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Abstract

Training a semantic segmentation model requires large

densely-annotated image datasets that are costly to obtain.

Once the training is done, it is also difficult to add new ob-

ject categories to such segmentation models. In this pa-

per, we tackle the few-shot semantic segmentation prob-

lem, which aims to perform image segmentation task on un-

seen object categories merely based on one or a few sup-

port example(s). The key to solving this few-shot segmen-

tation problem lies in effectively utilizing object informa-

tion from support examples to separate target objects from

the background in a query image. While existing meth-

ods typically generate object-level representations by av-

eraging local features in support images, we demonstrate

that such object representations are typically noisy and less

distinguishing. To solve this problem, we design an ob-

ject representation generator (ORG) module which can ef-

fectively aggregate local object features from support im-

age(s) and produce better object-level representation. The

ORG module can be embedded into the network and trained

end-to-end in a weakly-supervised fashion without extra hu-

man annotation. We incorporate this design into a modified

encoder-decoder network to present a powerful and efficient

framework for few-shot semantic segmentation. Experimen-

tal results on the Pascal-VOC and MS-COCO datasets show

that our approach achieves better performance compared to

existing methods under both one-shot and five-shot settings.

1. Introduction

Semantic Segmentation is one of the fundamental tasks

in Computer Vision. Given an input image, the algorithm

is asked to assign a class label to each pixel. It is therefore

also called dense prediction or pixel-wise classification. In

recent years, the performance of semantic segmentation has

been greatly improved [21] [2] [33] [9] by the success of

deep Convolutional Neural Networks (CNNs) and the avail-

Figure 1. Illustration of the similarity maps produced by using dif-

ferent object representation approaches. The first column shows

a support image with selected objects (yellow mask). The sec-

ond column shows a query image which contains objects in tar-

get categories. The third column shows the pixel-wise similarity

matching scores based on the object representation generated by

the traditional Mask Average Pooling method. The fourth col-

umn shows the same similarity map but using the object repre-

sentation generated by our approach. Better object representations

are more distinguishable and hence can better differentiate target

objects from backgrounds.

ability of large-scale datasets. However, data-labeling is

costly, and pixel-wise annotations required for training se-

mantic segmentation models are several times costlier than

image-wise labeling. Besides, once the training is done,

the model is limited to perform segmentation only on seen

classes during training.

While learning-based systems have become the main-

stream in many application scenarios such as face authen-

tication [5] [19] [29], video surveillance systems [26] [11]

[12] and autonomous driving [4] [14] [13], the performance

of such systems heavily rely on huge amounts of train-

ing data. On the contrary, human-beings can quickly learn

from a few examples. To conquer this challenge, the con-

cept of few-shot learning was proposed by the community

and quickly become a trending topic. The goal of few-

shot learning is to develop learning schemes that help ma-

chine learning models to learn in data-constrained scenar-



ios. While much literature has studied the problem of few-

shot classification [25] [23] [24], only a few works focused

on the few-shot segmentation problem, which we believe is

also worth studying due to the greater difficulties of obtain-

ing pixel-wise annotations.

For few-shot segmentation, existing methods typically

formulate this task as a feature matching problem. A com-

mon framework consists of a support branch and a query

branch. Both branches first apply a convolutional neural

network to extract feature maps from their corresponding

input images. Then, the Masked Average Pooling (MAP)

operation is applied to the support feature map to generate

an object-level representation by pooling the local features

over the foreground area specified by the support mask. Fi-

nally, this object representation is used to locate target ob-

jects in the query image, typically achieved by pixel-wise

similarity comparison between query local features and the

object representation.

An obvious drawback in the above pipeline is that the

object representation produced by the MAP operation might

not be able to represent the object well. For example, a car

is composed of many parts, and local features for wheels

may appear differently than those local features for win-

dows. Simply pooling over the foreground features may re-

sult in a noisy and non-discriminating representation, which

further increases the difficulties to locate target objects in

the query image. To solve this problem, we propose an Ob-

ject Representation Generator (ORG) module which learns

to produce higher-level and better-quality object represen-

tation. The ORG module can be integrated into the network

and trained end-to-end in a weakly-supervised fashion. Our

qualitative and quantitative results show that object repre-

sentations generated using our approach are more distin-

guishable and less noisy. Figure 1 illustrates some example

similarity maps obtained using the traditional MAP opera-

tion vs. our ORG module.

