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Abstract— We present a planner for large-scale (un)labeled
object sorting tasks, which uses two types of manipulation
actions: overhead grasping and planar pushing. The grasping
action offers completeness guarantee under mild assumptions,
and the planar pushing is an acceleration strategy that moves
multiple objects at once. We make two main contributions:
(1) We propose a bilevel planning algorithm. Our high-level
planner makes efficient, near-optimal choices between pushing
and grasping actions based on a cost model. Our low-level
planner computes one-step greedy pushing or grasping actions.
(2) We propose a novel low-level push planner that can find
one-step greedy pushing actions in a semi-discrete search space.
The structure of the search space allows us to efficiently make
decisions. We show that, for sorting up to 200 objects, our
planner can find near-optimal actions within 10 seconds of
computation on a desktop PC.

I. INTRODUCTION

Countless object sorting machines have been designed
over the past century. The robustness of these machines
are high enough to be used as a part of a manufacturing
process. Early systems use pure mechanical gadgets to force
objects into separate buckets according to their shapes [10],
[15]. In addition to their robustness, the efficacy of these
mechanical systems are rather high, allowing multiple objects
to be sorted in parallel. But warehouse automation and
service robotics require sorting objects according to visual
features, such as the printed address on a package or object
color. The vast majority of modern sorting robots [21], [22]
solely rely on grasping actions and treat multiple objects in
a serial manner. This design choice is largely due to the
robustness of grasping to uncertainties in perception and
execution. However, serial object grasping does not even
reach a fraction of the throughput of purely mechanical
gadgets and does not meet the requirements of real world
applications, e.g., sorting and delivering billions of objects
from amazon fulfillment center per year.

Using planar pushing is a promising direction to achieve
more efficient sorting, because many objects can be moved
at once [6], [18]. However, planning for pushing is far
more complex than for grasping for three reasons. First, the
action space of planar pushing is continuous, involving the
pusher’s initial orientation and the pushing direction, while
the action space of overhead grasping is (relatively) discrete.
Second, the dynamics of pushing are complex and uncertain,
even in the single-object case, since the continuous pressure
force distribution between the object and the ground is
unknown [7]. Third, although Akella and Mason [1] showed
that a single object can be pushed to an arbitrary pose, this
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Fig. 1: (a): An illustration of our problem setting. The goal is for
the red and blue objects to fall into the 1st and 2nd target region.
Our robot is mounted with a suction cup and a pusher (collocated).
(b): The objects are sorted with 3 pushing and 1 grasping actions.

has not yet been proven for multi-object pushing. Recent
learning-based methods [6], [18], [23] reformulate an object
sorting problem as an optimization problem by defining a
cost model and using stochastic search to reduce the cost.

Our main contribution is a bilevel motion planner that can
efficiently make decisions in joint push-grasp action space.
The efficacy of our method is due to two novel techniques.
(1) We decompose the responsibility between the high-
and low-level planners, such that the low-level planner can
efficiently determine one-step greedy grasping or pushing
actions and the high-level planner makes binary choices
between grasping and pushing actions over multiple steps.
Since the high-level planner only considers greedy actions,
the branching factor is significantly reduced and searching
over multiple steps becomes practical. (2) We make mild
assumptions in the low-level push planner, so that finding
the optimal pushing action becomes a numerical optimization
with piecewise quadratic objective functions. The optimal
pushing action can be found via quadratic-piece enumeration,
and the brute-force global optimization is avoided.

Compared with learning-based methods [6], [18], [23],
we can provide completeness guarantee with the help of
the grasp action under mild assumptions that feasibility is
not violated by non-prehensile manipulations. (As indicated
in [20], non-prehensile manipulations can move objects into
unreachable regions of the robot arm, making problem infea-
sible.) Our method is solely analytical and does not require
learning from data. We evaluated our synergetic planner on
both labeled and unlabeled tasks of sorting 50-200 objects.
The results show that our method can benefit from pushing
actions to achieve up to 10x speedup in terms of execution
time, as compared with our method using grasping actions
alone. Moreover, the computational time to solve for the next
action is within 10s on a desktop PC.

