2021/8/13 WZ_01_mapping_ice_flow_velocity

Mapping ice flow velocity using an easy and
interactive feature tracking workflow

Authors

o Author1 = {"name": "Whyjay Zheng", "affiliation": "University of California Berkeley", "email":
"whyjz@berkeley.edu", "orcid": "0000-0002-2316-2614"}

« Author2 = {"name": "Shane Grigsby", "affiliation": "University of Maryland / NASA Goddard Center",
"email": "grigsby@umd.edu", "orcid": "0000-0003-4904-7785"}

« Author3 = {"name": "Facundo Sapienza", "affiliation": "University of California Berkeley", "email":
"fsapienza@berkeley.edu”, "orcid"; "0000-0003-4252-7161"}

o Author4 = {"name": "Jonathan Taylor", "affiliation": "Stanford University", "email":
"jonathan.taylor@stanford.edu", "orcid": "0000-0002-1716-7160"}

» Author5 = {"name": "Tasha Snow", "affiliation": "Colorado School of Mines", "email": "tsnow@mines.edu",
"orcid": "0000-0001-5697-5470"}

» Author6 = {"name": "Fernando Pérez", "affiliation": "University of California Berkeley", "email":
"fernando.perez@berkeley.edu”, "orcid": "0000-0002-1725-9815"}

» Author7 = {"name": "Matthew Siegfried", "affiliation": "Colorado School of Mines", "email":

"siegfried@mines.edu”, "orcid": "0000-0002-0868-4633"}

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 1713

2021/8/13 WZ_01_mapping_ice_flow_velocity

Motivation and Purpose

Observations of ice flow velocity provide a key component for modeling glacier dynamics and mass balance.
Applying a feature-tracking technique to satellite visible or synthetic aperture radar imagery is one of the
most commonly used methods for deriving ice flow velocity from remote sensing data. Despite being cost-
effective compared to field measurements, implementing a feature-tracking workflow is not trivial because:

1. Searching for high-quality data can be time consuming
2. Fetching large-volume source imagery can be logistically challenging
3. There is no standardized pipeline for feature-tracking processes.

Here we present an interactive, notebook-based interface that deploys an entire feature tracking workflow.
This open-source tool aims to provide researchers, educators, and other users an accessible and
reproducible method for performing glacier feature tracking.

Technical contributions

» We develop a fully customizable and extensible workflow for mapping glacier velocities using a feature-
tracking technique.

» We develop two Python libraries, GeoStacks (https://github.com/geostacks/GeoStacks) and EZTrack
(https://github.com/whyjz/EZ-FeatureTrack), for general spatial and domain-specific processes
respectively. For details about GeoStacks, see our other team submission entitled GeoStacks: a library
for efficient query and stacking of satellite remote sensing data sets
(https://mybinder.org/v2/gh/geostacks/GeoStacks/earthcube).

« We build a Jupyter notebook interface for each step in our feature-tracking workflow, including data
query, parameter selection, and interactive visualization.

Methodology
The modularized workflow consists of the following steps:

. Query data

. Retrieve and aggregate data into system memory
. Select feature-tracking kernel and parameters

. Filter data for feature enhancement

. Perform feature tracking

. Mask outliers and interpolate results as needed

. Visualize and export results

N o ok, ODN -

We combine multiple open sources packages for most of these routines, including pandas , geopandas ,

shapely , ipyleaflet , ipywidgets , xarray, rasterio,and matplotlib . For the first steps, we
use the GeoStacks package to showcase its potential application. For this demo notebook, we use CARST
(https://github.com/whyjz/CARST) (Cryosphere And Remote Sensing Toolkit) and ITS_LIVE as the core
feature tracking processes and data sources. CARST uses the NCC kernel ampcor from the ISCE software
(https://github.com/isce-framework/isce?2) for feature tracking. Nevertheless, the feature tracking kernel and
all related filters, masks, and interpolation processes can be easily replaced by other tools from a different
feature tracking package (e.g., autoRIFT; Lei et al., 2021) or a user-defined function.