We incorporate this design into an encoder-decoder net-

work with several additional modifications to create a pow-

erful and efficient framework for end-to-end few-shot se-

mantic segmentation. Our framework consists of an At-

tention Branch and a Segmentation Branch. The Atten-

tion Branch combines the two-branch pipeline and our ORG

module to produce an attention map that will be provided to

the Segmentation Branch to further refine and generate the

final predictions. More details of the framework are intro-

duced in Section 4.

We evaluate our approach on PASCAL-5i [22] and

COCO-20i [17] benchmarks under both one-shot and five-

shot settings. Experimental results show that our scheme

performs better than existing methods on both benchmarks

which demonstrates the effectiveness of our approach.

Our contributions can be summarized as follows:

1. We propose a novel Object Representation Generator

module that effectively aggregates local features and

produces better object-level representations for few-

shot semantic segmentation.

2. We design an effective training scheme for the ORG

module to enable end-to-end training with the network

in a weakly-supervised fashion.

3. We incorporate the proposed object representation ap-

proach into a modified encoder-decoder network to

present a powerful and efficient end-to-end few-shot

semantic segmentation network.

4. Experimental results show that our model achieves bet-

ter performance compared to existing state-of-the-art

methods on both PASCAL-5i and COCO-20i bench-

marks.

2. Related Work

In this section, we review prior works related to seman-

tic segmentation, few-shot learning, and few-shot semantic

segmentation.

Semantic Segmentation. Semantic segmentation is the

task of assigning a class label to each pixel. FCN [16] was

the first deep learning framework for semantic segmenta-

tion. This framework replaces the fully connected layers

in a typical classification model with convolution layers to

support pixel-wise classification. The following works were

more or less based on this framework. UNet [21] proposed

to use a symmetric encoder-decoder network and found that

skip-connections can significantly improve the quality of

segmentation. Chen et al. [1] proposed to use atrous (di-

lated) convolution to maintain a large feature map while

increasing the receptive field. Zhao et al. [33] proposed

a pyramid pooling module that consists of several parallel

convolution branches with different receptive fields to cap-

ture multi-scale information. All of the above methods re-

quire large-amount of densely-annotated images for super-

vision, and it is difficult to add new categories to a trained

model.

Few-shot Learning. Few-shot learning is a newly

emerging topic that aims to quickly learn a new task from

limited labeled training examples. Within the scope of com-

puter vision, few-shot learning for image classification is

the most intensively studied task [7] [25] [23] [24], while

little attention has been paid to other tasks such as object

detection and semantic segmentation. Although semantic

segmentation can be seen as a dense classification problem,

it is not trivial to adapt existing few-shot classification meth-

ods to this problem due to the highly unbalanced data points

and the existence of local relationships between neighbor-

ing pixels.

Few-shot Semantic Segmentation. OSLSM [22] was

the first work on few-shot segmentation. Their method
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directly predicts the weight of the dense-classifier based

on support images. They also created a dataset, namely

Pascal-5i for few-shot segmentation which has become the

most used benchmark for evaluating few-shot segmenta-

tion methods. Subsequent works on few-shot semantic seg-

mentation are typically based on a two-branch comparison

framework, which can be seen as an extension of metric-

learning methods in few-shot image classification. PANet

[27] proposed a prototype alignment regularization term to

better exploit the available information from support im-

ages. CANet [31] designed a dense comparison module

to implicitly learn the relationship between local features.

They also developed an iterative refinement module to re-

fine the raw prediction results. Nguyen et al. [17] proposed

to include a relevance term that re-weights the support fea-

tures to produce more discriminative features. They also

proposed an approach to improve the quality of support fea-

ture via back-propagation during inference. Yang et al. [28]

proposed a new local-transformation module that directly

computes the similarity score between every single pair of

local features in support and query image.

