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Abstract
The maximin share (MMS) guarantee is a desirable
fairness notion for allocating indivisible goods.
While MMS allocations do not always exist, sev-
eral approximation techniques have been devel-
oped to ensure that all agents receive a fraction of
their maximin share. We focus on an alternative
approximation notion, based on the population of
agents, that seeks to guarantee MMS for a fraction
of agents. We show that no optimal approximation
algorithm can satisfy more than a constant number
of agents, and discuss the existence and computa-
tion of MMS for all but one agent and its relation to
approximate MMS guarantees. We then prove the
existence of allocations that guarantee MMS for 2

3
of agents, and devise a polynomial time algorithm
that achieves this bound for up to nine agents. A
key implication of our result is the existence of al-
locations that guarantee MMSd3n/2e, i.e., the value
that agents receive by partitioning the goods into
d 3

2ne bundles, improving the best known guarantee
of MMS2n−2. Finally, we provide empirical exper-
iments using synthetic data.

1 Introduction
Fair division deals with the allocation of a set of resources
to a set of agents in a fair manner [Brams and Taylor, 1996;
Foley, 1967; Hosseini et al., 2020]. One of its most notable
application domains deals with the allocation of indivisible
(and non-shareable) goods. These applications arise, for ex-
ample, in dividing inheritance and dispute resolution [Brams
and Taylor, 1996], task assignment or course allocation [Bud-
ish, 2011], and have been popularized in recent years due to
publicly accessible platforms such as Spliddit.

The most desirable fairness notion, envy-freeness, requires
that each agent weakly prefers his own allocation to that of
all other agents. A weaker notion, called proportionality, re-
quires that each agent receives 1

n of her valuation of all goods,
where n is the total number of agents. Unfortunately, in the
indivisible domain neither of these notions are guaranteed to
exist: consider a single good and two interested agents. Nei-
ther envy-freeness nor proportionality can be satisfied as one
agent is destined to remain empty handed.

A third fairness notion, proposed by Budish [2011], is the
maximin share (MMS) guarantee, which can be seen as a gen-
eralization of the cut-and-choose protocol [Brams and Taylor,
1996]. In a nutshell, the maximin share is the value that an
agent can guarantee by dividing the goods into n bundles, as-
suming that all other agents choose a bundle before she does.
There is no reason to believe that such a bound can always
be satisfied for all agents. It turns out that an MMS allocation
does not always exist [Kurokawa et al., 2018], and even when
it exists, computing an MMS partition is intractable [Bou-
veret and Lemaı̂tre, 2016]. Thus, several approximation tech-
niques were developed to guarantee that each agent receives a
fraction of her MMS. While these techniques are compelling,
they may leave a large fraction of agents without their MMS
guarantee.

We propose to circumvent this obstacle by taking an or-
thogonal direction based on the degree of fairness in the soci-
ety of agents. Our goal is to find allocations that give a large
fraction of agents their maximin share guarantee, possibly
leaving a small fraction of agents behind (since MMS alloca-
tions do not always exist). This approach is related to ordinal
approximations of MMS and is of interest in several appli-
cation domains: resources in a hospital must be distributed
among tasks/procedures in a manner that a subset of critical
tasks can be fully accomplished; senior college students (as a
fraction of all students) must be guaranteed seats in courses
to avoid graduation delays.

Unfortunately, envy-freeness and proportionality cannot be
approximated in this dimension. For instance, one may be in-
terested in minimizing the fraction of envious agents. Envy-
freeness (similarly proportionality) may leave almost all but
one agent unsatisfied: consider n goods and n agents with
identical valuations, having 1 − (n − 1)ε value for one good
and ε for the rest. Any distribution of goods will leave n − 1
agents envious. Therefore, focusing on the maximin share
guarantee we ask the following questions:

What fraction of agents can be guaranteed their
MMS value? And can we compute allocations that
guarantee MMS for the majority of the agents?