Results

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 2/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

In our demo notebook, we query data over Jakobshavn Isbrae, a large outlet glacier of the Greenland Ice
Sheet with a history of seasonal flow speed variation (e.g., Khazendar et al., 2019; Riel et al., 2021). Users
can choose to explore the readily available ITS_LIVE velocity or perform feature tracking using the Landsat 8
imagery. In this mini-study, we derive the spring speed change of Jakobshavn Isbrae during 2015--2021 (a
few weeks before the EarthCube meeting) using both ITS_LIVE and CARST-derived data and find that the
slowdown event at Jakobshavn in 2017/2018 seems to have been a temporary event: in 2021, Jakobshavn's
spring speed increases and likely reaches back to the peak between 2013 and 2016.

This demo notebook provides an easy and interactive way to deploy an entire feature-tracking use-case. This
workflow will allow researchers of any skill level to explore new data, compare different algorithms, and
visualize and validate their results. This tool also shows the full potential for education uses since it lowers
the technical threshold for manipulating satellite data and deriving glacier speeds. The modules used by this
demo notebook, including the GeoStacks and CARST packages, are open-source software and welcome
community contributions.

Funding

* Award1 = {"agency": "US National Science Foundation", "award_code": "1928406", "award_URL":
"https://nsf.gov/awardsearch/showAward?AWD _1D=1928406 (https://nsf.gov/awardsearch/showAward?
AWD_1D=1928406)" }

« Award2 = {"agency": "US National Science Foundation", "award_code": "1928374", "award_URL":
"https://nsf.gov/awardsearch/showAward?AWD _1D=1928374 (https://nsf.gov/awardsearch/showAward?
AWD_ID=1928374)" }

Keywords

keywords=["glacier velocity", "feature tracking", "ice flow", "remote sensing", "ITS_LIVE"]

Citation

Zheng, W., Grisby, S., Sapienza, F., Taylor, J., Snow, T., Pérez, F., & Siegfried, M. (2021). Mapping ice flow
velocity using an easy and interactive feature tracking workflow. Accessed x/x/xxxx at
https://github.com/whyjz/EZ-FeatureTrack (https://github.com/whyjz/EZ-FeatureTrack)

Work In Progress - improvements

Notable TODOs:
e progress bar (?)

» cloud cover info (?)

Suggested next steps

Setup

In [1]:

Developer's setting
%load_ext autoreload
%autoreload 2
%matplotlib widget

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 3/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

First, we import

1. GeoStacks , which provides processes for accessing spatial data and their metadata. Here we have
one class: SpatialIndexLS8 for Landsat 8. As we continue to develop the GeoStacks library, more
satellite data sets will be available for query in the future.

2. EZTrack , which provides the Ul, feature-tracking core, and some related processes (e.g., spatial filters,
data storage, etc.)

In [2]:

This lets GDAL read a file through a URL without issues
import os
os.environ['GDAL_SKIP'] = 'DODS'

Load core modules
from geostacks import SpatialIndexLS8
from eztrack import eztrack_ui

Load additional modules
import matplotlib.pyplot as plt
import rasterio

from rasterio.plot import show
import numpy as np

from datetime import date

This is the Open Source version of ISCE.

Some of the workflows depend on a separate licensed package.

To obtain the licensed package, please make a request for ISCE

through the website: https://download.jpl.nasa.gov/ops/request/index.cfm.
Alternatively, if you are a member, or can become a member of WinSAR

you may be able to obtain access to a version of the licensed sofware at
https://winsar.unavco.org/software/isce

Read LS8 spatial indices

To query available data on an interactive map, we use the LS8 corner points for the spatial extent for each
path/row combination. See the GeoStacks repo (https://github.com/geostacks/GeoStacks) for more details.

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html

4/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

In [3]:

1s8 _index = SpatialIndexLS8('./LANDSAT_8 C1_cornerpoints.csv')

1s8 index.read() # read the CSV 1into spatial index

1s8 index.footprint # this 1s a geopandas DataFrame containing footprint of each Pa

th/Row combination.

