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Abstract

We consider learning two layer neural networks using stochastic gradient descent. The mean-field

description of this learning dynamics approximates the evolution of the network weights by an

evolution in the space of probability distributions in R
D (where D is the number of parameters

associated to each neuron). This evolution can be defined through a partial differential equation

or, equivalently, as the gradient flow in the Wasserstein space of probability distributions. Earlier

work shows that (under some regularity assumptions), the mean field description is accurate as

soon as the number of hidden units is much larger than the dimension D. In this paper we establish

stronger and more general approximation guarantees. First of all, we show that the number of

hidden units only needs to be larger than a quantity dependent on the regularity properties of the

data, and independent of the dimensions. Next, we generalize this analysis to the case of unbounded

activation functions, which was not covered by earlier bounds. We extend our results to noisy

stochastic gradient descent.

Finally, we show that kernel ridge regression can be recovered as a special limit of the mean

field analysis.

Keywords: Mean-field, neural networks, kernel limit, distributional dynamics, residual dynamics.

1. Introduction

Multi-layer neural networks, and in particular multi-layer perceptrons, present a number of remark-

able features. They are effectively trained using stochastic-gradient descent (SGD) LeCun et al.

(1998); their behavior is fairly insensitive to the number of hidden units or to the input dimensions

Srivastava et al. (2014); their number of parameters is often larger than the number of samples.

In this paper consider simple neural networks with one layer of N hidden units:

f̂N (x;θ) =
1

N

N∑

i=1

σ⋆(x;θi) , σ⋆(x;θi) = aiσ(x;wi) , (1)

Here x ∈ R
d is a feature vector, θ = (θ1, . . . ,θN ) comprises the network parameters, θi =

(ai,wi) ∈ R
D, and σ : Rd × R

D−1 → R is a bounded activation function. The most classical

example is σ(x;w) = σ(〈w,x〉), where σ : R → R is a scalar function (and of course D = d+1),
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but our theory covers a broader set of examples. We assume to be given data (yi,xi) ∼ P, with

P ∈ P(R× R
d) a probability distribution over R× R

d, and attempt at minimizing the square loss

risk:

RN (θ) = E
{
(y − f̂N (x;θ))2}. (2)

The risk function RN can be either understood as population risk or empirical risk, depending on

viewing P as a population distribution or assuming P = n−1
∑n

k=1 δ(yk,xk) is supported on n data

points. If RN is understood as the population risk, we can rewrite

RN (θ) = RBayes + E
{
(f(x)− f̂N (x;θ))2} , (3)

where f(x) = E{y|x} and RBayes is the Bayes error.

Classical theory of universal approximation provides useful insights into the way two-layers

networks capture arbitrary input-output relations Cybenko (1989); Barron (1993). In particular,

Barron’s theorem Barron (1993) guarantees

inf
θ

RN (θ) ≤ RBayes +
1

N

(

2r

∫

‖ω‖2|F (ω)|dω
)2

, (4)

where F is the Fourier transform of f , and r is the supremum of ‖x‖2 in the support of P. This

result is remarkable in that the minimum number of neurons needed to achieve a certain accuracy

depends only on intrinsic regularity properties of f and not on the dimension d. The proof of this

and similar results shows that it is more insightful to think of the representation (1) in terms of the

empirical distribution of the neurons ρ̂(N) ≡ N−1
∑

i≤N δθi . With a slight abuse of notation, we

have f̂N (x;θ) = f̂(x; ρ̂(N)), where, for a general distribution ρ ∈ P(RD), we define

f̂(x; ρ) =

∫

σ⋆(x;θ) ρ(dθ) . (5)

The universal approximation property is then related to the fact that an arbitrary distribution ρ can

be approximated by one supported on N points1.

Approximation theory provides some insight into the peculiar properties of neural networks.

Small population risk is achieved by many networks, since what matters is the distribution ρ, not

the parameters θ1, . . . ,θN . The behavior is insensitive to the number of neurons N , as long as this

is large enough for ρ̂(N) to approximate ρ. Finally, the bound (4) is dimension-free.

Of course these insights concern ideal representations, and not necessarily the networks gener-

ated by SGD. Recently, an analysis of SGD dynamics has been developed that connects naturally to

the theory of universal approximation Mei et al. (2018); Sirignano and Spiliopoulos (2018); Rotskoff

and Vanden-Eijnden (2018); Chizat and Bach (2018a). The main object of study is the empirical

distribution ρ̂
(N)
k after k SGD steps. For large N , small step size ε and setting k = t/ε, ρ̂

(N)
k turns

out to be well approximated by a probability distribution ρt ∈ P(RD). The latter evolves according

to the following partial differential equation

∂tρt = 2ξ(t)∇θ ·
(
ρt∇θΨ(θ; ρt)

)
, Ψ(θ; ρt) ≡ V (θ) +

∫

U(θ, θ̃) ρt(dθ̃) , (DD)

V (θ) = −E{yσ⋆(x;θ)} , U(θ1,θ2) = E{σ⋆(x;θ1)σ⋆(x;θ2)} . (6)

1. Of course, here we are hiding some important technical issues.
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(Here ξ(t) is a function that gauges the evolution of step size and will be defined below. In fact,

there is little loss to the following discussion in setting ξ(t) = 1.) We will refer to this as the mean

field description, or distributional dynamics. This description has the advantage of being explicitly

independent of the number of hidden units N and hence accounts for one of the empirical findings

described above (the insensitivity to the number of neurons). Further, it allows to focus on some key

elements of the dynamics (global convergence, typical behavior) neglecting others (local minima,

statistical noise).