II. RELATED WORK

Multi-object Manipulation allows the robot to move mul-
tiple objects simultaneously in order to accomplish a task.
Typical tasks involve object sorting [6], [18], clutter removal



[20], [19], object placement [3], and object singulation [23],
[8]. We notice two common design choices in these methods.
First, all these methods are restricted to 2D workspaces
by assuming that the gripper always reaches objects from
overhead. Our method also uses this simplification. Second,
most of the proposed methods use a single action, either
grasping or pushing. An exception is made in [23], where
objects are singulated by pushing actions and then grasped,
which is similar to our planner. But the pushing action
in [23] is used as a grasping auxiliary, and objects are
always transferred to target locations using grasping actions,
while we allow objects to be transferred by both pushing
and grasping. As another difference, our method is analytic
whereas all prior works [19], [23] are data-driven.

Grasp Planning is relatively simple in our problem as
we assume the use of a suction cup. Most prior works
assume more dexterous grippers such as the parallel jaw
grippers [11] and multi-fingered grippers [13]. The parallel
jaw gripper is available at a low cost and thus assumed in
multi-object manipulation planners, e.g. [23], [8], but the
gripper feasibility can pose a major problem when objects
are densely cluttered. In their most recent work, Mahler
[12] used both a parallel jaw gripper and a suction cup
mounted on two arms. They argued that the suction cup
might fail on certain materials such as hairy deformable
objects and objects made of porous media. In applications
like warehouse automation, however, this problem can be
avoided by packing objects into boxes.

Push Planning is a well-studied problem if there is a
single object. Prior work [4] showed that the object motion
under pushing can be approximated quasistatically by model-
ing the limiting surface of contact wrenches. The feasibility
of posing a single object using pushing actions has been
proved in [1]. Another proof is presented in [24] by showing
that planar pushing is differentially flat. However, the object
dynamics, motion planning algorithm, and feasibility when
pushing multiple objects are still open problems. We propose
an aggressively simplified multi-object prediction model. We
show that this model allows an efficient computation of
the one-step greedy pushing action, while the approximation
error is acceptable for accelerating object sorting tasks.

III. OBJECT SORTING PROBLEM

In this section, we formulate large-scale (un)labeled object
sorting tasks. We assume that there are N planar objects
with center-of-mass at 0y ... ;. The planar assumption is used
by our low-level grasp planner to enable overhead grasping
using suction cups. It is also used by the push planner to
analyze object configurations in the 2D projected workspace.
These objects are divided into C' categories and each object
is assigned a category label I; € {1,---,C'}. Our problem
definition unifies unlabeled object sorting when C' = 1 and
fully labeled object sorting when C' = N.

We further assume that there are 7', pairwise disjoint
virtual target regions, where each region is represented as a
convex polygon. These regions are virtual and not marked by
any physical objects, so that objects will not be blocked when

pushed. The convexity of regions is also required by the push
planner to predict the result of a potential pushing action. In
addition, the regions must be disjoint for the completeness
of one-step grasping actions. We denote the closed convex
set of the jth target region as t;. Each t; has a capacity for
each object category, denoted as ci...c(t;). The goal of an
object sorting task is to move all o; such that the following
two conditions hold:

T
YIfoiet;]=1 Vi=1, N €h)
j=1
Ylfoiet;] <ce(ty) Vi=1,T k=1,-C, (2
li=k
where I[e] is the indicator function. The first equation
implies that each object must fall inside one of the target
regions. The second equation implies that, in a certain region,
the number of objects of a certain category does not exceed
the capacity of that region for that category.

A. 3D Workspace

We conduct experiments in a 3D workspace as shown in
Figure 1, but our planner performs all the computations in
the projected 2D workspace. The 2D-to-3D gap is closed by
using a reachability analysis of the gripper. We precompute
the inverse kinematics for each uniformly sampled planar
position, and approximate the inverse kinematics in between
samples using bilinear interpolation. The neighboring sam-
ples are connected such that a planar trajectory can be
globally resolved using the algorithm proposed in [5], which
is important for realizing a pushing action. Our planner will
use this reachability map in three ways:

« Function reach(x) checks whether x can be reached.

« Function traj(x,y) finds a trajectory from x to y.

