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Abstract— UV radiation has been used as a disinfection
strategy to deactivate a wide range of pathogens, but existing
irradiation strategies do not ensure sufficient exposure of all
environmental surfaces and/or require long disinfection times.
We present a near-optimal coverage planner for mobile UV dis-
infection robots. The formulation optimizes the irradiation time
efficiency, while ensuring that a sufficient dosage of radiation
is received by each surface. The trajectory and dosage plan
are optimized taking collision and light occlusion constraints
into account. We propose a two-stage scheme to approximate
the solution of the induced NP-hard optimization, and, for
efficiency, perform key irradiance and occlusion calculations
on a GPU. Empirical results show that our technique achieves
more coverage for the same exposure time as strategies for
existing UV robots, can be used to compare UV robot designs,
and produces near-optimal plans.

I. INTRODUCTION

The COVID-19 pandemic has encouraged worldwide in-
novation in methods for reducing the risk of disease trans-
mission in hospitals, public transportation and other public
spaces. One promising technology is ultraviolet (UV) disin-
fection of surfaces, which has strong antimicrobial properties
particularly in the UVC (200 nm to 280 nm) spectrum. UVC
has long been known to deactivate a wide range of pathogens,
such as coronaviruses [4, 21], bacteria and protozoans [22].
Existing UV delivery approaches include air and water
disinfection systems used in filtration and waste processing
plants [21], surface disinfection systems in the form of wands
[29], overhead lights, pushcarts, and mobile robots carrying
high-power UVC lamps [31]. Hospital testing [1] has shown
that a combination of standard manual cleaning followed
by UVC surface irradiation is more effective than manual
cleaning alone in disinfecting environments.

Dosing is an important factor in effective use of UVC.
However, although some UV disinfection robots also feature
sensors that measure reflected radiant energy as an approxi-
mation of surface dosage, existing methods fail to disinfect
certain parts of the environment [27]. Two pitfalls are noted.
The radiant fluence received by a surface is affected by
the inverse square law, so fluence drops quickly as distance
increases. Second, occlusions also affect the delivery of
light into shaded regions. These effects are illustrated in
Figure 1, which shows a simulation of the irradiation of
a hospital infirmary by a static UV tower, showing sub-
standard disinfection of bedsides and occluded equipment.
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Fig. 1: Comparison of a standard stationary mobile robot (left)
against an optimized motion (right). Robot carries a tower light.
Surfaces are color coded by UV fluence received, with red indi-
cating 0J/m? and green indicating 280 J/m? or higher. A stationary
light cannot to disinfect much of the environment after 30 minutes,
while a mobile robot following our optimally computed trajectory
(in orange) achieves near complete coverage. (Best seen in color)

We present a method for planning optimal trajectories of
a mobile UV disinfection robot with dosing constraints. Our
optimization can be configured to prioritize coverage of high-
touch surfaces under a fixed time budget, or to guarantee
the eventual full disinfection of all reachable surfaces. The
robot’s movement must be collision-free while conforming
to the dosing constraints. We solve the problem by building
a probabilistic roadmap in the robot’s configuration space,
and then finding a tour of a subset of configurations that op-
timizes the dose. The coverage problem on the roadmap can
be cast as an NP-hard Mixed-Integer Linear Programming
(MILP), but we propose an approximate two-stage solver
that uses a Linear Program (LP) to find dwell times followed
by a Traveling Salesman Problem (TSP) to find the tour.
Experiments show that our solver is orders of magnitude
faster than MILP with a loss of less than 3% of optimality.
Moreover, dosage planning requires determination of an
irradiance matrix that considers visibility and exposure of
every surface patch from each candidate UV light pose, and
we propose an approach that efficiently calculates this large
matrix using a Graphics Processing Unit (GPU).