Several papers used this approach over the last year to analyze learning in two-layers networks:

these works will be succinctly reviewed in Section 2.

Of course, a crucial question needs to be answered for this approach to be meaningful: In what

regime is the distributional dynamics a good approximation to SGD? Quantitative approximation

guarantees were established in Mei et al. (2018), under certain regularity conditions on the data

distribution P, and for activation functions σ⋆(x;θ) bounded. Under these conditions, and for

time t ∈ [0, T ] bounded, Mei et al. (2018) proves that the distributional dynamics solution ρt

approximates well the actual empirical distribution ρ̂
(N)
k=t/ε, when the number of neurons is much

larger than the problem dimensions N ≫ D.

The results of Mei et al. (2018) present several limitations, that we overcome in the present

paper. We briefly summarize our contributions.

Dimension-free approximation. As mentioned above, both classical approximation theory and

the mean-field analysis of SGD approximate a certain target distribution ρ by the empirical

distributions of the network parameters ρ̂(N). However, while the approximation bound (4) is

dimension-free, the approximation guarantees of Mei et al. (2018) are explicitly dimension-

dependent. Even for very smooth functions f(x), and well behaved data distributions, the

results of Mei et al. (2018) require N ≫ D.

Here we prove a new bound that is dimension independent and therefore more natural: keep-

ing the evolution time T = O(1), the new results requires N ≫ 1 in order to get a vanishing

approximation error (Of course to make the approximation error vanish, N should depend on

the Lipschitz constants in the assumptions which may implicitly depend on dimension. How-

ever, for some interesting problems, the Lipschitz constants are dimension free, see Section

3.2 for an example). The proof follows a coupling argument which is different and more pow-

erful than the one of Mei et al. (2018). A key improvement consists in isolating different error

terms, and developing a more delicate concentration-of-measure argument which controls the

dependence of the error on N .

Let us emphasize that capturing the correct dimension-dependence is an important test of

the mean-field theory, and it is crucial in order to compare neural networks to other learning

techniques (see Section 4).

Unbounded activations. The approximation guarantee of Mei et al. (2018) only applies to activa-

tion functions σ⋆(x;θi) that are bounded. This excludes the important case of unbounded

second-layer coefficients ai’s as in Eq. (1). We extend our analysis to the following case: we

assume ai’s can be unbounded, but still assume the function σ to be bounded (the current

analysis didn’t handle the case when σ is unbounded). This requires to develop an a pri-

ori bound on the growth of the coefficients ai. As in the previous point, our approximation

guarantee is dimension-free.
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Noisy SGD. Finally, in some cases it is useful to inject noise into SGD. From a practical perspective

this can help avoiding local minima. From an analytical perspective, it corresponds to a

modified PDE, which contains an additional Laplacian term ∆θρt. This PDE has smoother

solutions ρt that are supported everywhere and converge globally to a unique fixed point Mei

et al. (2018).

In this setting, we prove a dimension-free approximation guarantee for the case of bounded

activations. We also obtain a guarantee for noisy SGD unbounded activations, but the latter

is not dimension-free.

Kernel limit. We analyze the PDE (DD) in a specific short-time limit and show that it is well

approximated by a linearized dynamics. This dynamics can be thought as fitting a kernel ridge

regression2 model with respect to a kernel corresponding to the initial weight distribution ρ0.

We thus recover –from a different viewpoint– a connection with kernel methods that has

been investigated in several recent papers Jacot et al. (2018); Du et al. (2018b,a); Allen-Zhu

et al. (2018). Beyond the short time scale, the dynamics is analogous to kernel boosting

dynamics with a time-varying data-dependent kernel (a point that already appears in Rotskoff

and Vanden-Eijnden (2018)).

Mean-field theory allowed us to prove global convergence guarantees for SGD in two-layers neural

networks Mei et al. (2018); Chizat and Bach (2018a). Unfortunately, these results do not provide

(in general) useful bounds on the network size N . We believe that the results in this paper are a

required step in that direction.

The rest of this paper is organized as follows. The next section overviews related work, focusing

in particular on the distributional dynamics (DD), its variants and applications. In Section 3 we

present formal statements of our results. Section 4 develops the connection with kernel methods.

Proofs are mostly deferred to the appendices.

2. Related work

As mentioned above, classical approximation theory already uses (either implicitly or explicitly) the

idea of lifting the class of N -neurons neural networks, cf. Eq. (1), to the infinite-dimensional space

(5) parametrized by probability distributions ρ, see e.g. Cybenko (1989); Barron (1993); Bartlett

(1998); Anthony and Bartlett (2009). This idea was exploited algorithmically, e.g. in Bengio et al.

(2006); Nitanda and Suzuki (2017).

Only very recently (stochastic) gradient descent was proved to converge (for large enough num-

ber of neurons) to the infinite-dimensional evolution (DD) Mei et al. (2018); Rotskoff and Vanden-

Eijnden (2018); Sirignano and Spiliopoulos (2018); Chizat and Bach (2018a). In particular, Mei

et al. (2018) proves quantitative bounds to approximate SGD by the mean-field dynamics. Our

work is mainly motivated by the objective to obtain a better scaling with dimension and to allow for

unbounded second-layer coefficients.