1.1 Our Contributions
We propose a novel fairness framework, called (α, β)-MMS,
wherein α fraction of agents receive β approximations of
their MMS value and investigate the interplay between the



two approximation parameters. We establish the connection
between (α, β)-MMS and ordinal approximations of MMS
(Proposition 1), and investigate the computational boundaries
of α and β as follows:
• Optimal MMS: We prove the existence of a family of in-
stances where almost all agents do not receive their MMS
by any optimal-MMS allocation that aims to maximize β for
all agents. Our counterexample uses a quadratic number of
goods, where n− 3 agents (n− 4 if n is odd) do not receive
their MMS in any optimal-MMS allocation (Theorem 1).
• Computing (n−1

n , β)-MMS: We devise a polynomial-time
algorithm achieving (α, β)-MMS when α = n−1

n (Theo-
rem 2). A consequence of this result is a tight approximation
for n ≤ 4 that immediately implies an algorithm for comput-
ing MMSn+1 for n < 4 (Corollary 1).
• Existence of ( 2

3 , 1)-MMS: We prove the existence of
( 2

3 , 1)-MMS (Theorem 3), and provide an algorithm that
achieves this bound in polynomial time for n < 9 (Theo-
rem 4). A key implication of our result is the existence of al-
locations that guarantee MMSd3n/2e, i.e., the value an agent
receives by partitioning the goods into d 3

2ne bundles (Corol-
lary 2). Our result significantly improves the best known guar-
antee of MMS2n−2 [Aigner-Horev and Segal-Halevi, 2019].

On the experimental front, we show that a simplified,
polynomial-time variant of our algorithm satisfies a large
fraction of agents on the most ‘difficult’ instances and this
fraction grows as the ratio of goods to agents increases.

1.2 Related Work
On a high level, our approach is related to notions defined
to measure the degree of fairness in a society of agents
whether it pertains to minimizing the maximum or sum
of envy [Chevaleyre et al., 2007; Chen and Shah, 2018;
Nguyen and Rothe, 2014], minimizing envy ratio [Lipton et
al., 2004], balancing the amount of envy experienced in a
society, or promoting fairness through equitable allocations
where agents receive the same level of utility [Schnecken-
burger et al., 2017; Freeman et al., 2019]. Another closely
related line of work suggests the notion of counting instances
of envious pairs—among several other plausible measures—
as opposed to measuring the intensity of envy [Feldman and
Kirman, 1974].

On a technical level, the non-existence of MMS alloca-
tions [Procaccia and Wang, 2014] and its intractability [Bou-
veret and Lemaı̂tre, 2016; Woeginger, 1997] has given rise
to a number of approximation techniques. These algorithms
guarantee that each agent receives an approximation of their
maximin share. Recently, Nguyen et al. [2017] gave a Poly-
nomial Time Approximation Scheme (PTAS) for a notion de-
fined as optimal-MMS, that is, the largest value, β, for which
each agent i receives the value of βMMSi. Since the number
of possible partitions is finite, an optimal-MMS allocation al-
ways exists, and it is an MMS allocation if β ≥ 1. The cur-
rent best results guarantee β ≥ 2/3 [Kurokawa et al., 2018;
Garg et al., 2018] and β ≥ 3/4 [Garg and Taki, 2020;
Ghodsi et al., 2018] in general, and β ≥ 7/8 [Amanatidis
et al., 2017] and β ≥ 8/9 [Gourvès and Monnot, 2019] in the
case of three agents.

2 Preliminaries
Let N = {1, . . . , n} be a set of agents and M denote a set of
m indivisible goods, where m > n. We denote the value of
agent i ∈ N for good g ∈ M by vi(g) ≥ 0. We assume that
the valuation functions are additive; that is, for each subset
G ⊆ M , vi(G) =

∑
g∈G vi(g). An instance of the problem

is I = 〈N,M, V 〉 where V is the valuation profile of agents.
An allocation A = (A1, . . . , An) is an n-partition of M that
allocates the bundle of goods in Ai to each agent i ∈ N .

Definition 1 (Envy-freeness). An allocation A is envy-free
(EF) if for every pair of agents i, j ∈ N , vi(Ai) ≥ vi(Aj). An
allocationA is envy-free up to one good (EF1) if for every pair
of agents i, j ∈ N such that Aj 6= ∅, there exists some good
g ∈ Aj such that vi(Ai) ≥ vi(Aj \ {g}). An allocation A is
envy-free up to any good (EFX) if for every pair i, j ∈ N such
that Aj 6= ∅, for any good ∀g ∈ Aj , vi(Ai) ≥ vi(Aj \ {g}).
These definitions are due to Foley [1967], Budish [2011], and
Caragiannis et al. [2016] respectively.