« Function range(x, d) returns a pair of distances (a,b)
that defines the maximal resolvable push from x along
d, i.e. a push from x + ad to x + bd is the longest,
globally resolvable push (a,b can be negative).

B. Overview

Finding reasonable pushing or grasping actions is chal-
lenging due to a continuous decision space and a long
planning horizon. Although the decision space for grasping
actions is discrete, push planner must search over a contin-
uous space of the pusher’s position, orientation, and moving
distance. If the continuous space is exhaustively discretized,
then the branching factor can be prohibitively high.

As illustrated in Figure 2, we combine two ideas to design
a practical bilevel planning algorithm. First, we introduce
two cost functions: object cost, or cost for short, and robot
transit cost. The object cost measures the closeness between
an arbitrary configuration and a final, sorted configuration.
The transit cost is the traversal distance by the end-effector to
accomplish an action. Our low-level planner minimizes the
object cost, while the high-level planner also considers the
transit cost. Second, we significantly reduce the branching
factor by only considering one-step greedy actions. In other
words, our high-level planner only chooses the type of
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Fig. 2: We illustrate a problem with C =1, N = 14. (a): Given the object-to-region assignment, the greedy grasping action is illustrated
as the red arrow. (b): A greedy pushing action would lead to larger reduction in the cost and thus chosen as the first action. The second
action could be (c1) or (c2) and our high-level planner would choose (c1) over (c2), since (c1) induces a lower transit cost (red arrow).

actions (grasping or pushing), while we use two low-level
planners to ensure that the chosen action leads to the highest
reduction in object cost among all actions of the same type.

Intuitively, our cost function J sums over the distances
between objects and target regions. This cost is zero if and
only if sorting is successful. Among all possible object-to-
target-region pairings, we choose the one with lowest cost
value, which amounts to the following optimization:

J(0;) = min ZZb”dlst(Ow i)

bije{0,1} = 1]
3
s.t. Z bz‘j =1 Z bij < Ck(tj)’
J=1 li=k

where dist is the Euclidean distance between a point and a
convex polygon. Computing J amounts to solving an optimal
assignment problem, for which the Hungarian algorithm can
be used at a computational cost of O(N?), by introducing
dummy variables to absorb the capacity constraints. Ob-
viously, J(o;) = 0 if and only if the two conditions in
Equation 1,2 hold, but the function J allows us to monitor
the progress and compare different planning algorithms.

In the rest of the paper, we first introduce the low-level
grasp planner (Section IV) and the push (Section V) planner.
We then introduce a single high-level planner (Section VI)
that chooses greedy actions over multiple steps in a receding-
horizon manner as outlined in Algorithm 1. The complete-
ness guarantees are provided in our extended report [16] .

IV. Low-LEVEL GRASP PLANNER

We present a grasp planner that finds a single grasp action
to minimize the cost function. This planner provides a fail-
safe feasibility guarantee for any sorting problem under the
mild assumption that all objects are reachable. We show such
grasp actions can be found via a small-scale mixed-integer
linear program (MILP), which can be solved within a couple
hundreds of milliseconds. We first define the radius of an
object. If we compute a bounding circle for the ith object
centered at o; with radius r;, then we define R = . }?%XN ;.
We sample a set of potential positions p,,,, to put the ;grésped
object, and we assume uniform sampling with a spacing
equals to \/§R, i.e. Pmn = (\/§Rm, \/iRn) To find the
one-step greedy grasping action that reduces the cost as much
as possible, we introduce binary variables b;; as in the cost
model, where b;; = 1 implies that o; is not the object to be
grasped and it is assigned to t;. We further introduce another
set of binary variables p,,,; for each p,,, and j=1,...,T,
where p,,,; = 1 implies that an object will be grasped and

