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Abstract— We present non-convex maximal dissipation prin-
ciple (NMDP), a time integration scheme for articulated bodies
with simultaneous contacts. Our scheme resolves contact forces
via the maximal dissipation principle (MDP). Whereas prior
MDP solvers assume linearized dynamics and integrate using
the forward multistep scheme, we consider the coupled system
of nonlinear Newton-Euler dynamics and MDP and integrate
using the backward integration scheme. We show that the
coupled system of equations can be solved efficiently using a
novel projected gradient method with guaranteed convergence.
We evaluate our method by predicting several locomotion
trajectories for a quadruped robot. The results show that
our NMDP scheme has several desirable properties including:
(1) generalization to novel contact models; (2) stability under
large timestep sizes; (3) consistent trajectory generation under
varying timestep sizes.

I. INTRODUCTION

Articulated body simulation is an indispensable compo-
nent of robot motion planning and optimal control. Their
governing dynamic equations, i.e. the recursive Newton-
Euler’s equation [9], and discretization schemes have been
studied for decades. However, efficient and accurate contact
handling is still a challenging problem despite extensive
recent studies [27], [34]. To predict robot motions under
simultaneous Coulomb frictional contacts, the two most
widely-used formulations are the linear-complementary prob-
lem (LCP) [29] and the maximal dissipation principle (MDP)
[7]. From a computational perspective, LCP incurs an NP-
hard problem while MDP identifies contact forces with the
solution of a cheap-to-compute convex program. As reported
by [8], MDP-based contact handler achieves the best stability
and computational efficiency. Moreover, MDP can encode
novel contact models as arbitrary convex wrench spaces,
which enables learning contact models from data [33], [34].

The stability region of MDP is empirically shown to be up
to ∼10 ms according to [31]. Beyond the stability region, the
predicted trajectory can either blow-up or drift significantly
from the ground truth. Such small stability region not only
increases computational cost but also induces problems of
vanishing or exploding gradients [16]. In contact-implicit
trajectory optimization [21], [28], for example, the problem
size grows linearly with the number of timesteps and the cost
of a Newton-type method grows superlinearly as a result.

We present a non-convex MDP (NMDP) integrator that:
(1) is stable under large timestep sizes; (2) generates con-
sistent contact forces under the MDP formulation; and (3)
generalizes to position-dependent contact models. Prior MDP
solvers rely on linearized dynamic systems, so that the
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Fig. 1: We consider the three components (robot pose θ update,
convex wrench space vx(θ) update, and contact force w update) as
a coupled system of nonlinear equations, which is solved using a
novel projected gradient method with guaranteed convergence.

kinetic energy becomes a quadratic function of the contact
forces which can be solved as a convex QP. However, the
truncation error of linearization can grow arbitrarily with
larger timestep sizes. Our NMDP solver eliminates the trun-
cation error by formulating the nonlinear recursive Newton-
Euler’s equation and the wrench space as a function of the
robot pose as a coupled system of nonlinear equations time-
integrated using the backward-Euler scheme (Figure 1). The
method can inherently account for novel contact models by
using the convex shapes as feasible constraints in MDP, with
nonlinear dependence on robot pose. To solve this coupled
system we propose using the projected gradient method
(PGM). We prove that PGM converges under sufficiently
small timesteps and show that it empirically converges
under large timesteps. We propose an adaptive inner time-
integration scheme and guarantee that NMDP solves any
(primary) timestep size in finite time.

We evaluate our method by predicting walking and
jumping trajectories for the JPL Robosimian and Spider
quadruped robot. The results show that NMDP has su-
perior stability under larger timesteps as compared with
conventional MDP solvers. In addition, the predicted walking
speed and jumping height are more consistent under varying
timesteps.

II. RELATED WORK

We review related work on articulated body dynamics,
contact handling, and generalized contact models.

Articulated Body Dynamics: Three classes of time
discretization schemes have been independently developed
for articulated bodies’ equation-of-motion. First, variational
integrators (VI) [15], [18] discretize the Lagrangian function
and then derive the discrete Euler-Lagrange equation. VI pre-
serves momentum and energy symmetry under large timestep
sizes. Second, linear multi-step integrators [5] discretize
the equivalent Newton-Euler’s equation in the configuration
space. These integrators are very efficient to evaluate using
the Articulated Body Algorithm (ABA) [9]. Third, high-
order collocated, position-based integrators use an equivalent



form of the Newton-Euler’s equation known as position-
based dynamics (PBD) [3], [25], where the main difference
is that the discretization is performed in the Euclidean space.
Position-based integrators are stable under large timestep
sizes but they do not preserve symmetry.

