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Abstract

We consider learning two layer neural networks using stochastic gradient descent. The mean-field
description of this learning dynamics approximates the evolution of the network weights by an
evolution in the space of probability distributions in R” (where D is the number of parameters
associated to each neuron). This evolution can be defined through a partial differential equation
or, equivalently, as the gradient flow in the Wasserstein space of probability distributions. Earlier
work shows that (under some regularity assumptions), the mean field description is accurate as
soon as the number of hidden units is much larger than the dimension D. In this paper we establish
stronger and more general approximation guarantees. First of all, we show that the number of
hidden units only needs to be larger than a quantity dependent on the regularity properties of the
data, and independent of the dimensions. Next, we generalize this analysis to the case of unbounded
activation functions, which was not covered by earlier bounds. We extend our results to noisy
stochastic gradient descent.

Finally, we show that kernel ridge regression can be recovered as a special limit of the mean
field analysis.
Keywords: Mean-field, neural networks, kernel limit, distributional dynamics, residual dynamics.

1. Introduction

Multi-layer neural networks, and in particular multi-layer perceptrons, present a number of remark-
able features. They are effectively trained using stochastic-gradient descent (SGD) LeCun et al.
(1998); their behavior is fairly insensitive to the number of hidden units or to the input dimensions
Srivastava et al. (2014); their number of parameters is often larger than the number of samples.

In this paper consider simple neural networks with one layer of N hidden units:

N
A 1
In(z;0) = N 2;0*($30i)7 oy (x;0;) = ajo(xz;w;), (1)
1=
Here € RY is a feature vector, @ = (@1,...,0y) comprises the network parameters, 6; =

(a;,w;) € RP, and 0 : R? x RP~! — R is a bounded activation function. The most classical
example is o (x; w) = o({(w, x)), where o : R — R is a scalar function (and of course D = d + 1),
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but our theory covers a broader set of examples. We assume to be given data (y;, ;) ~ P, with
P € Z(R x RY) a probability distribution over R x R?, and attempt at minimizing the square loss
risk:

Rn(0) =E{(y — fn(x;0))%}. )

The risk function Ry can be either understood as population risk or empirical risk, depending on
viewing PP as a population distribution or assuming P = n ! POy O(yx,zy) 18 supported on n data
points. If R is understood as the population risk, we can rewrite

RN(0) = Ruye + E{(f(z) — fn(2:0))}, 3)

where f(x) = E{y|x} and R, is the Bayes error.

Classical theory of universal approximation provides useful insights into the way two-layers
networks capture arbitrary input-output relations Cybenko (1989); Barron (1993). In particular,
Barron’s theorem Barron (1993) guarantees

ks Tk

1 2
inf R (0) < R + <27"/ ||w||2|F(w)|dw> , @

where F' is the Fourier transform of f, and r is the supremum of ||x||2 in the support of P. This
result is remarkable in that the minimum number of neurons needed to achieve a certain accuracy
depends only on intrinsic regularity properties of f and not on the dimension d. The proof of this
and similar results shows that it is more insightful to think of the representation (1) in terms of the
empirical distribution of the neurons p(N) = N—! > i<n 0, With a slight abuse of notation, we

have fy(x;0) = f(a; p2V)), where, for a general distribution p € 2 (RP), we define

A~

fl@ip) = / 04 (:0) p(d6) 5)

The universal approximation property is then related to the fact that an arbitrary distribution p can
be approximated by one supported on N points'.

Approximation theory provides some insight into the peculiar properties of neural networks.
Small population risk is achieved by many networks, since what matters is the distribution p, not
the parameters 61, ..., 0. The behavior is insensitive to the number of neurons /V, as long as this
is large enough for 5(V) to approximate p. Finally, the bound (4) is dimension-free.

Of course these insights concern ideal representations, and not necessarily the networks gener-
ated by SGD. Recently, an analysis of SGD dynamics has been developed that connects naturally to
the theory of universal approximation Mei et al. (2018); Sirignano and Spiliopoulos (2018); Rotskoff
and Vanden-Eijnden (2018); Chizat and Bach (2018a). The main object of study is the empirical
distribution [),(CN) after k& SGD steps. For large N, small step size € and setting k = t/¢, ﬁ,(CN) turns
out to be well approximated by a probability distribution p; € 2(RP). The latter evolves according
to the following partial differential equation

Ope =26(t)Ve - (Ve (05 p0)),  W(O;py) = V(0)+/U(930~) pi(d6), (DD)
V(0) = —E{you(x;0)}, U(01,02) =E{o.(x;01)0.(x;02)}. (6)

1. Of course, here we are hiding some important technical issues.
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(Here &(t) is a function that gauges the evolution of step size and will be defined below. In fact,
there is little loss to the following discussion in setting £(¢) = 1.) We will refer to this as the mean
field description, or distributional dynamics. This description has the advantage of being explicitly
independent of the number of hidden units N and hence accounts for one of the empirical findings
described above (the insensitivity to the number of neurons). Further, it allows to focus on some key
elements of the dynamics (global convergence, typical behavior) neglecting others (local minima,
statistical noise).

Several papers used this approach over the last year to analyze learning in two-layers networks:
these works will be succinctly reviewed in Section 2.

Of course, a crucial question needs to be answered for this approach to be meaningful: In what
regime is the distributional dynamics a good approximation to SGD? Quantitative approximation
guarantees were established in Mei et al. (2018), under certain regularity conditions on the data
distribution P, and for activation functions o, (x; @) bounded. Under these conditions, and for

time ¢ € [0,7] bounded, Mei et al. (2018) proves that the distributional dynamics solution p;

(N)

j—t/c» When the number of neurons is much

approximates well the actual empirical distribution p
larger than the problem dimensions N > D.
The results of Mei et al. (2018) present several limitations, that we overcome in the present

paper. We briefly summarize our contributions.

Dimension-free approximation. As mentioned above, both classical approximation theory and
the mean-field analysis of SGD approximate a certain target distribution p by the empirical
distributions of the network parameters ). However, while the approximation bound (4) is
dimension-free, the approximation guarantees of Mei et al. (2018) are explicitly dimension-
dependent. Even for very smooth functions f(x), and well behaved data distributions, the
results of Mei et al. (2018) require N > D.

Here we prove a new bound that is dimension independent and therefore more natural: keep-
ing the evolution time 7" = O(1), the new results requires N >> 1 in order to get a vanishing
approximation error (Of course to make the approximation error vanish, /N should depend on
the Lipschitz constants in the assumptions which may implicitly depend on dimension. How-
ever, for some interesting problems, the Lipschitz constants are dimension free, see Section
3.2 for an example). The proof follows a coupling argument which is different and more pow-
erful than the one of Mei et al. (2018). A key improvement consists in isolating different error
terms, and developing a more delicate concentration-of-measure argument which controls the
dependence of the error on V.

Let us emphasize that capturing the correct dimension-dependence is an important test of
the mean-field theory, and it is crucial in order to compare neural networks to other learning
techniques (see Section 4).

Unbounded activations. The approximation guarantee of Mei et al. (2018) only applies to activa-
tion functions o, (x; 6;) that are bounded. This excludes the important case of unbounded
second-layer coefficients a;’s as in Eq. (1). We extend our analysis to the following case: we
assume a;’s can be unbounded, but still assume the function ¢ to be bounded (the current
analysis didn’t handle the case when ¢ is unbounded). This requires to develop an a pri-
ori bound on the growth of the coefficients a;. As in the previous point, our approximation
guarantee is dimension-free.
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Noisy SGD. Finally, in some cases it is useful to inject noise into SGD. From a practical perspective
this can help avoiding local minima. From an analytical perspective, it corresponds to a
modified PDE, which contains an additional Laplacian term Agp;. This PDE has smoother
solutions p; that are supported everywhere and converge globally to a unique fixed point Mei
et al. (2018).

In this setting, we prove a dimension-free approximation guarantee for the case of bounded
activations. We also obtain a guarantee for noisy SGD unbounded activations, but the latter
is not dimension-free.

Kernel limit. We analyze the PDE (DD) in a specific short-time limit and show that it is well
approximated by a linearized dynamics. This dynamics can be thought as fitting a kernel ridge
regression” model with respect to a kernel corresponding to the initial weight distribution py.
We thus recover —from a different viewpoint— a connection with kernel methods that has
been investigated in several recent papers Jacot et al. (2018); Du et al. (2018b,a); Allen-Zhu
et al. (2018). Beyond the short time scale, the dynamics is analogous to kernel boosting
dynamics with a time-varying data-dependent kernel (a point that already appears in Rotskoff
and Vanden-Eijnden (2018)).

Mean-field theory allowed us to prove global convergence guarantees for SGD in two-layers neural
networks Mei et al. (2018); Chizat and Bach (2018a). Unfortunately, these results do not provide
(in general) useful bounds on the network size N. We believe that the results in this paper are a
required step in that direction.

The rest of this paper is organized as follows. The next section overviews related work, focusing
in particular on the distributional dynamics (DD), its variants and applications. In Section 3 we
present formal statements of our results. Section 4 develops the connection with kernel methods.
Proofs are mostly deferred to the appendices.

2. Related work

As mentioned above, classical approximation theory already uses (either implicitly or explicitly) the
idea of lifting the class of /N-neurons neural networks, cf. Eq. (1), to the infinite-dimensional space
(5) parametrized by probability distributions p, see e.g. Cybenko (1989); Barron (1993); Bartlett
(1998); Anthony and Bartlett (2009). This idea was exploited algorithmically, e.g. in Bengio et al.
(2006); Nitanda and Suzuki (2017).

Only very recently (stochastic) gradient descent was proved to converge (for large enough num-
ber of neurons) to the infinite-dimensional evolution (DD) Mei et al. (2018); Rotskoff and Vanden-
Eijnden (2018); Sirignano and Spiliopoulos (2018); Chizat and Bach (2018a). In particular, Mei
et al. (2018) proves quantitative bounds to approximate SGD by the mean-field dynamics. Our
work is mainly motivated by the objective to obtain a better scaling with dimension and to allow for
unbounded second-layer coefficients.

The mean-field description was exploited in several papers to establish global convergence re-
sults. In Mei et al. (2018) global convergence was proved in special examples, and in a general
setting for noisy SGD. The papers Rotskoff and Vanden-Eijnden (2018); Chizat and Bach (2018a)

2. ‘Kernel ridge regression’ and ‘kernel regression’ are used with somewhat different meanings in the literature. Kernel
ridge regression uses global information and can be defined as ridge regression in reproducing kernel Hilbert space
(RKHS), while kernel regression uses local averages. See Remark 58 for a definition.
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studied global convergence by exploiting the homogeneity properties of Eq. (1). In particular, Chizat
and Bach (2018a) proves a general global convergence result. For initial conditions pg with full sup-
port, the PDE (DD) converges to a global minimum provided activations are homogeneous in the
parameters. Notice that the presence of unbounded second layer coefficients is crucial in order to
achieve homogeneity. Unfortunately, the results of Chizat and Bach (2018a) do not provide quan-
titative approximation bounds relating the PDE (DD) to finite-IN SGD. The present paper fills this
gap by establishing approximation bounds that apply to the setting of Chizat and Bach (2018a).

A different optimization algorithm was studied in Wei et al. (2018) using the mean-field de-
scription. The algorithm resamples a positive fraction of the neurons uniformly at random at a
constant rate. This allows the authors to establish a global convergence result (under certain as-
sumed smoothness properties on the PDE solution). Again, this paper does not provide quantitative
bounds on the difference between PDE and finite-N SGD. While our theorems do not cover the
algorithm of Wei et al. (2018), we believe that their algorithm could be analyzed using the approach
developed here. Exponentially fast convergence to a global optimum was proven in Javanmard
et al. (2019) for certain radial-basis-function networks, using again the mean-field approach. While
the setting of Javanmard et al. (2019) is somewhat different (weights are constrained to a convex
compact domain), the technique presented here could be applicable to that problem as well.

Finally, a recent stream of works Jacot et al. (2018); Geiger et al. (2019); Du et al. (2018b,a);
Allen-Zhu et al. (2018); Zou et al. (2018); Arora et al. (2019); Oymak and Soltanolkotabi (2018)
argues that, as N — oo two-layers networks are actually performing a type of kernel ridge regres-
sion. As shown in Chizat and Bach (2018b), this phenomenon is not limited to neural network, but
generic for a broad class of models. As expected, the kernel regime can indeed be recovered as a
special limit of the mean-field dynamics (DD), cf. Section 4. Let us emphasize that here we focus
on the population rather than the empirical risk.

A discussion of the difference between the kernel and mean-field regimes was recently presented
in Dou and Liang (2019). However, Dou and Liang (2019) argues that the difference between kernel
and mean-field behaviors is due to different initializations of the coefficients a;’s. We show instead
that, for a suitable scaling of the initialization, kernel and mean field regimes appear at different
time scales. Namely, the kernel behavior arises at the beginning of the dynamics, and mean field
characterizes longer time scales. It is also worth mentioning that the connection between mean
field dynamics and kernel boosting with a time-varying data-dependent kernel was already present
(somewhat implicitly) in Rotskoff and Vanden-Eijnden (2018).

3. Dimension-free mean field approximation

3.1. General results

As mentioned above, we assume to be given data {(yx, Tx) k1 ~iid. P € Z(R x R?), and we
run SGD with step size s:

0; ! = 0 + 2s1(yr, — [ (k;0%)) Voo (a; 6f). (SGD)

We will work under a one-pass model, that is, each data point is visited once.
We also consider a noisy version of SGD, with a regularization term:

05 = (1 — 2Xs,)0F + 25 (yp — fv(x1; 0))Vaos(xr; 0F) + /251,7/D gF,  (noisy-SGD)
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where gf ~ N(0, Ip). The noiseless version is recovered by setting 7 = 0 and A = 0. The step
size is chosen according to : s = €&(ke), for a positive function £ : R>¢g — Ro.
The infinite-dimensional evolution corresponding to noisy SGD is given by

Orpr = 2£(t) Vg - (pt(G)VQ\I/)\(H;pt)) + 26(t) 7D Agpy (diffusion-DD)
A
UA(6;p) = (85 p) + 5165 - @

The function ¥ is defined as in (DD). At this point it is important to note that the PDE (DD) has to
be interpreted in weak sense, while, for 7 > 0, Eq. (diffusion-DD) has strong solutions i.e. solutions
p:(t,0) — p(0) that are C12(R x RP) (once continuous differentiable in time and twice in space,
see Mei et al. (2018) and Appendix F).

It is useful to lift the population risk in the space of distributions p € Z2(RP)

R(p) = E(y) + 2 / V(0)p(d6) + / U(0.6')p(10)p(d6)) . ®)

We also note that, given the structure of the activation function in Eq. (1), for 6 = (a,w), 6; =
(ai, w;), we can write V(0) = av(w), U(601,62) = ajaz u(w;, w2), where we denoted v(w) =
—E{yo(z;w)} and u(wi, w2) = E{o(x; w1)o(x; w2)}.

In order to establish a non-asymptotic guarantee, we will make the following assumptions:

Al. t+— ¢(t) is bounded Lipschitz: [|€] .. 1€/, < K-

A2. The activation function ¢ : RY x RP~! — R and the response variables are bounded:
lloll & s lyk| < K. Furthermore, its gradient V,0 (x; w) is K2-sub-Gaussian (when x ~ P).

A3. The functions w — v(w) and (wi,w2) — u(w;,ws) are differentiable, with bounded
and Lipschitz continuous gradient: ||[Vo(w)|l2 < K3, ||[Vu(wi, w22 < K3, ||Vu(w) —
Vo(w')[l2 < Ksllw—w'|l2, [Vu(wr, w2) — Vu(w, wy) |2 < Ksl|(wi, wa) — (wi, w))||2.

25

A4. The initial condition pg € Z(RP) is supported on |a;| < K for a constant K.

We will consider two different cases for the SGD dynamics:

General coefficients. We initialize the parameters 89 = (a?, w?) as (69);<n ~iia po. Both the a!

and w? are updated during the dynamics.

Fixed coefficients. We use the same initialization as described above, but the coefficients a; are not
updated by SGD. The corresponding PDE is given by Eq. (DD) (or (diffusion-DD)), except
that the space derivatives are to be interpreted only with respect to w, i.e. replace Vg by
(0, Vi), and Ag by Ay,.

While the second setting is less relevant in practice, it is at least as interesting from a theoretical
point of view, and some of our guarantees are stronger in that case.

Theorem 1 Assume that conditions A1-A4 hold, and let T > 1. Let (pt)i>0 be the solution
of the PDE (DD) with initialization po, and let (8%).cn to be the trajectory of SGD (SGD) with
initialization 0,? ~ po independently.
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(A) Consider noiseless SGD with fixed coefficients. Then there exists a constant K (depending
uniquely on the constants K; of assumptions Al-A4) such that

sup  |Rn(6%) — R(pye)
ke[0,T/e]NN
1
<KefT ——[\/log N + z] + KeXT[\/D +1og(N) + z]v/¢ ©)

VN
with probability at least 1 — e,

(B) Consider noiseless SGD with general coefficients. Then there exists constants K and K
(depending uniquely on the constants K; of assumptions A1-A4) such that ife < 1/[Ky(D +
log N + z2)eK0T3], we have

sup  |Rn(6%) — R(ppe)
k€[0,T/e]NN
1
<KX’ —_[\/log N + 2] + KeXT*[\/D ¥ log N + 2]\/z (10)

VN

with probability at least 1 — e,
Remark 2 As anticipated in the introduction, provided T, K = O(1) (e.g., the centered Gaussian
example in section 3.2), the error terms in Egs. (9), (10), are small as soon as N > 1. In other
words, the minimum number of neurons needed for the mean-field approximation to be accurate is
independent of the dimension D, and only depends on intrinsic features of the activation and data
distribution.

On the other hand, the dimension D appears explicitly in conjunction with the step size €. We
need € < 1/D in order for mean field to be accurate. This is the same trade-off between step size
and dimension that was already achieved in Mei et al. (2018).

We next consider noisy SGD described in Eq. (noisy-SGD), and the corresponding PDE in
Eq. (diffusion-DD). We need to make additional assumptions on the initialization in this case.

AS. The initial condition py is such that, for 89 = (a?, wY) ~ po, we have that w? is K2/ D-sub-
Gaussian.

A6. V € CHRP), U € CHRP x RP), and V¥u(81,05) is uniformly bounded for 0 < k < 4.

Remark 3 The last condition ensures the existence of strong solutions for Eq. (diffusion-DD). The
existence and uniqueness of solution of the PDE (DD) and the PDE (diffusion-DD) are discussed
in Appendix F.