Definition 2 (Maximin Share Guarantee). Let Πk(M) de-
note the set of k-partitions of M . The k-maximin share
guarantee of agent i ∈ N on Πk(M) is

MMSki (M) = max
(A1,A2,...Ak)∈Πk(M)

min
j∈[k]

vi(Aj),

where [k] = {1, . . . , k}. Intuitively, this is the minimum
value that can be guaranteed if agent i partitions the goods
into k bundles and chooses the least valued bundle.

An allocation A = (A1, . . . , Ak) ∈ Πk(M) is an MMSk

allocation if and only if ∀i ∈ N, vi(Ai) ≥ MMSki . Note that
MMSni (M) ≤ vi(M)

n since proportionality implies MMS.
When it is clear from the context, we write MMSi instead
of MMSni (M) and simply refer to it as agent i’s MMS value.

Definition 3 (Optimal-MMS). While an MMS alloca-
tion does not always exist, an optimal relaxation of MMS
guarantees that agents receive a fraction of their MMS
value [Nguyen et al., 2017]. Given an instance I =
〈N,M, V 〉, the optimal-MMS value is defined by

λ∗(I) = max
(A1,...,An)∈Πn(M)

min
i

vi(Ai)

MMSni
.

By definition, an allocation that gives each agent a λ∗(I) frac-
tion of its MMSni (M) value is guaranteed to exist.

Ordered instance. An instance is ordered when all agents
agree on the linear ordering of the goods, irrespective of their
valuations. Formally, I is an ordered instance if there ex-
ists an ordering of goods, (g1, g2, . . . , gm) such that for all
agents i ∈ N we have vi(g1) ≥ vi(g2) ≥ . . . ≥ vi(gm).
Bouveret and Lemaı̂tre [2016] showed that ordered instances
are the ‘hardest’ for achieving MMS. In fact, these instances
are the only known structures for which MMS does not ex-
ist [Kurokawa et al., 2018]. The next lemma states that given
an unordered instance, it is always possible to generate a
corresponding ordered instance in polynomial time. Further-
more, if the ordered instance admits an MMS allocation, the
original instance also admits an MMS allocation which can
be computed in polynomial-time.



Lemma 1 ([Barman and Krishna Murthy, 2017]). Let I ′ =
〈N,M, V ′〉 be an ordered instance constructed from the orig-
inal instance I = 〈N,M, V 〉. Given allocation A′ on I ′, a
corresponding allocation A on I can be computed in polyno-
mial time such that for all i ∈ N, vi(Ai) ≥ v′i(A′i).

Scale invariance. The scale invariance property of MMS
states that if an agent’s valuations are scaled by a factor, then
its MMS value scales by the same factor.

Lemma 2 ([Ghodsi et al., 2018]). Let I = 〈N,M, V 〉 be an
instance and c > 0 be a real scalar. Let I ′ = 〈N,M, V ′〉
be constructed so that v′i(g) = cvi(g) for all g ∈ M . Then
MMS

′k
i (M) = cMMSki (M).

Thus, an instance I = 〈N,M, V 〉 and a real value k can be
scaled to form a new instance I ′ = 〈N,M, V ′〉, such that for
each agent i ∈ N , v′i(g) = k

vi(M)vi(g), and v′i(M) = k.

Valid reduction. We call the act of removing a setAi ⊆M
of goods and an agent i a valid reduction if the following
two conditions hold: i) vi(Ai) ≥ MMSni (M) and ii) ∀j ∈
N \ {i},MMSn−1

j (M \Ai) ≥ MMSnj (M).

Lemma 3 ([Garg et al., 2018]). Given an ordered instance
I = 〈N,M, V 〉 with |N | = n such that MMSni ≤ 1, if
vi({gn, gn+1}) ≥ 1, then removing Ai = {gn, gn+1} and
agent i forms a valid reduction. Similarly, the removal of {g1}
and agent i forms a valid reduction if vi({g1}) ≥ 1.

Normalized instance. An instance is normalized if all of
the following properties hold: i) the instance is ordered, ii)
it is scaled so that vi(M) = n, and iii) it is reduced so that
vi(g1) < 1 and vi({gn, gn+1}) < 1. By combining Lemma 1,
2, and 3, we may assume that instances are normalized. We
prove this claim in Lemma 4.

3 Approximating Maximin Share
We introduce a fairness concept that allows for interpolation
between two dimensions in approximating MMS pertaining
to the fraction of agents α that receive a β approximation of
their maximin share.