II. RELATED WORK

Motion planning for UV disinfection bears a resemblance
to two well-studied problems: coverage and inspection plan-
ning. The goal of coverage planning [8, 12, 15, 32] is for
every point in the freespace to be covered by the robot, while
the goal of inspection planning [5, 6, 7, 13, 20] is for every
point on an object surface to be visible from some point
on the robot trajectory. The disinfection planning problem
introduced in this paper adds an additional layer of com-
plexity to inspection planning, where every point in an object
surface must receive a certain amount of irradiance exposure.
This scenario induces a joint problem of robot trajectory



planning and disinfection time assignment. Compared with
standard coverage and inspection planning, UV disinfection
is applied routinely in healthcare facilities, public spaces,
and food industries, and can take tens of minutes to ensure
enough dosage. Therefore, achieving (near) optimality in
reducing the disinfection time in known environments, which
is the focus of this paper, is more important than adapting
to unknown environments or online re-planning as done in
Refs. [15, 20].

Besides robotics, UV disinfection planning can be under-
stood as an effort to model and control light transport. In
this aspect, there is overlap with similar efforts in the field
of radiation dosage planning [2, 14, 26, 33], rendering of
Lambertian surfaces using boundary element method [10,
24, 25, 34] (otherwise known as radiosity), and optimization
of light placements [35, 37]. The radiation dosage planning
problem has the same goal as our problem, ensuring the de-
livery of sufficient amount of dosage to target volumes with
the additional goal of reducing collateral radiation damage.
This field, however, neglects motion planning aspects of the
problem and mostly resorts to heuristics to derive its dosage
plans due to the difficulty in obtaining accurate 3D organ
data online. Radiosity is used to only model light trans-
portation, reflection, and absorption. Of particular interest
is GPU-accelerated radiosity [10] where the occlusion map
is computed using GPU rasterization. A similar technique is
used in this work, while indirect light reflections are ignored
by our method as their contributions are assumed neglectable.
Other works on lighting optimization for urban design or
scientific data visualization [35, 37] also consider moving
light sources, but these lights are fixed after the design phase.

III. UV DISINFECTION TRAJECTORY PLANNING

Here we formalize the path planning problem for UV
disinfection as a continuous, infinite-dimensional trajectory
optimization problem, and then as a discrete approximation.

A. Continuous Formulation

Let E c R3 be the boundary of the environment, which is
the surface to be disinfected. The disinfection is performed
using a mobile robot equipped with a UV light, where C is
the robot’s configuration space and Cy,. is the freespace.
When the robot assumes any collision-free configuration
2 € Cyree, each infinitesimal surface patch ds € E will
receive a certain amount of radiative fluence per second.
We model the radiative fluence distribution using a Poynting
vector function I(z,ds), such that the infinitesimal surface
patch ds receives the following irradiance:

T4s(z) = (I(x,ds),n(s)), (D
where ds is the infinitesimal surface patch with outward
normal n(s) and (e,e) is the inner product. Note that
I(x,ds) already encodes the effects of light mirror reflections
and occlusions by the environment. For instance, in the
case where there are full occlusions before reaching ds,
this vector is zero. We denote 7(t) : R = Cyree as the
trajectory in the robot configuration space parameterized in
time ¢ € [0,Tfinq]. The radiant fluence (also known as

radiant exposure) of an infinitesimal surface patch ds from
a trajectory 7, denoted by 4, is described by:

Tfinal
pas(r) = [ Las(r () @)
We define the minimum-time, continuous path planning
problem for UV disinfection as:
argmin T'yipq;
Trinal,T

s.t. ,uds(T) 2 Umin(ds) Vds
T(t) € (Cf'ree 3)
vt e [0, Tfinal] 7(t) = f(r,7u)
[u(®)] < vumax
where f(7,7,u) encodes the robot dynamics , u(t) is the
control signal, Uy, is the control limits and fip,;, (ds) is
the minimum disinfection fluence (dose) prescribed to the
surface. The prescribed dose can be surface-dependent (e.g.,
to deliver more radiation to high-touch surfaces), but we set
a constant fi,,,;, for notational simplicity. Eq. 3 is intractable
due to the infinite number of constraints and the integral in
Equation 2.