Theorem 4 Assume that conditions A1 - A6 hold. Let (p;)>0 be the solution of the PDE (diffusion-
DD) with initialization po, and let (Ok) keN fo be the trajectory of noisy SGD (noisy-SGD) with
initialization 09 ~ pq independently. Finally assume that A < Kg, 7 < Kg, T > 1.
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(A) Consider noisy SGD with fixed coefficients. Then there exists a constant K (depending
uniquely on the constants K; of assumptions Al1-AS and Kg) such that

sup  |Rn(0%) — R(pye)
ke[0,T/e]NN
1
<KeXT —[\/log N + z] + Ke®T[\/D +log(N/¢) + z]\/e (11)

VN
with probability at least 1 — e,

(B) Consider noisy SGD with general coefficients. Then there exists a constant K (depending
uniquely on the constants K; of assumptions Al1-AS and Kg) such that

sup ‘RN(Hk) — R(pge)

ke[0,T/]NN
<Ke v lOgN"'ZQ][\/DlogN +10g*?(NT) + 2°] /N (12)

1 Ko T VIog N+27] [\/ﬁlog(N(T/a V1)) + log®? N + PR
with probability at least 1 — e,

Remark 5 Unlike the other results in this paper, part (B) of Theorem 4 does not establish a
dimension-free bound. Further, while previous bounds allow us to control the approximation er-
ror for any T = o(log N'), Theorem 4.(B) requires T' = o(loglog N) . The main difficulty in part
(B) is to control the growth of the coefficients a;. This is more challenging than in the noiseless
case, since we cannot give a deterministic bound on |a;|.

Despite these drawbacks, Theorem 4 (B) is the first quantitative bound approximating noisy
SGD by the distributional dynamics, for the case of unbounded coefficients. It implies that the mean
field theory is accurate when N > D.

3.2. Example: Centered anisotropic Gaussians

To illustrate an application of the theorems, we consider the problem of classifying two Gaussians
with the same mean and different covariance. This example was studied in Mei et al. (2018), but we
restate it here for the reader’s convenience.

Consider the joint distribution of data (y, ) given by the following:

With probability 1/2: y = +1,  ~ N(0, X ),
With probability 1/2: y = —1,  ~ N(0, X_),

where ¥4 = U Tdiag((1 4+ A)%I,,, I;_,,)U for U to be an unknown orthogonal matrix. In other
words, there exists a subspace )V of dimension sg, such that the projection of  on the subspace
V is distributed according to an isotropic Gaussian with variance TJQr = (14+ A)?(fy = +1) or
72 = (1 — A?) (if y = —1). The projection orthogonal to V' has instead the same variance in the
two classes.
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We choose an activation function without offset or output weights o.(x;0;) = o((w;, x)).
While qualitatively similar results are obtained for other choices of o, we will use a simple piecewise
linear function (truncated ReLLU) as a running example: take t; < to,

81, ift <y,
O'(t) = S9, if ¢ 2 tQ,
81+(82—81>(t—t1)/(t2—t1), ift e (tl,tQ).

We introduce a class of good uninformative initializations Pyo0q4 € & (R>g) for which conver-
gence to the optimum takes place. For p € Z(R>(), we let

Rq(p) = R(p x Unif(S%71)), Ru(p) = Jim Rq(p).

We say that p € Pyo0q if: (i) p is absolutely continuous with respect to Lebesgue measure, with
bounded density; (ii) Roo(p) < 1.

The following theorem is an improvement of (Mei et al., 2018, Theorem 2) using Theorem 1,
whose proof is just by replacing the last step of proof of (Mei et al., 2018, Theorem 2) using the
new bounds developed in 1 (A).

Theorem 6 For any n,A,0 > 0, and py € Pgood, there exists dy = do(n, po, N,7), T =
T(n, po, A,7), and Cy = Cy(n, po, A, d,7), such that the following holds for the problem of
classifying anisotropic Gaussians with so = ~d, v € (0,1) fixed. For any dimension param-
eters so = ~yd > do, number of neurons N > Cy, consider SGD initialized with initializa-
tion (w))i<n ~iia po x Unif(S¥1) and step size ¢ < 1/(Cod). Then we have Ry(6%) <
infgepnxa Ry (0) + n for any k € [T'/e, 10T /<] with probability at least 1 — 6.

Comparing to (Mei et al., 2018, Theorem 2), here we require N = O(1) neuron rather than previ-
ously V = O(d) neurons. The number of data used £ = O(d) is still on the optimal order.

4. Connection with kernel methods

As discussed above, mean-field theory captures the SGD dynamics of two layers neural networks
when the number of hidden units N is large. Several recent papers studied a different description,
that approximates the neural network as performing a form of kernel ridge regression Jacot et al.
(2018); Du et al. (2018b). This behavior also arises for large N: we will refer to this as to the ‘kernel
regime’, or ‘kernel limit’. As shown in Chizat and Bach (2018b) the existence of a kernel regime is
not specific to neural networks but it is a generic feature of overparameterized models, under certain
differentiability assumptions.

4.1. A coupled dynamics

We will focus on noiseless gradient flow, and assume y = f(x) (a general joint distribution over
(y, x) is recovered by setting f(x) = E{y|x}). As in Chizat and Bach (2018b), we modify the
model (1) by introducing an additional scale parameter «:

fon(x;0) = Za*we (13)
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In the case of general coefficients a;, this amounts to rescaling the coefficients a; — a;/«. Equiva-
lently, this corresponds to a different initialization for the a;’s (larger by a factor «).

We first note that the theorems of the previous section obviously hold for the modified dynamics,
with the PDE (DD) generalized to

8tpt ZOCVQ : (ptVQ\I/a(B, Pt)) > (14)
Va(6,p) =Ea{0.(2:6) (falx;p) — ()} = V(6) + a/U((’,O’)p(df)’)» (15)

where fo(z;p) = a [ o.(x; 0) p(dO). It is convenient to redefine time units by letting pf* = p,—2.
This satisfies the rescaled distributional dynamics

1
opy = avo (piVela(0,p7)) . (Rescaled-DD)

We next consider the residuals u(x) = f(x) — f(x; pf) which we view as an element of L? =
L%(R%P). As first shown in Rotskoff and Vanden-Eijnden (2018), this satisfies the following mean
field residual dynamics (for further background, we refer to Appendix H):

0 () = — [ Hyp (. 8)u (@) P4) = ~ (Hypui) (@), (RD)
Holw.) = [ (Voo (2:6), Voo (:6)) pd6). (16)

Coupling the dynamics (Rescaled-DD) and (RD) suggests the following point of description. Gra-
dient flow dynamics of two-layers neural network is a kernel boosting dynamics with a time-varying
kernel. The scaling parameter « controls the speed that the kernel evolves.

The mean field residual dynamics (RD) implies that

OcRa(pf!) = Oulufl72) = —2(uf, Hppuf!) 12,

so that the risk will be non-increasing along the gradient flow dynamics. However, since the kernel
Hpta is not fixed, it is hard to analyze when the risk converges to 0 (see (Mei et al., 2018, Theorem
4), (Chizat and Bach, 2018a, Theorem 3.3 and 3.5) for general convergence results).

4.2. Kernel limit of residual dynamics

The kernel regime corresponds to large o and allows for a simpler treatment of the dynamics.
Heuristically, the reason for such a simplification is that the time derivative of p¢* is of order 1/c,
cf. (Rescaled-DD). We are therefore tempted to replace H,¢ in Eq. (RD) by H,,. Formally, we
define the following linearized residual dynamics

Gtuf = —’Hpouf . (17)

We can also define the corresponding predictors by f;* = f — u;. The operator H,, is bounded and
standard semigroup theory Evans (2009) implies the following.

Lemma 7 We have limy_,o uf = us, = P, ug, where P, is the orthogonal projector onto the
null space of H,,. In particular, if the null space of H,, is empty, then lim;_, ||uf||2 — O.
Correspondingly f% = P/% f+ P,y fg (Where PpL0 =1—-P,).

10
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The next theorem shows that the above intuition is correct. For o > t2D3/2, the linearized
dynamics is a good approximation to the mean field dynamics. Below, we denote the population

risk by Ra(p): Ra(p) = Eo[(f(®) — fa(®:p))?].

Theorem 8 Let uf* and u; be the residues in the mean-field dynamics (RD) and linearized dynam-
ics (17), respectively. Let assumptions Al, A3, A4 hold, and additionally assume the following

o |yi|, [|o]lcc < K9, and 0 — o, (x; 0) is differentiable.
o [V3u(w, w)llops [V u(w, w') o < 5.
o Ra(,oO) < B.
Then there exists a constant K depending on {K;}}_,, such that

(A) For SGD with fixed coefficients, we have

o — e, <xwt2p L s
Ra(pf) < (il + Kx 2B 0) 19
(B) For SGD with general coefficients, we have
g — uf ||, <K&Y*(1+ BY 275/04>319Di/jt2 ) (20)
Rapf) < (Il + Kr'2(1 + Bl/2t/a>BBW)2. 1)

(C) In particular, if under the law (a,w) ~ po, a is independent of w and |E(a)| < Ks5/a. Then
B < K is independent of o If the null space of H,, is empty, then under both settings (fixed
and variable coefficients)

lim sup |uf —uj|L, =0, (22)
Q70 (0,77
lim lim Ra(p%) =0. 23)

t—o00 a—00

Remark 9 Unlike in similar results in the literature, we focus here on the population risk rather
than the empirical risk. The recent paper Chizat and Bach (2018b) addresses both the over-
parametrized and the underparametrized regime. The latter result (namely (Chizat and Bach,
2018b, Theorem 3.4)) is of course relevant for the population risk. However, while Chizat and Bach
(2018b) proves convergence to a local minimum, here we show that the population risk becomes
close to 0.

Remark 10 As stated above, the linearized residual dynamics can be interpreted as performing
kernel ridge regression with respect to the kernel H,,, see e.g. Jacot et al. (2018). A way to clarify
the connection is to consider the case in which P’ = n=1Y"._ 8. is the empirical data distribution.
In this case the linearized dynamics converges to B

Jim f{(2) = f3.(2) = h(z) TH 'y

11
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where
h(z)

H

[HPO (Zv :131), s 7HP0 (zv mn)]T7
(Hpo(miij))?jzla
Yy [f(m1)> SRR f(mn)]-r

For the sake of completeness, we review the connection in Appendix H.7.
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I Technical lemmas

Appendix A. Notations

e For future reference, we copy the key definitions from the main text:

2 & -
Ry(0) = E{y?} + NZV(HZ-) + 32 > U(6:,9)),
=1

ij=1

mm=Ew%+2/vwmmm+/bwhwmmmmM%»

V(0) = —E{yo.(x;0)},

U(601,02) = E{o«(x;01)04(x;02)},

W@mZV@+/U@wmw»

A
U (0;p) =¥ (0;p) + 5“‘9”%7

60
60
60
64

67

70
70
71
72
72
73
73
74

76

where 0 = (0;)i<n € RP*N or @ € RP depending on the context. Further, we will denote

for @ = (a,w) and 8’ = (d’, w’):
V(0) = av(w),
In particular,

VeV (0) = (v(w), aVyv(w)),

VoU(0,6") = (a'u(w,w’),ad'Vyu(w,w")).

U(0,0") = ad u(w,w’).

In the case of fixed coefficients, without loss of generality, we will fix in the proof a; = 1 for
notational simplicity and freely denote (6;)Y.; = (w;)Y,,

V(6) = v(w),
VeV (0) = Vyv(w),

16

U6,0") = u(w,w’),
VeU(0,0') = Vyu(w,w').
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o Wy(-,-) is the Wasserstein distance between probability measures
: 9 : . 1/2
Wa(p,v) = (mf {/ |61 — 02]|57(dO;1,dOs) : ~is a coupling of , y}) .
RD xRD

e For N € N, we will denote [N] = {1,2,..., N}. With a little abuse of notation, for s € R,
we will denote [s] = ¢|s/e], with ¢ the time discretization parameter.

e K will denote a generic constant depending on K; for i = 1,2,3,4, 5,6, where the K;’s are
constants that will be specified from the context.

o In the proof and the statements of the theorems, we will only consider the leading order in 7.
In particular, we freely use that K Tk logl TekET < K'eK 'T for a constant K’ > K.

e For readers convenience, we copy here the two simplified versions of Gronwall’s lemma that
will be used extensively in the proof.

(i) Consider an interval I = [0, ¢] and ¢ a real-valued function defined on I, assume there
exists positive constants «, 3 such that ¢ satisfies the integral inequality

t
b(t) < o+ B /0 o(s)ds, Vel

then ¢(t) < aeP forall t € I.

(ii) Consider a non-negative sequence {¢y}}_, and assume there exists positive constants
a, 3 such that {¢;, }}_, satisfies the summation inequality

¢<a+B D> b, Vke{0,1,...,n},

0<i<k

then ¢}, < a + aBkeP* forall k € {0,1,...,n}.

Appendix B. Proof of Theorem 1 part (A)

Throughout this section, the assumptions of Theorem 1 (A) are understood to hold. These are
assumptions A1-A4 in Section 3. In writing the proofs, for notational simplicity, we consider the
following special setting:

R1. The coefficients a; = 1.
R2. The step size function £(¢) = 1/2.

The proof can be easily generalized to the case of general bounded coefficient |a;| < K, and non-
constant function £(t).
In the proof of this theorem, we have (6;)Y | = (w;)¥,, and

V(0;) =a;iv(w;) = v(w;),

U(QZ, BJ) :aiaju(wi, wj) = u(wi, wj).

We will consider four dynamics (note we choose £(¢) = 1/2 in these equations):

17
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o The nonlinear dynamics (ND): we introduce (0 )ze[ N),t>0 With initialization 00 ~ poii.d.

%0; = — 2(t) [VV(éf.) + / le(e‘g,e)pt(do)].

Equivalently, we have the integral equation

00+2/ £(5)G(67; ps)d (24)

where we denoted G (6; p) = —V¥(0; p) = —VV(0) — [ V1U(0,6')p(d0’). Note that !
is random because of its random initialization, and its law is p.

e The particle dynamics (PD): we introduce (8});c[n]+>0 With initialization 0 =6

d

1 N
8= 2xm|vvE) + 5 ;w(eﬁ,%)}

We introduce the particle distribution B§N ) = (1/N) Ef\; 1 0t In integration form, we get:

t
9042 / £(5)G(85; 9 ds. 25)
0

e The gradient descent (GD): we introduce (éf)ie[N],keN with initialization 89 = 9:

i1 =gk — 2, [vv k) + Zle (65,6%)],

where s = e£(ke). We introduce the particle distribution [)I(CN) = (1/N) Zfi 10gk- In
summation form, we get:

—1
0F =67 +2: 3" c(1e)G (8% ). (26)

The GD dynamic corresponds to the discretized particle dynamic (25).
e The stochastic gradient descent (SGD): we introduce (Of)ie[ N),ken With initialization 0? =
60
O =0F — 25, F(0"; 211),

where F(9 Zpt1) = (yk;+1 — Gk41) Voo (zpi1;0F), with z, = (zk, yx) and Jpy1 =
(1/N) ZJ 1 a*(azkH,B ). In summation form, we have

k—1
oF 90+2eZ§ze Fy(0';2,1). (27)

18
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Denote 8! = (6%,...,0%,), 8" = (6%,...,0%), 8" = (6%,...,6%), and 8' = (8},...,8%).
For t € R>, define [t] = €|t/c]. We will use the nonlinear dynamics, particle dynamics, gradient
descent dynamics as interpolation dynamics

R(pre) — RN(ek)’ S‘R(pka) — Ry (6%)

_i_‘RN(ékE) _ RN(Qk:a)

PDE—-ND ND—-PD
+‘RN(9’%) - RN(é’f)] +]RN(ék‘) - RN(G’“)‘ .

PD-GD GD-SGD

22

By Proposition 13, 16, 18, 19 proved below, we have with probability at least 1 — e™*",

sup Ry (6') — R(p)| <K —=[y/log(NT) + 2],

t€[0,T] ~ VN
- 1
sup |Rn(0") — Ry (0" <KefT——[\/log(NT) + 2],
tE[O’T]\ N(8") — By (6")] \/N[ (NT) + 2]
sup  |Rn(0%) — Ry (0%)| <KeKTe,
ke[0,T/e]NN
sup  |Rn(6%) — Ry (6%)| <Ke®T\V/Te[\/D +log N + z].
ke€[0,T/e]NN

Combining these inequalities gives the conclusion of Theorem 1 (A). In the following subsections,
we prove all the above interpolation bounds, under the setting of Theorem 1 (A).

B.1. Technical lemmas
Assumptions Al - A3 immediately implies that
Lemma 11 There exists a constant K depending on K1, Ko, K3, such that
VI ULV V2, VU2, V2V lop, VU [lop < K.
Forany 0 = (0,)N., and 6’ = (0))}¥,, we have
[R(0) — R(0)| < K max [|6; — 6|2 (28)

Proof [Proof of Lemma 11] Note we have
V(0) = = Eyxlyo(z; 0)],
U(Ol, 02) :Em [O‘($; Ol)a(w; 02)]
The boundedness of V' and U are implied by the boundedness of |||/~ and |y| in Assumption Al.

The boundedness of |[VV||2, [[VU]|2, V2V |lop, | V2U ||op are implied by Assumption A3.
Finally, Eq. (28) holds by noting that

|Rn(0) — Ry (8'))| ZW VOl + 32 Z|U 0;,0,) — U(6,,0))],
3,5=1

and by the Lipschitz property of V' and U. |

Using Eq. (24) and (25), we immediately have

19
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Lemma 12 There exists a constant K such that for any time s, t

167 — 6512 <Kt — s,
167 — 6|2 <Kt — s,
Wa(pt, ps) <Kt — .

Proof [Proof of Lemma 12] The first two inequalities are simply implied by the boundedness of
VV and VU, and Eq. (24) and (25). The third inequality is simply implied by

Wa(pe, ps) < (E[]6} — 67113])"/2.

B.2. Bound between PDE and nonlinear dynamics

Proposition 13 (PDE-ND) There exists a constant K depending only on the K;, 1 = 1,2, 3, such
that with probability at least 1 — e, we have

_ 1
sup |Ry(0Y) — R < K——[/log(NT) + z].
S 1R(0%) = Ripo)| < K7 [VIoa(NT) +2]

Proof [Proof of Proposition 13] We decompose the difference into the following two terms

|Rn(0") — R(pi)| < |Rn(8') —ERN(0")|+ |[ERN(0") — R(py)] .
I II

where the expectation is taken with respect to é? ~ pgo. The result holds simply by combining
Lemma 14 and Lemma 15. n

Lemma 14 (Term II bound) We have
[ERN(6) — R(pt)| < K/N.

