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Abstract

Despite their widespread success, the applica-
tion of deep neural networks to functional data
remains scarce today. The infinite dimensional-
ity of functional data means standard learning
algorithms can be applied only after appropriate
dimension reduction, typically achieved via ba-
sis expansions. Currently, these bases are cho-
sen a priori without the information for the task
at hand and thus may not be effective for the
designated task. We instead propose to adap-
tively learn these bases in an end-to-end fash-
ion. We introduce neural networks that employ
a new Basis Layer whose hidden units are each
basis functions themselves implemented as a mi-
cro neural network. Our architecture learns to
apply parsimonious dimension reduction to func-
tional inputs that focuses only on information
relevant to the target rather than irrelevant varia-
tion in the input function. Across numerous clas-
sification/regression tasks with functional data,
our method empirically outperforms other types
of neural networks, and we prove that our ap-
proach is statistically consistent with low gen-
eralization error. Code is available at: https:
//github.com/jwyyy/AdaFNN

1. Introduction

Deep learning has revolutionized data analysis and predic-
tive modeling as its learned input representations capture
more relevant aspects of a problem than representations
based on manually selected features of the data. While the
powerful capabilities of neural networks (NN) have been
clearly demonstrated for vector/image/text/audio/graph data,
how to best adapt these models to functional data remains
under-explored. Functional data are sample of random func-
tions. The simplest examples are random curves defined
over a (univariate) real-valued interval with one curve per
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individual subject in our dataset. Without loss of general-
ity we assume that the interval is [0, 1]. The curve for one
subject is thus a random function X (¢),t € [0, 1], which
can be viewed as a continuous stochastic process on [0, 1].
Extensively studied in the statistics literature (Ferraty &
Vieu, 2006; Ramsay & Silverman, 2007; Hsing & Eubank,
2015; Wang et al., 2016), functional data appear frequently
in scientific studies and daily life, such as in datasets of:
air pollution, fMRI scans, growth curves, and sensors like
wearable devices.

A fundamental property that distinguishes functional data
from other data types is that they are intrinsically infinite
dimensional and generated by smooth underlying processes.
While high-dimensionality poses challenges in modeling
and prediction, it brings benefits when data are generated
from smooth or continuous functions. This is because the
observed measurements at one location ¢ can inform us the
values of X (t) for t at nearby locations, thereby increasing
the estimation efficiency. The smoothness assumption also
makes functional data resilient to noise contamination as
the magnitude of the noise can be estimated and statistical
methods designed for functional data can accommodate
noise in the observed data.

In practical applications, we are interested in using these
continuous curves X (¢) to infer their relationship to some
response variable Y, often to predict the response. More for-
mally, we have a dataset {(X;(¢),Y;)}?; of i.i.d. samples
of X (t) and the associated Y, where X (¢) is a mean-square
continuous process defined over ¢ € [0, 1]. For each subject
4 in our dataset, the observations of X; serve as a functional
covariate to predict scalar response variable Y;, which may
be either continuous or discrete. In many practical applica-
tions, the continuous process X (¢) is only be observed on a
discrete time grid {¢;,...,ts41} in each observed X;. As-
suming there is an underlying map 7 : X (¢) — Y, our goal
is to estimate 7 from the data (e.g. using a neural network).

A common pipeline for functional data analysis (FDA) is to
summarize the information contained in each function into
a finite-dimensional vector and then carry out the analysis
using existing models for the resulting multivariate data.
Two popular dimension reduction approaches are Functional
Principal Component Analysis (FPCA) (Besse & Ramsay,
1986; Rice & Silverman, 1991; Silverman, 1996; Yao et al.,
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2005; Li et al., 2010) and preselected basis expansions using,
for example, B-splines (Rice & Wu, 2001; Cardot et al.,
2003a).

Existing approaches to deep learning for functional data
rely on a straightforward pipeline that first applies classic
functional data analysis methods and then a neural network
in sequence. Rossi et al. (2002) handled functional data
through discretization and functional parameterization of
weight matrices, while Rossi et al. (2005) and Guss (2016)
use basis function expansion to convert functional inputs
into a vector form that can then be directly fed into to a
standard neural network. Some universal approximation
theory for functional neural networks has been established
by Rossi et al. (2005) and Guss & Salakhutdinov (2019).
However this two-stage fitting process in prior work is un-
able to fully leverage the representation-learning power and
flexibility of deep learning.

In this paper, we propose to improve existing architectures
by replacing these pre-specified choice of basis functions
with adaptively learned bases that are implemented via mi-
cro neural networks (Lin et al., 2013) to which we back-
propagate information regarding the response variable. A
similar variant of our basic idea was briefly suggested by
Rossi & Conan-Guez (2005), but their work never pursued
the idea beyond a short comment stating it could be the
possibile to implement the weight function of their func-
tional neural network as an Multilayer Perceptron (MLP).
Our design eliminates the need for a preprocessing step to
convert random functions into vector inputs that otherwise
typically requires a manually-prespecified choice of basis
functions. Our architecture synchronizes the dimension re-
duction step and the nonlinear mapping step by adjusting
the learned basis functions such that they only capture the
information in X (¢) that is relevant to the output. Exist-
ing basis function representations instead seek to retain as
much information about the input as possible, which may
actually make supervised learning more difficult (Tishby &
Zaslavsky, 2015).