Definition 4 ((α, β)-MMS). An allocation A guarantees
(α, β)-MMS if α ∈ (0, 1] fraction of agents receive at least
their β ∈ (0, 1] approximation of their MMSni . Formally,
given an instance I = 〈N,M, V 〉, an allocation A guar-
antees (α, β)-MMS if there exists a subset N ′ ⊆ N with
|N ′| ≥ bα|N |c such that for all i ∈ N ′, vi(Ai) ≥ βMMSni .
We say that (α, β)-MMS exists if for any instance I =
〈N,M, V 〉, for every subset N ′ ⊆ N of agents such that
|N ′| = bα|N |c, there exists an allocation A such that for
all i ∈ N ′, vi(Ai) ≥ βMMSni .

Previous MMS approximation results can be seen in this
context as efforts to tighten the approximation bound for all
agents (α = 1). Notably, greedy algorithms exist to compute
(1, 2

3 )-MMS [Barman and Krishna Murthy, 2017; Garg et al.,
2018] and (1, 3

4 )-MMS [Ghodsi et al., 2018] allocations.

Remark 1. It is crucial to highlight two key distinctions:
First, in contrast to previous works [Ortega, 2018; Nyman et
al., 2020], the definition of (α, β)-MMS existence does not

only hold for a fixed subset of agents. Rather, it is a stronger
concept that holds for every subset of bαnc agents. Sec-
ond, (α, β)-MMS enables a social planner to pre-select the
N ′ ⊂ N of bαnc agents–independent of their preferences–
according to some priority ordering over the agents or by se-
lecting the agents uniformly at random. For instance, a higher
priority may be given to senior college students; a practice
that is already common in most course allocation procedures.

3.1 (α, 1)-MMS Implies MMSk for k ≥ dnαe
Budish [2011] showed that approximating the competi-
tive equilibrium from equal incomes (A-CEEI) guarantees
MMSn+1(M), i.e. adding a dummy agent and asking all
agents to partition the goods into n + 1 bundles. However,
this result does not imply the existence of MMSn+1 in allo-
cating indivisible goods because allocations achieved by A-
CEEI may have excess supply or excess demands. This ap-
proach can result in infeasible allocations in fair division set-
tings that do not allow the addition of excess goods. There-
fore, the existence of MMSk for n+1 ≤ k ≤ 2n−2 remains
an open problem. In Proposition 1 we show the relation be-
tween MMSk with (α, β)-MMS.

Proposition 1. The existence of (α, 1)-MMS implies the ex-
istence of MMSk for k ≥ dnαe.

Proof. Suppose that (α, 1)-MMS exists. Given an instance
I = 〈N,M, V 〉 with n agents, we construct an instance
I ′ from I by adding dnαe − n dummy agents. Therefore,
|N ′| = dnαe. Since (α, 1)-MMS exists, for every subset
N ′′ ⊆ N ′ of size bα|N ′|c, there exists an allocation which
satisfies (α, 1)-MMS on that set of agents. Thus, we may
choose the bα|N ′|c agents to contain exactly the well-defined
original set of agents in N , that is, N ′′ := N . Hence, each
agent i ∈ N receives at least vi(Ai) ≥ MMS|N

′|, which im-
plies MMSd

n
α e for agents in N .

3.2 Failure of Optimal MMS Algorithms
There are two primary motivations behind the approxima-
tion parameter α (the fraction of agents). First, Proposition 1
states that fixing β = 1 immediately implies an ordinal ap-
proximation of MMS by partitioning goods into k > n bun-
dles. Second, our next theorem shows that maximizing the
value of β for all agents may result in only a small fraction of
agents (α) receiving their MMS value. Theorem 1 shows that
there exists a family of instances where any optimal-MMS
allocation only gives a small constant number of agents their
MMS value. Thus, an optimal-MMS algorithm (e.g. [Nguyen
et al., 2017]) will result in an (α, λ∗)-MMS allocation such
that α goes to zero as the number of agents, n, increases.

Theorem 1. For every n ≥ 4, there exists an instance with
O(n2) goods where every optimal-MMS allocation guaran-
tees at most 3 (4 if n is odd) agents their MMS value.

The proof is inspired by constructions proposed by
Kurokawa et al. [2016; 2018], but it includes a few intricate
modifications by separating agents into dn2 e groups and set-
ting up valuations such that only one group can receive its



MMS value. The details and the necessary proofs are pro-
vided in the full version [Hosseini and Searns, 2021].