Proof [Proof of Lemma 14] The bound holds simply by observing that

ERN(O) ~ B = | [ U0.00p:(08) — [ U(61,62)p1(061)p1(a6)| < 1/,

Lemma 15 (Term I bound) There exists a constant K, such that

P( sup [Ry(8") — ER(0")| < K[v/log(NT) +2)/VN) > 1 - ¢
te[0,7)

20
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Proof [Proof of Lemma 15] Let @ = (61,...,0;,...,0y) and @' = (64,...,0.,...60x) be two
configurations that differ only in the ¢’th variable. Then

| R (0) — R (6")]

2 1 2
<—|V(6;) - V(. —|U(6;,6;) —U(8., 6 — 0,,0;,)—U(6.,0,
SN IV(O) VO + 55lU(6,0) UL + 55 >0 1U(6:0) ~U(OL.0)] o
JE[N],j#i
K
<.
N
Applying McDiarmid’s inequality, we have
P(|Rn(0") ~ERy(6")| = §) < exp{~N8*/K}.
By Lemma 12 and 11, we have
|1R(8) ~ ER(8")] - |Ry (6) ~ ERy(6°)]| < Kls — 1.
Hence taking the union bound over s € 1{0,1,...,[7/n]|} and bounding the difference between
time in the interval and grid, we have
P( sup |Rn(8") ~ ERn(8") > 8+ Kn) < (T/n)exp{-~No*/K}.
te[0,7)
Now taking 7 = 1/v/N and 6 = K[\/log(NT) + z]/v/'N, we get the desired result. [

B.3. Bound between nonlinear dynamics and particle dynamics

Proposition 16 (ND-PD) There exists a constant K, such that with probability at least 1 — e,

we have
s a0} — 1l <KMo log(NT) + 2] (30)
o [Rn(6") — Ry (8))] gKeKT\/lﬁ[ Tog(NT) + 2]. 31)
Proof [Proof of Proposition 16] Note we have
5 dt < lle; — 6113 =(6! — 6, vV (8) ~ YV (8)
+ (6! - Zle (6:,6) — V1U(6!.6)))
- Nwt 6. ViU (6!.6!) ~ [ VU(6},6)p:(d6) (32)
(-0~ LS v e /v1U<é§,9)pt(de)>

JF#i
<K|6; — 0l ' max 165 — 05112 + 116 — 0;ll2(K/N + I}),

21
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where
It = H}V Z [le 6.,6") /le 0)p: de)} H

We would like to prove a uniform bound for I} fori € [N]and t € [0, 7.

Lemma 17 There exists a constant K, such that

IP’( sup max I} < K| log(NT)—i—z]/\/N) >1—¢ 7.
te[0,T) 1€V

Proof [Proof of Lemma 17] Define X! = VlU(Hf,9§ — [V1U(6%,0)p:(d6). Note we have

E[X/|6}] = 0 (where expectation is taken with respect to 69 ~ py for j # i), and || X{|l2 < 2K
(by assumption that ||VU]|2 < K). By Lemma 59, we have for any fixed i € [IV] and ¢ € [0, T,

P(1! > K(VIN +6)) =E[B(1! > K(VI/N +8)[8!)] < exp{~No2).
By Lemma 12, there exists K such that, for any 0 < ¢,s < T and ¢ € [N], we have
It — If| < K|t — 5.

Taking the union bound over ¢ € [N] and s € n{0,1,...,|7T/n]} and bounding time in the interval
and the grid, we have

]P’( sup max I! > K(y/1/N + 4) +K77> < (NT/n) exp{—N&2}.
te[0,T) t€[N]

Taking 7 = /1/N, and § = K[\/log(NT) + z]/V'N, we get the desired result. [ |
Let 6(N, T, z) = K[\/1og(NT) + z]/V/'N, and define

A(t) = sup max || — 6
() = sup ma 107 —

We condition on the good event in Lemma 17 to happen. By Eq. (32), we have

dA

() S K A(t) + (N, T 2),

and by Gronwall’s inequality, we obtain
A(T) < KefT§(N, T, 2).

By Eq. (28), this proves Eq. (30) and (31) hold with probability at least 1 — e %", |
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B.4. Bound between particle dynamics and GD

Proposition 18 (PD-GD) There exists a constant K such that:
sup  max ||0¥ — 0%, <KefTe,
ke[0,t/e)NN =N
sup  |Rn(0%) — Ry (0%)] <KeFTe.
ke[0,T/e]NN

Proof [Proof of Proposition 18] By Lemma 12, we have

105 — 6|2 <K|t — s,
Wa(p™M, pN)) <K|t — 5.

For k € N and t = ke, we have
16! — 6¥|], < / 1G(03: p™) = GO/ 5 lads
< / 1G(03: p™) = GO/ ) lads

/ HG 0[8 ’pf?]) G(B[S}/E’ ~E§/)€)H2d5

<Kte + K maXHB — 615 || yds.
0 i€[N]

Denoting A(t) = supyeo,t/cjnn Maxi<n 0% — 6%||5. We get the equation

t t
At)gK/ A(s)ds—f—Kta—K/[As +¢lds
0 0

Applying Gronwall’s lemma, we get:
A(T) < KefTe,

Using Eq. (28) concludes the proof. |

B.5. Bound between GD and SGD
Proposition 19 (GD-SGD) There exists a constant K, such that with probability at least 1 — e,

we have
sup  max ||0F — 0F||y <Ke®TVTe[\/D +1log N + 2], (33)
k€[0,T/]NN 4€[N]
sup  |Rn(0%) — Ry (0%)| <KeXT\/Te[\/D +log N + 2]. (34)
ke€[0,T/e]NN
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Proof [Proof of Proposition 19] Denoting Fj = 0’((0?)7;6[ N]s 21, - - - ; 2)) the o-algebra generated
by observations zy = (yg, ) up to step k, we get:

U(of,65) = G(6F . i),

(R j

E[F;(0%; zpy1)| Fi] = —VV(0F) —

||Mz

(N)

where p) " = (1/N) 3¢ (n) Ogr is the empirical distribution of the SGD iterates. Hence we get:
k_ gk
6% — 6! HQ_H ZF 0';2.1) —EZG G H2
<H ZZZ oL o) — G(0L 5 ))HQ
EAZ-“ + Bf,
where we denoted Z! = F;(6'; 2, 1) — E[F;(0'; z;,1)|F] and A¥ = ||e f 01 ZYa.

Note F;(0'; 2111) = (yis1 — 9141) Vw0 (214 1; w!) for 241 = (Y41, 141)- Since we assumed
in A2 that V0 (x; w) is K-sub-Gaussian, and since y;1 and ¢;41 are K bounded, we have that Zf
is K -sub-Gaussian (the product of a bounded random variable and a sub-Gaussian random variable
is sub-Gaussian). We can therefore apply Azuma-Hoeffding inequality (Lemma 60) and get:

IP’( max AfzK\/TTa(\/E—i—z))Se*ZQ.

k€[0,T/e)NN

Taking the union bound over i € [N], we get:

P(max max  AF > Kv/Te( D+logN+z)) <e . (35)
1€[N] k€[0,T/e]NN

Introducing A(t) = supge(o,/c)nn MaXie[N] |0 — 6%||, the BF terms can be bounded by:
ke

Bk <K/ IG5 p(0).) — GOV 51 )lads < K 0 A(s)ds.

Assuming the bad events in Eq. (35) does not happen, we have
t
A(t) < K/ A(s)ds + KVTe(y/D +log N + z).
0

Applying Gronwall’s inequality and applying Eq. (28) concludes the proof. |

Appendix C. Proof of Theorem 1 part (B)

The difference in the proof of part (B) with the proof of part (A) comes from the fact that the
functions V' and U are not bounded and Lipschitz anymore, and that f(x; @) is not bounded by a
constant. However, we show that when starting from an initial distribution pgy with compact support
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in the variable a, the support of p; in the variable a remains bounded uniformly on the interval [0, T']
by a constant that only depends on the K;,¢ =1,2,3,4,and T
For 6 = (a,w) and 8’ = (a/,w’), remember we have

ox(x;0) :aa(m' w),

v(w) = — By z[yo(z; w)],
u(w, w') =E [ (fL‘ w)o(z; w')],
V() =a ( );
U(6,6') =ad’ - u(w, w'),

hence we have
VoV (0) =(v(w),aVyv(w)),

VeU(0,6') =(d' - u(w,w’),ad" - Vyu(w,w")).
Throughout this section, the assumptions Al - A4 are understood to hold. For the sake of simplicity
we will write the proof under the following restriction:

R1. The step size function &(t) = 1/2.

The proof for a general function £(¢) is obtained by a straightforward adaptation.
We define the four dynamics with the same definitions as at the beginning of Section B. We
copy them here for reader’s convenience.

e The nonlinear dynamics (ND): (0 )ze[ N],t>0 With initialization 09 ~ poiid.:

0°+2/

£(s)G (65 ps)d (36)
where we denoted G(8; p) = —V¥(0;p) = —=VV(0) — [ V1U(6,0")p(d0").

e The particle dynamics (PD): (6. )ze[ N1¢>0 With initialization 0 = 6
90+2/5 (8552 ds, (37)
where B(N) = (1/N)N, Jgt -

e The gradient descent (GD): (0 )16[ N],keN With initialization 69 = 0Y:

0k =60 + zezgae)a(ég; ). (38)
=0

where s, = ¢£(ke) and p ~( ) = = (1/N) ZZJL 551_9.
e The stochastic gradient descent (SGD): (0; ),e[ N],keN With initialization 6) = Y-

oF 00+252515 Fi(6'; z11), (39)

where F;(0%;2541) = (Y1 — Oks1)Veos(xpr1; 0F), with zp = (zk,yx) and Jrr1 =

(1/N) Y, abo(@y;wh).
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We have the decomposition

R(pe) = R (6")| <|Ripie) — Rov(6)
PD§:ND ND-PD

+|R(0) - R (8Y)] +| R (8Y) - Ru(6Y)].

+‘RN(ékE) _ RN(Qk:a)

PD-GD GD-SGD

By Proposition 23, 26, 28, 29, there exists constants K and K, such that if we take ¢ < 1/[K(D+
log N + 22)eKo(+T)%] with probability at least 1 — e, we have

sup Ry (6%) — R(py)| <K(1+T)'—[/log(NT) + 2],

t€[0,T) VN
_ 1
sup |Rn(8') — Ry (0% <KeXWHD [ /log(NT) + 2],
tG[O’T]I (@) (") \/N[ (NT) + 2]
sup  |Rn(8") — Ry(6")| <Kef(+1)%¢,
ke[0,T/e]NN
sup  |Rn(6%) — Ry(6F)| <KX+ \/2[\/D +log N + z].
ke[0,T/ejnNN

Combining these inequalities, and noting that KeX (4T < K'eK'T* for some K’ > K, give the
conclusion of Theorem 1 (B). In the following subsections, we prove all the above interpolation
bounds, under the setting of Theorem 1 (B).

C.1. Technical lemmas

Lemma 20 There exists a constant K depending only on the K;, i = 1,2, 3,4, such that

supp(pt) C[-K(1+1t), K(1+1t)] x RP-1,
jaf| <K(1+1),
lal| <K (1+1).

Proof [Proof Pf Lemma 20]
Step 1. Let 6! = (a}, w!), and §(z; p;) = [ ao(@; w)p:(dA). Note that along the PDE, we have

d

R == [ IV0(6: 1) Boi(c6) < 0.

Hence we have (note |y| < K, |o| < K, and supp(po) C [~ K, K] x RP~1)

2
R(p0) = Byl — (@i p)*) < Rloo) = By [ (3~ [ ao(aiw)on(@9))] < &
The nonlinear dynamics for a} gives
S50t = Eyal(y — il p))o (s w)
dt i — 1y, Yy Yy ; Pt y Wills
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which gives
<{Eyol(y — 92 p0)) By wlo (s w)) ]} /2 < K.

P
Hence, we have
|af] < |ad| + Kt < K(1+1).

Note (at, w!) ~ p;, hence we have supp(p;) C [— K(l +1), K(1+1t)] x RP-L,
Step 2. Denote 8} = (a},w?), p (N) = (1/N) Z —10gt, and denote

1
.oty t . t
y(w,Q)—*N > djo(a;w)).

1E€[N]

Note along the PDE, we have
S0 == [ V065 B a6) <

Hence we have (note

| < K)

Ry(8) = Eyal(y — y(a: p))?] < Ry(6°) = By [(y - /aa(az;w)pgm(do)ﬂ < K.

The nonlinear dynamics for a} gives

d
7% = Eyally — y(:09)o(a; w))),
which gives

’%@5 < {Eyol(y — y(@:8"))’|Eyolo (@ w)’]}/? < K.

Hence, we have
la] < la?| + Kt < K(1+1).

This proves the lemma. |

Lemma 21 (Boundness and Lipschitzness) Denoting 0 = (a,w), 61 = (a1, w1) and 8 =
(ag, ws). We have

V(). [[VV(0)]2 <K (1 + |a),
[V (61) = V(62)|, [[VV(61) = VV(02)[la <K - [1 + |as| Afaz] - [[01 — O2]l2,
U(0,6")],[V1U(8,8)]|l2 <K (1 + |a])(1 + |a']),
U(61,0) = U(62,0)] <K(1+a]) - [1+ |ar| Alaz]] - [|61 — 62|z,
IV1.2)U(01,0) = V(12)U(02,0)]2 <K(1 + |a]) - [L + |ar| A|az]] - |61 — 622,
|Rn(6) — R (6'))] SK%%U +Jai] V aj)? - Ioax 16; — 51]2.
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Proof [Proof of Lemma 21] We have
V(8)| =|av(w)| < Kla,
IVV(0)ll2 =[|(v(w), aVwo(w))]l2 < K(1 + |al),
and (assuming |a1| > |az|)
[V(61) — V(62)] =|arv(wr) — azv(ws)|
<K[la1 — az| + |az|[|w1 — w2[2]
<K[1 + |az|]|[61 — 622,

and
IVV(61) = VV(62)]]2
=[l(v(w1) — v(w2), a1 Vo(wi) — aaVo(wz))ll2
<K|wi —wall2 + Kl|a1 Vo(wr) — a2 Vo(wi)l2 + [Ja2[Vu(wi) — Vo(ws)]|2
<K[[|lw1 — wall2 + |a1 — az|] + Klaz|[|w1 — w2
<K(1+|az])[|01 — 62|z,
and
U(6,8)| =|ad"u(w,w’)| < Klal|d|,
and

IVU(8,6") |2 =[(a"u(w, w"), ad" - Viu(w,w"))|2 < Kl|d'|(1 + |al),
and (assuming |a1| > |az|)
|U(61,0) — U(62,0)| =|a1au(w:, w) — azau(wz, w)|
<Kl[la1 — az||a| + |az||a|[|w1 — w2|2]
<K(1+ |az])|al[|61 — O2]|2,

and
ViU (61,0) — V1U(02,0)]|2
=||(au(wi, w) — au(wsz, w), a1aViu(wi, w) — azaViu(wsz, w))|2
<la[[[wy — w22 + Klallar — az| + Klal[az|[|w1 — w22
<Kla|(1 + |az|)[|61 — 62]2,
and

IV2U(61,0) — VaU(02,0)]2
=||(a1u(w1, w) — agu(ws, w), araVaou(wi, w) — azaVau(ws, w))||2
<Klay — az| + Klag||lw1 — wzl|2 + Klal|a1 — az| + Klal|az|[|[w1 — w22
<K(1+|a])(1+ |az|)[[61 — 622

Finally, we have

R(6) — R(0)|
< N 1o 0. — (0.0
<2 V(0:) — V(0)| + max [U(0:,0;) ~ U0}, 6))

<K | max(1+ [ai| Alag])[|0; — 6ll2 + max (1 + |as| A |az])(laj| V [a}])[|0; — 6|2
i€[N] i,jE[N]

),

<K 1 1V a2 - 0. — 0.
< g%( + lai| V |a;|) ;161%3;]”] 2
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This concludes the proof. |

Lemma 22 There exists a constant K such that for any time 0 < s < 't
165 — 652 <K(1+5)%|t — s,
16 — 67 [l2 <K (1 + s)*|t — s,
Wal(pe, ps) <K (14 5)?|t — s].

Proof [Proof of Lemma 22] This lemma holds by the bounds of VV and VU in Lemma 21 and
the bounds for |a!|, |a}| in Lemma 20, and by the inequality

Wa(pe, ps) < (E[]65 — 67113])"/2.

C.2. Bound between PDE and nonlinear dynamics

Proposition 23 (PDE-ND) There exists a constant K, such that with probability at least 1 — e,
we have

- 1
sup |Rn(0Y) — R(p)| < K(1+T)*—=
o Rx(8) ~ Rip)| < KO+ D'

Proof [Proof of Proposition 23] We decompose the difference into the following two terms

[V10g(NT) + 2]

|Rn(0") — R(pi)| < |Rn(8') —ERN(8")| + [ERN(8") — R(py)] .

I II

where the expectation is taken with respect to é? ~ pgo. The result holds simply by combining
Lemma 24 and Lemma 25. n

Lemma 24 (Term II bound) We have
IERN(0") — R(py)] < K(1+1t)*/N.
Proof [Proof of Lemma 24] The bound hold simply by observing that
~ 1
IERN(0") — R(py)| :N‘ /a2u(w,w)pt(d0) - /alagu('wl,wg)pt(del)pt(d02)

<(/N) [ @pi(d6) < K1+ 0P/N,

Lemma 25 (Term I bound) There exists a constant K, such that

p( sup. Ry (6") — ERN(8")] < K(1+T)'[v/log(NT) + 2]/VN) = 1 - ¢,
tefo0,T
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Proof [Proof of Lemma 25] Let 8 = (61,...,0;,...,0y) and @' = (64,...,0.,...60x) be two
configurations that differ only in the i’th variable. Assuming a,a’ € [-K (1 +t), K(1 + t)], then

|R(0) — R (6")]

2 1 2
Sy 1V(0:) = V(6| + 15U (6, 0:) — U (67, 07)| + 5 Y. U6:,6;) —U(6;,6;)]

JE[N],j#i (“40)

S%(l +1)2.
Note we have a} € [—-K (1 +t), K(1 + t)], applying McDiarmid’s inequality, we have
P(IRn(0") ~ ERx(8)] > 6) < exp{~No%/[K(1+1)1]}.
By Lemma 22, 21 and 20, for 0 < s < ¢, we have
|Rn(6") — Ry (6°)]

<K max(1+ |a$| v |at])? - max ||@F — 0] < K (1 + t)*|t — s,
<K max(1+[af] v [al)? - max 0] — 651l < K1+ )¢ — s

which gives
RN (8) — ERy (6')] — | Rx (6°) — ER(6)|| < K (1+)']t - s].

Hence taking union bound over s € {0, 1,...,|7/n]} and bounding difference between time in
the interval and grid, we have

P(ts[lé%] |Rn(0") —ERN(0")| > 6+ K(1+ T)4n) < (T/n)exp{—N&?/[K(1+ T)*}.

Now taking n = 1/v/N and 6 = K (1 + T)*[\/log(NT) + 2]/v/N, we get the desired inequality.
|

C.3. Bound between nonlinear dynamics and particle dynamics

Proposition 26 (ND-PD) There exists a constant K, such that with probability at least 1 — e,

we have
= 3 1
sup max ||@ — 6! SKeK(HT)S— log(NT) + =], 41)
s a0}~ 0l V0B (VT + 4
- 1
sup |Ry(68") — Ry(0)] <KX 1, flog(NT) + z]. (42)
s [Ry(0) ~ R (@) Vioa(NT) + 2

Proof [Proof of Proposition 26]
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Note we have

916t — 6112 =0t — a6, vV (6!) — vV (8

th
+ (01 - Zle 6..6) - v,U(0,6.))
+ Zv U6, 0% —v,U(8,6")
1 79 J 39 29
(8- mvm%%>/vw@@mw»
< Zle 6.,6") /le(é;?,e)pt(de)>
J#%
<K(1+1)%(|6; — 6|2 - max 165 — 6%ll2 + (10} — Of[|2(K (1 +)*/N + I}),
J
(43)
where
_ HN [VIU 6.,6") /le 0)p: de)} H
J#1

The last inequality follows by Lemma 21 and 20. Now we would like to prove a uniform bound for
I fori € [N]and t € [0,T].