Our main contribution is to propose an alternative neural
architecture for end-to-end FDA that consists of a novel
Basis Layer (BL) implemented via micro networks. We
name the new network an Adaptive Functional Neural Net-
work (AdaFNN). We study some theoretical properties of
AdaFNN, establishing convergence and generalization error
guarantees. Adding a BL into a neural network as fea-
ture extractors for functional inputs, the resulting model
is empirically more accurate than existing methods and is
simultaneously more parsimonious (meaning it requires less
basis functions to model the random functions). Two types
of regularizers are introduced to encourage basis orthogo-
nality and basis sparsity. This regularization improves the
resulting learned representations as well as the interpretabil-

ity of the learned bases (especially when a small number of
basis nodes are used). Moreover, our model can be trained
end-to-end and thus composed with arbitrary differentiable
operations without any alteration.

2. Related Work
2.1. Discretization of Functions

A straightforward application of neural networks to func-
tional data is to treat the discretely observed functional
values { X (¢1),..., X (ts4+1)} as a high-dimensional vector
and then input this vector into a neural network. This ap-
proach has been explored in Rossi et al. (2002); Rossi &
Conan-Guez (2005); Rossi et al. (2005); Guss & Salakhut-
dinov (2019). An alternative common approach is to treat
the discretely sampled data from subjects as time series.
However this approach has several disadvantages as it
does not leverage the smoothness of the underlying data-
generating process X (t) and relies on additional strong
assumptions such as stationarity. Lastly, most time-series
methods are not designed for replicate observations (here
we observe numerous draws of the underlying X (¢), one
per subject). Thus we instead review the vector-based ap-
proach below. Since the X (¢) process is only observed
at discrete time points {¢; ;]ill, one could use the vector
vy = [X(t1),..., X (ts41)] as the input of a standard neu-
ral network. Using the vector v, the original mapping 7
can be approximated by Tgpiee : v, — Y. Classical results
imply that Tgye can be well approximated by a neural net-
work with a sufficient number of parameters. Furthermore,
by increasing the partition resolution .J, we can approximate
T using Tgnie With arbitrarily small error.

Drawbacks. In order to preserve critical information about
the functional inputs, the discretization approach may re-
quire a high-dimensional vector, which hampers subsequent
learning due to the curse of dimensionality. Furthermore,
these discrete vector dimensions may fail to reflect the
smoothness inherent to many functional covariates if they
are contaminated by noise.

2.2. Basis Representation of Functions

To overcome the disadvantage of discretization, Rossi &
Conan-Guez (2005) proposed to make use of the continu-
ity of functional data and find a better finite-dimensional
representation of a functional input before feeding it into

a network. To be specific, let {px ()}, be a set of K

continuous basis functions defined on [0, 1]. The task is to
represent X (t) using a vector v, = [a1, ..., ax] such that:

K
X(t)~ > arpr(t). (1)
k=1

Commonly used basis functions are Fourier basis functions,
B-splines, or eigenfunctions obtained via spectral decompo-
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sition of cov(X (s), X (t)). After finding a basis expansion
of X (t), we can use the vector v, instead of v,, as the input
to a feedforward network. Normally the dimension K of v,
is much smaller than the dimension J + 1 of the discretized
data v, a clear advantage. Furthermore, the basis expansion
in (1) automatically produces a smooth approximation of
X (t), which can reduce the noise contained in v,.

Drawbacks. While the basis representation approach in (1)
could recover the underlying smooth process of functional
input, it does not take advantage of the key information
contained in the response Y during its dimension reduction
stage. Besides, both dimension reduction of functional in-
puts and parameterization of weight matrices (see FMLP on
p.55, Rossi & Conan-Guez (2005)) require selection of basis
functions. These bases are typically selected a priori and
the number of bases needs to be chosen as well. We address
these questions in this paper by proposing an adaptive ap-
proach to find the optimal bases that utilizes the information
on Y and the specific learning task.

2.3. Micro Network Inside of a Network

Embedding smaller neural networks within a larger overall
network architecture has been previously explored. For ex-
ample, the Network in Network (NIN) model of Lin et al.
(2013) replaces linear convolutions by a micro MLP. Em-
pirically, the enhanced nonlinearity improves the model’s
ability to extract good features. Although NIN is conceptu-
ally related to our proposal, their operations differ in two
ways. In our design, a basis node in a basis layer, which is
also a micro MLP, is applied to the whole input. In contrast,
a NIN micro network performs local convolution operations.
Second, the micro MLP in NIN takes a small region of an
image as its input and this process is slid across the whole
image via convolution. Our basis micro network instead
takes a fixed time point ¢ as its input and this process op-
erates on a full functional input [X (¢1), ..., X (ts41)] via
numerical integration.