Theorem 1 illustrates that if the goal is to reach an optimal-
MMS threshold, the fraction of agents, α, who receive their
MMS guarantee, β = 1, goes to zero as the number of agents
increases. Thus, we ask for what values of α, (α, 1)-MMS is
guaranteed to exist?

4 Computing (α, β)-MMS for n− 1 Agents
4.1 A (23 , 1)-MMS Algorithm for Three Agents
It is worth noting that although MMS always exists for n = 2
and can be achieved through the cut-and-choose protocol
[Bouveret and Lemaı̂tre, 2016], computing such an alloca-
tion remains hard [Amanatidis et al., 2017]. Nonetheless, for
two agents an allocation that guarantees MMS3 to each agent
can be computed in polynomial time through an EF1 allo-
cation [Aigner-Horev and Segal-Halevi, 2019]. We use this
result to obtain the following result.

Proposition 2. For three agents, ( 2
3 , 1)-MMS always exists

and can be computed in polynomial time.

Proof. By the definition of (α, β)-MMS, we can select any
arbitrary subset of agents N ′ ⊂ N such that |N ′| = 2. Then,
run an EF1 algorithm on N ′, which outputs an allocation A.
Both agents in N ′ are guaranteed to receive their MMS3, i.e.,
for each i ∈ N ′ we have vi(Ai) ≥ MMS3

i , implying that 2
3 of

agents receive their MMS. By the construction proposed by
Kurokawa et al. [2018], an MMS allocation does not always
exist for three agents; thus, ( 2

3 , 1)-MMS is a tight bound.

4.2 A General Algorithm for n ≥ 4

To extend the analysis of approximate MMS for n−1 agents,
we first provide an important lemma that enables us to focus
on normalized instances in the remainder of this paper. This
lemma states that we can employ valid reductions repeatedly
(see Section 2) for computing (α, β)-MMS allocations.

Lemma 4. Given an instance I = 〈N,M, V 〉, we can com-
pute a normalized instance I ′ = 〈N ′,M ′, V ′〉 in polyno-
mial time such that any (α, β)-MMS allocation on I ′ implies
(α, β)-MMS on I .

We now focus attention on designing a polynomial-time
algorithm that guarantees β MMS for n−1 agents. The algo-
rithm relies on removing an arbitrary agent and computing an
EFX allocation for the remaining n− 1 agents. By Lemma 1
an ordered instance can be generated (and easily converted
back) from an unordered instance. A simple variant to the
envy-graph algorithm satisfies EFX on ordered instances
[Barman and Krishna Murthy, 2017]. We show that apply-
ing this procedure to normalized (and thus ordered) instances
satisfies (n−1

n , 1
2 (n+2
n−1 ))-MMS. Since β depends on n, we

cannot trivially extend this result to any (not normalized) in-
stances. Nonetheless, we prove that together with Lemma 4
and Lemma 1 we can compute (n−1

n , 1
2 (n+2
n−1 ))-MMS for any

instance in polynomial-time. The full proof of the theorem,
along with necessary discussions, can be found in the full ver-
sion of the paper [Hosseini and Searns, 2021].

n (α, β)-MMS
4 (3/4, 1)-MMS
5 (4/5, 7/8)-MMS
6 (5/6, 4/5)-MMS
7 (6/7, 3/4)-MMS

Table 1: Approximation bounds of (α, β) for various n < 8.

Theorem 2. Given any instance of n agents,
(n−1
n , 1

2 (n+2
n−1 ))-MMS can be computed in polynomial

time.
By Proposition 1, we can add a dummy agent when n = 3

and select the original set of agents to obtain the following.
Corollary 1. For n = 3 agents, computing an allocation
satisfying MMS4

i , ∀i ∈ N can be done in polynomial time.1

Remark 2. Theorem 2 immediately illustrates an intriguing
interpolation between the approximation ratios of α and β:
for n < 7, a better approximation of MMS values (β) can
be achieved in polynomial time by sacrificing only one agent.
Recall that the best approximation algorithms to date guar-
antee only (1, 3

4 )-MMS [Ghodsi et al., 2018] for general ad-
ditive valuations. Table 1 shows the interpolation between α
and β for n = 4 to n = 7.