Comparisons with recent similar works. Our pipeline

is similar to [28] in the sense that they also first predict an

attention map as raw prediction and use a deep decoder to

generate the final results. However, our approach is essen-

tially different from their method in the way of producing

this similarity attention map. The main difference is that

their method does not produce object-level representations,

instead, they first calculate the affinity matrix from local

feature pairs between support and query images, and use

such pair-wise similarity matrix to locate the target object

in the query image. However, we argue that local features

matching are less effective in the few-shot segmentation set-

ting, in which the query and support images are not from the

same video and typically look very different. In contrast,

our approach focuses on first generating a better object-level

representation, then using this high-quality object represen-

tation to find the target object in the query image.

The framework proposed by [17] uses the traditional

MAP operation to generate object-level representation.

However, their framework includes a guided inference

procedure to refine the object representation via back-

propagation during inference, which is similar to the moti-

vation of our ORG module training scheme. However, this

approach may result in the object representation over-fitted

to a particular support example and hence does not gener-

alize well, especially when the target object looks very dif-

ferent in support and query image. In contrast, the object

representation produced by our ORG module generalizes

better as it learns to produce better object representation by

training end-to-end with the network on the entire dataset,

which is also evidenced by our experimental results. Be-

sides, their guided inference procedure requires extra gra-

dient calculations and back-propagation during inference,

while our method can directly generate prediction through

a single pass.

3. Task Setting

The task setting of few-shot semantic segmentation is

extended from few-shot classification, in which we aim to

train a model that can quickly adapt to new tasks with few

examples.

In this task, we are given a densely annotated training set

Dtrain which consists of objects in base categories Ctrain.

We are asked to train a model based on the training set and

evaluate it on a testing set Dtest which consists of objects in

novel categories Ctest, i.e. Ctrain ∩ Ctest = ∅. The testing

set Dtest is specifically constructed in an episodic form —

for a K-shot learning task, each episode ei = {(Si, Qi)}
consists of a support set Si = {(xk

s , y
k
s ), k ∈ [1...K]}i

and a query set Qi = {(xq, yq)}i, where xk
s and yks are

the kth support image and its corresponding object mask,

respectively. xq and yq are the query image and the ground

truth, respectively. During each testing episode, the model

is asked to perform segmentation on xq based on the object

information in xk
s specified by yks .

4. Proposed Method

Our overall framework consists of an Attention Branch

and a Segmentation Branch as illustrated in Figure 2. The

Attention Branch is designed by combining our ORG mod-

ule and an existing two-branch pipeline, which is described

in Section 4.1. The Segmentation Branch is a modified

encoder-decoder network which is described in Section 4.2.

The detail of ORG module and its training scheme is de-

scribed in Section 4.3.

4.1. Attention Branch

The Attention Branch is designed by incorporating our

ORG module with an existing two-branch pipeline. We first

use a backbone CNN to extract feature maps Fs and Fq

from both support and query images, respectively. Since

prior study on few-shot segmentation [31] has demon-

strated that middle-level features generalize better to unseen

classes, we directly utilize their conclusion and use the first

three blocks in ResNet as our backbone CNN. Similar to

prior works, we use ImageNet pretrained weights to initial-

ize the backbone and do not update it during training. Fs

and the down-scaled support mask are then fed into the pro-

posed Object Representation Generator (ORG) module (de-

scribed in Section 4.3) to generate an object representation

vector Vs that represents the object feature.