3. Methodology

To address the drawbacks of discretization and basis repre-
sentation, we propose a novel neural network that adaptively
learn the best basis functions for supervised learning tasks
with functional inputs. Figure 1 shows the basic architecture
of such a network (AdaFNN), and Algorithm 1 details the
network computations used to produce predictions in a for-
ward pass. After the initial basis layer, our network shares
the same structure as a standard feedforward network. Each
node in a BL outputs a scalar value computed as the inner
product between the input function and the corresponding
basis function at that node (Figure 2). Unlike handcrafted
functions used in existing methods, we parameterize each
basis function with a micro neural network that takes a scalar

Basis layer Rest of network layers (standard MLP)
(X, B1)
X Y
(X, Ba)

Figure 1: Neural network with our Basis Layer

nng(-)

I+l -
Y @ mnet) - X(t) |—C;
= (B, X)

Figure 2: The ¢-th basis node in a Basis Layer.

t as its input and outputs the value the basis function takes
att.

In the network depicted in Figure 1, the BL consists of
d basis nodes (for some user-specified value of d). Each
node represents the application of some basis function 3;(t),
fori =1,...,dand t € [0,1]. The value output by each
basis node, i.e., the score of X (t) with respect to the basis
function j;(¢), is computed as:

¢ = (B, X) = / Bi(t) - X (#) dt. @)

The BL outputs form a vector ¢ = [cy, . ..,cq] € RY. This
vector is then fed through the rest of the AdaFNN network’s
layers, which after the BL are all standard fully-connected
layers (as in a standard MLP, where © denotes the weights
of all layers after the BL). The output of the overall network
isY = T(X)= UL(~ e (ch+b1)), where o1, ...,0p,
are the activation functions at each layer.

The bases 3; are used to project the functional input X (¢)
to a vector representation c. While the form of these bases
could in theory be selected a priori, such ad hoc selection
violates the principle of end-to-end learning that drives deep
learning’s success. We would instead like to backpropagate
information about Y through the network in order to adap-
tively identify optimal bases [3;. For this reason, we prefer
the representation of input functions in (2) over (1), as the
latter is less amenable to basis learning via backpropagation.

In the BL, each basis function j3;(t) is itself parameterized
by another neural network nne, () : t — o (- ot (Wit +
b)) with parameters ©; consisting of weights {W;}/_,
and biases {bi}1_ . In this work, these micro networks
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Algorithm 1 AdaFNN Forward Pass

Input: data z = [X({1),..., (Xj+1)]

Output: prediction y

Parameters: basis layer NN {©;};=1, . 4, output NN O,
integration weights wy, ..., w41, e.g. for trapezoid rule
with equally-spaced ¢;: w; = %if2 <j< Jelse= %
fori=1tod: ¢ < 7 w; e, () X(t;)

Do < [é1,...,E4) € RY

:Ij < Nng (f)c)

return gy

nng, are simply MLPs whose only input are the values ¢;
at which the functional covariate X (¢) is measured (our
micro MLPs employ modern techniques such as skip con-
nections, batch/layer normalization, and dropout). Note that
these are the only locations at which we need to evaluate the
learned basis function j; in order to approximate (3;, X ).
In practice, the integral in (2) must be approximated nu-
merically, for example, using the rectangular or trapezoidal
rule. Suppose that the domain [0, 1] is equally discretized
by the partition {t; = (j — 1)/J}]]i11 For each i, the score
¢; is approximated by ¢; = Zjill w; - nng, (t;) - X(t;),
where {w; }‘j]:ll are weights used in a numerical integration
algorithm. For instance, if trapezoidal rule is used in the
network, then we would have wy; = w; = 1/(2J) and
wj = 1/J for j = 2,...,J. Here equal spacing is not
necessary. Our method works well as long as the grid is
dense enough for the numerical integration to be accurate
(see our provided code for a demonstration of AdaFNN with
non-uniform spacing).

The loss of the network is calculated between a predic-
tion Y and the observed response Y, and is written as
E(Y, Y). Here we employ a standard loss function for
prediction such as mean-squared-error for regression or
cross-entropy for classification. The overall loss is the av-
erage loss across the whole sample (or a mini-batch of
data for stochastic gradient training) and is denoted as
L({©;}¢,,0) = L3°"  ((Y;,Y;). The micro-networks
and subsequent fully-connected network layers are all simul-
taneously trained (end-to-end) using this single objective
L({©;}%_,,0) applied to the output predictions. In the next
section, we also consider possible addition of orthogonality
or sparsity regularization to this objective.

We make three observations about the proposed model. First,
it can clearly be trained end-to-end with the BL. There is no
need to select and even fine tune what type of basis functions
should be used in representing input functions (or weight
matrices). Second, since the parameters ©, are updated to
minimize prediction loss, our learned basis functions are
likely better suited for the desired task than handcrafted

basis functions chosen without this information. The ex-
periments in Section 5 show that our BL architecture can
achieve higher accuracy than existing basis expansion meth-
ods while utilizing fewer basis functions (as each individual
learned basis function can capture more predictive signal).
Lastly, since each micro neural network is a composition of
continuous functions (as a standard MLP), all of the learned
basis functions within our model will be continuous.