put to the sampled location p,,,, and this grasped object will
be assigned to t;. After solving for bij, Pmnj» We can identify
the object o; to be grasped if ¥ j=1bij =0 and we will move
it t0 Pmn; if Pmn; = 1. Finally, we compute the gripper
trajectory by calling traj(o;, pmy, ). We solve for bi;, Dyn;j
using the following MILP:
argmin O
bij,Pmnj€{0,1}
s.t. Jpost < J(Oi)
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where Jpost is the post-grasping cost. We have used three
types of constraints. First, we ensure that the cost is mono-
tonically reduced. Second, we ensure that only one object
will be grasped and the object will be put to only one
sampled location. Finally, we have the assignment constraints
(each object can only be assigned to one target region)
and capacity constraints (the multiplication with indicator
function can be relaxed as mixed integer linear constraints).
The objective function O can take multiple forms. If we want
to reduce the total cost as much as possible, then O = Jp,0s¢,
and we denote the resulting grasping action as G(0;, Pmn)-
In this case, the function grasp(STATE) in Alg. 1 returns
{G(0;,Pmn)} and contributes 1 to the branching factor. If
we want to reduce the cost related to a single target region,
e.g. t;, then we can define:

N
0= Zbi]‘dist(oi,t]’) + menjdist(pmn,tj),
=1 mn

and denote the resulting grasping action as G;(0;, Pmy). In
this case, grasp(STATE) returns {G1,---,Gr} and contributes
T to the branching factor. Finally, we show in our extended
report [16] that J.,s; can be monotonically reduced to zero
under mild assumptions, which is a completeness guarantee.

V. Low-LEVEL PUSH PLANNER

Although grasp actions are easy to find, they only move
objects sequentially. In this section, we present our push
planners that potentially accelerate sorting by moving multi-
ple objects at once. A push planner is challenging to design
as we are making decisions in a continuous action space
that involves the pusher’s location, pushing direction, and
pushing distance. Indeed, even predicting the single object



Algorithm 1 High-Level Planner

Input: Initial state STATE « {o;}, max horizon H
1: Initialize stack STACK <« {STATE}
2: Best action ACTION™ « None, J, ;. < 00
3: while STACK not empty do

4 STATE < pop(STACK)

5: {ACTION} « grasp(STATE) u push(STATE)
6. for ACTION ¢ {ACTION} do

7: STATE" = simulate(STATE, ACTION)

8: if horizon(STATE") < H then

9 STACK < STACK U {STATE"}

10: else if J,qte (STATE") < J)',;. then

11: ACTION™ « backTrace(STATE")

12: T2 ose < Jrate(STATE®)

13: Return ACTION™

motion during pushing is non-trivial [7]. To analyze multi-
object motions, our method is based on the following two
assumptions similar to [19]: 1) The pusher is rectangle and
pushing direction is orthogonal; 2) Objects will only translate
along pushing direction. We illustrate some key notions in
Figure 3(a). We assume that the pusher can only move in
one of D directions. For each pushing direction d, we define
the affected region (gray) as the region formed by sweeping
the pusher along d. Any object that falls entirely inside this
region (blue) will be considered affected. There are boundary
cases when objects fall partially in this region (red). We
assume that objects of boundary cases will not be affected by
the pushing action. Our push planner consists of two steps.
First, we show that there are only discrete number of possible
pusher locations that can be enumerated. For each pusher’s
location, we then compute the optimal pushing distance d.

Voronoi Region II  Voronoi Region III

@ (b)
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post
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Target Region

Fig. 3: (a): We illustrated the pusher (dark gray), pushing direction
(arrow), the affected region (light gray), and the boundary case
(red objects). (b): We illustrate the cost function J(0;) of each
object being pushed. J(o;) is piecewise quadratic, where the
quadratic pieces are dictated by the Voronoi regions of the target
area ( ,./;,’(’,Ht,.] post). The compression distance is the sum of
three short segments (black line segments d;q,ib,ic.)

A. Locating the Pusher

For a pushing direction d, its orthogonal direction is
denoted as d*. A pusher’s location is expressed as ad+5d*.
We compute the two coefficients «, 3 by sorting objects’
locations along d and d*. Since we assume that an object
0; is a convex polygon, we can define its vertices as

1 ... V(o)

vy, v, ", where V(0;) is the number of vertices in o;.

We then define the four supports of o; along d and d* as:

min(i) = i da ']LC max(i) = da f

Cmin() =, iR ALV Omasy = max {dvi)
. k k

Brin(y = ,_min  {d", i) Brae = max (d",vi).