The mean-field description was exploited in several papers to establish global convergence re-

sults. In Mei et al. (2018) global convergence was proved in special examples, and in a general

setting for noisy SGD. The papers Rotskoff and Vanden-Eijnden (2018); Chizat and Bach (2018a)

2. ‘Kernel ridge regression’ and ‘kernel regression’ are used with somewhat different meanings in the literature. Kernel

ridge regression uses global information and can be defined as ridge regression in reproducing kernel Hilbert space

(RKHS), while kernel regression uses local averages. See Remark 58 for a definition.
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studied global convergence by exploiting the homogeneity properties of Eq. (1). In particular, Chizat

and Bach (2018a) proves a general global convergence result. For initial conditions ρ0 with full sup-

port, the PDE (DD) converges to a global minimum provided activations are homogeneous in the

parameters. Notice that the presence of unbounded second layer coefficients is crucial in order to

achieve homogeneity. Unfortunately, the results of Chizat and Bach (2018a) do not provide quan-

titative approximation bounds relating the PDE (DD) to finite-N SGD. The present paper fills this

gap by establishing approximation bounds that apply to the setting of Chizat and Bach (2018a).

A different optimization algorithm was studied in Wei et al. (2018) using the mean-field de-

scription. The algorithm resamples a positive fraction of the neurons uniformly at random at a

constant rate. This allows the authors to establish a global convergence result (under certain as-

sumed smoothness properties on the PDE solution). Again, this paper does not provide quantitative

bounds on the difference between PDE and finite-N SGD. While our theorems do not cover the

algorithm of Wei et al. (2018), we believe that their algorithm could be analyzed using the approach

developed here. Exponentially fast convergence to a global optimum was proven in Javanmard

et al. (2019) for certain radial-basis-function networks, using again the mean-field approach. While

the setting of Javanmard et al. (2019) is somewhat different (weights are constrained to a convex

compact domain), the technique presented here could be applicable to that problem as well.

Finally, a recent stream of works Jacot et al. (2018); Geiger et al. (2019); Du et al. (2018b,a);

Allen-Zhu et al. (2018); Zou et al. (2018); Arora et al. (2019); Oymak and Soltanolkotabi (2018)

argues that, as N → ∞ two-layers networks are actually performing a type of kernel ridge regres-

sion. As shown in Chizat and Bach (2018b), this phenomenon is not limited to neural network, but

generic for a broad class of models. As expected, the kernel regime can indeed be recovered as a

special limit of the mean-field dynamics (DD), cf. Section 4. Let us emphasize that here we focus

on the population rather than the empirical risk.

A discussion of the difference between the kernel and mean-field regimes was recently presented

in Dou and Liang (2019). However, Dou and Liang (2019) argues that the difference between kernel

and mean-field behaviors is due to different initializations of the coefficients ai’s. We show instead

that, for a suitable scaling of the initialization, kernel and mean field regimes appear at different

time scales. Namely, the kernel behavior arises at the beginning of the dynamics, and mean field

characterizes longer time scales. It is also worth mentioning that the connection between mean

field dynamics and kernel boosting with a time-varying data-dependent kernel was already present

(somewhat implicitly) in Rotskoff and Vanden-Eijnden (2018).

3. Dimension-free mean field approximation

3.1. General results

As mentioned above, we assume to be given data {(yk,xk)}k≥1 ∼i.i.d. P ∈ P(R × R
d), and we

run SGD with step size sk:

θk+1
i = θk

i + 2sk(yk − f̂N (xk;θ
k))∇θσ⋆(xk;θ

k
i ). (SGD)

We will work under a one-pass model, that is, each data point is visited once.

We also consider a noisy version of SGD, with a regularization term:

θk+1
i = (1− 2λsk)θ

k
i + 2sk(yk − f̂N (xk;θ

k))∇θσ⋆(xk;θ
k
i ) +

√

2skτ/D gk
i , (noisy-SGD)
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where gk
i ∼ N (0, ID). The noiseless version is recovered by setting τ = 0 and λ = 0. The step

size is chosen according to : sk = εξ(kε), for a positive function ξ : R≥0 → R>0.

The infinite-dimensional evolution corresponding to noisy SGD is given by

∂tρt = 2ξ(t)∇θ ·
(
ρt(θ)∇θΨλ(θ; ρt)

)
+ 2ξ(t)τD−1∆θρt , (diffusion-DD)

Ψλ(θ; ρ) = Ψ(θ; ρ) +
λ

2
‖θ‖22 . (7)

The function Ψ is defined as in (DD). At this point it is important to note that the PDE (DD) has to

be interpreted in weak sense, while, for τ > 0, Eq. (diffusion-DD) has strong solutions i.e. solutions

ρ : (t,θ) 7→ ρt(θ) that are C1,2(R×R
D) (once continuous differentiable in time and twice in space,

see Mei et al. (2018) and Appendix F).

It is useful to lift the population risk in the space of distributions ρ ∈ P(RD)

R(ρ) = E(y2) + 2

∫

V (θ)ρ(dθ) +

∫

U(θ,θ′)ρ(dθ)ρ(dθ′) . (8)

We also note that, given the structure of the activation function in Eq. (1), for θ = (a,w), θi =
(ai,wi), we can write V (θ) = a v(w), U(θ1,θ2) = a1a2 u(w1,w2), where we denoted v(w) =
−E{yσ(x;w)} and u(w1,w2) = E{σ(x;w1)σ(x;w2)}.