3.1. Regularization

Encouraging Basis Orthogonality. Without constraints,
two BL nodes might learn similar basis functions and
extract redundant information from the same functional
input X (¢). To encourage different BL nodes to represent
different (uncorrelated) information about the function,
we can regularize them to be orthogonal. Recall that
L({©;}{_,,0) is the loss function of a BL network. To
encourage basis orthogonality, we introduce a regularization
term which penalizes the cosine similarity between each
pair of basis functions. The resulting loss optimized by the
regularized network is

Lperp({@i}g:h @)
<nn@j P nn@j, >|

= L({@i};‘i:h@) + A1 % Z |
5 2T

—7
@ 2= Tlno, l2llmne, Il

where A\; > 0 controls the strength of the penalty. When
a BL contains many nodes, enumerating all pairs becomes
computationally expensive. Instead we randomly sample a
few pairs at each mini-batch update and employ their aver-
age absolute cosine similarity as a stochastic estimate of the
regularizer against which we optimize network parameters.

Encouraging Basis Sparsity. We can also regularize the
shape of our learned basis functions. In domain selection
problems (James et al., 2009; Zhou et al., 2013; Wang
et al., 2021), the response is only related to the functional
input over an (a priori unknown) subset of its domain, i.e.
Y L {X(t)}pgz | {X(t)}iez for some Z C [0,1]. To
encourage this desired property, it is sensible to learn a
basis function whose value is zero outside of Z. While the
number of nonzero values taken by the basis function is
hard to optimize, we can penalize their L; norm as a tight
convex relaxation of an Ly norm to enforce basis sparsity.
The resulted loss function is

Lypes({0:}21,0) = L({©:}L1,0) + A2 - éz / |B:()] dt,
i€S

where S C {1,...,d} indicates which subset of basis func-

tions we wish to sparsify, s is the number of elements in S,

and A2 > 0 controls the strength of the L; penalty. Even

when we are not sure whether the domain selection assump-

tion truly hold, learning sparse basis functions via this L;
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penalty can greatly improve the overall interpretability of
our prediction model (Figure 6).

4. Theoretical Analysis

Here we discuss theoretical properties of the architecture
proposed in the previous section. We provide a universal
approximation theorem for this design and prove it achieves
low generalization error under mild regularity conditions.

Let C([0, 1]) denote the space of continuous functions de-
fined on the compact interval [0, 1]. Assume that the un-
derlying mapping 7 : X — Y is a composite of a finite-
dimensional linear transformation and a subsequent non-
linear transformation. We can write 7 = h o g, where
g : C([0,1]) — R is a linear continuous map, and h :
R? — R is a non-linear continuous map. By Riesz represen-
tation theorem, there exist square-integrable function v; with
i=1,...,gsuchthat g(X) = [(71,X),..., {7, X)]. The
approximate network parameterized by weights {©;}7_;
and O is denoted as 7 .

Theorem 1 (Consistency of the network). With the
notations defined previously and following the conventions
in the literature, we assume that:

(i) the numerical integration at each basis node can be
accurately evaluated as J — oo,
(ii) each network in T can have sufficient capacity.

Then for any € > 0, there exists a network T* with weights
{©:}_, and ©* such that

sup IT*(f)
fec(o,1]),lI fll2<1

—T(f) <e.

Hence, we have the following result: Let X be a continuous
process defined on [0,1]. For any § > 0, there exists a
network T* with weights {©} }!_, and ©* such that

P(|IT*(X) - T(X)] < 68) >1—4.

Remark 1. Although Theorem 1 provides the consistency of
the proposed architecture, it is not equivalent to identifying
each true basis function consistently. The reason is that the
individual basis functions are not identifiable since there are
multiple ways to parameterize one map.

Remark 2. To make adequate predictions, the number of
basis nodes d in AdaFNN should be sufficiently larger than
the dimensionality g of g(X), introduced in the assumptions
of Theorem 1. In practice, we could also vary the choice
of the number of basis nodes to find out which yields the
best performance (lowest validation loss or fewest bases
with low validation loss). Once the training is done, by
investigating the learned bases, one can decide which ones
seem to be relevant and use those as the basis functions to
re-train a smaller subsequent network.

Next, we prove the proposed architecture can achieve small
generalization error. Let S = {(X1,Y1),...,(Xn,Yn)}
be 7 i.i.d. copies of (X,Y), and there exist two constants
My, My > 0 such that both sup,¢jo 47 [X ()| < M; and

|Y| < M> hold almost surely. Let Tg be a model proposed
in Section 3 with its architecture fixed. In a slight abuse
of notation, we use © to derlote all the WeAights, includ-
ing {©;}¢_, and O, used in To. We use £(To(X),Y) to
denote the loss function. The population risk is defined
as 7(0) = E[¢(To(X),Y)], and the empirical risk is
r(0) = L3 E(?@(Xi), Y;). Usually the weights ©
are estimated via © produced by a random algorithm A
based on the sample S. The generalization error is defined
as |Eg,a[r(©) — r,(0)]|. Suppose that we use a variant
of stochastic gradient descent to train our model. At the
tA-th iterat/i\on a<t SAT), the weights are updated with
1 = Oy — atVQK(T@(Xit),YQ) |@:@t, where the in-
dices i; are randomly chosen (e.g., uniformly), and the learn-
ing rate oy is monotonically non-increasing with ay < ¢/t
for some fixed constant ¢ > 0. The following result is an

application of Theorem 3.12 in Hardt et al. (2016).

Theorem 2 (Small generalization error). Assume that

(i) the weight © is restricted on some compact region,
(ii) the loss function ((-,-) and its gradient V{(-,-) are
both Lipschitz.