5 The Existence of (2
3
, 1)-MMS Allocations

Theorem 2 optimizes the fraction of agents, α, and provides
an efficient approach in achieving approximate MMS for
n−1 agents. Another plausible, and often practical, approach
aims at maximizing the fraction of agents α who receive their
MMS guarantee (β = 1).

It turns out that simple modifications to existing approxi-
mation algorithms can guarantee ( 1

2 , 1)-MMS allocations. A
key question is whether we can improve this bound for α be-
yond 1

2 and show the existence of such allocations. In what
follows, we show that ( 2

3 , 1)-MMS exists and discuss an algo-
rithm achieving this bound in polynomial-time when n < 9.

Our existence proof of ( 2
3 , 1)-MMS relies on combining

techniques of bag-filling, strong normalization, and a variant
of the lone divider procedure. Before discussing our main re-
sult, we briefly describe these techniques.
Bag-filling. Given a normalized instance, a good is high-
value for agent i if vi(g) ≥ 1

2 ; otherwise it is low-value. The
bag-filling algorithm is a greedy approach for forming bun-
dles in a normalized instance. An agent initializes a bag with a
high-value good, and then adds low-value goods until the bag
is worth at least 1. She then picks another high-value good
and repeats this process.2 For each bag, the total value never
exceeds 1 + 1

2 = 3
2 since the last added good is low-value.

Remark 3. Bag-filling alone cannot guarantee ( 2
3 , 1)-MMS

as it may ‘run out’ of low-value goods before filling b 2n
3 c

1Independently, Aigner-Horev and Segal-Halevi [2019] utilized
envy-free matchings to compute MMSn+1 for 3 agents.

2Similar approaches have been used by Garg et al. [2018]; Garg
and Taki [2020]; Ghodsi et al. [2018] to compute (1, 2

3
)-MMS and

(1, 3
4
)-MMS allocations. In their algorithms, the bag is filled until

any agent values it at least 1.



b2n
3
c

A1 A2 A3 A4 A5 A6 A7 A8 A9

s

A10 A11 A12

Figure 1: A sample MMS partition for the divider. The tiny shapes (triangle, circles, squares, and diamonds) represent high-value goods and
are ordered from g1 to g10. Note that each bundle contains no more than one high-value good. All pieces indicated in red (including the red
diamonds) indicate the goods that were allocated in previous iterations. There are two such high-value goods, so n′ = b 2n

3
c − 2 = 6. The

first step is pairing the lowest 2s remaining high-value goods into s bundles: {g6, g10} and {g8, g9}. The second phase is restricted bag-filling
that only uses low-value goods from the the remainder sets corresponding to already allocated high-value goods (within teal boxes). The solid
borders show all remainder sets. Next, the remaining goods, shown in purple are used for simple bag-filling to fill the remaining 2 bundles.

bundles if the remaining value consists entirely of high-value
goods. Consider n = 9 agents with identical valuations as
follows: 5 goods of value 0.99, 5 goods of value 0.01, 1 good
of value 0.95, 1 good of value 0.05, 3 goods of value 0.55,
and 3 goods of value 0.45. Here, MMSni = 1 for all agents.
The high-value goods are valued more than 0.5. During bag-
filling, there will be three bundles of {0.99, 0.45}, one bun-
dle of {0.99, 0.05}, and one bundle of {0.99, 0.01}. Since
only 5 bundles were filled and b 2n

3 c = 6, we need to fill one
more bundle. Adding all remaining low-value goods to the
next high-value good 0.95 yields a total value 0.99. The re-
maining value is tied up with the high-value goods (0.55).

Strong Normalization. We say an instance is strongly nor-
malized if it is ordered, vi(M) = n, and MMSni = 1. Ob-
serve that the definition of strong normalization implies that
each bundle of an MMS partition is valued exactly 1. Further-
more, this implies that vi(g1) ≤ 1 and that vi(gn+1) ≤ 1

2 .

Lemma 5. For any additive instance I = 〈N,M, V 〉, there
exists another strongly normalized instance I ′ = 〈N,M, V ′〉
such that I ′ is ordered and for all i ∈ N , MMSni = 1 and
vi(M) = n. Furthermore, an (α, β)-MMS allocation on I ′ is
also an (α, β)-MMS allocation on I .