Contact Handling: Sequential contact models [11], [20]
have a significantly limited stability region due to the
stiffness of contact forces. Models allowing simultaneous
collisions and contacts have larger stability region, especially
using implicit time stepping [29], [1]. LCP [29], [2] and
MDP [7], [14] are the two most popular implicit formulations
for simultaneous frictional contacts. Solving complementary
conditions due to LCP is NP-hard and can sometimes be
infeasible [22]. The MDP relaxes the complementary con-
straints by allowing any contact forces in the frictional cone
to be feasible. However, the stability region of time stepping
is still limited by the linearization of dynamic systems using
either LCP or MDP. In [1], [25], dynamics with frictionless
contacts are reformulated as an optimization and linearization
can be avoided, but these results cannot be extended to
frictional cases. In [23], the frictional force is modified and
then reformulated as an optimization, but the modified vari-
ant cannot handle static-sliding frictional mode switches. In
[4], a modified two-step Backward Differentiation Formula
(BDF2) is proposed to achieve second-order accuracy in
time-integration under frictional contacts, but linearization is
still needed. Unlike these methods, we analyze the feasibility
of contact handling without any linearization for both normal
and frictional forces.

Generalized Contact Models: Although the Coulomb
frictional model is sufficient for most scenarios involving
only rigid objects, other contact models are needed for
several reasons. To model the unknown continuous force
distribution between a planar object and a flat ground, a gen-
eral convex wrench space is learned from real-world data in
[33]. In other works [34], [17], [32], [13], articulated robots
are walking on or swimming in deformable environments
with granular or compliant materials. Hu [13] simulated
both the granular material and the robot using fine-grained
finite element method, which is more than 1000× slower
than a standalone articulated body simulation. In [17], [32],
the Coulomb frictional model is replaced with analytic and
empirical force models. Although these models are cheap
to compute, they cannot capture the static-sliding frictional
mode switches. Zhu et al. [34] used a similar approach
as [33] and learned a robot-pose-dependent contact wrench
space. Static-sliding frictional mode switches can thereby be
modeled using MDP solver with the learned wrench space
as constraints. By extending MDP, our NMDP solver can
handle any generalized force models [33], [34] in the form
of robot-pose-dependent contact wrench spaces.

III. ARTICULATED BODY DYNAMICS

In this section, we briefly review two prior formulations
of articulated body dynamics and their corresponding dis-
cretization schemes: the recursive Newton-Euler’s equation

and position-based dynamics. Both schemes can be extended
to derive NMDP solvers.

A. Recursive Newton-Euler’s Equation

The continuous Newton-Euler’s equation under general-
ized coordinates takes the following form:

0 =H(θ)θ̈ +C(θ, θ̇) −∑
x∈C

∇θX(x, θ)
T fx − τ. (1)

Here H is the generalized mass matrix, θ is the robot’s
configuration vector, C(θ, θ̇) is the Coriolis and Centrifugal
force, X(x, θ) is the forward kinematic function bringing a
point x from the robot’s local coordinates to the global coor-
dinates, C is a set of points in contact with the environment,
fx is the external force on x in world coordinates, and finally
τ is the joint torque.

Remark 1: We assume contacts are realized by external
forces fx ∈ R3. More general contact models such as [34]
require external wrenches fx ∈ R6. In this case, we can
replace ∇θX(x, θ) with the Jacobian matrix in R6×∣θ∣ and
all the following analysis applies accordingly.