Then for every pair of observation (X,Y), both
((Te(X),Y) and Vel(Te(X),Y) are Lipschitz with re-
spect to ©. Hence, there exists some constant ¢ > 1 such
that

N N T1-1 /c

[Es,alr(©) =ra(©)]] § ——

Remark 3. Assumption (i) in Theorem 2 is not restric-
tive since we can convert a constraint optimization prob-
lem to an equivalent penalized problem. In practice, we
could minimize the regularized empirical risk, i.e., 7,,(©) +
pllvec(©)]2, where vec(©) is the vectorized weights ©, and
p > 01is a tuning parameter.

5. Experiments

Throughout, our experiments focus on methods that can han-
dle general functional inputs, rather than approaches tailored
for specific tasks like predicting future observations. The
proposed AdaFNN network is compared to three baseline
models: ‘Raw data (#) + NN’ (Rossi et al., 2002), ‘B-spline
(#) + NN’ (Rossi et al., 2005), and ‘FPCA;, + NN’(Rossi
et al., 2005). Here the integer # denotes the input dimen-
sion of each network. The subscript p of ‘FPCA’ is the
fraction of variation explained (FVE) used in selecting the
number of principal components. The latter two baselines
(B-spline and FPCA) have their roots in the field of func-
tional data analysis (Cardot et al., 1999; 2003b; Miiller &
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Stadtmiiller, 2005; Dou et al., 2012) and classification tasks
(Miiller, 2005; Leng & Miiller, 2006; Song et al., 2008;
Chiou, 2012).

The first baseline simply discretizes the raw functional input
as a vector that is fed into the network, so the dimension of
the input vector is the number of points ¢ at which X (¢) has
been observed. The other two baseline models consist of two
steps. The first step involves transforming the functional
input into a vector of scores from its B-spline or FPCA
expansion (cf. (1)). The resulting vector representation is
then fed as input into a network in the second step.

The number of bases used in the two baseline models is
often determined by how well a function can be represented
in the functional space spanned by these basis functions.
For example, when using B-splines, we look at how well the
selected spline functions can capture the trend of the raw
data. A small number of B-splines may not be able to re-
cover the trajectory very well. However, too many B-splines
might overfit the functions. The choice of the number of
principal components is based on the desired FVE by these
principal components. Often, a sizeable FVE is expected,
e.g., 90% to 99%. Similar to the selection of B-splines, we
should not simply choose an FVE as large as possible. Large
FVE may include (functional) principal components whose
corresponding eigenvalues are very small, hence difficult
to estimate. A good rule of thumb is to use the first few
components that capture the bulk of the variation.

We write ‘AdaFNN (A;,A2)’ to indicate the level of reg-
ularization, where A; (and \2) controls the degree of or-
thogonality (and L) regularization. AdaFNN was trained
with 9 different combinations of the orthogonal regulariza-
tion penalty A; € {0,0.5,1} and L, regularization penalty
A2 € {0,1,2}. The performance of each configuration is
reported for all simulations and real data tasks. Throughout
we use * to indicate the A1, Ao values that performed best on
the validation data, as these are the hyperparameter values
that would be typically used in practice.

All models, including AdaFNN and the other NN baselines,
employ the same architecture and training hyperparameters.
A network with 3 hidden layers and 128 fully connected
nodes per layer was used for Tasks 1-7 (real data) and our
simulation studies. For Tasks 8 and 9 with small sample
sizes, we used a smaller network with 2 hidden layers and
64 nodes and added dropout during training. All networks
were trained up to 500 epochs (with 200-epoch early stop-
ping patience) using mini-batches of size 128. AdaFNN
merely uses 2 bases in simulation Cases 1 & 4, 3 bases in
simulation Cases 2 & 3, and 4 bases in our applications to all
9 prediction tasks with real data. In contrast, we allowed the
B-spline/FPCA baselines to either rely on a similar number
or more basis functions since these models cannot optimize
each of their bases (e.g. FPCAg g9 often selected more than

10 principal components).

5.1. Simulation Studies

We demonstrate through simulations that baseline functional
neural network models may miss relevant information but
AdaFNN is able to capture the true signal while relying
on fewer basis functions than the baselines. Four different
simulation settings were considered, each is purposefully
designed to illustrate a particular conceptual shortcoming
of one of the baseline methods (with an extra fifth setting to
highlight the utility of our proposed regularization).

We first describe the underlying data-generating process in
each of the four settings. For ¢ € [0, 1], define ¢;(¢) = 1
and ¢p(t) = v2cos((k — 1)mt), k = 2,...,50. Con-
sider the process X (t) = 2‘20:1 ek ok (t), where ¢, = zg 7,
and rj, are i.i.d. uniform random variables on [f\/?;, \/ﬁ]
The actual observations for X;(t) is the discrete data
{Xi(tj),j =1,...,51}. We report the mean squared pre-
diction error (MSE) achieved by each method on the test
data.

Case 1: We set: z; = 20,29 = z3 = 5, and 2z = 1 for
k > 4. The response is Y = %, thatis, Y = ((X, ¢3))?,
where the function ¢3 corresponds to the true predictive
signal. This case is designed to show that a small FVE in
FPCA may not suffice to capture the relevant signal.