Similarly, the pusher is rectangular so it spans two ranges:

[amin(p)aamaa:(p)] along d and [/Bmin(p)aﬁmar(p)] along
d*. We then record all § values satisfying:

5 + ﬁmin(p) = ﬁmzn(z) 4 5 + ﬂmin(p) = ﬁmaz(i)v

ﬂ + ﬁmaz(p) = ﬁmzn(z) 4 ﬂ + ﬁmaz(p) = ﬁmaz(i)a
for some ¢ and we sort these key [ values in ascending order
denoted as 31 < 35 < -+ < B4n, Where there are at most 4V
cases. When the pusher moves between f3,, and /3,1 along
d*, the set of affected objects is invariant and denoted as:
‘A; = {01|ﬂn + Bmin(p) < Bmin(i) < Bmaz(i) < Bn+1 + /B'nLa,x(p)}A

We repeat this procedure along d to define the 4N key
values a1 < ag < -+ < ayp, and the set of affected objects:

-Am = {Oilam + Qmaz(p) < amln(z)}

Note that the definition of A,, is different from .A;; in that
we only consider objects in front of the pusher, as illustrated
in Figure 3 (a). Finally, we define an additional set of objects
overlapping the pusher as Z,,,, which is computed via
collision checking. In summary, a possible pusher location
ad + Bd* must satisfy the following conditions:

a € [a’nu Oém-%—l] 5 € [6na/8n+1:|
AmﬁAtig Inm:®7
where there are at most 16 N2 choices. To further reduce

the computational cost, we only retain one nominal pusher
position within each valid «, 8 range.

Algorithm 2 Computing the compression distance d;

1: Jz < Qmin(i) — ¥~ Qmaz(p)

2: for Each vertices v¥, k=1,-,V (0;) do
3 Shoot a ray from v¥ along —d, record first intersection.
4 if Ray intersects object o; after traveling d¥ then

5: if oj € Ann Ay then

6: d; < min(d;,d? +d;) > Recursion
7: Return d;

B. Finding the Optimal Pushing Distance

For a given pair of «a € [ayn, ms1] and B € [Bn, Bns1]s
we plan the optimal pusher distance that reduces J(o;) the
most. We first solve Equation 3 to find b;; = 1, i.e. an affected
object o; is assigned to the target region t;. If we move the
pusher by distance d, then we need to compute the following
post-pushing cost function:

J! st (d) = dist(0;(d), t).
If J;ost(d) can be expressed analytically, then we can find
the optimal pushing distance by solving:

d* = argmin O
d

st Y

0;e A, NAL
d € range(ad + 3d*,d),

Tt st (d) < J(0;) (5)



where we have added a constraint to ensure monotonic
cost reduction. Similar to the case with grasping actions,
the objective function O can take multiple forms. If we
want to reduce the overall cost function, we can set O =
YoiedmnAL Ost(d) and denote the resulting pushing action
as P(d, a7ﬁ7 d ). In this case, push(STATE) in Algorithm 1
returns {P} and contributes to the 1 branching factor. If we
want to reduce the cost related to a single target region,
e.g. t;, we can set O = ¥, ca,ndsnb,-17, ost(d) and
denote the resulting pushing action as ’Pj(d,a,ﬁ,d*).
this case push(STATE) in Algorithm 1 returns {Py,---, P}
and contributes 7" to the branching factor.

Algorithm 3 Push planner

1: Solution < o, 8*,d* >« None, best O «+ oo
2: Compute all possible ranges {[@m,am+1]} and {[Bn, Bn+1]}
3: for Each [m, @m+1] € {[@m, @m+1]} do

4 for Each [B,, Bn+1] € {[Bn, Br+1]} do

5 O(d)=0 > Build objective
6: for i=1,---,N do

7: > Only consider objects in affected region

8: > Only consider objects in front of pusher

9: if ¢ € affected([m, @m+1], [Bn, Bn+1]) then

10: Compression distance d; (Algorithm 2)

1: O(d) + O(d) + Jhour(d)

12: Solve Equation 5 for O, d* > Minimize objective
13: if O < O then

14: < Oé*,ﬁ*,d* Se< C¥m+;¥m+l7 ﬁmygm+l 7dJr >

15: O* « OF

16: Return < o, 8%, d* >

To solve for the global minima of the above 1D optimiza-
tions analytically, we show that each J! _,(d) is piecewise
quadratic and so is their summation. As a result, the 1D
optimization can be solved by enumerating and finding the
global minima of each quadratic piece. The first quadratic
plece is denoted as the void piece with length d;, ie.