B. Discrete Formulation

Next, we formulate a discrete counterpart of (3). The
surface [E is discretized using a simplicial complex with
N triangles, {s;|¢ = 1,---,N}. The robot can only take
a discrete set of K configurations {x1,-,2x} C Cjree.
Each configuration xj, is called a vantage configuration. To
simplify total irradiance calculations, we assume that the
light source stops at each configuration x, in its trajectory for
some dwelling time, denoted as ¢, > 0, and emits no radiation
during the transition between vantage configurations. Let t
be the vector of K dwell times. We then discretize (1) and
(2) as:

Ii(xy) = f (I, ds),n(s))ds, @

K
p,i(t) = Z Ii(:ck)tk. (5)
k=1

Suppose there exists a network of paths between configura-
tions that satisfies kinematics and dynamics constraints. Let
dy; > 0 be the distance along the network between any z;, and
x7, with dy; = oo if no path connects them. We then formulate
the discrete version of (3) as a path subset selection problem.
We introduce binary variables zx; € {0,1}, each indicating
whether the path dg; is used in the final path, and a vector
z collecting each indicator. Then the discrete version of (3)
is defined as:

K 1 K K
argmin Z te + Z delzkl
tz k=1 Umazx k=11=1

st 1 (6) 2 fimin Vi=1, N ©)

z connected

ti >0 iff 2z =1 or z, =1 for some [.
The last two conditions are consistency constraints, stating
that the selected paths form a simply connected path, and
the second ensures that the robot can only dwell on vantage
configurations that are part of the selected path.



IV. PROPOSED ALGORITHM

Here we describe our a novel approximate algorithm to
search for near-optimal coverage plans. The main steps of
our approach are listed below:

1) Select vantage configurations {x1,-,xk } (Sec. IV-A).

2) Compute network R of paths between configurations
using a PRM-style approach. Retain subset of reachable
configurations. (Sec. IV-B)

3) Compute irradiance matrix I;(xx) (Sec. III-B)

4) Solve a LP for optimal dwell times t (Sec. IV-D)

5) Solve a TSP for a tour of all configurations x;, for which
dwell time is nonzero, that is ¢z > 0 (Sec. IV-D)

6) Execute the tour, stopping for time ¢; at each visited
configuration xy,

We remark in our extended report [11], Eq. (6) can be
formulated as a Mixed Integer Linear Program (MILP). As
vantage configurations grow increasingly dense and paths in
the network R approach optimal paths, the MILP solution
will approach the optimal solution to the original continuous
problem (3). However, the MILP is very high dimensional, so
we propose a two-stage LP+TSP approach which sacrifices
optimality for feasibility.

The LP first finds an dosage plan, in the form of dwell
times to be spent at each vantage configuration, that is
optimal assuming that the robot can “teleport” between con-
figurations. Then, the TSP finds the minimum-time traversal
of the configurations with non-zero dwell times. Assuming
that the robot is sufficiently fast that irradiation is the limiting
step, this strategy should produce near-optimal results.

Another issue to be addressed is that the integral in (4)
does not have a closed form. We compute an approximate
irradiance vector from every vantage configuration and as-
semble them into an irradiance matrix using a GPU-based
visibility check.

A. Vantage Configuration Selection

We first uniformly select a set of light positions in the task
space, giving a superset {y1,-, yx-} of K’ light positions.
For each light position, we solve the inverse kinematics
problem for the robot IK(yx) = x; and insert xj into
the vantage configuration set if a collision-free IK solution
can be found. During IK feasibility computation, the robot’s
geometry is dilated by 5 cm to discourage the use of “coiled*
configurations, since these induce harder planning problems.
The selection scheme of {yi,-, Yk} is robot-dependent. If
the robot is able to move in 3-D, then they are drawn from
an uniform grid in the bounding box of E in R3, but if the
robot is constrained to 2D motion, like a mobile base, they
are drawn from a gridding of the floorplan of E in R2.