To further generate the attention map on a query image,

a common approach is to calculate the similarity between

Vs and every local feature in Fq . However, since the back-
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Figure 2. The proposed model architecture.

bone was pretrained on ImageNet and not updated during

training, it may not be appropriate to directly use the ex-

tracted feature to calculate the distance/similarity without

further transformation. Therefore, we map Vs and Fq to a

higher-dimensional space (from 1024 to 2048) before cal-

culating the cosine similarity (illustrated in the Compari-

son Module in Figure 2). This mapping is approximated

with a single layer neural network, which is implemented

as a point-wise convolution layer. The dense cosine simi-

larity operation can be efficiently implemented via matrix

multiplication, hence it does not incur much computation

overhead. Our final attention map A is then produced by

normalizing the similarity map M into the range [0, 1].

4.2. Segmentation Branch

Our Segmentation Branch is designed based on the

encoder-decoder structure from DeepLabV3+ [3] with sev-

eral modifications. In the Encoder part, we first multiply

the attention map generated by the Attention Branch with

the query feature map Fq extracted by the backbone CNN.

Considering that the attention map is generated by a point-

wise cosine similarity operation and hence is lacking con-

text information, we add several Refinement Blocks after

the feature extractor to refine the feature maps. Each Re-

finement Block consists of two convolution layers with a

residual connection that does not change the spatial size of

the feature maps but can incorporate context information

into each local feature from neighboring pixels.

In the Decoder part, the Atrous Spatial Pyramid Pooling

(ASPP) module is first applied to the high-level feature to

capture multi-scale information. The resulting feature map

is then bilinearly upsampled by a factor of 4 and then con-

catenated with the low-level feature via an attentive skip-

connection to recover object details. The attentive-skip con-

nection provides low-level information (also multiplied by

the attention map) to the decoder which helps to recover

details in the final prediction. Eventually, the concatenated

features are fed into several convolution layers to produce

the final prediction.

4.3. Object Representation Generator

We proposed an Object Representation Generator (ORG)

module that learns to generate better object-level represen-

tation. This module is designed to be jointly trained with

the entire network in a weakly-supervised fashion without

extra human annotations.

Architecture. As illustrated in Figure 3(a), the ORG

module consists of several consecutive fully-convolutional

blocks with large kernel-size to quickly reduce the spatial

dimension and eventually produces a feature vector repre-

senting the target object. Considering that the number of

channels of the input feature maps Fs is very large (1024 in

our case), directly applying convolution layers will result in

too many learnable parameters (e.g. 1024×5×5×1024 pa-

rameters for a single 5×5 convolution layer without the bias

term). Having too many parameters will increase the size of

the model and make this module more difficult to train. To

solve this problem, we use a design similar to the bottleneck

block in ResNet to construct our convolution block. A con-

volution block in ORG consists of 3 consecutive layers — a

1×1 convolution layer to reduce the number of channels of

the feature map; a convolution layer with a large kernel to



Figure 3. The architecture of the ORG module and the proposed

weakly-supervised learning scheme.

reduce the spatial dimension; and another 1×1 convolution

layer to increase the number of channels to its original size.

Instead of directly learning the object representation

without any prior knowledge, we also add a parallel branch

which does the foreground average pooling operation and

fuse the results from both branches. Note that this paral-

lel branch does not involve trainable parameters and can be

seen as a regularization term. We found that adding this

parallel branch greatly reduces the training difficulty and

produces more stable results.

Weakly-supervised Object Representation Learning.

The major difficulty of learning object representation is that

we cannot provide explicit supervision to the output of the

ORG module during training, as the quality of the generated

object representation cannot be directly evaluated. Without

any constraint, the training may not converge or could pro-

duce unexpected results. We solve this problem by propos-

ing a weakly-supervised training scheme for the ORG mod-

ule. Figure 3(b) illustrates the computation graph of the

proposed training scheme. During training, we first feed the

support feature map Fs and support object mask ys to the

ORG module to produce an object representation Vs. We

then feed Vs and Fs to the Comparison Module to generate

a similarity attention map As for the support image itself.