Out[3]:
path row lon_CTR lat_CTR geometry
0 1 2 -4.197763 80.002493 POLYGON ((-2.73002 81.20570, 2.59456 79.71746,...
1 1 3 -10.561457 79.111023 POLYGON ((-9.99477 80.33234, -4.15668 78.95795...
2 1 4 -15.970556 78.118527 POLYGON ((-16.04544 79.34425, -10.01855 78.079...
3 1 5 -20.471403 77.048224 POLYGON ((-20.97844 78.26901, -14.98803 77.105...
4 1 6 -24.338152 75.902095 POLYGON ((-25.13378 77.11339, -19.30751 76.041...

21898 233 242 44.207091 80.008794 POLYGON ((51.28225 80.15426, 45.38953 78.79931...
21899 233 243 36.728885 80.760793 POLYGON ((44.27339 81.05282, 38.82326 79.58492...
21900 233 244 28.123821 81.338812 POLYGON ((35.89000 81.79801, 31.32504 80.22170...
21901 233 245 18.551148 81.705630 POLYGON ((26.54158 82.32623, 23.32388 80.66332...
21902 233 248 -11.314870 81.338539 POLYGON ((-7.24108 82.42211, -4.41066 80.74283...

21903 rows x 5 columns

This shows the center lat/lon (lon_CTR and lat_CTR) for each LS8 path/row combination, and their image
extent specified by the geometry field. For example, the path/row 001/002 has a center coordinate of
(80.0025 N, 4.1978 W). There are only 21,903 available records instead of 233 x 248 = 57,704 because
not all path/row combinations have at least one valid scenes (i.e., Landsat 8 does not take images on ocean
surface).

The query_pathrow method

The SpatialIndexLS8 class also comes with a query_pathrow method that uses quad tree and point-in-
polygon spatial algorithms (See the GeoStacks repo (https://github.com/geostacks/GeoStacks) for more
details). It queries all Path/Row combinations that cover a query point.

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 5/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

In [4]:

query pt = [-50., 69.] # in Llon/lat format; i.e., (50E, 69N)
idxs = 1s8_index.query_pathrow(query_pt)
1s8 index.footprint.loc[idxs]

Out[4]:
path row lon_CTR lat_CTR geometry
695 8 11 -47.813174 69.606470 POLYGON ((-49.04594 70.75626, -44.45141 69.997 ...
696 8 12 -49.506130 68.279699 POLYGON ((-50.74347 69.41965, -46.36735 68.700...
782 9 11 -49.355231 69.606482 POLYGON ((-50.58956 70.75716, -45.99051 69.997...
783 9 12 -51.046291 68.279697 POLYGON ((-52.28549 69.42048, -47.90452 68.700...
866 10 11 -50.895321 69.606439 POLYGON ((-52.13270 70.75647, -47.53033 69.996...

6845 81 233 -48.202833 69.606467 POLYGON ((-44.96551 69.15807, -49.29514 68.442...
6915 82 233 -49.749759 69.606440 POLYGON ((-46.51348 69.16081, -50.84713 68.444...
7017 83 232 -49.604053 68.279726 POLYGON ((-46.58181 67.80603, -50.70937 67.125...
7018 83 233 -51.293647 69.606447 POLYGON ((-48.05298 69.15870, -52.38942 68.442...
7087 84 232 -51.145138 68.279691 POLYGON ((-48.12431 67.80870, -52.25525 67.127...

This subset shows all 10 path/row combinations at the given query point (50E, 69N) where Landsat 8 scenes
are available.

The Feature Tracking Ul

With information from a SpatialIndex object, we build up a Ul that allows users to query Landsat 8 and
ITS_LIVE data.

In [5]:

cpanel = eztrack ui(spatial index=1s8 index)
cpanel.gen_ui()

The show_ft_parames allows you to adjust the most important parameters for feature tracking using the
Jupyter widgets:

 reference window size : The size of reference window (aka chip or template for feature matching) in
pixels.

e search window size : The size of search window in pixels. How many pixels do you expect your
feature to move? The default is 20 pixels here, which means the maximum detectable feature
displacement is 20 * (pixel spacing) = 600 m (Band 4) or 300 m (Band 8).