Lemma 27 There exists a constant K, such that

IP( sup max I! < K (1 +T)2[y/Iog(NT) + z]/\/N) >1—e %,
te[0,T) ¢€[V]

Proof [Proof of Lemma 27] Denote X! = VU (6!, 0; [ V11U (6, 0)p:(d6). Note we have

E[X/|0!] = 0 (where expectation is taken with respect to 67 ~ pg for j # i), and || X/[[|]2 <
2(1 +t)?K (by Lemma 21 and 20). By Lemma 59, we have for any fixed i € [N] and t € [0, 7],

P(It > K(1+6)2(/1/N +9) ) [ (If > K(1+)2(V/1/N +6) \et)} < exp{—N&2}.
By Lemma 22, there exists K such that, forany 0 < s < ¢ < T'and i € [N], we have
I 1) < K(1+ 62— sl.

Taking the union bound over i € [N] and s € n[7"/n] and bounding time in the interval and the grid,
we have

IP’( sup max I > K(1+T)*(\/1/N +6) + K(1+T)? > < (NT/n) exp{—N§?}.
te[0,7] 1€IN]
Taking = 1/1/N, and § = K[\/log(NT) + z]/v/' N, we get the desired result. [ |

Denote §(N, T, z) = K (1 + T)?[\/log(NT) + 2]/v/'N and

A(t) = sup max || — 63
() = sup s 107 —
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We condition on the good event in Lemma 27 to happen. By Eq. (43), we have
A(t) < K1 +T)?- A(t) +6(N,T, 2),
By Gronwall’s inequality, we have
A(T) < KK §(N| T, 2).

This happens with probability 1 — e~#". This proves Eq. (41). Finally, Eq. (42) holds by Lemma
21. |

C.4. Bound between particle dynamics and GD
Proposition 28 (PD-GD) There exists constants K and K such that, fore < 1/ (K06K0(1+T)3),
we have for anyt < T,
sup |af| <K(1+1),
k€[0,t/]NN

~ 2
sup max||0k€ OF||y <K+t
ke[0,¢/e]NN ¢€[N]

sup  |Rn(8%) — Ry (6%)] <Kef0+T),
ke[0,t/e]NN

Proof [Proof of Proposition 28] Let BgN) = (1/N) sz\il dgs, and ﬁ,iN) = (1/N) Zf\il dgr- For
k € Nand t = ke, we have L

2 2ds

S

5 t
I6} 61 <2 [ 16163 ™) - GO 5}
0
t
<2 [ 161 = Glolh: f ) s
+2/’w;oﬁ,b] — GO 5 s,
By Lemma 22 and 21, for 0 < s < ¢, we have

-1

<|vVv(e7) — VV( )H2+ sup [|[V1U(65,0%) — VU (6] 0[5])”

nm@@m>awhm>m

GEIN] o Y

+ sup [|V1U(65,05) - viU(8), 011,

JE[N]

K1+ |al]]|6; - Wﬂw$§u+wwumWww 0712 + (165 — 0%|12]
jE

<K(1+t)(s—[s]) < K(1+1t)e
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and for u = ke <*t,

)

<|VV(8Y) — VV (6|2 + sup || V1U(8Y,8Y) — V1U(6F,6%)| 2

U Y ~(N
1G (82 p™) — G(65; 5™ 1

jelv o B
+ sup |V,U(6F,8%) — ViU (8F, 6%,
JE[N]
<K(1+|al])]|0y — 6F| + ,S“};] K1+ a1+ a6y — 6F ||
JjE

+ sup K(1+ [af])(1+ |af])|0% — 65|
JE[N]

< K1 +t+a" — a1 +1)]|0% — 6%l < K(1+1)%- 0% — 0% |5, ||0% — 6%|2}.
< max (I+t+1a; —af[)(L+0)]6F — 02 < K(1+1) ]nel%{llfj 2, 105 — 67113}

Denoting A(t) = Supyefo¢/e)nn MaXi<N 0% — 0% ||5, we get the equation
t

A(t) <K(1+t)? / max{A(s), A(s)?}ds + K (1 + t)te
0

<K(1+T)? /Ot[max{A(s), A(s)*} + (1 +T)%]ds.

Let Ta = inf{t : A(t) > 1}. Fort < Ta, we have A(s)? < A(s). Applying Gronwall’s lemma,
we get for any ¢t < Th,
At) < KeKO+T)t

Note we assumed ¢ < 1/(Koef00+T)%) which gives KeX(HT)*Te < 1/2. This shows that
TA > T. Hence we get
A(T) < KeKOHTPT

Moreover, we immediately have,

max sup |af| <max sup |a!|+ max sup 6! — @l
i€[N] ke[0,T/€]NN i€[N] ¢efo,1) i€[N] kejo,T/¢)NN
<K(1+t)+ KeKUAT)T,
<2K(1+1).

Finally, applying the last inequality in Lemma 21 concludes the proof. |

C.5. Bound between GD and SGD

Proposition 29 (GD-SGD) There exists constants K and Ko, such that if we take ¢ < 1/[Ko(D +
log N + 22)€K0(1+T)5], the following holds with probability at least 1 — e foranyt < T, we

have
sup  max |aF| <K(1+1),
ke[0,¢/e]NN ¢€[N]

sup  max ||0F — 6% §K6K(1+T)2t\/g[ D +log N + z],
ke[0,t/e]NN €[N]

sup  |Rn(6F) — Ry (6)] <KeKUH+T*0/2[\/D +log N + z].
ke[0,t/e]NN
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Proof [Proof of Proposition 29] Denoting Fj = o((67);c(n], 21, - -
by the data sample z; = (yg, x¢) for ¢ < k, we get:

., zi,) the o-algebra generated

E[F;(0"; zp11)| i) = —VV(0F) — U(er,er) = G(Ok,p;N)),

Z’j

||Mz

where p,(cN) = (1/N) Xie 505 denotes the empirical distribution of the iterates of SGD. Hence

we get:

16F — 9’“||2_H ZF (6% z141) —EZG gl 5! H

52,
=0

where Z! = F;(6%; z111) — E[F;(0'; 2,41)| F).
Denote AF = 592—01 eZ!. Hence { A¥},cy is a martingale adapted to {7} }xen. Note we have

NG ab]

9

2

Fi(0"; z11) =((yks1 — §(@ry1,0%)o(@p 115 wy),
(Y1 — §(@r41,0%))af Vo (zp1;w])),
where §(@y1,0) = (1/N) X0, abo(@g1;wh).

The following discussion is under the conditional law £( - |F,). Note that |o(zy,1; wrF)| < K,
and [yxt1 — Gr41(0%)] < K(1 4 max; ]aé‘?]), hence (ypi1 — J(xhr1, 0%))o(xpy1;wh) is K (1 +
max; ]af])-sub—Gaussian. Furthermore, V,0(241; wr) is a K-sub-Gaussian random vector, and
|(Yr+1 — §(@h41,0 )) I < K(1 + max; [af|)?, hence (yk11 — §(®k11,0%))af Vo (g11; w))
is a K (1 + max; ]a |)2-sub-Gaussian random vector. As a result, we have F}(0%; z;,1) under the

conditional law L(-|F}) is a K (1 + max; |a§?|)2—sub—Gaussian random vector (concatenation of
two possibly dependent sub-Gaussian random vectors is sub-Gaussian).
Let T, = min{l : max;eyj |al| > My} where My = 2K(1 + T). Then we have

E[e™<Z0)| 7,1 {max |a¥| < My} < e K*MzINE/2,
1€[N]

Now let AY = Ak/\Ta Then A is also a martingale. Furthermore, we have

E[eMAT =47 | 7,y

E[eM AT AT, > kY| Fpo] + Ele™A" AT, < k — 1}|Fi_y]
E[e™ ’1>\fk,1]1{Ta >k} +1{T, <k-1}

E[eAsZ ‘fk_l]l{g%mf*” <MT}+1{Ta Sk—l}

I
N

< KMANI3/2.

Hence we can apply Azuma-Hoeffding’s concentration bound (Lemma 60) to || A ||z,

]P’( max || A¥|s > KM2VTe(VD + z)) <e

ke[0,T/e)NN
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and taking the union bound over i € [N], we get:

]P’(max max ||A" ||y < KM2VTe(\/D + log N —I—z)) >1—e 7. (44)
1€[N] k€[0,T/e]NN

Denote the above event to be a good event Fgq04,

E :{ AT, < KM2VTe(\/D + log N }
od = {max _muae[APP o < KMEVTE(Y/D 0B N +2)

We consider the case in which Eg,,q happens. We have (note we assumed ¢ < 1 / (K06K0(1+T)3),
by Proposition 28, we have supjc (g ¢/cjnn MaXie[n] lak| < K(1+1))

IG(6F; o)) — G(65; 3 12
<|[VV(6F) = VV(65)||o + sup ||V1U(6%,0%) — v, U(6F, 6%)],

jelN] o
+ sup ||V1U(af) Gf) - le(éfv 05)”2
JE[N]
<K(1+ay])0F — 652+ sup K(1+ |af[)(1+ |ak])|0F — 65|
JEIN]
+ sup K(1+ |af|)(1+ [af])]|6f — 672
JE[N]

<K(1+T+ |af — af)(1 + T) max |05 — 65|
JE[N]
2 k ak k ak2
<K(1+T) ‘;Ié%{\\aj — 072,167 — 072}

Denoting A(t) = Supje(o,t/cjnn MaXic[N] |0% — 6%||5. Denote Ta = inf{u : A(u) > 1}. For
t <Ty, NTa AT, we get the equation

A(t) <K M? /Ot A(s)ds + KMZVeT(y/D +log N + 2),
which gives
A(t) < KMEVET(\/D +log N + z)eKMit,
Since we choose € < 1/[K(D + log N + z2)eK0(1+T)3], we have
A(Ty NTa AT) < M3VTe(\/D +1og N + 2)eKMiT < 1/2.
Moreover, fort < T, ANTa AT, we have

sup  max|a¥| < sup max|a¥|+A@M) < KQ+T)+1/2<2K(1+7T).
ke[0,t/e)NN i€E[V] ke[0,t/e)NN 1€E[V]

This means that the stopping times T,, Ta > T. Hence, for any ¢t < T', we have
A(t) <M2VeT(\/D +1log N + z)eKM%t,

sup  max|af| <2K (1 +1).
ke[0,t/ejNN €[]

Note all these happens when event Fg,,q happens. Hence, the probability such that the events

above happens is at least 1 — e Finally, by Lemma 21, we have the desired bound on R . This

concludes the proof. |
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Appendix D. Proof of Theorem 4 part (A)

The proof follows the same scheme as for Theorem 1 (A) and we will limit ourselves to describing
the differences.

Throughout this section, the assumptions A1-A6 of Theorem 4 are understood to hold. For the
sake of simplicity we will write the proof under the following restriction:

R1. The coefficients a; = 1.
R2. The step size function £(¢) = 1/2.

The proof for a general function &(¢) is obtained by a straightforward adaptation.
For the reader’s convenience, we copy here the limiting PDE:

Orpr =26(t)V - [p(0)VWA(; pi)] + 26(t) 7D~ Agpy,

A
V\(8:) =V(0) + [ U(6,6)p(d6") + 3015
We will consider four different coupled dynamics with same initialization (é?)ig N ~iid po and

stochastic term. We will denote {W;(s)}s>o for i € [N] independent D-dimensional Brownian
motions. The integral equations and summation forms of the four dynamics are as follows:

e The nonlinear dynamics (ND):

90+2/§ (05 ps ds+/ V/2£(s)TD- 1AW, (s (45)

where we denoted G(0;p) = —VU,(0;p) = —\0 — VV(0) — [ VoU(0,0")p(d6’), and
0 ~ poi.id.

e The particle dynamics (PD):

90+2/§ (63; p ds+/\/ s)TD1dW,(s (46)

where 89 = ).

e The gradient descent (GD):
_ _ k—1
0 =67 +2:) £(1e)G(6; L / V2¢([s])TD~1dW;(s
=0

where é? = 0_?.

e The stochastic gradient descent (SGD):

ke
0F =0 + 2¢ Z{ 1)F;(0'; 24 1) / V2¢([s])TD~1dW;(s)
0
where we denoted F;(0%; 2z 1) = —)\Of + (Yk+1 — Uk+1) Vo, 0% (Tit1; 0@ ), and 89 = 6.
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By Proposition 33, 35, 37, 38, there exists constants K and Ky, such that with probability at

22

least 1 — e~ *", we have
= 1
sup |Rn(0%) — R(py)| <KeXT——[\/log(NT) + 2],
tE[O’T]I (6°) — R(py)| \/N{ (NT) + 7]
~ 1
sup |Ry(8') — Ry (6Y)| <KeXT——[\/log(NT) + 2],
t€[0,T] VN
sup R (0%) — Ry (6")| <Ke*"[\/log(N(T/e v 1)) + )z,
ke€[0,T/<]NN
sup  |Rn(0%) — Ry(8%)] <Ke"TVTe[\/D +log N + 2.
ke€[0,T/e]NN

Combining these inequalities gives the conclusion of Theorem 4 (A). In the following subsections,
we prove all the above interpolation bounds, under the setting of Theorem 4 (A).

D.1. Technical lemmas

Define the maximum and the average of the norm of the initialization:

N
1
O = IZI%E}\}/{HGZ H2a 01 = N E - ||02 H2
i=

Similarly define the following bounds on the Brownian noise

N
Wo = migssup [W (1) W= sup 5 S IWi()]e
where W;(t) = \/T/DW(t) = [} \/T/DdWi(s).
Lemma 30 There exists a constant K such that:
P max(Ooc, Woo) < K(1+T)[/log N +2]) > 1- ¢,
P(max(@1,W1) <KQA+T)[1+ z]) >1—e¢ 7.

Proof [Proof of Lemma 30] Let us first consider a generic D-dimensional K 2-sub-Gaussian random
vector X, we have:

Ex [exp{u| X[ /2}] =Ex clexp{y/i(G, X)}]
<Eglexp{pK”(|G]3 /2}]
—(1— uK?/2)""",
where G ~ N (0, Ip). Recall that {(a?, w?)};c(n) ~iid po With w being a K2 /D-sub-Gaussian
vector in RP~! independent of ag. Using the above inequality, we get

P(Jlwfl2 > u) < Elexp{ulwf|3/2}]/ exp{pu?/2} < (1 - pk?/D)~ P02 exp{—pu?[2}.
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Taking the union bound over i € [N], and noting that |a?| < K, we get:
P(m[aﬁ 169112 = u+ K) < (1= uk?/D)~" P~/ exp{—pu/2 + log N'}.
ie[N
Taking 4 = D/(2K?) and u = 2K[\/D + log N + z]/V/D, we get:
P(@oo > 2K [ D+logN+z} /\/5> < e,

Let us now consider the average over i € [N] of the ||w?||2, which are independent, we get:
N N

P(N'Y flwflls > w) < P(Y wfllf > Nu?) < (1-puk?/D) VP02 exp{—puNu? /2}.
i=1 i=1

Taking o = D/(2K?) and u = 2K [1 + 2], noting (1/N) Y- | [a9] < K, we get:

2

PO >2K[1+z])<e *.

Similarly, we consider W ;( \/7/DW;(t) which is a D-dimensional Gaussian random vari-
able with variance Var(W] fo (/D) ds = 7t/D. We note that exp{u||W;(t)||3} is a sub-

martingale and by Doob’s martlngale inequality, we have:

P( sup [Wit)llo > u) <Elexp{u|Wi(T)|3/2}]/ exp{uu?/2)
t€[0,T]
<(1 = 2u(T/D)) P72 exp{—pu?/2}.

Taking the union bound over i € [N] gives:

]P’(max sup ||[W;(t)|l2 > u) < (1 =2urT/D) P2 exp{—pu?/2 + log N'}.
i€[N] ¢ef0,T)

Taking p = D/(47T) and u = 4/T7[/D +log N + 2]/v/D, we get:
P(Woo > 4v/T7][/D +log N + z]/\/ﬁ) <e .

We can consider the average over i € [IV] of the preceding bound, by noticing that:

N
ZH Ol < (5 S IWi013) " = W@/,

where W (t) is a N D-dimensional Brownian motion. We can therefore apply Doob’s martingale
inequality to the sub-martingale exp{u||W (¢)||3}. We have

P sup IW(O)l2 2 VNu) < Elexp{ul W ()I3/2})/ exp{Nywu?/2}

< (1 —2uT7)D) NP2 exp{—Npu?/2}.
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Taking . = D/(47T) and u = 4VT'1[1 + z], we get:
IP’(Wl > 4v/Tr[l + z]) <e
This proves the lemma. |

The two following lemmas are modified from (Mei et al., 2018, Section 7.2, Lemma 7.5).

Lemma 31 There exists a constant K, such that

sup  sup  sup |05 — @M, <K6KT[\/log (T/nV 1) +z|/m,
i<N k€[0,T/n)NN ue(0,n]

with probability at least 1 — e, and foranyt,h > 0,t + h < T,
Walpe, prvn) < (E[|6f — 6" 3" < Ke"T V.
Proof [Proof of Lemma 31] Define A;(t) = sup,, ||0!||2. From Eq. (45),
100 < K 187125 + 0+ Wi,
which gives, after applying Gronwall’s inequality with the bounds of Lemma 30:
P(Ai(t) < KeKT[\/logN +2]) > 1— ", @7)

Consider A;(h; k, €) = supg<, <. He_fﬁu - él'ﬂg”?' We have
k€+u _ ___
||0ks+u 9]%”2 < H/k )G(Qf;ps)dsH2 + [[Wik(u)l|2
< Khsup [M|6;]l2 + 1] + Wk (uw)]|2,
s<T

where we defined Wl p(u) = k€+u \/7/DdW;(s). By a similar computation as in Lemma 30,
we have

P(max sup  sup |[Wik(w)ls > 4VE [\/bg T/s\/l))+z})§e_22.
i<N kef0,T/e]NN 0<u<e

Combining this bound and Eq. (47) yields:

IP(maX sup  Aj(hsk,e) < KeKT[\/log (T/eV 1))+ 2] \/§> >1—e . (48)
i<N ke[0,7/e]NN

We now bound Wa(ps, pran):
Wa(pt, prn)? < E[||6" — 67" |3] = /OOO P((|6" — 6|3 > u)du.
Using Eq. (48), we have (where we removed the union bound on i € [N]and k € [0,7/¢] N N)
P01 — 6!]l> > KeKT[1+2)Vh) < e
Integrating this upper bound on the probability yields the desired inequality. |

The exact same proof shows a similar lemma for the particle dynamics.
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Lemma 32 There exists a constant K, such that with probability at least 1 — e,

max  sup sup [|@FT" — k|| < KeKT [\/Iog (N(T/eVv1)+ z} Ve.
iSN ke[0,T/]NN ug0,¢]

D.2. Bound between PDE and nonlinear dynamics

Proposition 33 (PDE-ND) There exists a constant K such that with probability at least 1 — e,

we have )
sup |Rn(0%) — R(py)| < KefT ——[/log(NT) + z].
te[0,7) ! \/N[ ]

We will follow the same decomposition as in the proof of Proposition 13. The proof of term II
only depend on the upper bound on the potential U and still apply. The term I bound follow from a
similar proof as lemma 15.