In order to establish a non-asymptotic guarantee, we will make the following assumptions:

A1. t 7→ ξ(t) is bounded Lipschitz:‖ξ‖∞,‖ξ‖Lip ≤ K1.

A2. The activation function σ : R
d × R

D−1 → R and the response variables are bounded:

‖σ‖∞ , |yk| ≤ K2. Furthermore, its gradient ∇wσ(x;w) is K2-sub-Gaussian (when x ∼ P).

A3. The functions w 7→ v(w) and (w1,w2) 7→ u(w1,w2) are differentiable, with bounded

and Lipschitz continuous gradient: ‖∇v(w)‖2 ≤ K3, ‖∇u(w1,w2)‖2 ≤ K3, ‖∇v(w) −
∇v(w′)‖2 ≤ K3‖w−w′‖2, ‖∇u(w1,w2)−∇u(w′

1,w
′
2)‖2 ≤ K3‖(w1,w2)−(w′

1,w
′
2)‖2.

A4. The initial condition ρ0 ∈ P(RD) is supported on |ai| ≤ K4 for a constant K4.

We will consider two different cases for the SGD dynamics:

General coefficients. We initialize the parameters θ0
i = (a0i ,w

0
i ) as (θ0

i )i≤N ∼iid ρ0. Both the a0i
and w0

i are updated during the dynamics.

Fixed coefficients. We use the same initialization as described above, but the coefficients ai are not

updated by SGD. The corresponding PDE is given by Eq. (DD) (or (diffusion-DD)), except

that the space derivatives are to be interpreted only with respect to w, i.e. replace ∇θ by

(0,∇w), and ∆θ by ∆w.

While the second setting is less relevant in practice, it is at least as interesting from a theoretical

point of view, and some of our guarantees are stronger in that case.

Theorem 1 Assume that conditions A1-A4 hold, and let T ≥ 1. Let (ρt)t≥0 be the solution

of the PDE (DD) with initialization ρ0, and let (θk)k∈N to be the trajectory of SGD (SGD) with

initialization θ0
i ∼ ρ0 independently.
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(A) Consider noiseless SGD with fixed coefficients. Then there exists a constant K (depending

uniquely on the constants Ki of assumptions A1-A4) such that

sup
k∈[0,T/ε]∩N

∣
∣
∣RN (θk)−R(ρkε)

∣
∣
∣

≤KeKT 1√
N

[
√

logN + z] +KeKT [
√

D + log(N) + z]
√
ε (9)

with probability at least 1− e−z2 .

(B) Consider noiseless SGD with general coefficients. Then there exists constants K and K0

(depending uniquely on the constants Ki of assumptions A1-A4) such that if ε ≤ 1/[K0(D+
logN + z2)eK0T 3

], we have

sup
k∈[0,T/ε]∩N

∣
∣
∣RN (θk)−R(ρkε)

∣
∣
∣

≤KeKT 3 1√
N

[
√

logN + z] +KeKT 3

[
√

D + logN + z]
√
ε (10)

with probability at least 1− e−z2 .

Remark 2 As anticipated in the introduction, provided T,K = O(1) (e.g., the centered Gaussian

example in section 3.2), the error terms in Eqs. (9), (10), are small as soon as N ≫ 1. In other

words, the minimum number of neurons needed for the mean-field approximation to be accurate is

independent of the dimension D, and only depends on intrinsic features of the activation and data

distribution.

On the other hand, the dimension D appears explicitly in conjunction with the step size ε. We

need ε ≪ 1/D in order for mean field to be accurate. This is the same trade-off between step size

and dimension that was already achieved in Mei et al. (2018).

We next consider noisy SGD described in Eq. (noisy-SGD), and the corresponding PDE in

Eq. (diffusion-DD). We need to make additional assumptions on the initialization in this case.

A5. The initial condition ρ0 is such that, for θ0
i = (a0i ,w

0
i ) ∼ ρ0, we have that w0

i is K2
5/D-sub-

Gaussian.

A6. V ∈ C4(RD), U ∈ C4(RD × R
D), and ∇k

1u(θ1,θ2) is uniformly bounded for 0 ≤ k ≤ 4.

Remark 3 The last condition ensures the existence of strong solutions for Eq. (diffusion-DD). The

existence and uniqueness of solution of the PDE (DD) and the PDE (diffusion-DD) are discussed

in Appendix F.

Theorem 4 Assume that conditions A1 - A6 hold. Let (ρt)t≥0 be the solution of the PDE (diffusion-

DD) with initialization ρ0, and let (θk)k∈N to be the trajectory of noisy SGD (noisy-SGD) with

initialization θ0
i ∼ ρ0 independently. Finally assume that λ ≤ K6, τ ≤ K6, T ≥ 1.
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(A) Consider noisy SGD with fixed coefficients. Then there exists a constant K (depending

uniquely on the constants Ki of assumptions A1-A5 and K6) such that

sup
k∈[0,T/ε]∩N

∣
∣
∣RN (θk)−R(ρkε)

∣
∣
∣

≤KeKT 1√
N

[
√

logN + z] +KeKT [
√

D + log(N/ε) + z]
√
ε (11)

with probability at least 1− e−z2 .

(B) Consider noisy SGD with general coefficients. Then there exists a constant K (depending

uniquely on the constants Ki of assumptions A1-A5 and K6) such that

sup
k∈[0,T/ε]∩N

∣
∣
∣RN (θk)−R(ρkε)

∣
∣
∣

≤Kee
KT [

√
logN+z2][

√

D logN + log3/2(NT ) + z5]/
√
N (12)

+Kee
KT [

√
logN+z2][

√
D log(N(T/ε ∨ 1)) + log3/2N + z6]

√
ε

with probability at least 1− e−z2 .