Case 2: Weset: 21 = 23 = 5,25 = 210 = 3,and 2z = 1
for other k. The response is Y = ¢ = ((X, ¢5))?. Here
the function ¢5 corresponds to the true predictive signal
and is more complex than ¢3. The squared operation en-
sures a nonlinear relationship between the response and
functional covariate. This case is designed to show that a
small number of B-splines may not suffice to represent the
X (t) information relevant to the response.

Case 3: In Cases 1 & 2, both the response Y is free of
noise and the functional input X (¢) is not contaminated by
measurement errors. However, this setup is rarely realistic in
practice. The goal here is to evaluate functional estimators
in the presence of both outcome noise and measurement
errors in X (t). We use the same model as Case 2 except
that a mean zero Gaussian noise is added to the response,
and the observation of X (¢) at each time point is perturbed
by an additive mean zero Gaussian measurement error. The
signal-to-noise ratios (SNR), defined as

Jy(X(t)2 dt

standard deviation of measurement error

SNR(X) =

for the functional input (due to E[X (¢)] = 0), is /10 to 1.

Case 4: This case studies how well AdaFNN captures multi-
ple signals and its application in domain selection. The func-
tional covariates X, (t) are generated similarly as in Cases
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1 & 2, except that in Case 4: z; are all taken to be 1. Two
signals 1 and S35 are chosen as: 31 (t) = (4 — 16¢) - 1{0 <
t <1/4} and B2(t) = (4—16|1/2—¢])-1{1/4 <t < 3/4}.
The response is Y = (£, X) + ({31, X))?2. Centered Gaus-
sian noise is added to Y, and X (¢) is also contaminated by
measurement error.

Case 5: The same setup as Case 4, but now with double the
noise variance in Y (used to highlight our regularization).

Table 1: Test-set MSE of predictions in simulation study.
For each case, the asterisk indicates the best AdaFNN hy-
perparameters on the validation set, and the method with
the best test MSE is marked in bold.

METHOD CASE1 CASE2 CASE3 CASE4
RAW DATA (51) + NN 0.015 0.038 0.275 0.334
B-SPLINE (4) + NN 0.050 0.984 0971 0.369
B-SPLINE (15) + NN 0.013 0.019 0.206 0.251
FPCAp.9 + NN 0.917 0.023 0.134 0.855
FPCAoq.99 + NN 0.003 0.036 0.239 0.667
ADAFNN (0.0, 0.0) 0.001* 0.003 0.979 0.193"
ADAFNN (0.0, 1.0) 0.995 0.007 0.978 0.982
ADAFNN (0.0, 2.0) 0.996 0.992 0.978 0.981
ADAFNN (0.5, 0.0) 0.004 0.005* 0.137" 0.571
ADAFNN (0.5, 1.0) 0.983 0.005 0.978 0.590
ADAFNN (0.5, 2.0) 0.134 0.008 0.978 0.981
ADAFNN (1.0, 0.0) 1.000 0.004 0.127 0.196
ADAFNN (1.0, 1.0) 0.009 0.006 0.974 0.606
ADAFNN (1.0, 2.0) 0.051 0.009 0.978 0.981

Table 1 reports the MSEs for all methods. Under columns
Cases 1 & 2, we see that AdaFNN exhibits the best perfor-
mance in both settings. The performance of the baseline
models is mixed. The top two principal components (with
FVE at least 90%) are not able to detect any useful predictive
signal in the data under Case 1, same with four B-splines
bases in the simulation under Case 2. Thanks to its suc-
cess in capturing the true basis function, AdaFNN performs
strongly in both simulation settings. It is interesting to ob-
serve that each fitted basis function contains a fraction of the
true signal function, and together they are able to recover it
(Figures 3 and 4). That is, the true signal function can be
represented as a linear combination of the fitted bases.

For Case 3, Table 1 (column ‘Case 3’) shows that all meth-
ods performed worse with noise added, but AdaFNN with
orthogonality regularization remains superior to other meth-
ods. On the other hand, the L; regularizer is not helpful in
Case 3. This is expected, because the true signal ¢5 does
not have any zero region in its domain. Note that feed-
ing the raw data as a vector into neural networks performs
comparably to the two functional baseline models in the
noiseless simulations. However, in noisy settings (Cases
3 & 4), this approach is inferior to the other two baseline
models. This demonstrates the importance of exploiting
functional properties whenever the input is a smooth func-

tion. The performance of the functional ‘B-spline + NN’
and ‘FPCA + NN’ approaches is mixed; each has its own
advantage over the other in different scenarios.

~0.251

~0.501

-0.751

-1.004

-1.25

-1.50

Figure 3: The left plot shows the true signal ¢s (solid) and the
reconstructed signal (2)3 (dashed) from AdaFNN(0, 0) (the regular-
ization values with best validation MSE) in Case 1. The right plot
shows each learned bases Bl and Bg from the same experiment.
Note that: ¢3 ~ (fzg = BQ — ,31.