Lemma 34 (Term I bound) There exists K, such that

IP’( sup. IRn(8") — ERy(6Y)] < KeKT[\/log(NT) + 2] /\/N) >1- e,
te[0,T

Proof [Proof of Lemma 34] Applying McDiarmid’s inequality, we have
IP’(\RN(ét) _ERy(8Y)] > 5) < exp{~N&%/K?.
Furthermore we have the following increment bound for ¢, A > 0:
1R (8"") — ER (0"")| - |Rx(8") ~ ERw(8")]
<|Ry (0"") ~ Rn(8")] + |ERN(8"") ~ ERy(8")]

<r | sup (161" — 6> + E[167 — 67]]]]
1€[N]

Using Lemma 31, we get

sup sup [|[Ry(0°74") ~ ERy(6")] — [Ry(6") — ERy (6")
ke[0,T/n)NN ue[0,n]

gKeKT{ log N(T/nV 1)+ Z} V1,

z

with probability at least 1 — e~*". Hence taking an union bound over s € 7{0,1,...,|T/n|} and
bounding the variation inside the grid intervals, we have

IP’( sup |Rn(0") —ERN(8") > 6 + KeiT { log N(T/nV 1)+ z} \/ﬁ)
te[0,7

<(T/n)exp{~N6?/K} + e =

Taking 7 = 1/N and 6 = K[\/log(NT) + z]/v/'N concludes the proof. [
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D.3. Bound between nonlinear dynamics and particle dynamics

Proposition 35 (ND-PD) There exists a constant K, such that with probability at least 1 — e,
we have

_ 1
sup max ||0¢ — 0|y < Ke®XT ——[\/log(NT) + 2, (49)
b e 16 2 \/N[ (NT) + 2]

_ 1
sup |Rn(0') — Ry (0Y)] < KefT——[\/1og(NT) + z]. (50)
tem\ (@) Col \/N[ (NT) + 2]

Proof [Proof of Proposition 35] The nonlinear dynamics and the particle dynamics are coupled by
using the same Brownian motion, and the noise term cancel out. By the same calculation as in
Proposition 16, we get

d _ _
/1€ — Billo <K - max |16 — O l> + K/N + I}, (51)

where 1
It = HNZ [le (6.,6") /le 0)p: de)w
J#i
Now we would like to prove a uniform bound for I} for i € [N] and ¢ € [0, 7.

Lemma 36 There exists a constant K, such that

]P’( sup max It < Ke®T[\/log(NT) + z]/\/JV> >1-e 7.
te[0,T) 1€[N]

Proof [Proof of Lemma 36] Denoting X; = V1U(6},0%) — [ V1U(6},8)p:(d6). Notice that

E[X!|6!] = 0, (where the expectation is taken with respect to 0_? ~ po and {W;(s)}s>0 for j # 1),
and || X||2 < 2K (by assumption that || VU2 < K). By Lemma 59, we have for any fixed i € [N]
andt € [0,T7,

P(If > K(/1/N + 5)) - E[P(If > K(/1/N + 5)165)} < exp{—Nd2}.

We then bound the variation of I? over an interval [t, ¢ + h], with ¢, h > 0:

1 _ _
IR 1Y SNZHle(oﬁh,ofh) V,U(8! ef)H

7 j
7<i
4| [Tv@ o0 - [ Vi@ onas),

<K [ sup 87" - 01 + B0} — 8]

By Lemma 31, there exists K such that, we have

]P’( sup  sup |IFTTY— 1M < KeKT[\/log (T/nVv 1))+ z} \/ﬁ) >1—e .
ke[0,T/n)NN uel0,n]
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Taking an union bound for i € [N] and s € n{0,1,...,|T/n]} and bounding the variation inside
the grid intervals, we have

]P’( sup max I! > K(\/1/N +6) + Ke&7 [ logN(T/nvl)} \/ﬁ)
te[0,T] *€[N]
<(NT/n) exp{—N&%} + e .
Taking n = 1/N, and § = K[\/log(NT) + z]/v/'N, we get the desired result. [ |
Denote 6x(T, 2) = KeXT[\/log(NT) + z]/v/N and

A(t) = sup max |85 — 67]|.
seft] 1€V

With probability at least 1 — e~*", we have
A'(t) < K- A(t) + 6n(T, 2),

which, after applying Gronwall’s inequality, concludes the proof. |

D.4. Bound between particle dynamic and GD

Proposition 37 (PD-GD) There exists a constant K such that with probability at least 1 — 6_22,
we have

sup  max |0 — 0¥ <K6KT{\/Iog (T/eV 1))+ z|Ve,
ke[0,T/e)nN <N

sup  |Rn(0%) — Ry (0%)] <KeXT[\/log(N(T/e V1)) + z]y/e.
kel0,T/e]NN

Proof [Proof of Proposition 37] For £ € N and ¢t = ke,

N t
16~ 6t < [ 166055 Y) — GO () s

s Als ~(N
/HG 01 o) — G617 50 )|ladis.
We have by Lemma 32
t
|16 @:5 5 — G6ls s < KT sup max ;- 617
0 s€[0,T] t€IN]

< TKeET [\/Iog (N(T/ev 1))+ z} Ve,

with probability at least 1 — e~=". Denote §(N,T,z) = TKeKT [\/log (T/eV 1))+ z} NG
and

A(t)= sup max|0F — 6F|,.
ke[0,t/e)NN 1N e |
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With probability at least 1 — e, we get
t
At) < K/ A(s)ds 4+ 6(N, T, z).
0

Applying Gronwall’s inequality concludes the proof. |

D.5. Bound between GD and SGD

Proposition 38 (GD-SGD) There exists a constant K such that, with probability at least 1 — e,

we have
sup  max ||0F — 0|y <KefTVTe[\/D +log N + 2],
ke[0,T/]NN 4€[N]

sup  |Rn(0%) — Ry (0%)| <KeXT\/Te[\/D +log N + z].
ke€[0,T/e]NN

Proof [Proof of Proposition 38] We coupled the noise between the GD and SGD such that the noise
cancels out. Noticing furthermore that the regularization term does not depend on zj and vanishes
in the martingale difference Z! = F;(6'; z;..1) — E[F}(0'; 2,41)|F], where

Fie = o ((0))iernys (2010 (Wi(s)) s<e)-

Therefore the same proof as Proposition 19 applies here. |

Appendix E. Proof of Theorem 4 part (B)

We remind the notations used in the proof of Theorem 1 (B): for @ = (a,w) and 8’ = (d’, w’),

For convenience, we copy here the properties of the potentials V' (0) and U(6, ") listed in
Lemma 21. Denoting 8 = (a, w), ;1 = (a1, w;) and 62 = (a2, w2). We have

[V (6)]; HVV(O)H2 <K (1 + lal),
IVV(61) = VV(62)]2 <K - [1 + min{[a1], [az|}] - |61 — B2]|2,
U(6,6)], ||V1U(0 02 <K (1 + |al)(1+ |d]),
IV(1,2U(01,0) = V(1,2U(62,0)|2 <K(1 + |a]) - [1 + minflay], |az|}] - 61 — O2]2.

Throughout this section, the assumptions Al - A6 are understood to hold. For the sake of
simplicity we will write the proof under the following restriction:
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R1. The step size function &(t) = 1/2.

The proof for a general function &(¢) is obtained by a straightforward adaptation.
We recall the form of the limiting PDE:

Oy =2£(t)V - [p(0)VUA(0; pr)] + 2£(t) 7D Agpy,
W\(8:) =V (6) + [ U(6.6)(d0") + 5165

We will consider four different coupled dynamics with same initialization (é?)ig N ~iid po. The
integral equations and summation form are as follows:

e The nonlinear dynamics (ND):

9%2/5 (05 ps ds+/ V/26(s)TD- 1AW, (s (52)

where we denoted G(6;p) = —VU,(0;p) = —\0 — VV(0) — [VoU(0,0")p(d6’), and
0 ~ py iid.

e The particle dynamics (PD):

9°+2/5 (5; N ds—i—/\/ s)TD-1dW;(s (53)

where 89 = 69.

e The gradient descent (GD):
k—1
0F =69 + 22 c(1e)G (8% ™ / V26([s])TD-1dW;(s)
=0

where é? = 0_?.

e The stochastic gradient descent (SGD):

ke
oF 00+252515 Fi(6';z41) V26([s]) T D-1dW;(s),
0

where we defined F;(0%; z;41) = —A\0F + (Y1 — Uk1t1) Ve, 04 (xrs1;0F), and 69 = 6.
By Proposition 43, 47, 49, 50, there exists constants K, such that with probability at least
1-— e‘z2, we have

sup \RN(ét) — R(py)]| SKeKT[log?’/Q(NT) + 23]/\/N,
te[0,7)

sup |Ry(8') — Ry(0Y)| <K WIsN+21[ /Dlog N + 1og¥2(NT) + 2°]/VN,
tel0,7

sup [ Ra(8%) — Ry (6")] <K WEEN 4= log(N(T/e v 1)) + 26V,
ke[0,T/e]NN

sup  |Ry(0%) — Ry(6F)| <Kee™ WIeN+211\/Dlog N + log®/2 N + 29]V/z.
k€[0,T/e]NN

Combining these inequalities gives the conclusion of Theorem 4 (B). In the following subsections,
we prove all the above interpolation bounds, under the setting of Theorem 4 (B).
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E.1. Technical lemmas

The bounds on the potentials U, V', and their derivatives scales with the coefficients a, which can be
arbitrarily large with non-zero probability due to the Brownian noise. In our analysis we will need
to keep track of the maximum and the first moment of |a| for each of the different dynamics. In this
section we will show that there exists high probability bounds along the trajectories.

We recall the following notations introduced in Appendix Section D.1,

N
1
= 0 = 0
O = Iggc}gdlf)z l2,  ©1=% Z; 165 1[2-
1=
and on the Brownian motion,
N
Weao = maxsup |[W;(2)]| W1 = sup 1 Z W)l
oo = i<N bt 7 2, 1= \<T N % 2-

i=1

where we recall W;(t) = /7/DW;(t) = fg \/7/DdW;(s). For convenience, we recall here the
bounds derived in Lemma 30:

P(max(@oo,Woo) <KQ1+T)[ logN—i—z]) >1—e %,

P(max(@l,Wl) < K1+T)[1+ z]) >1— e,

In the following lemma, and throughout the proof, we will denote a’ = (al, ..., al) € RY the
vector of the a! variables of the nonlinear dynamics. Similarly we will denote a’, a” and a” the
vectors of variable a associated to the particle dynamics, gradient descent and stochastic gradient
descent. We will furthermore use ||a||1, ||a||~ to denote the ¢; and ¢, norms of the coefficients
vector.

Lemma 39 There exists a constant K, such that denoting M(t) = Kel!, we have

sup /aQ,oS(da) < Ms(t).
s€[0,t]

Furthermore, letting (a', w') ~ py, then a' is Ma(t)-sub-Gaussian.

Proof [Proof of Lemma 39] Denote A(t) = [ a®p;(da)/2. For simplicity, we will directly take the
derivative of this function. This computation can be made rigorous by considering smooth approxi-
mation of a truncated squared function, with bounded second derivative, and using the definition of
weak solution. We get:

%A(t) =71/D —/ [)\a2 +a-v(w)+a- /a’u(w,w’)pt(da’) pe(dO) < K + KA(t),

which implies by applying Gronwall’s lemma we have

sup /azps(da) < Keit,
s€[0,¢]
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Let us consider the nonlinear dynamics for the variable a’ ~ p;:

da' = —atdt + [— v(w') — / a'u(w', w’)pt(da’)}dt + \/ZdW“(t).

Denote u) () = a‘e* and

K(w', p;) = —v(w') — /a'u('&)t,w’)pt(de'),
we get
duy(t) = MK (@°, pr)dt + e, /%dW“(t),

and in integration form we have

ux(t) = ur(0) + /O "MK (w0 po)ds + /0 t e)‘s\/;dW“(s).

We deduce that we can rewrite @’ ~ p; as the sum of three random variables:

t t
at =M+ | e AR (w0, py)ds +/ e_/\(t_SM / ldW“(s) .

-~ -~

Iy I3
By assumption ag is K -bounded, and thus I'; is K ?-sub-Gaussian. By the boundedness of v and v,
Cauchy Schwartz inequality, and by A(t) < Ma(t), then for s < t, we have |K (w?, ps)| < Ke?,
hence the random variable T's is K e*-bounded and thus K e’*-sub-Gaussian. The random variable
I'3 is a Gaussian random variable with variance

t
Var(T'3) = / e 2= Lqs < Kt
0 D

We deduce that a’ is the sum of three (dependent) sub-Gaussian random variables with parameters
K?, Keft, Kt respectively, and therefore the sum a' is K e/*-sub-Gaussian. [ |

z

Lemma 40 There exists a constant K such that with probability at least 1 — e~ * we have

max( sup {[l@’|l1, [la’[l1},  sup {Hd'“Hl,HakHl}) <N-Kef'[l4z=N- M,
te[0,T) k N

€[0,T/elN

max (sup {1a'llocs a1}, sup {[1a8]ucs ¥} ) < KNI [VIog N + 2] = Mac,
t€[0,7] ke

T/e]NN

Proof [Proof of Lemma 40] Let us start with the non-linear dynamics trajectories. We have in
integral form:

=[a+ [ [-2ar o) - [autor wipao)]as+ [/ Zawee)

t
<@+ K/ @|ds + KT\/3 + [ () (54)
0

_t
a;

t
< K/ a5 | ds + O + KT/ Ma + W,
0
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where we recall that W ( V/7/DW{(t). Applying Gronwall’s lemma to A(t) = sup,c[o 4 |G;|
with Lemma 30 gives:
A(T) < KeBT[\/log N + 2],

while summing (54) over 7 yields:
t
(la'll:/N) < ©1 + K/ (las[l1/N)ds + K" + W,
0

and by Gronwall’s lemma: sup,¢(o 7] [|@°[[1/N < K eXT[1+2]. The same proof applies to the other
trajectories and we will only write down the corresponding inequality on the integral or summation
form:

t t
al] < [a%] + KT + K / aglds + K / (la*]ls/N)ds + [T (),
0 0

k—1 k—1
@] < laf| + KT+ Key_laf| + Ke Y _(la'lli/N) + W5 (1),

=1 =1
k—1 k—1

jaf| < laf| + KT+ Ke ) |aj| + Ke Y ([la'1/N) + Wi (1)].
=1 =1

Lemma 41 There exists a constant K such that:

P(sup sup  sup |05t — 05|y < KX [\/log(N(T/s V1)) + ]\@) <l1-e?,
1<N ke[0,T/e]NN u€0,¢]

P(sup sup sup [|@Ft — @y < KeKT[\/log (T/eV 1))+ 2] \/g) <1-e 2.
1<N ke[0,T/e]NN u€0,¢]

Furthermore, we have fort,h > 0,t +h <T,

_ 1/2
Walprs pren) < (E[10° — 073]) ™ < Ke TV,
Proof [Proof of Lemma 41] We will only show the result for the non-linear dynamic. The proof for

the particle dynamic will be exactly the same, upon replacing /M by My.
Step 1. Let us consider A (t) = sup < [|0f[|2 and Ag(t) = sup,<; 4 > iy 1622 :

t
168]2 < 1601+ 2 [ (N6 + K(1+ faf]) + K /Ma(1+ af) ) ds + [ Wil
0

t
< K/ 16]|ads + Ke5TT sup [a] + O + W,
0 s€[0,t]

which gives, after applying Gronwall’s inequality with the bounds of Lemma 30 and 40:

P(Ai(t) < KeKT[ logN—i—zD >1—e .
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Similarly:
) < K/ Ao(s)ds + KeET sup (a1 /N) + ©1 + W,

s€[0,t]

and thus: ,
P(Ao(t) < KeKT[1 4 z]> >1— e (55)

Step 2. Let us bound supg<,, <. Héf”“ — 0|y

. . ke—i—u —
o =0t < | [ e50 o, Wt

< Khsup [Auean + (1 VIR +[@])| + Wik (w2,

where we defined WZ g(u) = k€+“ \/7/DdW;(s). By a similar computation as in Lemma 30,
we have

]P’(max sup sup |[Wix(u)|s > 4VKe [\/Iog (T'/eVv 1))+ } ) <e .

i<N ke[0,T/e)nN 0<u<e

Injecting this bound in the above inequality yields:

]P’(max sup sup ||@Ft — @kl < KeKT[\/log (T/eV 1))+ 2] \/E) >1—e %,
iSN ke[0,T/e]NN 0<u<e

Another useful bound can be obtained by taking the average over i € [N]:

ke+u nke KT
N§1jr|e — 0y <K A(1) + Ke sup||a5||1+N§lj||wm )2
7 i=

We get by a similar computation as in Lemma 30, we have

N
1 _
IF’( sup sup — Z |Wik(uw)l2 > 4V Ke[\/log(T/e vV 1)+ z]> <e 7.
ke[0,T/eJN 0<us<e IV =

We get the following bound:

N

1 _ _

IP( sup sup — Z |kt — ||y < KeXT[\/log(T/e Vv 1)+z]\/§> >1—e 7. (56)
ke[0,T/e)N 0<u<e IV =

Step 3. We now bound Wa(py, prin):
Walpes peen)? < E[8" — 87H03) = /0 P(|6" — 63 > u)du.

Using step 2, we have (where we removed the union bound over ¢ € [N] and k € [0,7/e] N N):
P10 — 012 > KeXT[1+2)VR) < e,

Integrating this upper bound on the probability yields the desired inequality. |
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Lemma 42 There exists a constant K, such that for 0,0 € RND

|Rx(8) — Ry (8)] < K(1+ |lalli/N + [la’[|1/N + |a’[[{/N?) max [16: - 0il2-

Proof [Proof of Lemma 42] We have

[Rn(6) — Ry (6)]
N
|agv(w;) — ajv(w))| + Nz laia;u(w;, w;) — aja
ij=1

u(wj, wj)]

IA
=2

@
Il
R

,.
J

K (la; — ail + |agl[|lwi — wil2)

IA
2w

s
Il
N

N
1
+ 52 YK [Iail\aj — aj| + |ajllai — ai| + |a;a|([[w; — wil2 + [[w; — w]l|2)
i,j=1
<K(1+|alli/N +[la'lli/N + Ha’H?/NQ)g% 16; — 632

E.2. Bound between PDE and nonlinear dynamics

Proposition 43 (PDE-ND) There exists a constant K such that

]P’( sup |Rn(0Y) — R(py)| < Ke&T |log®?(NT) + 23} /\/]V) >1—e %,
t€[0,T]

The proof will use the same decomposition in two terms as in the proof of proposition 13.
Lemma 44 (Term II bound) We have
[ERN(6") — R(py)| < KeKT/N.
Proof [Proof of Lemma 44] The bound hold simply by observing that
- 1
ERy(6) - R(po)| = | [ Putw, w)oi(d6) ~ [ arasu(ws, wa)n(d61)pu(d60)

< K/N / a’py(da) < KeXT /N

where we used the upper bound on the second moment of variable a in Lemma 39.