Remark 5 Unlike the other results in this paper, part (B) of Theorem 4 does not establish a

dimension-free bound. Further, while previous bounds allow us to control the approximation er-

ror for any T = o(logN), Theorem 4.(B) requires T = o(log logN) . The main difficulty in part

(B) is to control the growth of the coefficients ai. This is more challenging than in the noiseless

case, since we cannot give a deterministic bound on |ai|.
Despite these drawbacks, Theorem 4 (B) is the first quantitative bound approximating noisy

SGD by the distributional dynamics, for the case of unbounded coefficients. It implies that the mean

field theory is accurate when N ≫ D.

3.2. Example: Centered anisotropic Gaussians

To illustrate an application of the theorems, we consider the problem of classifying two Gaussians

with the same mean and different covariance. This example was studied in Mei et al. (2018), but we

restate it here for the reader’s convenience.

Consider the joint distribution of data (y,x) given by the following:

With probability 1/2: y = +1, x ∼ N(0,Σ+),

With probability 1/2: y = −1, x ∼ N(0,Σ−),

where Σ± = UTdiag((1 ±∆)2Is0 , Id−s0)U for U to be an unknown orthogonal matrix. In other

words, there exists a subspace V of dimension s0, such that the projection of x on the subspace

V is distributed according to an isotropic Gaussian with variance τ2+ = (1 + ∆)2 (if y = +1) or

τ2− = (1 − ∆2) (if y = −1). The projection orthogonal to V has instead the same variance in the

two classes.
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We choose an activation function without offset or output weights σ∗(x;θi) = σ(〈wi,x〉).
While qualitatively similar results are obtained for other choices of σ, we will use a simple piecewise

linear function (truncated ReLU) as a running example: take t1 < t2,

σ(t) =







s1, if t ≤ t1,

s2, if t ≥ t2,

s1 + (s2 − s1)(t− t1)/(t2 − t1), if t ∈ (t1, t2).

We introduce a class of good uninformative initializations Pgood ⊆ P(R≥0) for which conver-

gence to the optimum takes place. For ρ̄ ∈ P(R≥0), we let

Rd(ρ̄) ≡ R(ρ̄×Unif(Sd−1)), R∞(ρ̄) ≡ lim
d→∞

Rd(ρ̄).

We say that ρ̄ ∈ Pgood if: (i) ρ̄ is absolutely continuous with respect to Lebesgue measure, with

bounded density; (ii) R∞(ρ̄) < 1.

The following theorem is an improvement of (Mei et al., 2018, Theorem 2) using Theorem 1,

whose proof is just by replacing the last step of proof of (Mei et al., 2018, Theorem 2) using the

new bounds developed in 1 (A).

Theorem 6 For any η,∆, δ > 0, and ρ̄0 ∈ Pgood, there exists d0 = d0(η, ρ̄0,∆, γ), T =
T (η, ρ̄0,∆, γ), and C0 = C0(η, ρ̄0,∆, δ, γ), such that the following holds for the problem of

classifying anisotropic Gaussians with s0 = γd, γ ∈ (0, 1) fixed. For any dimension param-

eters s0 = γd ≥ d0, number of neurons N ≥ C0, consider SGD initialized with initializa-

tion (w0
i )i≤N ∼iid ρ̄0 × Unif(Sd−1) and step size ε ≤ 1/(C0d). Then we have RN (θk) ≤

infθ∈RN×d RN (θ) + η for any k ∈ [T/ε, 10T/ε] with probability at least 1− δ.

Comparing to (Mei et al., 2018, Theorem 2), here we require N = O(1) neuron rather than previ-

ously N = O(d) neurons. The number of data used k = O(d) is still on the optimal order.

4. Connection with kernel methods

As discussed above, mean-field theory captures the SGD dynamics of two layers neural networks

when the number of hidden units N is large. Several recent papers studied a different description,

that approximates the neural network as performing a form of kernel ridge regression Jacot et al.

(2018); Du et al. (2018b). This behavior also arises for large N : we will refer to this as to the ‘kernel

regime’, or ‘kernel limit’. As shown in Chizat and Bach (2018b) the existence of a kernel regime is

not specific to neural networks but it is a generic feature of overparameterized models, under certain

differentiability assumptions.

4.1. A coupled dynamics

We will focus on noiseless gradient flow, and assume y = f(x) (a general joint distribution over

(y,x) is recovered by setting f(x) = E{y|x}). As in Chizat and Bach (2018b), we modify the

model (1) by introducing an additional scale parameter α:

f̂α,N (x;θ) =
α

N

N∑

i=1

σ⋆(x;θi) , (13)

9
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In the case of general coefficients ai, this amounts to rescaling the coefficients ai → ai/α. Equiva-

lently, this corresponds to a different initialization for the ai’s (larger by a factor α).

We first note that the theorems of the previous section obviously hold for the modified dynamics,

with the PDE (DD) generalized to

∂tρt =α∇θ ·
(
ρt∇θΨα(θ, ρt)

)
, (14)

Ψα(θ, ρ) =Ex

{
σ⋆(x;θ) (f̂α(x; ρ)− f(x))

}
= V (θ) + α

∫

U(θ,θ′)ρ(dθ′) , (15)

where f̂α(x; ρ) = α
∫
σ⋆(x;θ) ρ(dθ). It is convenient to redefine time units by letting ραt ≡ ρα−2t.