To discretize a dynamic system, the linear multistep
method uses finite difference approximations for all vari-
ables. We illustrate this method with first-order finite differ-
ence schemes. Higher-order schemes can be applied follow-
ing a similar reasoning. We introduce two variables θ− and
θ−−. We assume that θ− is the robot configuration at current
time instance, θ−− is the robot configuration ∆t seconds
before (∆t is the timestep size), and θ is the to-be-predicted
robot configuration after α∆t seconds. Here α ∈ (0,1] is
an additional parameter for timestep size control and we use
subscripts to denote functions that are dependent on α. Since
NMDP solver requires sufficiently small timestep sizes to
converge, we use α to ensure this condition holds. Under
these definitions, we can approximate:

θ̇ ≜
θ − θ−
α∆t

θ̇− ≜
θ− − θ−−

∆t
θ̈ ≜

θ̇ − θ̇−
∆t

. (2)

Plugging these approximations into the Newton-Euler’s
equation, the forward-Euler integrator takes the following
form:

0 =H(θ−)θ̈ −C(θ−, θ̇−) −∑
x∈C

∇θX(x, θ−)
T fx − τ, (3)

which is a linearized dynamic system in θ, fx, τ . Instead,
the backward-Euler integrator evaluates H, C at time-level
α∆t instead of current time instance, resulting in a nonlinear
system of (1) and (2). This system is not guaranteed to have
a solution, unless a small enough timestep size is used.

B. Position-Based Dynamics

PBD reformulates the governing equation-of-motion as:
0 = ∇θEα(θ, fx), (4)

where we define:
Eα(θ, f) ≜ Iα(θ) −∑

x∈C

X(x, θ)T fx − θ
T τ

Iα(θ) ≜ ∫
x∈R

ρ∥X(x, θ) − (1 + α)X(x, θ−) + αX(x, θ−−)∥
2

2α∆t2
dx,

and the integral in Iα is taken over the entire robot R. If
we assume that θ is a continuous trajectory θ(t) and θ =



θ(t+α∆t), θ− = θ(t), θ−− = θ(t−∆t), it has been shown in
[25] that (4) will converge to (1) as ∆t → 0. This integral
can be evaluated analytically in a similar way as deriving the
generalized mass matrix.

Remark 2: Iα is the integral of inertial forces expressed
under generalized coordinates. Indeed, by comparing Equa-
tion 2 and Equation 1, we immediately see that ∇θIα plays
the role of H(θ−)θ̈−C(θ−, θ̇−). We can prove that these two
terms coincide as ∆t→ 0.
Compared with (1)+(2), (4) is always solvable under ar-
bitrarily large timestep sizes because it is integrable. In
other words, solving for θ is equivalent to the following
optimization:

argmin
θ

Eα(θ, fx).

Note that we assume fx is a constant in our derivation for
the integrability of Eα (i.e. PBD dynamics can be written
as 0 = ∇θEα(θ, fx) for some Eα). More generally, PBD
can still take an integrable form when the external forces
are conservative. In scenarios with dissipative force models
such as Coulomb frictional forces, both integrability and
PBD’s feasibility guarantee are lost, just like Newton-Euler’s
equation. In this work, we propose an algorithm that solves
the system of nonlinearity equations with dissipative force
models with guaranteed solvability.

IV. NONCONVEX MDP

Our main idea is to combine backward time-integration
and frictional contact force computation. In an MDP solver,
the force at each contact point fx belongs to a convex feasible
space. We assume that the feasible space is a polytope
formed by a set of vertices denoted as vjx with j = 1,⋯, Vx.
Here Vx is the number of vertices used to model the polytope
at contact point x. We assume that all the vertices vjx are
assembled into a matrix vx = (v1

x,⋯, v
Vx
x ). Therefore, every

feasible contact force fx can be represented as:
fx ∈ {vxwx∣wx ⪰ 0,1Twx ≤ 1} , (5)

where wx is the weights of convex combination and 1 is an
all-one vector.

Remark 3: The assumption of feasible contact force being
a polytope is essential for our convergence proof. Under this
assumption, we will extensively use the property that fx has
a bilinear form of vxwx, where wx is bounded and vx is
sufficiently smooth.

A. NMDP Formulation

When modeling an inelastic rigid contact, vx is set to
the vertices of the linearized frictional cone if X(x, θ) is in
contact or penetrating the environment, and vx is set to zero
otherwise. However, the switch between the in-contact and
off-contact state is non-differentiable which is undesirable in
applications such as differential dynamic programming [31]
and trajectory optimization [21]. Therefore, we assume that
vx is a robot-pose-dependent, differentiable function vx(θ).
This formulation is compatible with the recently proposed
learning-based granular wrench space model [34] and can
potentially generalize to other contact models. To determine

the weights wx, MDP solves an optimization that minimizes
the kinetic energy at time instance α∆t. Conventional MDP
solver uses the linearized dynamic system Equation 3 and
discretizes vx at θ−, resulting in a QP problem. Instead,
our NMDP scheme uses the backward-Euler integrator Equa-
tion 1 and discretizes vx at θ. As a result, we need to solve
the following nonlinearly constrained optimization:

argmin
θ,w

K(θ) ≜
1

2
θ̇TH(θ)θ̇ s.t. 0 = Gα(θ,w) (6)

Gα(θ,w) ≜H(θ)θ̈ +C(θ, θ̇) −∑
x∈C

∇θX(x, θ)
T vx(θ)wx − τ,

where we assume the use of recursive Newton-Euler’s equa-
tion and w is a concatenation of all wx. In the rest of the
paper, we propose two algorithms to solve (6).