Lemma 5 shows that any instance I can be modified via
a non-polynomial-time transformation into a new instance I ′
that is strongly normalized such that an (α, β)-MMS alloca-
tion on I ′ implies an (α, β)-MMS allocation on I . Hence, we
can focus only on strongly normalized instances.

Algorithm description. At its core, our algorithm imple-
ments the lone divider procedure for indivisible goods on
n′ = b 2n

3 c of the agents. The lone divider procedure is an
extension of the proportional cake-cutting algorithm [Robert-
son and Webb, 1998] that leverages non-empty envy-free
matchings in a bipartite graph. It proceeds as follows: given
n′ agents in N ′, first, an arbitrary agent divides the goods
into n′ acceptable bundles (A1, . . . , An′). Second, we con-
struct a bipartite graph between agents in N ′ and the bundles
(A1, . . . , An′) wherein each edge connects an agent i ∈ N ′ to
a bundleAk such that vi(Ak) ≥ 1. Notice that the divider will
be adjacent to all bundles. Next, we compute a non-empty
envy-free matching, where no unmatched agent is adjacent to

a bundle that was assigned to some other agent. A non-empty
envy-free matching always exists if |N (N ′)| ≥ |N ′|, where
N (N ′) denotes the set of bundles adjacent to N ′ [Aigner-
Horev and Segal-Halevi, 2019]. All matched agents receive
their bundles and leave. After the removal of matched agents
and goods, we repeat the same procedure over the remaining
goods and agents until there are no remaining agents.3

The primary challenge in proving ( 2
3 , 1)-MMS existence

lies in showing that in each iteration, given n′ remaining
agents, the divider agent can form n′ bundles valued at least
1. We show that under the strong normalization assumption,
the divider is always able to form n′ bundles either by pairing
high-value goods or through restricted bag-filling.
Theorem 3. A ( 2

3 , 1)-MMS allocation is guaranteed to exist
for any subset of b 2n

3 c agents.
Our proof relies on two technical cases based on the num-

ber of high-value goods (h). If h ≤ b 2n
3 c, there are not many

high-value goods, and thus, the simple bag-filling guarantees
our desired result. The most challenging cases arise when
h > b 2n

3 c, that is, when there are too many high-value goods.
Let s = h− b 2n

3 c be the number of excess high-value goods
as shown in Figure 1. Here, we show that the divider agent is
able to form the necessary bundles (i.e. the number of remain-
ing agents) by adopting the following strategies: if n′ ≤ s, we
can simply pair the remaining high-value goods since there
are at least 2n′ high-value goods available, which implies n′
bundles are valued more than 1. On the other hand, if n′ > s,
we are able to form s bundles by pairing the remaining high-
value goods. This means that we still need an additional n′−s
bundles. The key to handling this step relies on the restricted
bag-filling procedure with exactly one high-value good per
bundle but we restrict which low-value goods are used to fill
bundles. In restricted bag-filling, we only use the low-value
goods from bundles of the divider’s MMSn partition whose
high-value goods are no longer available (since those goods
have been allocated in some previous round or assigned dur-
ing pairing), as highlighted in Figure 1 by teal boxes.

The main reason behind this restriction is to ensure that not
too much value is ‘wasted’ during bag-filling (as discussed in

3See [Hosseini and Searns, 2021] for the technical details.



Remark 3). The restricted bag-filling relies on the strong nor-
malization assumption - this way we can guarantee that the
low-value goods used in restricted bag-filling have sufficient
value when bundled with at most one high-value good.

Our proof follows by showing that if n′ ≥ 2s, it is possible
to form n′ − s bundles through restricted bag-filling. Oth-
erwise if n′ < 2s, using restricted bag-filling we can form
s bundles. In this case, we still need to form an additional
n′ − 2s bundles, which is possible through simple bag filling
by targeting for each bundle to have at most 3

2 value.

Remark 4. The strong normalization assumption in the proof
of Theorem 3 requires modifying the values of some goods
depending on an MMS partition for agent i. Furthermore,
the restricted bag-filling phase of Theorem 3 selects available
low-value goods from specific bundles of an MMS partition
for agent i. Because of these dependencies on finding MMS
partitions, Theorem 3 does not imply a polynomial time algo-
rithm for ( 2

3 , 1)-MMS.