* skip size: The size of the output image resolution, in multiplier of pixels (e.g., 1 = 1 pixel = original
resolution). The less this number is, the longer the computation would take.

All the modifications are passed to the Ul immediately.

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html

6/13

2021/8/13 WZ_01_mapping_ice_flow_velocity
In [6]:

cpanel.show ft params()

You can view entire parameter set by typing the following command.

In [8]:
cpanel.ft_params.pxsettings
out[8]:

{'refwindow_x': 64,
'refwindow_y': 64,
'searchwindow_x': 20,
'searchwindow_y': 20,
'skip_across': 64,
'skip_down': 64,
'oversampling': 16,
'threads': 8,
'gaussian_hp': False,
'gaussian_hp_sigma': 3.0}

Feature tracking results or the selected ITS_LIVE data are stored in cpanel.results once the run
button is clicked. The data structure of cpanel.results depends on the data/kernel selection:

* ITS LIVE: xarray object
o CARST: rasterio dataset

In [7]:
cpanel.results
Out[7]:

<open DatasetReader name='20210417-20210503_velo-raw_mag.tif' mode='r'>

You can also view messages or errors generated by the Ul during the feature tracking processes by
accessing cpanel.output . For ITS_LIVE, this will let you get the URL if you want to download the selected
scenes. For CARST, you can check the messages generated from each feature tracking steps.

In [42]:

cpanel.output

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 713

2021/8/13 WZ_01_mapping_ice_flow_velocity

Mini study: The evolution of ice speed at Jakobshavn
Isbrae, Greenland

This section aims to provide a step-by-step guide of how to use the feature tracking Ul by carrying out a mini
science exploration. Our goal is to see the evolution of ice flow speed at Jakobshavn Isbrae, Greenland, since
2015. This outlet glacier experienced a multi-year slow-down event in at least 2017 and 2018 (e.qg.,
Khazendar et al., 2019; Riel et al., 2021), and we will find whether this trend continues to 2021.

We first retrieve ITS_LIVE ice speed over Jakobshavn from 2015 and 2018. Since ITS_LIVE does not
provide any results after 2018, we use CARST to calculate ice speed Jakobshavn in 2021. We use spring
(April) scenes from all these years to minimize the bias from seasonal speed variaion.

2015 speed (ITS_LIVE)

First, launch the Ul from the previous section. The default marker location is already over Jakobshavn Isbree
so you don't need to change it, but feel free to move it around to see how this Ul works. The panel in the left
shows all available Landsat 8 path and row combinations. Selection ©09/011 , and check ITS_LIVE
(online ready) as the Data/Kernel.

Now, press Search for dates . You should be able to see a full list of available ITS_LIVE scenes in the
right panel. select 2015-04-01 / 2015-05-03 / 32 days and click Get data button. You can ignore
the band button when querying the ITS_LIVE data set.

After the data are loaded, execute the following cell.

In [9]:

speed2015 = cpanel.results.copy(deep=True)

2018 speed (ITS_LIVE)

Now select 2018-04-09 / 2018-04-25 / 16 days and click Get data button again. After the data are
loaded, execute the following cell.

In [10]:

speed2018 = cpanel.results.copy(deep=True)

2021 speed (CARST)

You can consider uncommenting and running the following cell for getting the same results presented in the
bottom of this Notebook. Warning: if you do this on Binder, it will take a quite long time to run (~1-2
hours) since Binder does not allocate sufficient memory for a feature tracking process with such a
high resolution. We recommend turning this cell on only if you are using a local machine with
sufficient CPU and memory resources.

In []:

cpanel.ft params.pxsettings['skip_across'] = 16
cpanel.ft params.pxsettings['skip down'] = 16

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 8/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

Now switch the Data/Kernel to CARST and hit Search for dates button again. In the right panel, hold the
Ctrl button and select 2021-04-17 and 2021-05-03 . Select B4 as the input band, and click the Get
data button. This will download the corresponding Landsat scenes and run feature tracking using the default
parameter settings, which will take a few minutes on the Binder server (may be faster on your powerful local
machine). You can also try to use Band 8 as input or change the parameter settings by running
cpanel.show_ft_params() ortweaking cpanel.ft_params.pxsettings . Generally speaking, Band 8
needs 4X more time to process than Band 4 because its pixel spacing (15 m) is smaller than that of B4 (30
m).