For Case 4, Table 1 (column ‘Case 4’) shows that AdaFNN
outperforms the other methods in this setting. At the same
time, the proposed method also learns meaningful bases that
correctly identify the relevant domain of interest (Figure 5).
That on [3/4, 1] both 8; and B, are zero implies that the
values of X (t) over [3/4, 1] have no effect on the response.
None of the baseline methods is able to show this infor-
mation, and thus AdaFNN is not only more accurate than
existing models, but also more interpretable. In summary,
while some baseline methods perform well in certain simula-
tion settings, none of these methods can achieve consistently
strong performance like AdaFNN across all cases.

A final simulation, Case 5, demonstrates the utility of our
proposed regularizationn. In this case, Table 2 shows that
AdaFNN(0.5,0) and AdaFNN(0, 0.1) clearly outperform
AdaFNN without regularization, as well as all other meth-
ods (despite our regularized AdaFNN using only 2 bases,
under which the other methods performed very poorly).
Without any regularization, AdaFNN(0, 0) learns 2 very
similar bases (left plot in Figure 6), while using either one
of our proposed regularizers helps AdaFNN recover the true
underlying bases (middle/right plots in Figure 6) and greatly
improves its predictive performance.

5.2. Application to Real Functional Datasets

Next, we evaluate the performance of AdaFNN and other
neural FDA methods in nine different regression and classi-
fication tasks, using four datasets. In regression tasks, the
performance is again measured by MSE, while the perfor-
mance is measured by the area under the ROC curve (ROC
AUQ) in classification tasks. Since our simulations show
that B-spline (4) and FPCA( ¢ empirically underperform
(Table 1), we subsequently only consider the use of B-spline
(15) and FPCA( g9 on real data.

Electricity Data: Electricity consumption readings for
5567 London homes, where each household’s electricity
usage is recorded every half hour (UK Power Networks,
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Figure 4: The left plot shows the true signal ¢5 (solid) and the

reconstructed signal 5 (dashed) from AdaFNN(0.5, 0) (the regu-
larization values with best validation MSE) in Case 2. The right

plot shows each learned bases Bl, Bg, Bg from the same experi-
ment. Note that: ¢5 ~ ¢5 = B3 — 1 — Pa.
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Figure 5: The left plot shows the true signal 81 (solid) and a
(scaled) learned signal 51 (dashed) from AdaFNN(0, 0) (the regu-
larization values with best validation MSE) in Case 4. The right
plot shows (2 and a (scaled) ,5’2 from the same experiment.

2015). The functional covariate X (¢) is defined as the
48 measurements per household that constitute one day’s
electricity usage curve. Based on this X (¢), we consider
four prediction tasks with different response variables:

1. Predict a household’s total electricity consumption in
the next week (week 2) based on its X (t). [regression]

2. Predict a household’s total electricity consumption in
a later week (week 5) based on its X (t). [regression]

3. Predict whether a household’s morning (6am-12pm)
electricity consumption in week 5 exceeds a certain
threshold based on its X (t). [classification]

4. Predict whether a household’s consumption during the
day (8am-17pm) exceeds night usage (17pm-12am) by
a threshold in week 5 based on its X (¢). [classification]

The threshold values in tasks 3 and 4 are selected to en-
sure approximate class-balance in these classification prob-
lems. Because household consumption behavior is likely to
change over a longer period, Tasks 2-4 are expected to be
harder than Task 1. Results for these tasks are reported in
columns Tasks 1-4 in Table 3.

Wearable Device Data: This data consist of wearable
device data from the National Health and Nutrition
Examination Survey (NHANES) (NCHS, CDC 2020). Each
subject in the study wore a device that continuously mea-
sures the intensity level of their physical activities within
one week. The functional covariate X (¢) is the average
activity levels every 30 minutes for one full day, resulting in
a curve of 48 observations per subject. We examine whether
physical activities are predictive of various health outcomes:

Table 2: Test-set MSE of predictions in Case 5. AdaFNN
with active regularization is highlighted in bold.

METHOD NO. BASES MSE
RAw (51) + NN 51 0.339
B-SPLINE (4) + NN 4 0.382
B-SPLINE (15) + NN 15 0.257
FPCAg.99 NN 28 0.693
AdaFNN(0,0.0.0) 2 0.598
AdaFNN(0.5,0.0) 2 0.231
AdaFNN(0.0,0.1) 2 0.207

VA

Figure 6: The (scaled) bases under simulation Case 5
learned by: AdaFNN(0, 0) on the left, AdaFNN(0.5,0) in
the middle, and AdaFNN(0, 0.1) on the right.

5. Predict whether a subject has diabetes. [classification]
6. Predict if subject feels chest pain. [classification]

7. Predict whether a subject experiences shortness of
breath on stairs. [classification)

Tasks 6 and 7 aim at predicting a subject’s cardiovascular
health. Results for Tasks 5-7 are reported in column Task 5
to column Task 7 in Table 3.

Mexfly and Medfly Data: The final two datasets pertain
to Mexican fruit flies (Mexfly) (Carey et al., 2005) and
Mediterranean fruit flies (Medfly) (Chiou et al., 2003),
recording the number of eggs laid daily for each fly. Our
task is to use early trajectories of egg-laying (daily number
of eggs laid) to predict the lifetime reproduction, defined as
the total number of eggs laid by the fly over its lifetime:

8. Predict lifetime reproduction of a Mexfly using its egg-
laying curve X (t) from day 1 to 30. [regression]

9. Predict lifetime reproduction of a Medfly using its
egg-laying curve X (t) from day 1 to 20. [regression]

The choice of the thresholds, day 20 and 30, is motivated by
predicting lifetime reproduction based on early reproduction
pattern in pre-peak period (peak usually occurs after 20 or
30 days depending on the species). Results are presented in
Table 3 in columns Tasks 8 and 9.