This satisfies the rescaled distributional dynamics

∂tρ
α
t =

1

α
∇θ ·

(
ραt ∇θΨα(θ, ρ

α
t )
)
. (Rescaled-DD)

We next consider the residuals uαt (x) = f(x) − f(x; ραt ) which we view as an element of L2 =
L2(Rd;P). As first shown in Rotskoff and Vanden-Eijnden (2018), this satisfies the following mean

field residual dynamics (for further background, we refer to Appendix H):

∂tu
α
t (x) = −

∫

Hραt
(x, x̃)uαt (x̃)P(dx̃) ≡ −(Hραt

uαt )(x) , (RD)

Hρ(x, x̃) ≡
∫

〈∇θσ⋆(x;θ),∇θσ⋆(x̃;θ)〉 ρ(dθ) . (16)

Coupling the dynamics (Rescaled-DD) and (RD) suggests the following point of description. Gra-

dient flow dynamics of two-layers neural network is a kernel boosting dynamics with a time-varying

kernel. The scaling parameter α controls the speed that the kernel evolves.

The mean field residual dynamics (RD) implies that

∂tRα(ρ
α
t ) = ∂t(‖uαt ‖2L2) = −2〈uαt ,Hραt

uαt 〉L2 ,

so that the risk will be non-increasing along the gradient flow dynamics. However, since the kernel

Hραt
is not fixed, it is hard to analyze when the risk converges to 0 (see (Mei et al., 2018, Theorem

4), (Chizat and Bach, 2018a, Theorem 3.3 and 3.5) for general convergence results).

4.2. Kernel limit of residual dynamics

The kernel regime corresponds to large α and allows for a simpler treatment of the dynamics.

Heuristically, the reason for such a simplification is that the time derivative of ραt is of order 1/α,

cf. (Rescaled-DD). We are therefore tempted to replace Hραt
in Eq. (RD) by Hρ0 . Formally, we

define the following linearized residual dynamics

∂tu
∗
t = −Hρ0u

∗
t . (17)

We can also define the corresponding predictors by f∗
t = f − u∗t . The operator Hρ0 is bounded and

standard semigroup theory Evans (2009) implies the following.

Lemma 7 We have limt→∞ u∗t = u∗∞ = Pρ0u
∗
0, where Pρ0 is the orthogonal projector onto the

null space of Hρ0 . In particular, if the null space of Hρ0 is empty, then limt→∞ ‖u∗t ‖L2 → 0.

Correspondingly f∗
∞ = P⊥

ρ0f + Pρ0f
∗
0 (where P⊥

ρ0 = I − Pρ0).

10
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The next theorem shows that the above intuition is correct. For α ≥ t2D3/2, the linearized

dynamics is a good approximation to the mean field dynamics. Below, we denote the population

risk by Rα(ρ): Rα(ρ) ≡ Ex[(f(x)− f̂α(x; ρ))
2].

Theorem 8 Let uαt and u∗t be the residues in the mean-field dynamics (RD) and linearized dynam-

ics (17), respectively. Let assumptions A1, A3, A4 hold, and additionally assume the following

• |yi|, ‖σ‖∞ ≤ K2, and θ 7→ σ⋆(x;θ) is differentiable.

• ‖∇3u(w,w′)‖op, ‖∇4u(w,w′)‖op ≤ κ.

• Rα(ρ0) ≤ B.

Then there exists a constant K depending on {Ki}4i=1, such that

(A) For SGD with fixed coefficients, we have

‖uαt − u∗t ‖L2
≤Kκ1/2B

D3/2t2

α
, (18)

Rα(ρ
α
t ) ≤

(

‖u∗t ‖L2 +Kκ1/2B
D3/2t2

α

)2
. (19)

(B) For SGD with general coefficients, we have

‖uαt − u∗t ‖L2
≤Kκ1/2(1 +B1/2t/α)3B

D3/2t2

α
, (20)

Rα(ρ
α
t ) ≤

(

‖u∗t ‖L2 +Kκ1/2(1 +B1/2t/α)3B
D3/2t2

α

)2
. (21)

(C) In particular, if under the law (a,w) ∼ ρ0, a is independent of w and |E(a)| ≤ K5/α. Then

B ≤ K is independent of α. If the null space of Hρ0 is empty, then under both settings (fixed

and variable coefficients)

lim
α→∞

sup
t∈[0,T ]

‖uαt − u∗t ‖L2
=0, (22)

lim
t→∞

lim
α→∞

Rα(ρ
α
t ) =0 . (23)

Remark 9 Unlike in similar results in the literature, we focus here on the population risk rather

than the empirical risk. The recent paper Chizat and Bach (2018b) addresses both the over-

parametrized and the underparametrized regime. The latter result (namely (Chizat and Bach,

2018b, Theorem 3.4)) is of course relevant for the population risk. However, while Chizat and Bach

(2018b) proves convergence to a local minimum, here we show that the population risk becomes

close to 0.

Remark 10 As stated above, the linearized residual dynamics can be interpreted as performing

kernel ridge regression with respect to the kernel Hρ0 , see e.g. Jacot et al. (2018). A way to clarify

the connection is to consider the case in which P = n−1
∑

i≤n δxi
is the empirical data distribution.