B. Roadmap Computation

This component creates a PRM [23] to attempt to connect
the vantage configurations {x1,--+, xx } with feasible paths.
The PRM is an undirected graph R = (V,E) consisting
of configurations q € Cy,¢, called “milestones”, and edges
(a,b) € E between milestones a and b are straight line paths
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Fig. 2: Illustrating the GPU-based irradiance calculation. (a): The
triangle index is rasterized into an environment map using geom-
etry shader. (b): The power emission e(%,j) is precomputed. (c):
The operation F[T'[7,7]] += e(i,7) is performed using hardware
accelerated pixel-blending. (Best seen in color)

that are required to lie completely in the free space, that is,
% eC free-

We construct R with the following sampling scheme: 1)
Add {z1,,xk} as initial milestones of the PRM and try
to connect pairs of nearby milestones if the edge between
them is feasible. 2) Sample some configurations uniformly
at random, and some configurations near milestones within
a given radius. Connect nearby pairs of milestones with
edges, if feasible. 3) For pairs of neighboring vantage points
that lie in different connected components of R, add more
samples near this edge. This approach helps the planner
focus its sampling on narrow passages in Cpy,.... Edge
feasibility checking is done by checking the configuration
space interpolation for collisions at regular intervals. The
distance between two configurations is calculated by the
length of the robot’s end-effector trajectory induced by the
interpolation.

After R is computed, vantage points that are not in the
largest connected component are discarded. For the remain-
ing points, the shortest paths in R between all pairs (z,z;)
are computed to form the distance matrix dy;.

C. Discrete Radiative Fluence

We approximately calculate the radiative fluence matrix
with entries I;(xy). Note that a typical environment in 3D
contains millions of triangles (/V) and we will sample tens of
thousands of potential vantage configurations (K). Therefore,
the matrix size I;(xy) is large and its calculation can be a
bottleneck. We provide a GPU-based implementation that
can calculate each column I, (z) in milliseconds.

The irradiance is a measure of the rate of radiant exposure,
and is given in the units of W /m?2. We first describe the
simple case where the robot is a point light source, i.e.
X = R3. We assume that reflections are negligible, so that
the radiation received by the infinitesimal patch ds is given



according to the inverse square law:
<H(xka dS), n(5)> =

{0 ds not visible from x, 7
P(s-xk,n(s))

drmfs—ay |3

where P is the power (or radiant flux) of the light source
and s is the location of the infinitesimal surface patch. A
patch is considered visible only if (y — zx,n(s)) > 0 and no
other surface lies closer to x; along the ray y — xy.

If no other triangles are in the way from zj, to the entire
triangle s;, then the irradiance can be calculated according
to [30], i.e. the integral of Equation 4 has closed form
solution. However, when occlusions occur, no closed form
solution can be found for the per-triangle irradiance. Instead,
our GPU-based implementation calculates the irradiance
I;(xy) by rasterization. This roughly follows the pipeline
for radiosity calculations used in computer graphics [9,
10] disregarding Lambertian reflectance. Our implementation
(Fig. 2) is comprised of the following steps:

otherwise,

« The scene is rasterized using a standard graphics pipeline,
with the camera centered at zj;. Each triangle’s index
is rendered into the pixel buffer 7" bound to a cubemap
texture (the visibility cube) using framebuffer object and
a geometry shader [16]. In the meantime, a Z-buffer is
used for visible surface determination. After rasterization,
we store the value T7[i,j] for each pixel (4,j) on the
image plane. T[i,7] is the index of the closest triangle
intersecting the ray from pixel (7,7) to zx. A void pixel
indicates that no triangle is occupying the pixel.