Remark 4: The solution to Equation 6 might not be
unique and a common strategy is to add a regularization
of form ∥w∥2 and bias the solution towards small contact
forces. We do not use this strategy in our implementation,
in which case our solvers find an arbitrary solution.

B. NMDP Solver

Since (6) is a general nonlinearly constrained optimization,
it can be solved using general-purpose optimizers such as
the interior point method [19]. However, these methods are
not guaranteed to converge to a first-order stationary point
due to infeasibility. Instead, we consider two variants of
the projected gradient method (PGM), which we prove to
converge to a first order stationary point. PGM starts from a
feasible initial guess and updates a search direction of w by
solving:
argmin

∆θ,∆w
K(θ +∆θ) s.t. Gα(θ +∆θ,w +∆w) = 0 (7)

K(θ +∆θ) ≜K(θ) +∇θK
T∆θ +

1

2
∆θ∇2

θK∆θ

Gα(θ +∆θ,w +∆w) ≜ ∇θGα∆θ +∇wG∆w.

Since Gα ≡ 0, the implicit function theorem implies: ∆θ =
−∇θGα

−1
∇wG∆w where we assume ∇θGα is non-singular.

We can get an equivalent QP by plugging ∆θ into (7):
argmin

∆w
−∇θK

T
∇θGα

−1
∇wG∆w + ∥∆w∥2/γ+ (8)

1

2
∆wT∇wG

T
∇θGα

−T
∇

2
θK∇θGα

−1
∇wG∆w

s.t. (w +∆w) ⪰ 0,1T (w +∆w) ≤ 1,

where we use γ to facilitate line search. The matrix 1 is a
concatenation of constraints that wx sums to less than one on
each contact point x. After solving for a new w ← w +∆w,
we update θ by projecting it to the Gα(θ,w) = 0 manifold
using the following recursion:

θ ← θ −∇θGα
−1Gα(θ,w). (9)

Note that we have only used the first-order derivatives of
Gα in (8) so the PGM has linear convergence speed at best.
Our second version of PGM differs in that we ignore all
gradients of the function vx, i.e. zeroth-order update for vx.
This requirement is inspired by the recent work [34] where
the contact wrench space is learned from real-world data. In
this case, computing derivatives of vx involves costly back-



propagation through a learning model, e.g. neural networks,
sublevel sets of high-order polynomials [33], or radial basis
functions [34]. Mathematically, the derivatives of vx only
occurs in ∇θGα and we denote its zeroth-order, inexact
variant as:
∇θḠα(θ,w) ≜ ∇θGα(θ,w) +∑

x∈C

∇θX(x, θ)
T
∇θvx(θ)wx.

Using ∇θḠα, we derive the following, inexact counterpart
of QP (Equation 8):

argmin
∆w

−∇θK
T
∇θḠ

−1
α ∇wG∆w + ∥∆w∥2/γ+ (10)

1

2
∆wT∇wG

T
∇θḠ

−T
α ∇

2
θK∇θḠ

−1
α ∇wḠ∆w

s.t. (w +∆w) ⪰ 0,1T (w +∆w) ≤ 1,

and the following, inexact counterpart of manifold projection
(Equation 9):

θ ← θ −∇θḠ
−1
α Gα(θ,w). (11)

The pipeline of both first- and zeroth-order PGM is outlined
in Algorithm 1. We compute all the derivatives analytically
according to [6] for the Newton-Euler’s equation and [25]
for the position-based dynamics.