Tpost(d) = post(O) if 0 < d < d;. The length d; is denoted
as the compression distance, i.e. the minimal distance that
we have to move the pusher in order to touch the object. In
the illustrative example of Figure 3(b), we have d; = d;, +
dip + d;c. d; can be computed analytically by the recursive
raycasting Algorithm 2. If the pushing distance is larger than
d;, then the distance dist(o;(d),t;) will change according
to the Voronoi region of t; that o; belongs to [14]. Within
each Voronoi region, dist(o;(d),t;) is a quadratic function
of d. In the planar case, there are only two types of Voronoi
regions, corresponding to vertex and edge, respectively. In
the example of Figure 3(b), we illustrate three quadratic
pieces with J2 posts ;O'St corresponding to edge regions and
J lost to a vertex region. The dividing points between regions
can be determined by computing the intersections between
Voronoi region boundaries and the object’s moving path.

We summarize our push planner Algorithm 3 by estimat-
ing the computational complexity. For each pushing direc-
tion, our planner first enumerates possible pusher locations,
where there are at most 16N? cases. For each case, there
are at most N objects in the affected set. Each object
contributes a piecewise quadratic cost model, with at most

1+ 24n?axT V(t;) pieces, where V (t;) is the number of
3=1,-,

vertices of t;. After summing up Jéost to get Jpoq, it
has at most N (1 + 2 max V(t;)) pieces. If we assume
g=1,,

solving for each quadratic piece takes constant time, then
our algorithm has the following complexity: O(16 DN3(1 +
2 max V(t;))). Note that the complexity in practice is

much lower than this upper bound because many pusher
locations are colliding with objects and thus pruned.

VI. HIGH-LEVEL RECEDING-HORIZON PLANNER

We can perform synergetic planning using low-level plan-
ners alone, by first computing the one-step greedy actions,
G, P, and then picking the action with larger cost reduction.
But this strategy has two drawbacks. First, our push planner
is based on a simplified kinematic model, which might
suffer from a high approximation error. Second, our cost
model in the low-level planner does not take transit cost into
consideration, which can slow down the overall efficacy [9].

Our high-level planning Algorithm 1 mitigates these two
drawbacks. First, we use Box2D [2] to simulate P and
compute a more accurate cost reduction by solving Equa-
tion 3 before and after each simulation. Second, our high-
level planner considers the transit cost Jiqnsi+ and seeks to
maximize the following modified cost function:

Jrate = (J(Oz) - Jpost)/Jtransit7 (6)
i.e. the rate of cost reduction per unit end-effector movement
of the gripper. To effectively reduce J,4¢e, Wwe have to expand
the decision space. We observe that, when using low-level
planners alone, the gripper will suffer from unnecessary
transits by jumping between target regions (i.e. grasping an
object to t;, pushing another object to ¢;, and then grasping a
third object to ¢; again). To avoid this artifact, we choose to
not use the overall greedy actions G, P, but use the actions
focused on a single target region, i.e. G;,P;. In other words,
we allow the gripper to reduce the cost of one target region as
much as possible, before transiting to another target region.
In addition, our high-level planner seeks to reduce Equation 6
over multiple steps via an action-tree search. Whenever a
push action is used in a tree node, then the state after the
push is predicted using Box2D [2] (Line 7 of Algorithm 1).
The branching factor of this search is 27, as we choose one
action from the set G ... 7, P1... 7. We can further reduce the
branching factor by half if we choose between grasping or
pushing actions greedily for each target region, which does
not degrade the overall performance empirically.

VII. EVALUATIONS

We implement our method using mixed Python/C++,
where we use C++ to perform multi-threaded distance com-
putations as in Figure 3. All the experiments are conducted
on a desktop machine with a 10 core Intel(R) Xeon(R) W-
2155 CPU. We evaluate our method in a simulated environ-
ment with a STAUBLI 6-axis Industrial robotic Arm TX90 as
well as the bimanual hardware platform in Figure 4 equipped
with a 20cm-long pushing bar and a Robotiq vacuum gripper.
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Fig. 4: We show several frames of hardware execution with 2 object categories (red and blue).