Results. Empirically, AdaFNN performs better than all
baseline methods in all 9 prediction tasks, demonstrating its
advantage for diverse forms of real functional data spanning
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Table 3: Comparing test-set performance of different methods’ predictions on 9 functional datasets (MSE in regression,
1 — AUC in classification). For each dataset, the asterisk indicates which AdaFNN hyperparameters performed best on the

validation set, and the best performing method on the test data is indicated in bold.

METHOD TASK 1 TASK2 TASK3 TASK4 TASKS TASK6 TASK7 TASK8 TASKO9
RAW DATA (48) + NN  0.099 0.284 0.124 0.296 0.380 0.488 0.472 0.406 0.373
B-SPLINE (15) + NN 0.094 0.306 0.137 0.326 0.335 0.477 0.429 0.413 0.387
FPCAp.99 + NN 0.119 0.339 0.143 0.306 0.363 0.493 0.431 0.429 0.378
ADAFNN (0.0, 0.0) 0.084" 0.290*  0.129* 0.311 0.365 0.477 0.410 0.377*  0.375
ADAFNN (0.0, 1.0) 0.094 0.276 0.126 0.327 0.561 0.479*  0.498 0.374 0.392
ADAFNN (0.0, 2.0) 0.097 0.276 0.129 0.324 0.596 0.481 0.473 0.381 0.445
ADAFNN (0.5, 0.0) 0.108 0.260 0.130 0.310*  0.380* 0.490 0.410 0.376 0.368
ADAFNN (0.5, 1.0) 0.089 0.279 0.126 0.324 0.616 0.486 0.494 0.362 0.413
ADAFNN (0.5, 2.0) 0.098 0.280 0.128 0.345 0.392 0.509 0.444 0.373 0.450
ADAFNN (1.0, 0.0) 0.084 0.288 0.118 0.294 0.339 0.485 0.413 0.378 0.406
ADAFNN (1.0, 1.0) 0.097 0.282 0.133 0.320 0.651 0.502 0.456 0.371 0.394
ADAFNN (1.0, 2.0) 0.092 0.279 0.127 0.326 0.371 0.510 0.414 0.374 0.416

regression/classification problems. In contrast, none of the
baseline methods consistently outperformed all other base-
lines across these tasks. Basis orthogonality and sparsity
were used to improve learned representations and possi-
bly get a better fit of the data (but like all regularization,
the effectiveness of our proposed regularizers varies from
dataset to dataset). Many of the best reported results are
from AdaFNN with penalty A\; > 0, demonstrating that our
orthogonal regularization technique improves the learned
functional representations. While Ay > 0 only produces the
most accurate AdaFNN model for one of the tasks, the L
penalty can remain useful for interpretability of the model.
As with all regularizers, the optimal degree of regularization
to employ also varies from dataset to dataset. By leveraging
its superior representational capabilities, AdaFNN is also
able to achieve superior accuracies with fewer bases than
the B-spline + NN or FPCA + NN baselines.

6. Conclusion

This work presents a new approach to adapt representa-
tion learning techniques for functional data. Our proposed
architecture does not require handcrafted bases to handle
functional inputs, and learns the optimal bases for a par-
ticular dataset in an end-to-end manner. The Basis Layer
compresses functional covariates in a linear fashion into a
low-dimensional vector that reflects only those factors of
variation most relevant to the response value. Traditional di-
mension reduction techniques like FPCA instead attempt to
capture all variation in the functional input itself, regardless
of its relationship to the response. There are many disad-
vantages to retaining global information about X (¢) rather
than merely what is needed to infer Y, some of which are
outlined in the information bottleneck principle of Tishby &
Zaslavsky (2015).

Note that AdaFNN can be easily extended to vector-valued

functional data, where either t € R? or X (¢) € RP for
p > 1. In the former case, each basis layer micro NN sim-
ply operates on vector-valued inputs ¢, while in the latter
case, these micro NN would have larger output layers to pro-
duce vectors rather than scalars. Furthermore, our method
can also be applied to data with both multiple functional
covariates (can simply employ separate basis layers for each
and pool their outputs) as well as auxiliary vector covariates
in addition to X (¢) (can simply concatenate our basis layer
output 7, with these additional covariates before it is fed
into the subsequent feedforward network).

As previously mentioned, AdaFNN is also directly appli-
cable to non-uniform observations of X (¢), where the ¢;
are not equally spaced, although such cases require proper
selection of the integration weights w;. However, success-
ful application of AdaFNN to sparsely observed functional
data, where the underlying process X () is only observed at
few locations ¢, remains nontrivial and likely requires im-
proved numerical integration strategies as well as stronger
inductive bias in the micro NN architecture (Gunter et al.,
2014). Nonetheless, we expect our adaptive Basis Layer
will find broad applicability as a general-purpose represen-
tation learning tool for domains with functional data such as
wearable devices, climatology, genomics, or neuroimaging.
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