The generated As is further passed to the subsequent Seg-

mentation Branch to produce a final segmentation result ȳs
for the current support image. Finally, the training process

is supervised by the following loss function LORG:

LORG = BCE(As, ys) + CE(ȳs, ys) (1)

Intuitively, LORG encourages the ORG module to keep

improving the quality of object representation, such that it

can be used to generate a better segmentation result for the

support image itself. While we cannot directly evaluate the

quality of the object representation, this training scheme

enables the implicit optimization of the ORG module in a

weakly-supervised fashion. It is worth noting that our Com-

parison Module also has trainable parameters, and they are

optimized together with the ORG module during this pro-

cess. This gives our Comparison Module the ability to per-

form feature matching in a higher-level feature space, which

further improves the ability of the ORG module to produce

higher-level and more expressive object representations.

5. Experiments

5.1. Implementation Details

Episodic Training. To train our model to segment un-

seen classes based on a few support examples, we use the

episodic training paradigm to mimic the testing protocol

during training similar to prior works. For a K-shot learn-

ing task, each training episode is constructed by sampling

1) a query q = (xq, yq) where xq is the query image and

yq is its ground truth binary mask; and 2) a support set

S = {(xk
s , y

k
s ), k ∈ [1...K]} where xk

s is the kth support

image and yks is its ground truth binary mask.

Loss Functions. We employ the widely used pixel-wise

cross-entropy loss as our main loss function for the final

prediction. Since the intermediate attention map Aq can be

seen as a raw prediction, an auxiliary loss is also applied to

Aq which is defined as the binary cross-entropy between the

attention map and the ground truth. The final loss term is the

weighted sum of the main loss, auxiliary attention loss, and

the aforementioned LORG, with the weight of the main loss

term being 1 and the remaining terms being 0.8.

Extension to K-shots setting. When there is more than

one support example during inference, we simply average

the attention map generated from all support examples and

feed this averaged attention map to the segmentation branch

to produce the final result. While some recent approaches

[31] [17] employ specially designed K-shot mechanisms to

boost the performance under K-shots setting, we show that

our results are still better than other approaches even with

this simple averaging strategy. We plan to explore the po-

tential of incorporating a better K-shot mechanism to fur-

ther improves our K-shots results in our future works.

Evaluation Metrics. There are two different evalua-

tion metrics used in prior works: Mean IoU and FB-IoU.

The Mean IoU is calculated by averaging the per-class

Intersection-over-Union (IoU), while the FB-IoU ignores

the object categories and simply computes the mean of the

foreground IoU and background IoU. In this task, Mean IoU

is generally considered a better metric because of two rea-

sons: 1) FB-IoU may be biased to some categories with

more examples; 2) FB-IoU cannot properly measure the

scenario when foreground objects are very small, e.g., if the



Dataset Test Categories

Pascal-50 Aeroplane, Bicycle, Bird, Boat, Bottle

Pascal-51 Bus, Car, Cat, Chair, Cow

Pascal-52 Dining Table, Dog, Horse, Motorbike, Person

Pascal-53 Potted Plant, Sheep, Sofa, Train, TV/Monitor

COCO-200

Person, Airplane, Boat, Park Meter, Dog, Elephant, Back-

pack, Suitcase, Sports Ball, Skateboard, Wine Glass,

Spoon, Sandwich, Hot Dog, Chair, Dining Table, Mouse,

Microwave, Fridge, Scissors

COCO-201
Bicycle, Bus, Traffic Light, Bench, Horse, Bear, Um-

brella, Frisbee, Kite, Surfboard, Cup, Bowl, Orange,

Pizza, Couch, Toilet, Remote, Oven, Book, Teddy

COCO-202

Car, Train, Fire Hydrant, Bird, Sheep, Zebra, Handbag,

Skis, Baseball Bat, Tennis Racket, Fork, Banana, Broc-

coli, Donut, Potted Plant, TV, Keyboard, Toaster, Clock,

Hairdrier

COCO-203
Motorcycle, Truck, Stop Sign, Cat, Cow, Giraffe, Tie,

Snowboard, Baseball Glove, Bottle, Knife, Apple, Carrot,

Cake, Bed, Laptop, Cellphone, Sink, Vase, Toothbrush

Table 1. Summary of testing object categories used in each fold

for both benchmarks.

model mistakenly predicts every pixel as background, the

FB-IoU is still very high. Therefore, in this paper, we use

Mean IoU as our evaluation metric as is done in most of the

prior works.

