, 46.5○, 145.4○)

Reachability-Index 0.069 0.054 0.974 0.110 0.328

Design 3
(0.53 m, 13.20○, 140.9○)

Reachability-Index 0.118 0.180 0.581 0.537 0.739

Design 4
(0.51m, 64.03○, 61.49○)

Reachability-Index 0.584 0.108 0.877 0.170 0.888

TABLE III: Four robot arm designs generated by MO-BBO. Best performers highlighted in bold. [Best viewed in color]

When we compute reachability index, we use local IK
solvers that are sensitive to initial guesses. If bad ini-
tial guesses are used, all points on the sphere would be
unreachable. On the other hand, globally IK solves are
computationally costly. We choose to have the robot reach
one end-effector position (seed position) via local IK and
then propagate to nearby positions by using the IK solution
as initial guesses. We randomly sample end effector poses
within the grid defined in each scenario, and use a local
IK solver to generate a configuration where the initial seed
is sampled uniformly at random in the configuration space.
We generate at most 100 samples for each design using this
method. If there are no valid local IK solutions, we sample
5000 arm configurations uniformly at random and use them
as the behavior variables.

After the initialization, we run 100 outer iterations with
parameter settings S = 20 and κ = 2 were used. 56 designs lie
on the the Pareto front, and Tab. III shows 4 selected designs
produced by subsampling. These demonstrate a wide range
of different performance characteristics, indicating that no
design is ideal for all tasks.

VI. CONCLUSION & FUTURE WORK

We presented MO-BBO, a new algorithm for robot design
optimization that is able to handle form and behavior co-

design, multi-objective problems, and expensive performance
measurement. Our main idea was to expand the Pareto front
in a bilevel manner, in which the inner optimization chooses
a design- and environment-specific decision. MO-BBO is
demonstrated to effectively explore a Pareto front on two
robot co-design problems.

In future work we plan to address more complex be-
havioral representations, such as policies or trajectories.
Furthermore, an interesting remaining problem is how to
scale co-design problems to very large numbers of environ-
ments where it would be prohibitively expensive to perform
behavior optimization and performance measurement for
every environment. Correlations between optimal behaviors
and performance metrics in similar environments could be
used to quickly eliminate unpromising designs. If environ-
ments themselves are parameterized, prior work in contextual
GPs [14] might yield insights into methods for leveraging
correlations between environments. Another approach might
accelerate MO-BBO by allowing partial experiments. As
pointed out in [22], contextual bandit algorithms allow cer-
tain experiments (e.g. neural network training) to be half-way
done, and then selectively continue promising experiments.
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