Algorithm 1 (First- / Zeroth-) Order PGM(α,∆t, θ−, θ−−)

1: w0
← 0, θ0

← θ−, γ
0
← 1, η > 1

2: while ∥Gα(θ0,w0
)∥ ≠ 0 do

3: Compute (9) or (11) (θ = θ0,w = w0)
4: for k = 1,⋯ do
5: Solve (8) or (10) at (θ = θk−1,w = wk−1) for wk

6: θk ← θk−1

7: while ∥Gα(θk,wk)∥ ≠ 0 do
8: Compute (9) or (11) at (θ = θk,w = wk)
9: if K(θk) >K(θk−1

) then
10: γ ← ηγ, θk ← θk−1,wk ← wk−1

11: else
12: γ ← γ/η
13: if ∥θk − θk−1

∥∞ < ε then
14: Return θk,wk

V. CONVERGENCE ANALYSIS

We analyze the convergence of Algorithm 1 in both first-
and zeroth-order cases. PGM cannot proceed if ∇θGα is
rank-deficient and does not have an inverse. In addition, the
manifold projection substeps in PGM can diverge without
using line-search strategies. Finally, the outer-loop of the
zeroth-order PGM can fail to converge by using an inexact
gradient. We take the following three assumptions to show
that first-order PGM and zeroth-order manifold projection
are well-defined and convergent:

A 5.1: X ∈ C∞.
A 5.2: σmin [∫x∈R

ρ
∆t2
∇θX

T∇θXdx] (θ−) ≥ σX > 0.
A 5.3: ∂3vx

∂θ3
∈ C0.

To show that zeroth-order PGM is also convergent, we need
an additional assumption:

A 5.4: ∇wG has full row rank.
Remark 5: A 5.1 and A 5.2 can be satisfied by choosing

appropriate parameterizations of robot joints. When all the
hinge joints are parameterized using Euler angles, then A 5.1
is satsified. A 5.2 requires that the kinetic energy K(θ)

is strictly convex at θ−. In other words, for any infinites-
imal perturbation δθ, there must be some points x ∈ R
undergoing infinitesimal movements δx with non-vanishing
limδθ→0 δx/δθ. This assumption can only be violated when
the robot is suffering from Gimbal lock of Euler angles,
which can be easily resolved by moving the singular point
away from the current configuration.

Remark 6: A 5.3 indicates that NMDP can only han-
dle smooth contact force models. Stiff and penetration-free
contacts between two rigid objects cannot be handled by
our method. However, smooth force models are essential
for gradient-based motion planning and control [31], [21],
[26]. In addition, stiff contacts can be approximated by
smooth contacts. For example, a linearized frictional cone
is a polytope with vertices being vix = n+t

iµ, where n is the
contact normal and ti is a direction on the tangential plane.
We modify this definition to satisfy A 5.3 by setting vix =
d(X(x, θ))3(n + tiµ), where d(X(x, θ)) is the penetration
depth of the contact point x. This force model can be made
arbitrarily stiff by scaling vix with a big constant.

Remark 7: A 5.4 is a major limitation of the zeroth-order
PGM. Note that vx = 0 and thus ∇wG has a zero rank
when a contact point x does not penetrate the environment.
However, once the penetration depth becomes non-zero, then
vx ≠ 0 and ∇wG can have a full row rank. A 5.4 disallows
such jumps in the rank of ∇wG. A simple workaround is
to slightly modify the contact model by allowing small,
non-zero contact forces even when robot is not in contact
with the environment. One method to satisfy A 5.4 is to set
vix = (d(X(x, θ))

3 + ζ)(n+ tiµ), where ζ is a small positive
constant. In our implementation, we ignore A 5.4 and have
never observed divergence behavior due to the violation of
this assumption.
Under the above assumptions, our main results are:

Theorem 5.5 (First-Order PGM Convergence):
Assuming A 5.1, A 5.2, A 5.3, there exists α4 > 0,
such that for all α ≤ α4, the first order Algorithm 1 will
generate a monotonically decreasing sequence of {K(θk)}
where each θk satisfies G(θk,wk) = 0.

Theorem 5.6 (Zeroth-Order PGM Convergence):
Assuming A 5.1, A 5.2, A 5.3, A 5.4, there exists α5 > 0,
such that for all α ≤ α5, the zeroth-order Algorithm 1 will
generate a monotonically decreasing sequence of {K(θk)}
where each θk satisfies G(θk,wk) = 0.
The proofs of these results are deferred to our extended
report [24]. Both results imply that timestep sizes cannot
be arbitrarily large, otherwise PGM can fail to converge. In
addition, the divergence behavior of PGM can only happen in
the manifold projection substep when the norm ∥Gα∥, ∥Ḡα∥
does not decrease after apply Equation 9 or Equation 11,
which is an indicator of the use of smaller timestep sizes.
As a result, we can design a robust articulated body simulator
using adaptive timestep control as illustrated in Algorithm 2.