To study the impact of different backbone, we provide

results with both ResNet50 and ResNet101 as our backbone

CNN. We follow the experiment setting in [31] to resize the

input images to 321×321 and additionally experiment with

513×513 to study the impact of different input sizes. When

the input size is set to 513× 513, the kernel size of the last

convolution block in the ORG module is changed to 6 × 6
to reduce the spatial dimension to 1. The dilation rates in

Atrous Spatial Pyramid Pooling (ASPP) are set to [1, 6, 12,

18]. We preprocess the input using the same normalization

as in the ImageNet dataset. Data augmentation techniques

including random scale crop, random horizontal flip, and

random gaussian blur are also applied during training.

We implement our method using the PyTorch [18] li-

brary. Our network is trained end-to-end on an Nvidia GTX

1080Ti GPU using the episodic training scheme. We use

the AMSGrad [20] variant of Adam [10] optimizer to train

the model for 200 epochs with batch size of 48. The initial

learning rate is set to 1× 10−5, and the weight decay is set

to 1× 10−6.

5.2. Dataset

We evaluate our scheme on two benchmarks for few-shot

segmentation — PASCAL-5i and COCO-20i.

PASCAL-5i was first proposed in the OSLSM paper

[22]. It is created based on the PASCAL-VOC 2012 [6]

and extra annotations from SDS [8]. In PASCAL-5i, 20

categories in the original PASCAL-VOC dataset are evenly

divided into 4 splits for 4-fold cross-validation. Each fold

consists of 1 split for testing and the other 3 splits for train-

ing.

During testing, prior works typically use 1000 randomly

sampled support-query pairs to evaluate the model. How-

ever, we found that the randomly generated testing set has

varying levels of segmentation difficulties since some exam-

ples are easier to segment than others. To make fair compar-

isons, we evaluate our model on the same testing list as used

by OSLSM [22] who first proposed the benchmark. This is

done by running their code with the same random seed they

used and export the pair list produced by their code.

COCO-20i is a new benchmark that was recently pro-

posed by Nguyen et al. [17]. It is created using a simi-

lar setting as PASCAL-5i but with images and annotations

from MS-COCO 2014 [15] dataset. In this benchmark,

80 categories in the original MS-COCO 2014 dataset are

evenly divided into 4 splits for 4-fold cross-validation. Each

fold consists of 20 categories for testing and the remaining

60 categories for training. This benchmark also uses 1000

support-query pairs for testing in each split.

COCO-20i is considered more challenging not only be-

cause it has more categories but also due to the noisy anno-

tations in the MS-COCO dataset which increases the learn-

ing difficulties.

We summarize the test object categories used in each

fold for both benchmarks in Table 1 for references.

5.3. Experiments on PASCAL­5i

While it has been a consensus that deeper backbones and

larger input sizes can generally improve the performance

of a semantic segmentation model, we realized that many

prior works ignored the impact of these factors when mak-

ing comparisons. Thus, we manually gather information

from prior works and list relevant information in our com-

parisons for reference.

We compare our results with state-of-the-art methods un-

der both 1-shot and 5-shots settings in Table 2. We can see

that our approach consistently achieves better performance

compared to all existing methods in terms of the mean over

4-folds cross-validation which demonstrates the effective-

ness of our approach.

The results of LT [28] in Table 2 is reproduced by our-

selves and different from the number reported in their pa-

per. This is because the implementation of Mean IoU in

their source code is different from the common definition

(we have verified the issue with the authors). Therefore, we

retrain their model and report the 1-shot results in Table 2

for reference. If we directly evaluate our best model using

their implementation of Mean IoU, our 1-shot performance

using ResNet-50 backbone is 57.2% which is still compara-

ble with the number reported in their paper (57.0%).