Lemma 45 (Term I bound) There exists K, such that

]p( sup. IRn(8") — ERy(6Y)] < KT [log(NT) + 23} /\/N) >1 -7
telo,T
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Proof [Proof of Lemma 45] We have:

RN<ét>—ERN<0't>\S2’z1v§3[V<9t> EV(e)] |+ i’ U660 ~Ea U6, 0)
112; 1 .
fxXly 3 [vee-muee)
i=1 J=1j#i
1 oh 1
+NZ‘N Z [E5§U(ef,0§) Eéf,é;U(ef:‘g;)H

=1 =l

We will bound each of these terms separately. For any fixed ¢, we have (éf)ie[ N] ~ pt indepen-
dently. Define:

Qut —\Nﬁ[v@)—m(éﬂ ,

which is the absolute value of the sum of martingale differences. Furthermore, we can rewrite
V(6!) = alv(w!) which is KeXT-sub-Gaussian (product of a sub-Gaussian random variable, by
Lemma 39, and a bounded random variable). We can therefore apply Azuma-Hoeffding’s inequality
(Lemma 60),

P(Ql(t) < KeKT 1+ 2] /\/N) >1-e %,

The second term is bounded as follow:

K
Sﬁ

1a"loc - ll@"fl1 +
where we used that [ a?p;(da) < KeXT. Using Lemma 40, we get:
P(E>(t) < KeiT [\log N +2%| IN) > 1— ¢,

Define:
N

A=y 3 [v@.e) -Eav@ ]|
J=1,j#i
Because 6! is independent of the (0 )je[N],ji> WE can condition on 6!, and restrict ourselves to

the event where 8! < M. Q5(t) is the absolute value of a sum of martingale difference, with

U(et, 0;) = atatu('wt w’ ) which is KeX7|at|?-sub-Gaussian (product of a sub-Gaussian random
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variable and a bounded random variable). We apply Azuma-Hoeffding’s inequality (Lemma 60),
P(Qg(t) > KefT M, [1 + 2] /\/N)
<Egy [P(QH0) > KK [1+ 2] /VA|BL)1(0t] < M) + Pl > M)
2
<2e

We take the union bound over i € [N] and get:

]P’(maxQQ( ) > KefT [logN—i—zﬂ /\/N) <e .

1€[N]
Define:
. 1 X
QAW =]y > [FaU@.8) ~Egqu@!0))]|
=15
We have:
Eg;U(Of,Q;) a /au(w w)p(da),

1/2 o
with ‘fau w!, w)p (dB)‘ < K(fant(da)> < KeKT. Thus, Eg;U(Bf,B?) is KeXT_sub-
Gaussian (product of a sub-Gaussian random variables and of a bounded random variable). Ap-
plying Azuma-Hoeffding’s inequality Lemma 60, followed by an union bound over i € [N], we
get

P(Igﬁ,\}[(Q:))( ) > KeKT[ logN+z] /\/N> <e .

Combining the above bounds with the bound on sup,cp 71{[|a°||1, [|@*| s } of Lemma 40 yields:
IP’(’RN(ét) _ ERN(ét)) > KeKT [ng n zQ] /\/N) <e . (57)
In order to extend this concentration uniformly on the interval [0, 7], we use the following result:

Lemma 46 There exists K, such that

sup  sup ‘|RN (614 — ERy (6¥+%)] — | Ry (8*7) — ERy (6*7)]
ke€[0,7/n)NN u€[0,n]

< KefT [\/Iog (T/nv 1))+ 23| m,
with probability at least 1 — e,
Proof [Proof of Lemma 46] Consider t,h > 0,t + h < T. From Lemma 42,
|Rn(0"") — Ry (6")] < K(1 + [|a™"||/N + [|a"||1/N + [[a"™"|[}/N?) max 164" — 672
(]

Using Lemma 41 without the union bound over s € {0, 1,...,[7/n|} and the bounds of Lemma
40 on supyeo r7{lla*ll1}, we get

2

]P’(]RN(ét+h) — Rn(8Y)] > KeiT [ log N + 23] \/E) <e .
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The difference in expectation, where the expectation is taken over (éi)ie[ N> is therefore bounded
by

[ERy(8"T") — ERn(6")] < E[Ry(0"") — Ry (8")| < / P(|Ry(0"") ~ Ry (60")] 2 u)du.
0
Doing a change of variable, we get:

IERN(0"") —ERN(6Y)| < KeXT hlogN+/ e Ke"TVh22dz
0

< KefT(\/log N + 1)Vh
Hence using that
IR (8"") ~ ER (8"")| ~ |Rx(8") ~ ERw(8")]
<|RN(6"") — Rn(8")| + [ERN(6"") — ERN(6")],
with Lemma 41, we get

sup sup ||[Ry(0°14) — ERy (0°)] — [Ry (0*") — ERy (6")]
ke[0,T/n)NN ue[0,n)

< KefT [\/Iog (T/nv 1))+ 23|,
with probability at least 1 — e |

Taking an union bound over s € n{0,...,|[7/n|} in Eq. (57) and bounding the variation inside
the grid intervals, we get

]P’( sup |Ry(6Y) — ERy(8Y)| > KeKT [ng n ZQ] /VN
te[0,7

+K ST [Viog (N(T/n V1) + 2] /i) < (T/n) exp{ -2},

Takingn = 1/(Nlog N) and z = [y/log(NT log N) + z'] concludes the proof. [ |

E.3. Bound between nonlinear dynamics and particle dynamics

Proposition 47 (ND-PD) There exists a constant K, such that with probability at least 1 — e,

we have
sup i 6] — 6l <K e VN |/ Dlog N+ 1og *(NT) + 2% [V,
te[0,7] €
sup [Ry(8') — Ry (6Y)] <Ke [VIEN+] [Wﬂog?‘”wﬂwg’} JVN.
t€[0,T]
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Proof [Proof of Proposition 47] Define A(t) = sup,<; max;e |y [|05 — 6 |2. We have
161~ 1l < [ 16(61: ) — G101 )
t t B
< [ 16 = 0:lads + [ IOV(8:) ~ VY6 aas

d

/HZVlU 6:.65) — V,U(6;.6°)

v IS vaee - [viweepae) g o9
j=1

Let us bound each term separately. We have

IVV(6;) — VvV (6;)l2 <\v( w;) — v(w;)| + [[a7 Vo(wy) — a7 Vo(w;)|2
K([lwj — wils + |af — ai| + |ai|[|w] — wi|2)

K(1+[la*[ls)[167 — 67 ]]2-

We decompose the second term into two terms

HszlU 8;,6%) — V,U(6;,6°) <H Zle (6;.05) ~ V1U(8;,67)|

+ H— Zle 6:.63) - v1U(6:.65)

1 N
|5 o viv6:,65) - ViU 6:,63)||

Z a3asV u(w;, w?) — éfg?Vlu(wf,Qj)H

2

<K (1 +[a7) | max [a3 — ajl + E ZW@ ma o] — w2

K(1 a’||so) - (1 51y /N) - 03 — 6%|2,
(1+lla’lleo) - (1 + [[@®[l1/N) jl,gf}gclll 7 — 65ll
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and
| N
HN;WU(OM?) v.0(6:.0),
S‘]ifiajw’wf,wj)—auw w? Za Viu(w?, wi) — aiaiViu(w;, w;) )
j=1
< {N > Igi'l} sup [|wj — wjll2 + Klaj — a;] {N Z \Q?\} + Kla$ {N 3 @;@ @5 — w?|a
j=1 JEIN] st =

<K+ a’e) - (1 + [l@®[1/N) - max 165 — 63112

The last term in Eq. (58) can be decomposed into two terms. Consider 7 = 4:

1
N ViU 6:.8) - [ Ti06:00p.(a0)]:

1

< IVLU(8, 6> + 1 / V,0(65, ) p+(d6)
1

<— |la2

<~ @@, o) + 11@)* Viu(w >H]

+ / [lau(w?, w)] + 230V yu(ws, w) ] ps(d6)

1. _ _
<K@ oo - (14 @%]loo) + e (1 + [|a*]l),

1/2
where we used that [ |a|ps(d0) (fa ps( d0)> and Lemma 39. We consider j # i and
denote:

7 1 l s s
Qi(s) = HN]-:;# [le 6, 0°) /le ps(de)] I,

which is bounded in the following lemma:

Lemma 48 There exists a constant K, such that:

IP’< sup max Q'(s) > KeXT [\/DlogN—l—log?’/Q(NT)—i—zg} /\/N) <e

s€f0,7] <N

Proof [Proof of Lemma 48] The concentration of Q' (s) follows from a similar method as in the
proof of Lemma 45. For any fixed s, we have (67 );c[n] ~ ps independently. In particular, we have

0] .

and Q'(s) conditioned on 67 is the norm of a martingale difference sum. We furthermore restrict

ourselves to the event where a; < M. We have VU (65,65%) = a’ - (u(w}, @"), a;Viu(w}, w}))

which is Ke” M?2 -sub-Gaussian (the product of a sub-Gaussian random Varlable and a bounded

117]

/VlU(éf,é)ps(dG) =E |V ,U(6%,6°)
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random variable is sub-Gaussian). We can therefore apply Azuma-Hoeffding ’s inequality (Lemma
60),

P(Ql(s) > KefT M, [\/B-f—z] /\/N)
<Eg [P(Qi(s) > KeXT M, [\/5 + z} JVN

)1 < M) + P(la* e > M)
§2e_z2.

Taking the union bound over the i € [N]

P (main(s) > KelT [\/m—i—log(N) + zQ} /\/N) <e 7.

i<N

Furthermore, let us consider t,h > 0,t +h < 7T"

N
5 O IV, g - V0@ ),
J=1,j#i
1 N
<% @t u(w! it — alu(w!, o)
j=1,j#i
R _t+h-t+h Ctth tthy it -
+ 5 > llatralt v u(wlt, with) - alal viu(w], o))
J=1,j#i

<KL+ [la'lo) - (1+[|a’[l1/N) - sup 67" — 6]l2.
i<N
Considering Lemma 41 without the union bound over s € n{0,1,...,|7/n]|} and the high proba-
bility bounds on sup,c(o 71{[|a||c, [|@*]|1} of Lemma 40, we get:
1 N - - - 2 2
IP’(— 3 IVIUO, 60 — v, U (6L, 6L) ) > KeFT (14 2) [ 1ogN+z} \/E) <e

N 07
j=1,j#i

The difference in expectation, where the expectation is taken over O_j, is bounded by
7]

[EV,U (6,05 — EV U (6, 6%)| 2

N
. o .
gE[N > ViU, 05 — v U (6] 0'?)||2}

R}
j=1j#i
N
(1 at+h gt+h T
g/O IP(NjZIZ#iﬂle(Gi 6! )—VlU(Hi,Oj)HQZU)du.

Noticing that (1 + z) [\/log N + z] 2 < (v/log N + z)3 and doing a change of variable, we get:

[EV,U (6", 05" —EV U (6}, 0%)]2 < Ke""log N Vh + / e % Ke"T 22V hdz
—+/log N

< KeXT(log N + 1)Vh.
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Hence using that

N
. . 1 _ _ L
QU+ —Q' M) <5 Y ViU, 67" = V1U(8],0)]|2
j=lj#i
+[EVLU(8;", 65") — EVAU (87, 6)) 2,
and the bounds derived above, with an union bound over ¢ € n{0,1,...,|T/n]}, we get

sup sup max |Q'(kn + u) — Q(kn)| < Ke*T [log (N(T/n v 1)) + 2| v/,
ke[0,T/n]NN uel0,n] *€[N]

with probability at least 1 — e~%". We can therefore take the supremum over the interval [0, 7] :

]P’(max sup Q'(s) > KelT [\/m—i—log(]\f) +22] /VN

<N sel0,7]

+KeKT [1og (N(T/qV 1))+ z3] fn) < (T/n) exp{—22}.
Taking n = 1/N and z = [\/log(NT) + 2|:

P(max sup Q'(s) > KelT [\/DlogN+log3/2(NT) —i—z?’} /\/N) <e .

i<N s€ [OaT]

|
Using the high probability bound on sup,¢(o 71{/l@®([1/N, [|@*[|} of Lemma 40, we get with
probability at least 1 — e=" that for all ¢ € [0, T
A(t) <KefT(1 4 2) { log N + z} /Ot A(s)ds + TKeXT { log N + zr /N
+ TKeKT [\/W +10g®2(NT) + zﬂ JVN.
Applying Gronwall’s inequality, we get:

]P’(A(T) < Keo Vg N+27) {\/D log N + log¥/2(NT) + zﬂ /\/N) >1-e 7.

Using Lemma 42 and the high probability bounds of Lemma 40 concludes the proof. |

E.4. Bound between particle dynamics and GD

Proposition 49 (PD-GD) There exists constant K, such that with probability at least 1 — e, we
have

sup  max |04 — O o <K e VRN [log(N(T /= v 1)) + 2] VE,
ke[0,T/<]NN 2€[N]

sup Ry (6") — Ry (8")] <Ke™ WRrN+ flog(N(1/= v 1)) + 2] V2.
k€[0,T/e]NN
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Proof [Proof of Proposition 49] Denote A(t) = supjeo,¢/c]nn MaXien] | 0% — 6%||5. For k € N
and t = ke,

~ 3 s ~
16 = 61 < [ 1616055 /%) = GO (). s

t
< [ 1G5 5™ - G(@%: 5 lds

t

+ [ 16O o) - 6O pf ) ads

S

Let us consider each terms separately:

1G85, p™) = GO pl )12

N
S S S 1 S S S S
<N16 - 612 + [ VV(8) — YV (6 |2 + || 5 - viv(6:,65) - vav(el, 65|
j=1
K1+ ||@[loo) - 165 — 812 + K(1 4 [[@®]|0) - (1 + |@®[|1/N) a0 01|
+ K(1+ [[@]o) - (1 + [l@l 1 /N) - max |85 — 01)J2.
JE[N]

From Lemma 41, we know that

P(sup sup sup [|@FT" — %y < KeKT [\/Iog (T/ev1))+ 22} ﬁ) <1-e7,
i<N ke[0,T/e]NN u€[0,e]

which combined with the upper bound on sup,¢(o 71{l|a’[l1/N, [|a*| s} of Lemma 40, shows that

with probability at least 1 — e~*", we have

ke
/ 1G(8;:6™) — G(8; pl))lads < KTeKT [log(N(T/2 v 1)) + 2] V2.
0
Consider the second term:

1G0°, 5))) — G(6; p)l:

<X||@F° — 6|,

] ‘2

N
e S 1 NE N S
+IVVOF) = v @s + | S Vo @, 65 - vio e, o)
7=1

(1t [|a ) - 1617~ 6]
1+ @l o) - (14 1885 /) - o 1677 = 072
J

+ K1+ a®s0) - (1 + [|al[|1/N) - max (|85 — 61T||5.
JE[N]

Using the high probability bound on Supke[O,T/s}ﬂN{HQkEHI/N7 1@ ||oo, |@*||1 /N, ||@||0 } of
Lemma 40, we get with probability at least 1 — e~ that forall t € [0, 7]

At) <KefT(1+ 2) [ log N + z} /Ot A(s)ds + Ke&T [log(N(T/E V1)) + z4] Ve.
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Applying Gronwall’s inequality, we get with probability at least 1 — e,
IP’(A(T) < K T WVIBN+2"] 166 (N(T/e v 1)) + zﬂ \/5) >1— e,

This bound combined with Lemma 42 concludes the proof. |

E.5. Bound between GD and SGD
Proposition 50 (GD-SGD) There exists K, such that with probability at least 1 — e=*", we have

sup  max ||F — 6F ||y <Ke° T Viog N+27] [\/>logN+log3/2N+z } Ve,

ke[0,T/e)nNN “€[N]
sup  |Rn(6) — Ry (6F)] <Kee™ " [VIoEN+27] [\FlogN+1og3/2N+z } VE.
ke€[0,T/e]NN

Proof [Proof of Proposition 50] Define A(t) = supjyeo.4/cjnn MaXe[n] |65 — 6¥||2. Denote the
generated o-algebra:

Fip = U((O?)iG[N]v {‘}Vi(s)}ie[N],sgkav 21,000, 28).

We get:
1 & N
ELF}(0"; z41) | Fil = —A0F — VV(0) - > ViU (6}, 65) = G(6F, "),
j=1
where we denoted p,(CN) = (1/N) > icin dgr the particle distribution of SGD. Hence we get

[ —H ZF 0}; z111) —€ZG (0% 5" ))H

<H ZZZ

gAf + Bf,

2

oS o™ -t

where we denoted Z! = F;(0'; z;,1) — E[F;(0'; z,,1)|F;] and A¥ = || Zf 01 ZH|a.
Denote AF = Z;:ol eZ!. Hence {AF}cn is a martingale adapted to {Fi}ren. Note the
regularization term cancels out. We have Zf equal component-wise to

(04! = (" 0o (@ awf) — B[4 — (a0 @t wh)| Bl

(v = (@t 05)al Voo (@5 wh)) — B [ (15 - 9215 0%)af Voo (@ wh) 7] ).

The following discussion is under the conditional law £(-|F). Note |o(x**+!;w¥)| < K, and
¥t — g1 0%)] < K(1 + [la®|l1/N), hence (y*+! — §(z"+1;0%))o (a1 wf) is K(1 +
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|a®||1/N)?-sub-Gaussian. Note that by assumption, Vo (x**1;wk) is K-sub-Gaussian (ran-

dom vector), and |(y*! — g(z**1;0%))ak| < K(1 + ||a¥||1/N)||a*||«, hence the rest of the
coordinates (y* ! — g(xF*1; 0%))af Vo (251 wh) is a K(1+ ||a*|1/N)?||a”||%, -sub-Gaussian
random vector. As a result, we have F}(0"; z;, ) under the conditional law £(-|F) is a K (1 +
la*||1/N)?||a¥||%, -sub-Gaussian random vector.

Let 7 = inf{k|||a¥||oc > My or ||a*||; > N - M;}. Notice that AN — AN~ = ZFAT=1
Following the same argument as in the proof of Proposition 29, we deduce that for Zf = Af”, the
martingale difference Zf —Zf ise2K2M 2 M2 -sub-Gaussian under the conditional law £(:|Fy,).
We apply Azuma-Hoeffding’s inequality (Lemma 60)

P(ke[(%a/);mNuA o > KM Moov/2 [\FH}) <e

We get:

P<ke[§%§m | A2 > KMiMoovE [VD + 2] )

—k
< . > <
J(%&%QN A% |5 > KMy Moor/e [\/D + z} ) +P(r < T/e)

§267Z2

Y

where we used the high probability bound of supyc(o 7/¢j~n{ll@” |1, [|@¥|[1} in Lemma 40. Taking

the union bound over i € [N] yields

IP’(rnax max Af > KelT \/ElogN+log3/2N+23} \/c:> < e .
i<N ke[0,T/e]NN

For the second term, we get:

~(N
IG (@, p™) — G (6L ™)1

_ _ 1 X

<16} = 8Lz + IVV(6]) = TV (@)l2 + | - D ViU (6L,6}) - ViU 8},
j=1

K1+ lalllo) 18] = Bl + K (1 -+ [lal) - (1 -+ | /N) - mas 6] — 65
+ KL+ @ loo) - (1+ [@1/N) - max [0} — 642
JE[N]

Using the high probability bound on supke[O’T/a]mN{HakHl/N, |a¥||so, [|@||1/N, ||@¥||o} proved
in Lemma 40, we get with probability at least 1 — e~ that for all t € 0,7

t
A(t) <KefT(1 4 2) { log N + z} / A(s)ds + Ke&T {\/BlogN—i—logg’/QN—}— 23| Ve.
0
Applying Gronwall’s inequality, we get:
IP’(A(T) < Ko T IVIEN+27 [\/ElogN +log®? N + 23} \@) >1— e

This bound combined with Lemma 42 concludes the proof. |
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Appendix F. Existence and uniqueness of PDEs solutions
F.1. Equation (DD) (noiseless SGD)

For the readers convenience, we reproduce here the form of the limiting PDE
Opr = 26(t)V - (peVU(0; py)), (59)
U(8; pr) = V(0) + / U(8,6) pi(d6). (60)

This PDE describes an evolution in the space of probability distribution on R” and has to be in-
terpreted in the weak sense. Namely p; is a solution of Eq. (59), if for any bounded function
h : RP — R differentiable with bounded gradient:

d

5 [ nO0a0) = 2¢(0) [ (7h(6). 7 w(6: p)or(c) (61)

For fixed coefficient, under assumptions Al, A2, A3, A4, we have VV (0) and V,U (6, 8’) bounded
Lipschitz. By (Sznitman, 1991, Theorem 1.1), these assumptions are sufficient to guarantee the
existence and uniqueness of solution of PDE (59).