In this case the linearized dynamics converges to

lim
t→∞

f∗
t (z) = f∗

∞(z) = h(z)TH−1y

11
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where
h(z) =[Hρ0(z,x1), . . . ,Hρ0(z,xn)]

T,

H =(Hρ0(xi,xj))
n
ij=1,

y =[f(x1), . . . , f(xn)]
T.

For the sake of completeness, we review the connection in Appendix H.7.
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Appendix A. Notations

• For future reference, we copy the key definitions from the main text:

RN (θ) = E{y2}+ 2

N

N∑

i=1

V (θi) +
1

N2

N∑

i,j=1

U(θi,θj),

R(ρ) = E{y2}+ 2

∫

V (θ)ρ(dθ) +

∫

U(θ1,θ2)ρ(dθ1)ρ(dθ2),

V (θ) = −E{yσ⋆(x;θ)}, U(θ1,θ2) = E{σ⋆(x;θ1)σ⋆(x;θ2)},

Ψ(θ; ρ) = V (θ) +

∫

U(θ,θ′)ρ(dθ′),

Ψλ(θ; ρ) = Ψ(θ; ρ) +
λ

2
‖θ‖22,

where θ = (θi)i≤N ∈ R
D×N or θ ∈ R

D depending on the context. Further, we will denote

for θ = (a,w) and θ′ = (a′,w′):

V (θ) = av(w), U(θ,θ′) = aa′u(w,w′).

In particular,

∇θV (θ) = (v(w), a∇wv(w)), ∇θU(θ,θ′) = (a′u(w,w′), aa′∇wu(w,w′)).

In the case of fixed coefficients, without loss of generality, we will fix in the proof ai = 1 for

notational simplicity and freely denote (θi)
N
i=1 = (wi)

N
i=1,

V (θ) = v(w), U(θ,θ′) = u(w,w′),

∇θV (θ) = ∇wv(w), ∇θU(θ,θ′) = ∇wu(w,w′).
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• W2(·, ·) is the Wasserstein distance between probability measures

W2(µ, ν) =
(

inf
{∫

RD×RD

‖θ1 − θ2‖22γ(dθ1, dθ2) : γ is a coupling of µ, ν
})1/2

.

• For N ∈ N, we will denote [N ] = {1, 2, . . . , N}. With a little abuse of notation, for s ∈ R,

we will denote [s] = ε⌊s/ε⌋, with ε the time discretization parameter.

• K will denote a generic constant depending on Ki for i = 1, 2, 3, 4, 5, 6, where the Ki’s are

constants that will be specified from the context.

• In the proof and the statements of the theorems, we will only consider the leading order in T .

In particular, we freely use that KT k logl TeKT ≤ K ′eK
′T for a constant K ′ ≥ K.

• For readers convenience, we copy here the two simplified versions of Gronwall’s lemma that

will be used extensively in the proof.

(i) Consider an interval I = [0, t] and φ a real-valued function defined on I , assume there

exists positive constants α, β such that φ satisfies the integral inequality

φ(t) ≤ α+ β

∫ t

0
φ(s)ds, ∀t ∈ I,

then φ(t) ≤ αeβt for all t ∈ I .

(ii) Consider a non-negative sequence {φk}nk=0 and assume there exists positive constants

α, β such that {φk}nk=0 satisfies the summation inequality

φk ≤ α+ β
∑

0≤l<k

φl, ∀k ∈ {0, 1, . . . , n},

then φk ≤ α+ αβkeβk for all k ∈ {0, 1, . . . , n}.

Appendix B. Proof of Theorem 1 part (A)

Throughout this section, the assumptions of Theorem 1 (A) are understood to hold. These are

assumptions A1-A4 in Section 3. In writing the proofs, for notational simplicity, we consider the

following special setting:

R1. The coefficients ai ≡ 1.

R2. The step size function ξ(t) ≡ 1/2.

The proof can be easily generalized to the case of general bounded coefficient |ai| ≤ K, and non-

constant function ξ(t).
In the proof of this theorem, we have (θi)

N
i=1 = (wi)

N
i=1, and

V (θi) =aiv(wi) = v(wi),

U(θi,θj) =aiaju(wi,wj) = u(wi,wj).

We will consider four dynamics (note we choose ξ(t) = 1/2 in these equations):
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• The nonlinear dynamics (ND): we introduce (θ̄t
i)i∈[N ],t≥0 with initialization θ̄0

i ∼ ρ0 i.i.d.:

d

dt
θ̄t
i =− 2ξ(t)

[

∇V (θ̄t
i) +

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

]

.

Equivalently, we have the integral equation

θ̄t
i = θ̄0

i + 2

∫ t

0
ξ(s)G(θ̄s

i ; ρs)ds, (24)

where we denoted G(θ; ρ) = −∇Ψ(θ; ρ) = −∇V (θ) −
∫
∇1U(θ,θ′)ρ(dθ′). Note that θ̄t

i

is random because of its random initialization, and its law is ρt.

• The particle dynamics (PD): we introduce (θt
i)i∈[N ],t≥0 with initialization θ0

i = θ̄0
i :

d

dt
θt
i =− 2ξ(t)

[

∇V (θt
i) +

1

N

N∑

j=1

∇1U(θt
i,θ

t
j)
]

.