CANet [31] and PGNet [30] report their results using
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1-Shot 5-Shots

Index Method Backbone Input Size Fold 0 Fold 1 Fold 2 Fold 3 Mean Fold 0 Fold 1 Fold 2 Fold 3 Mean

1 OSLSM [22] VGG-16 224× 224 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

2 SG-One [32] VGG-16 – 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1

3 PANet [27] VGG-16 417× 417 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

4 FWB [17] VGG-16 512× 512 47.0 59.6 52.6 48.3 51.9 50.9 62.9 56.5 50.1 55.1

5 CANet [31] ResNet50 321× 321 49.7 65.0 49.8 51.5 54.0 53.7 66.6 51.5 51.8 55.9

6 LT † [28] ResNet50 320× 320 50.2 65.4 54.9 49.4 55.0 – – – – –

7 Ours ResNet50 321× 321 52.6 65.8 54.7 52.1 56.3 57.2 67.8 57.5 56.2 59.7

8 CANet (MS) [31] ResNet50 321× 321 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

9 PGNet (MS) [30] ResNet50 – 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5

10 Ours (MS) ResNet50 321× 321 53.2 66.2 54.7 53.4 56.9 58.0 68.0 57.7 57.6 60.3

11 FWB [17] ResNet101 512× 512 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9

12 Ours ResNet101 321× 321 55.4 67.6 53.4 51.5 57.0 58.7 69.7 55.8 56.6 60.2

13 Ours ResNet101 513× 513 55.7 68.5 54.7 53.2 58.0 60.8 70.6 57.0 57.5 61.5

Table 2. Experimental results on Pascal-5i dataset under Mean IoU metric. LT †: results are reproduced by ourselves due to the evaluation

issue in the original paper (see section 5.3 for more details).

1-Shot 5-Shots

Method Backbone Input Size Fold 0 Fold 1 Fold 2 Fold 3 Mean Fold 0 Fold 1 Fold 2 Fold 3 Mean

FWB [17] ResNet101 512× 512 17.0 18.0 21.0 28.9 21.2 19.1 21.5 24.0 30.1 23.7

Ours ResNet101 513× 513 25.7 27.1 28.5 25.6 26.7 28.3 31.9 35.5 31.2 31.7

Table 3. Experimental results on COCO-20i dataset under Mean IoU metric.

multi-scale testing in their original papers while none of the

other approaches on Table 2 uses multi-scale testing. To

fairly compare with these two approaches, we also report

our performance with multi-scale testing according to their

configurations, marked with (MS) in the table. Remarkably,

our performance without multi-scale testing is even better

than their performances with multi-scale testing (comparing

results 8, 9, and 10 in Table 2).

While using ResNet101 as the backbone, our perfor-

mance with smaller input resolution is better than existing

methods with larger input resolution (comparing results 11

and 12 in Table 2). It is worth mentioning that FBW [17]

uses a more complicated K-shots scheme to boost up their

5-shots results while we employ a simple aforementioned

average strategy and achieves 61.5% Mean IoU (result 13).

For reference, they also report their 5-shots performance us-

ing average strategy in their paper which is 57.8%.

5.4. Experiments on COCO­20i

Since COCO-20i benchmark is a relatively new bench-

mark, at this point, only FBW [17] has available results on

this benchmark for us to compare. Thus, we compare the

performance of our approach with FBW [17] under both

one-shot and five-shot settings in Table 3. We can see

that our method achieves significant improvements on this

dataset under both settings. Compared to the original FWB

paper, we improved the Mean IoU by 25.9% and 33.7%

under one-shot and five-shot settings, respectively, which

further demonstrates the effectiveness of our method on a

more challenging dataset. It is worth highlighting that our

one-shot performance is even better than the five-shot per-

formance of FWB.