For general coefficients, the potentials are not bounded and Lipschitz anymore. The existence
and uniqueness under assumptions Al, A2, A3, A4, can be derived by a similar argument as in
(Sirignano and Spiliopoulos, 2018, Section 4), which uses an adaptation of the argument of (Sznit-
man, 1991, Theorem 1.1).

F.2. Equation (diffusion-DD) (noisy SGD)

For the readers convenience, we reproduce here the form of the limiting PDE

pe = 26()V - (peVUA(O; pr)) + 2£(t)/ BAa 1, (62)
(8 p0) = V(8) + / U(0.0) pi(a6) + 51013 63)

We say that p; is a weak solution of Eq. (62) if for any ¢ € C§°(R x RP) (the space of smooth
functions decaying to O at infinity), we have for any 7" > 0

[, @m0~ [ a@)priao)
RD RD
—_ /(OT) RD[&Q(G)—%(@(W%(@; pt), Vol (0)) + 26(1) Agi(0)]pe(dO)dt. (64)

Note that this notion of weak solution is equivalent to the one introduced earlier in Eq. (61), see for
instance (Santambrogio, 2015, Proposition 4.2).

For fixed coefficients, the existence and uniqueness of solution of Eq. (62) was proven in (Mei
et al., 2018, Section 10.2), under the assumptions Al, A2, A3, A6. The proof follows from an
adaptation of the proof of (Jordan et al., 1998, Theorem 5.1).

For general coefficients, we can follow a similar contraction argument as in (Sirignano and
Spiliopoulos, 2018, Section 4) and (Sznitman, 1991, Theorem 1.1), by bounding more carefully
each term.

60



MEAN-FIELD THEORY OF TWO-LAYERS NEURAL NETWORKS

Proposition 51 Assume conditions A1-AS. Then PDE (62) admits a weak solution (p)¢>o which
is unique.

Proof [Proof of Lemma 51] Without loss of generality, we assume £(¢) = 1/2, which corresponds
to a reparametrization of variable time ¢. Denote by Z?(RP) the set of probability measures on
RP, endowed with the topology of weak convergence. Note that Eq. (64) immediately implies that
t + py is continuous in Z(RP).

Denote by D([0, T]; 2(RP)) the set of maps from [0, T into Z2(RP) and by C ([0, T]; 2 (RP))
the set of continuous maps in this class. We introduce the map ®r : C([0,T]; Z(RP)) —
D([0,T]; 2(RP)), which associates m € D([0, T]; Z(RP)) to the law of the solution

t
9 — " 1 / G(8°;m)ds + W(t),  fort <T, 8y~ py.
0

Observe that if m is a weak solution of PDE (62) defined on interval [0, 7], then m is a fixed point
of ®7. Further, for any such fixed point m, Lemma 39 and Lemma 41 both apply. In particular,
t + my is continuous in &2 (RP) and therefore ®7 maps C([0, T]; 2(RP)) to C([0, T]; 2(RP)).
Further, again by the same derivation, there exists a constant C, such that

/a2mt(da) < et forall t € [0,T.

Let us define Z¢, 1, (RP) the space of probability measures such that [ a?(da) < Coe®To. We
consider m € C([0, To; Zc, 1, (RP)), the set of continuous mapping from [0, 7p] on Z¢, 1, (RP).
Using the same computation as in the proof of Lemma 39, we have:

¢ t
at = e Mgl +/ e_’\(t_s)K('ws,ms)ds—i—/ e =)\ /7 I DAW A (s),
0 0
where |K (%, ms)| = ‘ — v(w?®) — fau(ﬁzs,w)ms(da,dw)‘ < K 4 K+/Cpe©0s/2, We get:

(@)? < 9K? 4+ 18K%t 4+ 18 K%t Cpe*t 4 B2,
where B, is a normal random variable with variance bounded by 9¢7/D. Taking the expectation
with respect to 7 (m), we get:

/ a?®7(m)y(da) < (9K? + 18K%t + 18K2tCy + 9t1/D)e 0t

Hence we deduce that for Cy sufficiently big and T sufficiently small, we have for every T €

[0, Ty), @r(m) € C([0,T); Pc, 7 (RP)). We can therefore restrict our mapping & to the subsets

C([0,T); Py r(RP)) for T < Ty, which must contains all the fixed points by the above discussion.
We introduce the following metric on C([0, T]; Z¢, 7(RP)):

1/2
Dp(mt,m?) = (inf { /sup 6% — 65]|37(d61,dBy) : + is a coupling ofml,m2}>
t<T

We show that for 71 < Tj sufficiently small, the mapping ®7, is a contraction with respect to this
distance.
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Lemma 52 There exists a constant K such that
D (D (mt), ®p(m?)) < TK Dp(m', m?),

forall T < Ty, and for all m*,m? € C([0,T); Pc, 7(RP)).

Proof [Proof of Lemma 52] We fix T' < Ty, and we consider a coupling ~ between mb,m? €

C([0,T); Py r(RP)). We consider the following coupling between ®7(m') and ®7(m?):
0 =6+ [ Gi(Bis)ds + W),
0 =0+ [ Ga(B5i)ds + W),

where G1(05;7s) = —\05 — VV(05) — [pp . wp V1U(05,61)7(d6:, d6s) (and similarly for Gs).
We have:

IG1(8157s) — G2(0357s) |l <K (1 + |ai]) 107 — 632

K [ larl(1+ (a8 - 83]7.(081.d62)
+ [ a1+ a3 18:  Ball(d6r, ).
Hence, we get (using that m} € Pc, 7(RP))
101~ B4l <iee’ T [ (1-+ a1))07 — B
k[ 0t fa) [+ 1ol — a1 (01, a0z)a,

where K is a constant depending on the constants of the assumptions and Cj. Taking the square
and using Cauchy-Schwartz inequality

161 — 65113
t t _
<K [ (1 jai)ids [ 167 - 63]5ds
0 0
t t
e [ jasas [ ([0 6.0 [ 61 - 62]f(d61.062)ds
0 0
t
<KeSToTy My, / 165 — 63)12ds + KeKTo My, ¢ / sup 6! — OL|27(d6:, d6),
0 t<T
where My, = (1 + supy<, (|a| v |a4|)). Applying Gronwall’s lemma, we get, for any T' < T,
sup |04 — 843 < KT2eKT5e 0 M, / sup |6} — 65]57(d61,d6,).
t<T t<T
Taking the expectation:

Efsup |18, — 853] < KT?E{exp(KT2eX 0 My,)) / sup |64 — 6L]12(d61., d6y).
t<T t<T
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By a similar argument as in Lemma 40, we have P(Mr, > Kef70(1 + 22)) < e ie.

2

P(exp{ KTgeS 10 M7y, } > exp{ KTgefT0 (1 +22)}) < e .

Doing a change of variable, we get:
B(exp(K T3 Mz, )} = [ Blexp(KT3eN T M) = w)du

oo

<KTZ2eKTo 4 KT2eKToe ™ / zexp{—(1 — KT2eX10)22}dz
0

<00,

for Tj small enough. We conclude that there exists a constant K < oo such that

Pr(®r(m'), &r(m?)) < (inf E[sup |6} — 03]3)"/? < TKZr(m',m?),
Y <T

where we used that the coupling v was chosen arbitrarily. |

We can therefore consider 7} < 1/K. We showed that the mapping @7, is a contraction on the
space C([0,T1]; Pc, 1, (RP)). By the Banach fixed-point theorem, there exists a fixed point for
o7, on the interval [0, 77 ], which is unique. We can further iterate the same argument. Assume that
the fixed point of ®7 is unique, for some 7" > 0. Then ®o 7, 7,] has a unique fixed point, which is
amapm : [0,T 4+ T1] — Z2(RP). This suffices to conclude that PDE (62) admits a weak solution
on [0, 00), and this solution is unique. [ |

Further, Duhamel’s principle for PDE (62) holds. Denote ¢ (0, 6'; t) the heat kernel:

90.0%0) = o el 10 - 03/(20))

Lemma 53 Assume conditions A1-AS. Let p be a weak solution of PDE (62). Then, for anyt > 0,
pt(d0) has a density, denoted p(t,-), which satisfies

p(1.0) = [ 90,01 71/D)m(a6n)
— /Ot /<Vglg(9, 91; T(t — S)/D), Vgl\lf(al; p5)>p(s, 91)d01d8.

Proof [Proof of Lemma 53] For ease of notation, let us set 7/D = 1 and £(¢) = 1/2, which amounts
to rescaling time. Consider n € C*°(RP) (space of smooth real-valued functions) with bounded
support, and define:

4,(651) = [ 9(6,61:6)1(61) a6,
By property of the heat kernel, we have

(0 — A)9,(0;t) =0,  Vt>0,V0 € RP.
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Take ((0,s) = ¥4,(0;t — s) (which indeed decays to 0 at infinity) as a test function in Eq. (64) for
T =t. We get:

[ n(6n0ita6r) = [ ,(6:)0(d6) - /(0 o 035, O ) (00).

By applying Fubini’s theorem, we get

/ 0(6,)pi(061) = / (0,61 1)po(d0)1(6,)d6,
- / (9(8,615t — 5), V(8. 01: py))ps (d6)ds 7(61)d6)1,
(0,t) xRP xRDP

where 7 is an arbitrary function with bounded support, which concludes the proof. |

Lemma 54 Assume conditions Al- A6. Assume further that py has a density. Denote (pt)¢>0 the
solution of PDE (62), with density (p(t,))>0. Then (t,0) — p(t,0) is in C12((0,00) x RP),
where C12((0,00) x RP) is the function space of continuous function with continuous derivative
in time, and second order continuous derivative in space.

Proof [Proof of Lemma 54] The proof follows exactly from the proof of Lemma (Mei et al., 2018,
Lemma 10.7). n

F.3. The noisy PDE as a gradient flow in the space of probability distributions

We include a second independent proof of the existence of a weak solution, which is interesting
in itself. It relies on a deep connection pioneered by Jordan et al. (1998), between Fokker-Planck
PDEs and gradient flow in probability space. The proof follows closely the steps detailed in Jordan
et al. (1998). The arguments are similar to (Mei et al., 2018, Section 10.2), and we will only detail
the differences.

We will consider the set /C of admissible probability densities,

K= {p : RP [0, +00) measurable : / p(0)d0 =1,M(p) < oo},

]RD
where
Mip)= [ | 16Io(6)36.
]RD
Recall
R(p) = E(y*) +2 / V(0)p(0)d6 + / U(6,0")p(8)p(6')d6d’.
RD RD xRD

‘We will define

But(o) = — | p(6)10zp(6)do.
F(p) = 1/2- [\M(p) + R(p)] — 1/5 - Ent(p).
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The PDE (62) can be interpreted as a gradient flow on the free energy functional F'(p) in the space
of probability measures on R” endowed with the TWs(-, ) Wassertein distance (Mei et al., 2018,
Section 10.2). Recall that for 1, v probability distributions over R”, we have:

W3(p,v) = inf { / 161 — 0357(d01,dBs) : ~ is a coupling of y, y}
RD xRP

Proposition 55 Assume conditions A1, A2, A3, A6. Let initialization py € K so that F(py) < oc.
Then the PDE (62) admits a weak solution (p;)i>0 which is unique. Moreover, for any fixed t,
pt € K is absolutely continuous with respect to the Lebesgue measure, and M (p;) and Ent(p;) are
uniformly bounded in t.

Proof [Proof of Proposition 55] Without loss of generality, we assume £(¢) = 1/2, which corre-
sponds to a reparametrization of variable time ¢. To prove the existence of the solution, we consider
the limit of the following discretized scheme when the step-size h goes to zero: we define recur-
sively a sequence of distributions {p} }ren, with pi = po and

1,
P € axgmin {AF(p) + W3 (0. 7). (65)

Lemma 56 Given an initialization py € K, there exists a unique solution of the scheme (65).

Proof [Proof of Lemma 56] Clearly it is sufficient to analyze a single step of the scheme (65). The
proof follows from the same arguments as in (Jordan et al., 1998, Proposition 4.1), which shows
that there exists a sequence of measures {p, },en € K that converges weakly to p* € K such that

V—r00

. 1 , 1
lim {F(pu) + §W22(pu,po)} = inf {F(p) + §W22(p1/7p0)} > —o0.

Moreover, there exists a constant C' such that M(p,) < C and M(p*) < C by lower semi-
continuity of M (p). We only need to check lower semi-continuity of R(p) to conclude that p*
is indeed a minimizer. Uniqueness comes from convexity of the functional and strict convexity of
—Ent(p).

Denote for z € R, the functions ¢,,(r) = sign(x) - max{|z| —m, 0} and ¢, (z) =z — b, (),
and B(r) = B(0,r) C RP:

|R( \<\/¢ (6) — ,0*(9)]d0’

/ b (U0,0)p,(0)p,(8)) — p(8)"(8))]d0A0

+| [ onv©)In6) - ' (©))a6)

+ / G (U(0,0)[p,(0)p,(8') — p*(0)p*(6')]dOAE'|.

By weak convergence in L'(RP), the first two terms converge to zero. Recalling that V(6) =
av(w) and U(0,0") = ad’u(w,w"), with |v(w)| < K and |u(w,w’)| < K, we deduce

|5l o] <[ [ G v @)put0) ' (@)1a6] < 26C/m,
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a

nd
[ 0(6.6))10,(6)0.(6') ~ ' (0)0" (8]0

= G (U(6,0)[0,(8)p,(8') — p* (6)p (6] 60| < 2K C2/m,
B(vm/K)xB(vm/K)
where we used that fB(T) lalpy(da) < [a?/rp,(da) < C/r. Because m is arbitrarily large, we

conclude that
lim |R(py) — R(p*)| = 0.

V—00

The rest of the proof follows the proof of (Jordan et al., 1998, Theorem 5.1), which shows that
for a given T' < oo, there exists C such that for any h and k with hk < T', we have M (p}) < C.
If we denote p”(t,.) the piece wise constant distribution trajectory, we deduce that it converges
weakly to p in Ll( 0,T) x RP). Furthermore, the weak convergence applies for each given time
t € [0, 400),i.e. p(t) — p(t) weakly.

We still need to show that this limiting distribution is a weak solution (61) of PDE (62). Let
¢ € C3°(RP,RP) be a smooth vector field with bounded support, and define {®,},cr the corre-
sponding flux:

0;P, = €0 ®, forall 7 € R and &y =id. (66)

Further, for 7 € R, define v, to be the push forward measure of ﬁz under ;. Namely,

/ v (0)C(8)d0 = / P0)C(D,(0))d0, V(€ C(RD),
RD RD

or equivalently v, = mﬁz o ®-1. We only need to consider the term R(p). See the proof of
(Mei et al., 2018, Lemma 10.6) for more details.

From the assumption of bounded support, we must have supgerp [|£(0)]|2 < K. From Eq.
(66), we have

D.(0) =0+ /0 " 0,(£(0))ds. (67)

Hence applying Gronwall’s inequality to u(7) = supgcg(y) ||®~(0)l|2, and considering 7 < 1, we
get u(7) < K. Therefore, for 7 < 1, we get |(92/07%)®.(0)| = |®,(£(£(0)))| < K. We deduce
that

|1+(6) — 0 — 7€(O)[l> < K7°. (68)

Let us consider the derivative of R(v,) with respect to 7. Recall that U is symmetric.
/[U(‘I’T(Ol)a ©.(62)) — U(61,602) — 27(V1U (61, 62),£(61))17 (61)7]: (62)d61 A6

2/[U(<I>T(91)7 ©,(0)) — U(D7(61),02) — 7(ValU (P-(61),62),£(62))];(61)7](62)d61d65
+ / [U(2-(81),82) = U(61,02) — 7(V1U (81, 62), £(61))]71,(61)73: (82)d61 46

+ /[T<V2U(‘I’T(91),92)75(92» — 7(VaU (81, 02), £(02))]57(61)5} (02)d61 6.
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Denote (a7, w]) = ®,(6;) and (af, w3) = ©-(62), and £(0) = (£4(0), &, (0)). Consider the first

o U(®,(81), 8,(8)) — U(®,(61),02) — 7(VoU (%,(61), 62), £(62))
—aT{[a — asJu(w], w]) + aslu(w], ws) — u(w], w])])
AT {€a(B2)u(w]  w2) + ax(Vapyu(uw] 12), £ (62))}
—aT{[aF — az — 76,(62)]uw], w)
T asfu(w], ws) — u(w], wh) — 7(Vasyu(w], ws), Eu(62))]}
+ 1a]&eJu(w], wy) — u(wi, we)).

Using that || Vu||op, || V?ullop < K, and Eq. (67) and Eq. (68), we get for 7 < 1

‘ / D-(62)) — U(2,(01),02) — 7(VoU(®(601),02),£(602)) |71 (01)7 (02)d01d0:
<Kr2 / 0T (K + a3)|p} (1)} (602)d0,d0y < KT2C(K + C),

where we used that |a”| < |a| + K7 from Eq. (67), and M (p}) < C. The same computation shows
that the second and third terms, as well as the term depending on V(8) are O(7?).
Taking 7 — 0, we conclude that:

TR0 = [ (VU0.7).€@)rk o).

This equality combined with the analysis of (Jordan et al., 1998, Theorem 5.1) shows that p(t) is
indeed a weak solution of PDE (62). The proof of uniqueness follows from the regularity Lemma
54 and a standard method from elliptic-parabolic equations (see (Jordan et al., 1998, Theorem 5.1)
for details). |

Appendix G. Proof of Theorem 8

Proof [Proof of Theorem 8] Let L?(R%, P) be the space of functions on R? that is square integrable
with respect to the measure . For any functions u,v € L?(R% P), we denote by (u,v);2 =
Jra u(x)v(z)P(dz) the scalar product of u, v and ||jul[zz = ({u,u)2)"/? the associated norm in
L*(R4,P).