After the feature tracking process is done (indicated by the little hollow circle in the upper right window), you
can run the the following cell.

In [8]:

speed2021 = rasterio.open(cpanel.results.name)

Visualizing results

Now we are ready to see the results!

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 9/13

2021/8/13 WZ_01_mapping_ice_flow_velocity
In [94]:
fig, ax@ = plt.subplots(l, 3, figsize=(14, 4), sharex=True, sharey=True)

x1lim
ylim

[520000, 620000]
[7640000, 7700000]

handle = speed2015.v.plot(ax=ax@[0], robust=True, cmap=plt.cm.viridis, vmin=0, vmax=100
00, add_colorbar=False)

ax0[0].axis('image")

speed2018.v.plot(ax=ax@[1], robust=True, cmap=plt.cm.viridis, vmin=0, vmax=10000, add_c
olorbar=False)

ax@[1].axis('image")

show(speed2021, ax=ax@[2], cmap='viridis', vmin=0, vmax=10000./365.25)

ax0[0].set_xlim(x1lim)
ax0[0].set_ylim(ylim)
plt.subplots_adjust(left=0.08, right=0.85)
cax = plt.axes([0.88, 0.1, 0.04, 0.8])
cbar = plt.colorbar(handle, cax=cax)
cbar.set_label('Ice flow speed (m/yr)")

ax0[0].scatter([559000, 577000], [7669000, 7670700], s=4, c="'xkcd:red")
ax@[1].scatter([559000, 577000], [7669000, 7670700], s=4, c='xkcd:red")
ax@[2].scatter([559000, 577000], [7669000, 7670700], s=4, c='xkcd:red') #, Llinewidths=
0.5, edgecolors="xkcd:black")

ax0[0].set_title('ITS_LIVE 20150401 - 20150503 \n Input: Landsat 8 Band 8 \n outlier ma
sk and hole interpolation \n'")

ax0[1].set_title('ITS_LIVE 20180409 - 20180425 \n Input: Landsat 8 Band 8 \n outlier ma
sk and hole interpolation \n')

ax0[2].set_title('CARST 20210417 - 20210503 \n Input: Landsat 8 Band 4 \n Chip size: 64
pixels \n Raw NCC ouput, no mask and interp \n')

Out[94]:

Text(0.5, 1.0, 'CARST 20210417 - 20210503 \n Input: Landsat 8 Band 4 \n Ch
ip size: 64 pixels \n Raw NCC ouput, no mask and interp \n')

You plot should look similar to this -- except that the CARST result here uses a skip size of 16 (so the
resolution is finer).

CARST 20210417 - 20210503

ITS_LIVE 20150401 - 20150503 ITS_LIVE 20180409 - 20180425 Input: Landsat 8 Band 4 10000
Input: Landsat 8 Band 8 Input: Landsat 8 Band 8 Chip size: 64 pixels
outlier mask and hole interpolation outlier mask and hole interpolation Raw NCC ouput, no mask and interp

8000

6000

4000

Ice flow speed (m/yr)

y coordinate of projection [m]

.64 s
520000 540000 560000 580000 600000 620000 520000 540000 560000 580000 600000 620000 520000 54000

2000

x coordinate of projection [m] x coordinate of projection [m]

The red dots on the map mark where we are going to sample the speed from all three maps!