5.5. Qualitative Comparison

We compare the qualitative results of our method with

two state-of-the-art methods that have source code accessi-

ble — CANet [31] and LT [28]. Both of their models are

reproduced by ourselves using their source code, denoted as

CANet* and LT*, respectively. We use these three models

to generate segmentation results on images from PASCAL-

5i dataset and visualize example results in Figure 4. We

can see that our model consistently generates more accu-

rate and stable results compared to existing methods. The

last column in Figure 4 shows an interesting case where the

query image does not include target objects. Our model

can successfully handle this case while two other methods

still produce some false-positive masks. This shows that

the object representation generated by our approach is more

discriminative so that our model is more confident to reject

irrelevant objects in the background.

5.6. Ablation Study

In this section, we analyze the contributions of our key

components to the final performance. We implement sev-

eral variants of our model with some components removed

and compare the results in Table 4. In Table 4, MAP denotes

a variant of our model where we replace the ORG module

with the traditional Mask Average Pooling operation; ORG
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Figure 4. Qualitative comparison with state-of-the-art methods.

Best view in color. Zoom in for details.

Variant 1-shot (%) 5-shots (%)

MAP (Baseline) 54.0 56.1

ORG 54.9 (+0.9) 56.7 (+0.6)

ORG + WST 56.3 (+2.3) 59.7 (+3.6)

Table 4. Ablation study of key components on Pascal-5i dataset.

denotes a variant of our model where the ORG module is

used but without the weakly-supervised training scheme;

ORG + WST is our final design where the ORG module

is trained with the weakly-supervised training scheme.

Our ablation study shows the effectiveness of the pro-

posed weakly-supervised object learning approach. We can

see that it is crucial to use the weakly-supervised training

scheme when training the ORG module as it implicitly helps

the ORG module learn a better object representation.

Intuitively, a better object representation is more dis-

criminating and hence can be used to better separate tar-

get objects from the background. To further validate this

idea, we visualize the attention map Aq generated by two

different object representation methods in Figure 5. As we

can see from the visualization, the attention maps gener-

ated using our approach are more accurate and have less

background noise. By helping the model focuses on the

correct region and filtered out the background noises, the

ORG module eventually helps the segmentation branch to

produce better segmentation results.

5.7. Execution Time

We report the inference time of our approach on a sin-

gle NVIDIA GTX 1080 Ti GPU with different configura-

tions in Table 5. The inference time of FWB [17] is copied

from their paper which was also tested on the same GPU

when K=10. We can see that using a deeper backbone will

significantly increase the inference time, while increasing

the input size or the number of support examples only adds

small computational overhead. This demonstrates that our

approach scales well to cases with more support examples.

In summary, our approach is able to run at 42 FPS for

Figure 5. Attention maps generated using the object representation

produced by the proposed ORG module vs. by MAP operation.

Zoom in for details.

Method Backbone Input Size 1-shot 5-shots 10-shots

Ours R50 321× 321 23.71 23.72 25.63

Ours R101 321× 321 38.69 39.83 42.08

Ours R101 513× 513 38.75 39.02 43.34

FWB [17] R101 512× 512 – – 360.00

Table 5. Inference time per example in milliseconds (ms). Tested

on a single NVIDIA GTX 1080 Ti GPU.

one-shot segmentation when using ResNet50 as the back-

bone and 321 × 321 as the input resolution. Even when

using ResNet101 as the backbone and 513× 513 as the in-

put resolution for 10-shots segmentation, our approach can

still run at 23 FPS.

6. Conclusion

In this paper, we present a semantic segmentation frame-

work that is capable of segmenting unseen object categories

merely based on one or a few support examples. Our mo-

tivation is to design an approach that can produce better

object-level representations from support examples so that

it can be used to better differentiate the target object from

the background. To achieve this goal, we propose an ob-

ject representation generator module that learns to generate

high-quality object representation in a weakly-supervised

fashion without extra human annotations. This core mech-

anism is incorporated into a modified encoder-decoder net-

work to create a powerful and efficient end-to-end few-shot

segmentation framework. We conduct comprehensive ex-

periments and analyses to demonstrate the effectiveness of

our design. In particular, our approach achieves superior

performance on two few-shot segmentation benchmarks,

outperforming all existing works. Finally, our speed eval-

uation shows that our method is efficient and scalable.
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