« For each pixel T[i,j] containing a visible triangle, the
amount of power e(7,j) emitted over the solid angle
subtended by the pixel is calculated using [30] and all
power terms e(4,j) belonging to T'[i,7] are summed up
and stored in the triangle buffer F. This summation of
e(i, ) is performed using the GPU’s hardware accelerated
pixel-blending. In particular, we first set the triangle buffer
F as the render target and store T[4, 5] in the GPU buffer.
We then execute a shader program for each e(i, ), where
we check T'[4,j] for the index in F' and use geometry
shader [3] to render a single pixel into F', with color equal
to e(4,7) and pixel-blending turned on. The accumulated
value for each triangle is the radiant flux, which measures
irradiance integrated over the non-occluded area of the
triangle.

« The radiant flux F'[¢] is divided by the area of each triangle
to obtain the mean irradiance I;(zy) = F[i]/|s:]-

Since this process is performed repeatedly, the power emis-

sion e(i,j) for each pixel is precomputed and stored in

a separate texture of the same dimensions as the rendered

buffers, denoted as F, so that it can be retrieved with a single

memory lookup. A note-worthy caveat of our method is the
use of mean irradiance I; () = F[4]/|s;| to replace the true
uneven irradiance distribution within a single triangle, which
can be remedied by having more finely discretized meshes.

Non-Point Light Sources: Our procedure to compute

I;(x) can be naturally extended to non-trivial light source

shapes, like an omnidirectional cylindrical light source. The

surface of light sources can be approximated by a set of
evenly distributed point sources, each emitting an equal
fraction of the light’s total radiant power. The total radiant
flux is accumulated for each point before dividing by the
area of each triangle to obtain the irradiance. More advanced
shader programs such as [18] can also be used to approximate
the continuous integration of light contributions along the
light source’s surface area on GPU. For light sources with
uneven irradiance distribution, such as shielded or mirrored
lights, we can replace the power emission texture I with a
precomputed custom distribution.

If the light source is not standalone but mounted on a
robot, then the position of the light source p is determined
by its forward kinematics, which is denoted as p(xj) and
plugged into Equation 7 in the place of zj, arriving at

I(p(xr),n(s)).

D. Approximate Two-Stage Optimization

At this point, all related variables of Equation 6 have been
calculated. We proceed by relaxing all z; = 1 and derive our
first linear program in the following form:

K
rgmin
argmin ), 1 (®)
s.t. li 2 tmin Vi=1,--, N,

A potential issue with Equation 8 is that it does not account
for partially infeasible problems, which frequently occur in
practice because some triangles sy are totally invisible from
all vantage configurations. In these cases, Equation 8 will
report infeasibility and return unusable solutions. Instead, we
propose the following relaxed LP that always returns feasible

solutions:
K N
argmin Z ty + mei
te,0620  f=1 i=1
st.pu;+0; > i Vi=1,--- N ©)]

K

Z tk < Tmama

k=1
where p; denotes the infeasibility penalty of a triangle s;
and o; is a slack variable allowing all constraints to be
satisfied in the worst case. We further constrain the time
budget for disinfection to T},,,. With large penalties pj >
|1.(x+)|F and sufficiently large Ty,q., LP solver tends to
set all o; = 0 and Equation 9 is identical to Equation 8. When
some surfaces are totally invisible or disinfection cannot be
accomplished within the time budget, the LP has to set o; > 0
for some ¢ and take penalty p;o;. For prioritized surface
patches s;, a larger p; should be used so the LP tends to
avoid positive o;.

To solve Equation 9 we leverage the large-scale interior-
point algorithm implemented in [17]. We then solve the TSP
problem to find {zy|tx > 0 At; > 0}. While this TSP is NP-
hard, it is solved over a much smaller set of candidate paths.
In addition, since it fits the traditional TSP formulation,
we are able to leverage polynomial-time approximate TSP
solvers, such as [19], which have near-optimal performance
for relatively small euclidean TSP instances as the ones we



encounter. Once the tour is found, the final disinfection tra-
jectory is obtained by linearly interpolating in configuration
space along the edges of the roadmap.