The simulation is performed using ODE [17] where the
control signals are provided by a PID controller. Our goal
is to push N = 50 — 200 cubical bricks (5 x 5 x 5em?) to
T =1 -4 target regions (100 x 50cm?).
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Fig. 5: We show the speedup/number-of-actions/transit-cost
with/without pushing actions, plotted against the number of
objects. Top Row: T' =2, C =1, ¢o(t;) = N/2; Bottom Row:
T=2C=N.

Speedup Using Pushing Actions: In Figure 5, we show
the speedup using grasping+pushing actions, as compared
with grasping actions alone. We use two settings: unlabeled
(C =1) and fully labeled categories (C' = N). When C' =1,
the robot is mostly using pushing actions, and the pushing
action could provide 6 — 15x speedup in terms of number of
actions and 3—10x speedup in terms of the transit cost. When
C = N, the robot is forced to use more grasping actions due
to the fixed assignment, and the pushing actions could only
provide 1.4 — 3.1x speedup in terms of number of actions
and 1.6 — 4.2x speedup in terms of the transit cost. In each
test case, the initial object poses are sampled randomly.

Speedup Using The High-Level Planner: In Figure 6, we
show the speedup with/without using the high-level planner.
We randomly generate 10 sorting tasks with parameters
sampled uniformly in range: 50 < N < 200, 2 < T < 4,
C =2, co(t;) =0.8N/2, ¢1(t;) = 0.2N /2. We observe that
the high-level planner does not help reducing the number of
actions except in one task. However, the high-level planner
does reduce the transit cost in most cases, achieving up to 2x
speedup. Using H = 3 increases the computational time of
each decision making by 8s as compared with H = 1. We
observe that further increasing H was not worth the extra
computational time.

Brute-Force Push Planner: We design a simple push

Problem Instance - #Actions Problem Instance - Transit

. H=3 351 mmm H=3
H=1

H=1
220
e
s
10
5
. . . . s 0 .
2 4 6 8 10 2 4 6 8 10

Problem Instance

30

#Actions
2 oR NN
o & o

w

o

Problem Instance

Fig. 6: On 10 randomly generated sorting tasks, we show the
speedup/number-of-actions/transit-cost with/without high-
level planner. (H is the high-level planning horizon, and
H =1 means no high-level planner is used)

planner by sampling a grid of points with spacing R and
then connect each points with its 8 neighbors, resulting in
a set of edges each representing a candidate pushing action.
We test each pushing action using Box2D and pick the one
that minimizes the cost. Altogether, there are 2500 candidate
pushing actions that fall inside the reachable set. The two
methods return pushing actions of comparable quality, but
our method uses 1.5s to find a greedy pushing action, while
the brute-force method takes 37s on average.

VIII. CONCLUSION & LIMITATIONS

We propose a synergetic push-grasp planner for large-scale
object sorting tasks. Our planner uses the grasping action to
ensure feasibility of the task, and we use pushing actions
to accelerate the execution. We show that one-step greedy
grasping actions can be found by solving MILP, and with
the help of a simplified kinematic model, one-step greedy
pushing actions can be found by analyzing and enumerating
pusher configurations. Finally, we take the transit cost into
consideration using a high-level planner to perform multi-
step action selection. As a major limitation, our method
assumes perfect sensing and requires the exact knowledge
of object configurations. In practice, objects can be occluded
and thus cannot be localized exactly, in which case the
two low-level planner should be modified to account for
uncertainties. Furthermore, our simplified kinematic model
is similar to [19], which assumes that characteristic length
of each object is much smaller than that of the pusher or
the target region size. If larger objects are sorted, our as-
sumptions on object motions during pushing will be violated.
Finally, although we have shown that grasping actions are
feasible for object sorting, the pushing actions can violate
this guarantee. This is because objects might be pushed too
far away and they leave the reachable set of the gripper. In
practice, a hardware-side or software-side safety mechanism
can be implemented to ensure reachability.
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