Algorithm 2 starts by time-integrating using α = 1. If PGM
diverges, we cut the timestep size by half, i.e. setting α = 0.5
and recurse. Note that simulate(α,∆t, θ−, θ−−) implies: 1)
the last timestep size is ∆t, and 2) the desired next time



Fig. 2: The robots’ walking (top) and jumping (bottom) trajectories tracked using the stable PD controller and simulated using our
NMDP solver, where we use ∆t = 0.05 s.

instance is α∆t ahead. If PGM diverges, we slice timestep
size by half and call simulate(α/2,∆t/2, θ−, θ−−) for the first
half. However, further subdivision might happen for the first
half due to recursion, so we return the last timestep size, say
∆t∗. Next, we time integrate the second half. Given that last
timestep size is ∆t∗ and our desired α∗∆t∗ = α∆t/2, we
must have α∗ = (α∆t)/(2∆t∗).

Algorithm 2 simulate(α,∆t, θ−, θ−−)
1: θ,w,Converged←PGM(α,∆t, θ−, θ−−)
2: if Converged then
3: Return α∆t, θ, θ−
4: else
5: ∆t∗, θ∗, θ∗− ← simulate(α/2,∆t, θ−, θ−−)
6: α∗ ← (α∆t)/(2∆t∗)
7: ∆t∗∗, θ∗∗, θ∗∗− ← simulate(α∗,∆t∗, θ∗, θ∗−)
8: Return ∆t∗∗, θ∗∗, θ∗∗−

A. NMDP Working with PBD

Our analysis and formulation assumes the use of Newton-
Euler’s equation. An equivalent form of NMDP can be for-
mulated for the position-based dynamics via a new definition
of K(θ) and Gα as follows:

argmin
θ,w

K(θ) s.t. 0 = Gα(θ,w)

K(θ) ≜∫
x∈R

ρ∥X(x, θ) −X(x, θ−)∥
2

2∆t2
dx

Gα ≜∇θIα(θ) −∑
x∈C

∇θX(x, θ)
T vx(θ)wx − τ,

(12)

and all the convergence analysis applies to Equation 6 and
Equation 12 alike. We refer readers to our extended report
[24] for the proof of Theorem 5.5 and Theorem 5.6.

VI. EVALUATIONS

We evaluate the performance of NMDP variants in chal-
lenging locomotion scenarios. We implement NMDP using
C++ and Eigen [12], where the optimizations can be solved
using both first- and zeroth-order PGM. All the matrix
inversions in manifold projection are solved by a rank-
revealing LU factorization. As long as the factorization
detects that the matrix is near singular (i.e. A 5.2 is violated)
or the norm ∥Gα∥ (∥Ḡα∥ in case of ZOPGM) does not
decrease, we restart PGM with smaller timestep sizes. In
each outer loop of PGM, a QP is solved and the problem
data of these QP are quite similar. We use the parametric QP
solver qpoases [10] that can make use of these similarities
to accelerate computation. We set ε = 10−6, η = 1.5, and
ζ = 10−3.

As illustrated in Figure 2, we conduct experiments on
the Robosimian by having different simulators to track a

prescribed robot walking or jumping trajectory using the
stable PD controller described in Ref. [30]. The stable PD
controller is consistent with the backward-Euler integrator,
which uses θ, θ̇ instead of θ−, θ̇− as the target state to
be tracked. We compare the performance of the following
simulators:
● NE-NMDP/NE-ZONMDP: Newton-Euler NMDP

solved using first-/zeroth-order PGM.
● PBD-NMDP/PBD-ZONMDP: Position-based dynamics

NMDP solved using first-/zeroth-order PGM.
● NE-MDP: Baseline method, performs forward integra-

tion of Newton-Euler’s equation with contact forces
solved using MDP.