V. EXPERIMENTS

Our experiments aim to answer the following questions:

1) How much better is the coverage of an optimally
planned disinfection trajectory if compared to a single-
point strategy?

2) How large is the optimality penalty incurred by solving
the problem sequentially vs using an optimal MILP
formulation?

3) How do different robot designs compare in terms of
maximum disinfection coverage and efficiency?

We use a simplified 2.5D experiment to test questions 1 and
2, and a realistic 3D environment 3D to answer question 3.
In each experiment, all surfaces require a minimum disin-
fection fluence fiin = 280 J/m?, a conservative estimate
of the necessary fluence to induce a 3log;, reduction in
infectivity of SARSCov2 [21]. In addition, the light is
assumed to have a constant radiant flux, P, of 80 W and the
maximum speed of all robot end-effectors is 0.5 m/s.

A. Comparison with static illumination

First we evaluate disinfecting the walls of a 5mx5m empty
room as a 2.5D problem. Walls are 2m meters tall and a
spherical point light source is used. We consider a discretized
version of the room where each wall is subdivided into
fixed-length subsegments, and irradiance from a point can
be calculated analytically for rectangles [36]. We consider
a static illumination strategy that places the disinfection
light to have maximum coverage over the obstacle space,
allowing it to irradiate the surfaces for as long as necessary
to fully disinfect its visible surfaces. We treat the robot
as a cylindrical base of radius 10 cm, and constrain the
movement of the light to a plane at height 1 m. Vantage
points are sampled along a 0.1 m grid. The static method
takes 143.7 minutes to reach full room disinfection, while
ours does so in 95.6 minutes, including movement time
between vantage points - the contrast between solutions is
illustrated in Figure 3

Next, we randomly generate 25 2.5D rooms in a 4 mx4 m
area and with 2m tall polygonal obstacles. Each world
contains a random number of obstacles between 7 and 19,
with each obstacle randomly generated by scaling, shearing
and displacing regular polygons. Visibilities of each segment
from a given vantage point are determined by creating a
visibility graph between vantage points and segment mid-
points [28]. Figure 4 shows the output for one example.
Note that for our method, all segments are covered, and
few segments are overexposed. Figure 5 (a) shows results
averaged over all rooms, indicating that our proposed method
consistently disinfects 100% of the environment, whereas the
optimal static illumination only disinfects 35%. Moreover,
to disinfect the visible segments, static illumination requires
approximately 2 orders of magnitude more time.
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dot) and by our method. Each surface is colored by its received
fluence, and the optimized trajectory is drawn in red. (Best seen in
color)
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and the trajectory is drawn in red. (Best seen in color)

B. Comparison against MILP formulation

Next, we compare the two-stage scheme and the glob-
ally optimal MILP formulation described in our extended
report [11]. We limited the point robot to travel along a
grid with 0.5m spacing (note the spacing is coarser than
the 0.25m experiments above, since MILP performance
degrades sharply with the number of vantage). These results
are illustrated in Figure 5 (b). Columns 1, 2 show the percent
difference between the two strategies in path length and
total time. Observe that the dwell times and disinfection
times are nearly identical, with less than 3% difference
between the two-stage approach and the optimal solution.
Dwell times take approximately 90% of total disinfection
time, and the paths computed by the two-stage approach are
nearly identical to the optimal solution. Moreover, the two-
stage approach is 6 times faster to compute than the optimal
MILP solution, even on a coarse grid with only 64 possible
vantage points.
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Fig. 5: Evaluation results on 25 random 2.5D room. Error bars
denote standard deviation.
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C. Comparing Robot Designs

Our 3D tests were performed in a hospital infirmary’s
CAD model! (Figure 8), simplified to 35 thousand trian-

Uhttps://grabcad.com/library/hospital-ward-2-2



Fig. 6: Towerbot (left) and Armbot (right), mid-disinfection.