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 10/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

In [88]:

vel ptl = []
vel ptl.append(speed2015.v.sel(x=[559000], y=[7669000], method="nearest"))
vel ptl.append(speed2018.v.sel(x=[559000], y=[7669000], method="nearest"))
for val in speed2021.sample([(559000, 7669000)]):

tmp = val * 365.25
vel ptl.append(tmp)
vel ptl = np.array(vel_ptl, dtype=object)

vel pt2 = []
vel pt2.append(speed2015.v.sel(x=[577000], y=[7670700], method="nearest"))
vel pt2.append(speed2018.v.sel(x=[577000], y=[7670700], method="nearest"))
for val in speed2021.sample([(577000, 7670700)]):

tmp = val * 365.25
vel pt2.append(tmp)
vel pt2 = np.array(vel_pt2, dtype=object)

time_x = [date(2015, 4, 16), date(2018, 4, 17), date(2021, 4, 25)]
vel pt2

out[88]:

array([[3436.0],
[2772.0],
[3172.362548828125]], dtype=object)

Now it's time to plot them! From the figure, you should be able to see the slowdown event at Jakobshavn in
2017/2018 seems to have been a temporary event: in 2021, Jakobshavn's spring speed increases and likely
reaches back to the peak between 2013 and 2016. We have attached the our results below for you to
compare with your results (for reproducibility).

In [87]:

fig, axl = plt.subplots(1l, 1, figsize=(6, 6))
axl.plot(time_x, vel ptl, '.-', label='Lower stream')
axl.plot(time_x, vel pt2, '.-', label='upper stream')

axl.set_xlabel('Year'")
axl.set_ylabel('Ice flow speed (m/yr)")
ax1l.legend()

Out[87]:

<matplotlib.legend.Legend at Ox7f66ab95f490>

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 11/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

9000 A

8000 A

—e— Lower stream
upper stream

()} ~l

o o

o o

o o
1 1

Ice flow speed (m/yr

ul

o

o

o
1

4000 -

3000 -

2015 2016 2017 2018 2019 2020 2021

References

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 12/13

2021/8/13 WZ_01_mapping_ice_flow_velocity

Whyjay Zheng, William J. Durkin, Andrew K. Melkonian, & Matthew E. Pritchard. (2021, March 10).
whyjz/CARST: CARST v2.0.0a1 (Version v2.0.0a1). Zenodo. http://doi.org/10.5281/zenodo.4592619
(http://doi.org/10.5281/zenodo.4592619)

Grisby, S., Zheng, W., Taylor, J., Sapienza, F., Snow, T., Pérez, F., & Siegfried, M. (2021). GeoStacks: a
library for efficient query and stacking of satellite remote sensing data sets. Accessed on May 1, 2021 at
https://github.com/geostacks/GeoStacks (https://github.com/geostacks/GeoStacks)

Rosen, P.A.; Gurrola, E.M.; Agram, P.; Cohen, J.; Lavalle, M.; Riel, B.V.; Fattahi, H.; Aivazis, M.A.; Simons,
M.; Buckley, S.M. (2018). The InSAR Scientific Computing Environment 3.0: A Flexible Framework for NISAR
Operational and User-Led Science Processing. In Proceedings of the IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, Valencia, Spain, 22-27 July 2018; pp. 4897—4900.

Gardner, A. S., M. A. Fahnestock, and T. A. Scambos, (2019), Accessed on May 1, 2021: ITS_LIVE Regional
Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and lce Data Center;
https://doi.org/10.5067/6116VWS8LLWJ7 (https://doi.org/10.5067/6116VWS8LLWJT7).

Lei, Y., Gardner, A., & Agram, P. (2021). Autonomous Repeat Image Feature Tracking (autoRIFT) and Its
Application for Tracking Ice Displacement. Remote Sensing, 13(4), 749. https://doi.org/10.3390/rs13040749
(https://doi.org/10.3390/rs13040749)

Riel, B., Minchew, B., & Joughin, I. (2021). Observing traveling waves in glaciers with remote sensing: New
flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbrae), Greenland.
Cryosphere, 15(1), 407—429. https://doi.org/10.5194/tc-15-407-2021 (https://doi.org/10.5194/tc-15-407-2021)

Lei, Y., Gardner, A., & Agram, P. (2021). Autonomous Repeat Image Feature Tracking (autoRIFT) and Its
Application for Tracking Ice Displacement. Remote Sensing, 13(4), 749. https://doi.org/10.3390/rs13040749
(https://doi.org/10.3390/rs13040749)

file:///C:/Users/toki/Downloads/WZ_01_mapping_ice_flow_velocity.html 13/13