Stability Under Large Timestep Sizes: We track a robot
jumping trajectory that uses symmetric poses. Since the
Robosimian’s body shape is also symmetric, the torso in
the tracked trajectory should have zero tilt angles from the
vertical axis, which is our groundtruth. In Figure 3 (a, b),
we plot the torso’s tilt angle predicted by each simulator
under different timestep sizes. NE-MDP is only stable when
∆t ≤ 7 ms and the simulator explodes under larger ∆t.
Even when ∆t ≤ 7 ms, the tilt angle suffers from severe
oscillations. In comparison, NE-NMDP is stable when ∆t
increases from 5 ms to 50 ms and the predicted tilt angle
oscillation is relatively small. We further plot the tilt angle
sequence predicted by the other three variants of NMDP in
Figure 3 (c, d, e), the oscillations are consistently small.
First-order NMDP with ∆t ≤ 50 ms, never experienced any
divergence behaviors so Algorithm 2 is never needed. But
divergence happens in the zero-order case and we observe
larger tilt angle oscillation in Figure 3 (c, e).

Consistent Prediction: The tracked robot jumping tra-
jectory lasts for 10 seconds with 5 repeated jumping be-
haviors. As a result, the expected torso height should be
a periodic function. In Figure 4, we plot the torso height
trajectory predicted using the five methods. With ∆t ≤ 7 ms,
the trajectories generated by NE-MDP are suffering from
relatively large variations. While all four NMDP variants can
consistently predict a periodic function when ∆t increases
from 5 ms to 50 ms. A similar result is observed in the
walking trajectory. As shown in Figure 5, the groundtruth
walking distance is a linear function of time. The trajectories
predicted using NE-MDP exhibit a large variations with
different timestep sizes. The consistency of NE-(ZO)NMDP
are much better and that of PBD-(ZO)NMDP are the best.
Compared with NE-(ZO)NMDP, the additional stability and
consistency of PBD-(ZO)NMDP are presumably due to the
fact that Euclidean space discretization is more accurate



0 2 4 6 8 10
Simulation Time (s)

−0.2

−0.1

0.0

0.1

0.2
To

rs
o 

Ti
lt 

(ra
d)

Δt=0.001
Δt=0.002
Δt=0.003
Δt=0.004
Δt=0.005

(a): NE-MDP (baseline)

0 2 4 6 8 10
Simulation Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o 
Ti

lt 
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(b): NE-NMDP

0 2 4 6 8 10
Simulation Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o 
Ti

lt 
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(c): NE-ZONMDP

0 2 4 6 8 10
Simulation Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o 
Ti

lt 
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(d): PBD-NMDP

0 2 4 6 8 10
Simulation Time (s)

−0.2

−0.1

0.0

0.1

0.2

To
rs

o 
Ti

lt 
(ra

d)

Δt=0.030
Δt=0.035
Δt=0.040
Δt=0.045
Δt=0.050

(e): PBD-ZONMDP

Fig. 3: The torso tilt of the tracked jumping trajectory.
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Fig. 4: The torso height of the tracked jumping trajectory.
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Fig. 5: The distance of the tracked walking trajectory.
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Fig. 6: A performance comparison of different methods. (a): Histogram of instantaneous framerates (1/(wall clock time per frame)), (b):
Histogram of number of outer iterations per frame, (c): Number of outer iterations against timestep size (∆t), (d): Instantaneous adaptive
timestep size (α∆t) chosen by Algorithm 2 plotted against simulation time (t).

TABLE I: Average std. dev. of trajectories between different ∆t

Quantity NE-MDP PBD-NMDP NE-NMDP

Robosmian-Walk-Dist 0.72 0.25 0.10
Robosmian-Jump-Height 0.26 0.01 0.02
Spider-Walk-Dist 0.09 0.09 0.10
Spider-Jump-Height 0.13 0.04 0.05

than that in the configuration space [25]. We summarize the
standard deviation of trajectories simulated using different
∆t in Table I.

Computational Cost: We summarize the computational
performance by collecting and analyzing all the timesteps
in the four trajectories of Figure 2 simulated at ∆t = 50
ms. Figure 6 (a) profiles the instantaneous framerate, of
which MDP is the most efficient involving a single QP solve.
FOPGM does not incur a significant sacrifice in framerate
while ZOPGM is significantly slower. Figure 6 (b) profiles
the number of outer iterations of Algorithm 1 until conver-
gence and Figure 6 (c) plots the average number of outer
iterations against ∆t. These figures show that ZOPGM is
approximately one order of magnitude slower than FOPGM,
but ZOPGM provides the extra convenience that analytic
derivatives of vx(θ) are not needed. Finally, Figure 6 (d)
shows the smallest timestep size chosen by Algorithm 2 for
FOPGM and ZOPGM. At ∆t = 50 ms, PGM is always

convergent. ZOPGM is also convergent, but α∆t needs to
get down to 25 ms during some critical time instances (e.g.
when robot changes contact states).