We show that by relaxing the strong normalization assump-
tion to the weaker normalization of Lemma 4, we can devise a
polynomial time algorithm for ( 2

3 , 1)-MMS when n < 9. Es-
sentially, this algorithm is a simplified variant of our previous
procedure that only includes simple bag-filling and pairing to
form the required bundles in the lone divider procedure. Intu-
itively, since the total value of low-value goods is guaranteed
to be at least 1 − vi(g1), at least one bundle can be allocated
during bag-filling. When n < 9, adding the pairing phase
forms bn2 c+ 1 > b 2n

3 c bundles.

Theorem 4. For n < 9, ( 2
3 , 1)-MMS can be computed in

polynomial time.

Theorem 4 only guarantees a ( 2
3 , 1)-MMS allocation when

n < 9. We show by construction that this is tight (see [Hos-
seini and Searns, 2021] for details). We construct a family
of instances with n ≥ 9 in which a small error in comput-
ing the MMS bound causes bag-filling to stop before b 2n

3 c
bundles have been allocated. The challenge presented here
is not unique to our algorithm. Any algorithm that satisfies
( 2

3 , 1)-MMS must be able to detect that MMSni < 1 for all
agents. However, this task is intractable even when agents
have identical valuations [Bouveret and Lemaı̂tre, 2016].

Combining this construction with Theorem 4 implies that
no smaller counter-example exists. We note that despite this
bound, the algorithm is still practical as there is no bound
on the number of goods. For example, more than 99% of in-
stances in the Spliddit dataset deal with less than 9 agents.

The analysis in Theorem 3 and Theorem 4 are indifferent
to the set of agentsN ′. Consequently, we may select any sub-
set of b 2n

3 c agents to be given their full MMS. An immediate
consequence of this result, together with Proposition 1, is that
there always exists an allocation of goods such that each agent
receives at least the value of MMSd

3n
2 e. Moreover, this allo-

cation can be computed in polynomial time when d 3n
2 e < 9.

Corollary 2. An allocation satisfying MMSd
3n
2 e always ex-

ists. Moreover, such allocations can be computed in polyno-
mial time when n < 6.

Figure 2: Fraction of agents, α, receiving their maximin share, i.e.,
(α, 1)-MMS.

6 Empirical Evaluations
The polynomial algorithm of Theorem 4 guarantees
( 2

3 , 1)-MMS only for n < 9. We evaluate a variant of this
algorithm that does not rely on the strong normalization as-
sumption (details relegated to the full version). It is similar
to the algorithm of Theorem 4 until either no more bundles
can be allocated during the lone divider procedure or all b 2n

3 c
agents that were initially selected have received a bundle val-
ued at least 1. In the latter case, any remaining goods are dis-
tributed among the unselected n − b 2n

3 c agents using bag-
filling with priority given to agents who accept the smallest
bundles. Notice that this algorithm does not guarantee that all
initially selected agents receive their MMS.

We focus on ordered instances—as the most difficult in-
stances in achieving MMS [Bouveret and Lemaı̂tre, 2016]—
and generate 1,000 instances for each combination of n and
m. Instances are sampled uniformly at random, ordered, and
scaled such that vi(M) = n for all agents i ∈ N . Figure 2
illustrates the fraction of agents who receive their MMS for
n = 3 to 50 agents and m = 3 to 200 goods. In almost all in-
stances, the algorithm goes beyond the 2

3 bound: on average
across all instances, more than 90% of agents receive their
MMS. Moreover, the fraction of agents receiving their MMS
improves as either n or m increases. We also observe linear
bands where a lower fraction of agents are satisfied due to the
ratio of goods to agents. In addition, when m < 2n a large
fraction of the agents receive their MMS and are removed
during the reduction phase of normalization.

7 Discussion
Theorem 3 proves the existence of ( 2

3 , 1)-MMS for any n,
which implies the existence of MMSd

3n
2 e. Therefore, improv-

ing the bound on (α, 1)-MMS for α > 2
3 and closing the gap

between MMSd
3n
2 e and MMSn+1 is an intriguing future di-

rection. Theorem 4 provides a tractable approach for comput-
ing ( 2

3 , 1)-MMS for n < 9. Yet, computing such allocations
for any n, if possible, will require further techniques to cir-
cumvent computing exact MMS bounds. Another interesting
avenue for future research is exploring PTAS algorithms that
guarantee optimal-MMS [Heinen et al., 2018] for a fraction
of agents to achieve (α, 1)-MMS for α ∈ [ 2

3 ,
n−1
n ].
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