We prove the case for general coefficients. The proof of fixed coefficient is the same but simpler.
Step 1. Bound the support of a*“.

Let 5 = (ab®, wh®) satisfying the non-linear dynamics

d - 1 -
79t,o¢ — _ \I/a et,a, «
dt ave ( 7pt)

with initialization 8% ~ pg, and p$* given by Eq. (Rescaled-DD). Then we have

‘—dt,a‘ :‘ 1/a ) f(m;p?))o.(m;wt,a)]
<(1/)E [( () = F(a: 1)) *Elo (a; w"*))/?
<(1/a)K Ra(pf)"/*.
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The last inequality follows from the assumption that ||o||~c < K. Note R, (pf) will always decrease
along the trajectory, i.e., we have Ry (p) < Ra(po) < B. As a result, we have |dab®/dt| <
KB'2/a, so that

@b < K(1+ BY?t/a) = My 4.

,Q t,a)

Denoting A(p) = sup, ) la|. Since (@, w") ~ pf*, we have

a,w)Esupp(p
A(p?) < My = K(14 BY?t/a).

Step 2. Bound Ws(pf, po).
For 6 = (a,w), we have

IVeWa(8, o)l = [E{Voos(a; 0)[f () — falm; )]}
< E{||Voou(; 0)|I*}*E{[f (@) — fa(@; o))"}/
= {E{o(z;w)’} + a’E{||Vuwo(z:w) 31}/ Ra(p?) /2
< K(1+ |a|vV'D)BY2.

The last inequality follows from ||o||oc < K and
E{||Vwo(x; w)|3} = tr(V1Vou(w, w)) < D||V1Vau(w,w)|op < KD.
Hence, for s < ¢,
nt,o 0s, o 1 ! Qu,x. K 1/2
10 = 0l = —|| | VoWa(@“*pi)dul < ft—s|M,WBY2VD.
all /g 27«
Note that, by the coupling in terms of nonlinear dynamics, for any s < ¢, we have
_ _ K
Wa(pls pf') < E{]|6%% — 6%|*}1/2 < —|t — s| Mo B'*VD. (69)
o

Step 2. Bound [|H,, — Ho |lop-
Note that, for v € L?(R%, P),

(v, Hpv) 2 = / B2 {Va0.(z;0)v(2)} | p(d6). (70)
Letting v denote the coupling that achieves the W5 distance between p; and p2, we have
(0, [Hpy = HppJv) 12
/{HE (Voo (@:00)0@) |2 — |[Ea{ Voo (a: 02)0(a) |2} (d61, d62)

<[ [ 4-(01.020(001.002) - [ 4,(601.02)(001,002)]
where
A_(61,02) = ||Ex{[Voo.(x:01) — Voo (a; 02)]v(z)} |5
< Eg{||Vaox(x;01) — Voo, (x; 02)||2}||U”L2 )
A1 (61,60) = (Eo{[|[Voo(z;01)]2 + Voo (z; 02) 2] [ v(z)]|2})?
< Eof{ (Voo (2;01)ll2 + [ Voo (w; 82)[|2) 0|7 -
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Note we have )
Ex{([[Voos(x;01)|2 + Voo (z; 02)[]2)°}

=tr[V1VoU(01,01)] + tr[V1V2U (62, 05)]

+ 2{tr[V VU (61, 0:)] - r[V VU (0, 05)]}1/?
<D([V1VoU(61,61)llop + [[V1V2U (62, 02) |op

+ 2{[|[V1V2U (61, 01)||op V1 V2U (82, 02)[|op }'/?)
<KD(1+|a1]V |ag])?,

where the last inequality is by

u(w, w') a'Viu(w,w')

A
V1VZU(07 0 ) - (IVQU(w, ’U]/) aa'V1V2U('LU, ’LU,)

)

and the assumption that |ul, | Vul|2, | V2ullop < K. This gives
Ay (61,02) < KD(1+ |ag| V |az])?||v]|7.
Moreover, we have

Ee[[|Voos(x;01) — Voo, (; 02)][3]
[V, VaU (81, 601) + V1VoU (6, 0) — 2V1VoU (61, 65)]
<D|V1V5U(81,0,) + V1V2U (82, 02) — 2V, VU (61, 0) o
<KKD(1+ a1| V |ag|)?]|61 — 62]l3,

where the last inequality follows from
IV1V2U (61,61) + V1V2U (83, 0) — 2V1VoU (61, 02) || op < [[VIVEU (61, 62)|lopl|61 — 623,
and || V3ul|op, || V*ulop < &. This gives

A_(01,02) SKKD(1+ |ag| V |az|)?[|01 — 02 3][v]7.-

Remember the notation A(p) = SUP (4 w)esupp(p) || and we have shown A(pf) < My o = K(1 +
B'?t/a) in step 1, we have

(v, [Hpy — Hpplv) 12
=|kKD?[1+ A(p1) V A(p2)]* - [1 4+ A(p1) V A(p2)]” - / 161 — 62137(A61,d0s) 0] 1

<Kr'2D[1+ Alp1) V Alp2)*Wa(p1, p2) - 07

/2

Substituting above, we get

oo = Hoplow < K&">DWalpo, pf) (1 + Mia)® < Kx'2D¥*(1 + B'?t/a)*B'?t/a
(71)

Step 3. Bound the difference of mean field and linearized residue dynamics v; = ug* — u;.
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We now consider the mean field residual dynamics (RD) and the linearized residual dynamics

(17). Defining vy = ug* — u}, we have
atvt = —,Hpgvt + (HPO - /Hp?)u;: .
Since ’Hpg > 0, this implies
d 2 * *
g lvellze = 20, (Hpo — Hop)ui) 12 < 2|vell z2lHpe — Hgp lolluig ]| 2.

Using the bound (71), and [|u}[|3. < |[u§||?2 = Ra(po) < Ba, we obtain

d
qpllvelce <l Hpo = Hppllopllugll 2 < Kw'2D**(1+ B"?t/a)’Bt/a,
Integrating this inequality yields Eq. (20). Eq. (21) follows by triangle inequality.

Step 4. Proving Eq. (22).
For pg = p§ x py with |E(a)| < K/, we have

£ (3 po)|| = aH /apfﬁ(da) : /U(df;’w)pf)”(dw)H <K

Then we have R
Ra(po) = 2E[f(2)?] + 2E[f (; po)*] < K,

which is independent of a. Hence we have in both cases
lim Ry (p%) < [Juf]]?,.
Tim Ra(pf) < [luf |25

Equation (22) holds by Lemma 7.

Appendix H. The mean field limit and kernel limit

(72)

(73)

(74)

This section is a self-contained note comparing the mean field limit and kernel limit. We introduce
the distributional dynamics and residual dynamics, which we consider in the pre-limit and in the

limit of infinite number of neurons.

Let us emphasize that the material presented here is not new and appears in the literature, pos-

sibly in a slightly different formulations.

H.1. Two layers neural networks with a scale parameter o

Let f : RY — R. We use a two layer’s neural network to fit this function f over data & ~ P,. We

denote fa, ~(z; 0) the N-neurons prediction function at point & € R? with weights 8 €

fosze

2\@

RDXN’
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Here « serves as a scale parameter, which can be used to explore different regimes of the learning
dynamics. We minimize the population risk over @ = (61, ...,60y):

Rav(0) = Ba [ (1(@)  Jan(2:0)) ]

In the rest of this appendix, we will first consider the gradient flow dynamics of the finite neuron
risk function. This can be described via a distributional dynamics, which is a flow in the space of
probability measures. The distributional dynamics induces an evolution of the residuals at the data
points, which we call residual dynamics. We then consider the limit N — oo, which we refer to as
the mean field limit.

Finally, we consider the limit of both « — oo after N — oo, that we call the kernel limit. Of
course, it is also possible (and interesting) to study joint limits o, N — oo Jacot et al. (2018). Our
rationale for the focusing on @ — oo after N — oo (following Chizat and Bach (2018b)) is that it
allows to explore the crossover between mean field and kernel behaviors.

H.2. The residual dynamics in the pre-limit
Calculating the gradient Vg, R, v (6) using chain rule, we get

200 ~

Vo, Rav(0) =~ Bal(f(@) — fo(: 0)) Voo (; 0,)].
We consider the gradient flow ODE with time reparameterization given by N/(2a?),
de: N 1 R
i _ ty _ . gt . gt
T - —ﬁv%Ra,N(e ) = aEm[(f(x) — fan(x;0%))Vgoi(x;07)].

The time derivative of f% ~(2;0) can be calculated using the chain rule. We have

Oufan(z:0') = iwf"’* (2:63), ddit>
j=1
(L3 (Va0 (01000, Vo (25600 ) () — fulai6))].
7=1

Define the kernel function (z, 2z; @) with weights € RP*¥ to be
LN
H(x,2;0) = NZ Voo, (x;0;), Vooi(2;0;)),

then we have R R
Oufa(2:0) =By | (f(@) ~ fon(2:6") ) H(w, 2:6")|.
Taking the residue function to be u;” Nz) = f(z) - fan(z;0Y), we have

ol (2) = — Eo[H(x, z; 6)ui ()], (75)

with initialization ul"™ (2) = f(2) — fa.n(2;6°) and 89 ~ py independently. We call Eq. (75) the
residual dynamics. The residual dynamics is not a self-contained equation and depends on 8?.
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H.3. The distributional dynamics in the pre-limit
Define

1 N
= 2%t
j=1

Define the prediction function with distribution p and scaled parameter « to be

fol@;p) = a / o+(x;0)p(d0).
Consider again the gradient flow dynamics

t
dOj 1

. 1
— = “Eol(f(@) ~ faun(@:0")Ve0.(@:0,)] = — Vo a(0: ).

where we defined R
Va(0;p) = —Es[(f(x) — fa(x; p))ow(; 0)].

Then we have

8ipyN =(1/) Vg - (00N [Vo¥(8; o)),

Ve
N
1
N2
with 0? ~ po independently. We call dynamics (76) the distributional dynamics. The distributional
dynamics is equivalent to the gradient flow.

(76)

H.4. The coupled dynamics

Writing the distributional dynamics and residual dynamics together (in the pre-limit), we have

app ™ =(1/a)Ve - (07" [VoWa(8; p™)]),
3tU?’N(z) =—Eg [Ut’ (w)pr,N(mv z)],

where

Hy(w, 2) = / (Voo (:0), Voo, (2 8)) p(d6),
Vo (0;p™N) = — Eal(F(@) — fulw: pN))o(@:8)] = —E[u ()0 (a: 0)],

with initialization conditions given by p) = (1/N) YN 6g0, un (0, ) = f(x) — fan(a;0°),

and (9 )2<N i.4.d. PO-
Note these coupled dynamics are random, where the randomness comes from the random ini-

tialization (09);<n ~i.i.d. po-
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H.5. The mean field limit

In the mean field limit, we fix o and take N — oo. Under some conditions, it can be shown that
there exists (p;)¢>0 satisfying the mean field distributional dynamics

Orpy =(1/a)V - (Ve Wal(8; pi)]), a7

with initialization condition p§ = pg. Moreover, we have almost surely (over 69 ~ pg indepen-
dently)
. N
lim Wa(pi™™, pff) — 0.
N—o0

The mean field distributional dynamics was proposed and studied in Mei et al. (2018); Sirignano and
Spiliopoulos (2018); Rotskoff and Vanden-Eijnden (2018); Chizat and Bach (2018a) under various
conditions.

Now define the mean field residual function u$'(z) to be

A~

ui' (2) = f(2) = fa(z; pf)-
For any fixed z, we have almost surely

lim v (2) = uf(2).
N—oo

Under some regularity conditions, it is not hard to show that this mean field residual function satis-
fies mean field residual dynamics

Ouuf (=) = ~Ealuf () e (w, 2)].

The mean field residual dynamics is not a self-contained equation. It depends on the distribution
through the kernel H,e. The mean field residual dynamics was first explicitly given in (Rotskoff
and Vanden-FEijnden, 2018, Proposition 2.5).

H.6. The kernel limit

Theorem 8 shows that, as « becomes large, for any fixed ¢, we have
lim W2(p?a PO) =0,
a—r 00

and hence
0}1_{20 Hpe = Hpollop = 0

In this limit, the mean field residual dynamics converges to the linearized residual dynamics,
Oruy (2) = —Ee [ug (@) Hp, (2, 2)]. (78)

The linearized residual dynamics is exactly the same as the continuous time kernel boosting dynam-
ics with kernel H ,,, whose solution can be written down explicitly

u: — e_HPOtuE; . (79)
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When the kernel is strictly positive definite, one can show that the L?-norm of the residual function
converges to 0 as time goes to infinity.

The kernel limit is studied in Jacot et al. (2018); Geiger et al. (2019) in the joint limit o =
N2 — 50, and in a multi-layer neural network settings. The specific limit considered here (N —
oo followed by o« — 00) is discussed in Chizat and Bach (2018b).

An interesting line of research Li and Liang (2018); Du et al. (2018b,a); Allen-Zhu et al. (2018)
also studies the kernel limit, but focusing on dynamics on empirical risk. Note that all the equations
discussed above also holds for P, = (1/n) >} _, 0z,. The benefit of working with the empirical
risk is that, under mild assumptions, the kernel matrix {H, (i, @;)}; je[n is strictly positive defi-
nite with least eigenvalue A\;, > 0. As a result, it is possible to upper bound the convergence time
of the empirical risk to O using Eq. (78). Hence, it is possible to choose the number of neurons large
enough that the residual dynamics (75) is well approximated by the linearized residual dynamics
(78) along the whole trajectory.

H.7. Kernel limit as kernel ridge regression

Consider the case when P, = (1/n) > }_; s, is the empirical data distribution. We make an
additional assumption on the initialization weight distribution pg:

(I) The initialization distribution (a,w) ~ pg verifies: a is independent of w and E(a) = 0. In
other words, pg = p§ x p¥ with [ apg(da) = 0.

Under this assumption, we have fo(z; pft) = 0 forany z € R%, so that u§ (zy) = f(a,) for k € [n].

Denote
[wg (@1), - . uf ()],
uf =[uf(x1), .. uf (2],
y =[f(@1),.... f(@a)]".

Further we denote the data kernel matrix H € R"*"™ with H;; = H,,(x;, ;). Then Eq. (17) can
be rewritten as

o
Uy

u;f _ e—Ht/nug _ e—Ht/n,y_

Note Theorem 8 holds also in the case when [P, is an empirical data distribution. Hence we have

1
lim sup —=|[juy —ujlj2 = lim sup |uf —ui|/2 =0.
a2 ye(o.7] V1 =00 40 7]
The following proposition considers the scaling limit (kernel limit) of the prediction function at
time ¢,

falziot) =a [ (@)t (@6),
where pf* is the solution of the rescaled distributional dynamics (Rescaled-DD).

This fact already appears (implicitly or explicitly) in several of the papers mentioned above. We
state and prove it here for the sake of completeness.

Proposition 57 Assume conditions Al - A4 hold, and Py, = (1/n) Y ) _, 0z, to be the empirical
data distribution. Additionally assume the finite data kernel matrix H € R™*" is invertible, and pg
verifies property (I). Then for any fixed z € RY, we have

lim lim fo(z;pf) = h(z) " H 'y,

t—00 a—00
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where
h(z) =[Hp (2, 21), ..., Hpo(2, :Bn)]T

Remark 58 Given a data set {(xi,y;) }ic[n), kernel ridge regression is a function estimator fx that
solves the following minimization problem
1 n
min > (0~ £(@)? + Al
i=1

The norm || f||#,, is the reproducible kernel Hilbert space (RKHS) norm of function f, where the
RKHS is associated to the kernel H . The solution of the minimization problem above gives

fa(z) = h(z)T(H + ) y.

Proposition 57 shows that, the mean field prediction function in the kernel limit is performing a
kernel ridge regression with regularization parameter \ = Q.

Proof [Proof of Proposition 57] Recall that

ug =[uf (z1), .., uf (@),
wp =[uf (1), .. v (z)]"
y =[f(z1), ..., f(@)]".

The data kernel matrix H € R"*" is given by H;y, = H,,(x;, ;). By Eq. (17) and the assumption

on pg, we have
* _ _—Ht/n,,x _ _—Ht/n
ui =e /uo_e /y.

For any fixed z € R?, denote

>
+Q
—~

N
S~—
i

x
e
+Q

(Z7 331)7 s 77—[[)? (Z, mn)]T?

Hoo (2, 1), ..., Hpo (2, a:n)}T

>
—~
N

N—
A

Using chain rule, the time derivative of the prediction function fo(z;p?) = a [ ou(x;0)p5(d0)
gives

Oufalz: p7) Zaat/ff*(z;H)ﬂ?(df’) = /<Veff*(z;9)7V9‘1’a(9;/)?‘)>p?(d9)

(80)
—E, [u?‘(a:) / (Voo (2;8), Voo(x; e)>pg<d9)} = h(2)ud/n.
By the same argument as Step 2 of Theorem 8, we have
sup [[h(z) = hi¥(2)[l2 = O(1/a). (81)
te[0,7
By Theorem 8, we have
sup |luf —ufl2 = sup [Juf —uillr2 = O(1/a). (82)
t€[0,T t€[0,T
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Now, we denote f;(z) be the solution of the following linearized prediction dynamics,

(9tft(z) :h(z)Tu;f/n,

(83)
fo(z) =0.
By Eq (80), (81), (82) and (83), we have
sup ’atft(z) - &:fa(z;p?)\ = 0(1/a),
te[0,7
together with fo(z) = fa(z: pg) = 0 we get
fi(z) = lim_fo(z;pf).
Note the solution of Eq. (83) gives
t t
fi(z) :n1/ h(z)Tulds = nl/ h(z)Te Hs/"yds = h(z)TH (I — e HY)y,
0 0
so that R X
foo(2) = tlim fi(z) = tlim h(z)TH (I — e 2™y = h(z)TH y.
—00 — 00
This proves the proposition. |

Appendix I. Technical lemmas

Lemma 59 Ler X; € RP with {X;},cn) to be ii.d. random variables, with || X;|2 < K and
E[X;] = 0. Then we have (the constant K in the result is up to some universal constant)

IP(H}VZN:Xi L2 K(VIN +0)) < e,
i=1

Proof
Denote f(X1,...,Xn) = [|(1/N) 32X, X;||2. Then we have
2112 _g[( 2 - X, - X 12
< - —E - § ;
ELf(X1,..., XN)]| <E[f(X1,..., XN)] [<N 2 i szl J>}

al /
{5 ;E[HXZ-H%]}I NS

Note by triangle inequality, we have
, 1 , 2K
lf( X1, Xy, XN) — f( X, X, X)) < NHXi — X2 < N
By McDiarmid’s inequality, we have

P(If(X, -, Xo) = EBf (X1, Xn)]| 2 8) < exp{~N&*/K},

which gives the desired result. n
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Lemma 60 (Azuma-Hoeffding bound) Let (X},)x>0 be a martingale taking values in RY with

respect to the filtration (Fy,),>0, with Xo = 0. Assume that the following holds almost surely for
allk > 1:

E{6<A:Xk*Xk71>|fk_l} < eLQH/\Hg/?

Then we have )
P((max| Xy, > 20vn [VD + 6] ) <.

Proof This lemma is proven in (Mei et al., 2018, Section A, Lemma A.1). |
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