VII. CONCLUSION & DISCUSSION

We present a backward-Euler time integration scheme for
articulated bodies under generalized contact models. Our
key idea is the representation of contact forces as a convex
combination of vertices of the feasible contact wrench space.
A backward-Euler integration scheme discretizes both the
articulated body dynamics and the vertices of contact wrench
spaces at the next time instance instead of the current one.

Our method has several limitations. First, we assume a
set of known contact points, and our current implementation
does not handle the case where contacts are introduced or
broken within a timestep. Second, our generalized contact
model needs to be differentiable, for which we allow robots
to penetrate the ground. Our method does not apply to
contact models that prevent collisions exactly. Third, a fun-
damental assumption of our convergence analysis is that w
is bounded, so we need to know the maximal contact force
and our method cannot handle infinite Coulomb’s frictional
cones. Finally, our convergence analysis assumes that Gα = 0
which is impossible in practice. In the future, we plan to
analyze the convergence of our method under finite precision.



REFERENCES

[1] M. Anitescu, “A fixed time-step approach for multibody dynamics with
contact and friction,” in Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), vol. 4, 2003, pp. 3725–3731 vol.3.

[2] M. Anitescu, “Optimization-based simulation of nonsmooth rigid
multibody dynamics,” Mathematical Programming, vol. 105, no. 1,
pp. 113–143, 2006.

[3] J. Bender, M. Müller, and M. Macklin, “A Survey on Position Based
Dynamics,” in EG 2017 - Tutorials, A. Bousseau and D. Gutierrez,
Eds. The Eurographics Association, 2017.

[4] G. E. Brown, M. Overby, Z. Forootaninia, and R. Narain,
“Accurate dissipative forces in optimization integrators,” ACM
Trans. Graph., vol. 37, no. 6, Dec. 2018. [Online]. Available:
https://doi.org/10.1145/3272127.3275011

[5] J. C. Butcher and N. Goodwin, Numerical methods for ordinary
differential equations. Wiley Online Library, 2008, vol. 2.

[6] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid
Body Dynamics Algorithms,” in Robotics: Science and Systems (RSS
2018), Pittsburgh, United States, June 2018. [Online]. Available:
https://hal.laas.fr/hal-01790971

[7] E. Drumwright and D. A. Shell, “Modeling contact friction and joint
friction in dynamic robotic simulation using the principle of maximum
dissipation,” in Algorithmic foundations of robotics IX. Springer,
2010, pp. 249–266.

[8] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-
based robotics: Comparison of bullet, havok, mujoco, ode and physx,”
in 2015 IEEE international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 4397–4404.

[9] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[10] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,

“qpoases: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[11] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies
with stacking,” ACM transactions on graphics (TOG), vol. 22, no. 3,
pp. 871–878, 2003.

[12] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[13] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang,
“A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling,” ACM Transactions
on Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[14] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered
projections for frictional contact in multibody systems,” in ACM
SIGGRAPH Asia 2008 papers, 2008, pp. 1–11.

[15] J. Lee, C. K. Liu, F. C. Park, and S. S. Srinivasa, “A linear-
time variational integrator for multibody systems,” in Algorithmic
Foundations of Robotics XII. Springer, 2020, pp. 352–367.

[16] G.-H. Liu, T. Chen, and E. A. Theodorou, “Differential dynamic
programming neural optimizer,” arXiv preprint arXiv:2002.08809,
2020.

[17] R. D. Maladen, Y. Ding, P. B. Umbanhowar, A. Kamor, and D. I.
Goldman, “Biophysically inspired development of a sand-swimming
robot,” in Robotics: Science and Systems. Georgia Institute of
Technology, 2011.

[18] J. Marsden and M. West, “Discrete mechanics and variational integra-
tors,” Act Numerica, vol. 10, no. 5, pp. 357–514, 2001.

[19] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601,
1992.

[20] B. V. Mirtich, Impulse-based dynamic simulation of rigid body sys-
tems. University of California, Berkeley, 1996.

[21] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.
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