gles using quadric edge collapse decimation. The method
described in Section IV-C is configured to use 512x512
resolution framebuffers for computing irradiances. We com-
pare three models for the disinfection robot: “Floatbot“, a
freely-moving spherical light source, ‘“Towerbot“, a cylin-
drical mobile base that moves in the plane, is 55cm in
diameter and 37cm tall, and has a 1.2m tall cylindrical
light source attached to its top (Figure 1); and “Armbot®,
a mobile base upon which a URS5Se 6-DOF manipulator
is mounted and holds a spherical point light source, both
seen in (Figure 6), with their lamps highlitghted. Floatbot
is an idealized model of maximum performance. Towerbot
is a model for commercially available mobile disinfection
robots?, while Armbot represents a potential advancement
with better reachability than “Towerbot”. All solutions were
computed within 5 minutes on a workstation equipped with
a 20-core intel Xeon(R) W-2155 cpu and a Quadro P4000
GPU.
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Fig. 7: Performance of robot designs disinfecting an infirmary.

Our experiments designate an irradiation time limit of
Tinaz = 30 minutes and 100 hours for evaluating asymp-
totic performance. For vantage point selection, we define a
3D grid with resolution 0.25m (resulting in 8547 vantage
candidates). We also compare with the strategy of placing
Towerbot in the center of the room for the prescribed
time budgets to mimic the static status-quo. During motion
planning, 4k feasible samples are drawn to create the PRM
(with additional samples added in increments of 20 if full
milestone connectivity is not achieved).

Results are shown in Figure 7. We find that robots
with more freedom to explore the free space, like Armbot
and Floatbot, disinfect a larger area under a given time
budget. Matching experimental results, [27], the status-quo
of stationary placement of Towerbot fails to cover much

Zhttps://www.uvd-robots.com/robots — https://www.akara.ai/violet.htm]
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Fig. 8: Time lapse of Armbot’s disinfection progress for an infir-
mary within a time budget of 30 minutes. (Best seen in color)

of the surface, as illustrated in Figure 1. The asymptotic
performance is nearly identical among all mobile solutions,
whereas the disinfection efficiency comes with a tradeoff
in total distance travelled, among which Towerbot has the
smallest trajectory length and Armbot has the longest. This
is presumably due to two factors. First, distances in higher
dimensions tend to be higher (3D vs 2D) and, second, motion
planning for Armbot involves many steps that are prone to
sub-optimality, such as vantage configuration selection given
a desired lamp position and high-dimensional multi-query
path planning. Floatbot’s trajectory length is a trivial lower
bound to Armbot’s trajecory length. More details about the
trajectories can be found the attached suplemental video.

VI. CONCLUSION & FUTURE WORK

We presented a targeted approach to solve coverage plan-
ning problems for UV light disinfection. Our optimization
minimizes the disinfection time while ensuring maximum
coverage by imposing constraints of minimal irradiance ex-
posure of surfaces. We show that globally optimal solutions
can be found by solving an NP-hard MILP and propose a
two-stage approximation scheme that can find near optimal
solutions with less than 3% sacrifice of optimality while be-
ing much faster. We also confirm real-world experiments [27]
that show limitations of stationary UV disinfection robots.
Furthermore, our algorithm is general enough to analyze
different robotic disinfection designs. Code for the method
is available at https://github.com/joaomem/Optimized-UV-
Disinfection.

In future work, we would like to analyze the MILP
formulation and its interaction with the continuous path
planning component. Second, we hope to test the proposed
pipeline in a physical system to evaluate how positioning er-
rors from SLAM algorithms and reconstruction errors affect
disinfection performance. Third, our vantage configurations
are sampled along a uniform task space grid, which may not
be the most efficient choice. Finally, we would like to study
how joint optimization of vantage configurations, task-space
points, and paths could yield more efficient traversals.


https://github.com/joaomcm/Optimized-UV-Disinfection
https://github.com/joaomcm/Optimized-UV-Disinfection
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