We introduce the particle distribution ρ(N)
t

= (1/N)
∑N

i=1 δθt
i
. In integration form, we get:

θt
i = θ0

i + 2

∫ t

0
ξ(s)G(θs

i ; ρ
(N)
s

)ds. (25)

• The gradient descent (GD): we introduce (θ̃k
i )i∈[N ],k∈N with initialization θ̃0

i = θ̄0
i :

θ̃k+1
i =θ̃k

i − 2sk

[

∇V (θ̃k
i ) +

1

N

N∑

j=1

∇1U(θ̃k
i , θ̃

k
j )
]

,

where sk = εξ(kε). We introduce the particle distribution ρ̃
(N)
k = (1/N)

∑N
i=1 δθ̃k

i
. In

summation form, we get:

θ̃k
i = θ̃0

i + 2ε
k−1∑

l=0

ξ(lε)G(θ̃l
i; ρ̃

(N)
l ). (26)

The GD dynamic corresponds to the discretized particle dynamic (25).

• The stochastic gradient descent (SGD): we introduce (θk
i )i∈[N ],k∈N with initialization θ0

i =
θ̄0
i :

θk+1
i =θk

i − 2skFi(θ
k; zk+1),

where Fi(θ
k; zk+1) = (yk+1 − ŷk+1)∇θσ⋆(xk+1;θ

k
i ), with zk ≡ (xk, yk) and ŷk+1 =

(1/N)
∑N

j=1 σ⋆(xk+1;θ
k
j ). In summation form, we have

θk
i = θ0

i + 2ε
k−1∑

l=0

ξ(lε)Fi(θ
l; zl+1). (27)
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Denote θt = (θt
1, . . . ,θ

t
N ), θ̄t = (θ̄t

1, . . . , θ̄
t
N ), θ̃t = (θ̃t

1, . . . , θ̃
t
N ), and θt = (θt

1, . . . ,θ
t
N ).

For t ∈ R≥0, define [t] = ε⌊t/ε⌋. We will use the nonlinear dynamics, particle dynamics, gradient

descent dynamics as interpolation dynamics
∣
∣
∣R(ρkε)−RN (θk)

∣
∣
∣ ≤

∣
∣
∣R(ρkε)−RN (θ̄kε)

∣
∣
∣

︸ ︷︷ ︸

PDE−ND

+
∣
∣
∣RN (θ̄kε)−RN (θkε)

∣
∣
∣

︸ ︷︷ ︸

ND−PD

+
∣
∣
∣RN (θkε)−RN (θ̃k)

∣
∣
∣

︸ ︷︷ ︸

PD−GD

+
∣
∣
∣RN (θ̃k)−RN (θk)

∣
∣
∣

︸ ︷︷ ︸

GD−SGD

.

By Proposition 13, 16, 18, 19 proved below, we have with probability at least 1− e−z2 ,

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤K
1√
N

[
√

log(NT ) + z],

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤KeKT 1√
N

[
√

log(NT ) + z],

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θkε)| ≤KeKT ε,

sup
k∈[0,T/ε]∩N

|RN (θk)−RN (θ̃k)| ≤KeKT
√
Tε[

√

D + logN + z].

Combining these inequalities gives the conclusion of Theorem 1 (A). In the following subsections,

we prove all the above interpolation bounds, under the setting of Theorem 1 (A).

B.1. Technical lemmas

Assumptions A1 - A3 immediately implies that

Lemma 11 There exists a constant K depending on K1,K2,K3, such that

|V |, |U |, ‖∇V ‖2, ‖∇U‖2, ‖∇2V ‖op, ‖∇2U‖op ≤ K.

For any θ = (θi)
N
i=1 and θ′ = (θ′

i)
N
i=1, we have

|R(θ)−R(θ′)| ≤ Kmax
i≤N

‖θi − θ′
i‖2. (28)

Proof [Proof of Lemma 11] Note we have

V (θ) =− Ey,x[yσ(x;θ)],

U(θ1,θ2) =Ex[σ(x;θ1)σ(x;θ2)].

The boundedness of V and U are implied by the boundedness of ‖σ‖∞ and |y| in Assumption A1.

The boundedness of ‖∇V ‖2, ‖∇U‖2, ‖∇2V ‖op, ‖∇2U‖op are implied by Assumption A3.

Finally, Eq. (28) holds by noting that

|RN (θ)−RN (θ′)| ≤ 1

N

N∑

i=1

|V (θi)− V (θ′
i)|+

1

N2

N∑

i,j=1

|U(θi,θj)− U(θ′
i,θ

′
j)|,

and by the Lipschitz property of V and U .

Using Eq. (24) and (25), we immediately have
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Lemma 12 There exists a constant K such that for any time s, t

‖θt
i − θs

i‖2 ≤K|t− s|,
‖θ̄t

i − θ̄s
i ‖2 ≤K|t− s|,

W2(ρt, ρs) ≤K|t− s|.

Proof [Proof of Lemma 12] The first two inequalities are simply implied by the boundedness of

∇V and ∇1U , and Eq. (24) and (25). The third inequality is simply implied by

W2(ρt, ρs) ≤ (E[‖θ̄t
i − θ̄s

i ‖22])1/2.

B.2. Bound between PDE and nonlinear dynamics

Proposition 13 (PDE-ND) There exists a constant K depending only on the Ki, i = 1, 2, 3, such

that with probability at least 1− e−z2 , we have

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤ K
1√
N

[
√

log(NT ) + z].

Proof [Proof of Proposition 13] We decompose the difference into the following two terms

|RN (θ̄t)−R(ρt)| ≤ |RN (θ̄t)− ERN (θ̄t)|
︸ ︷︷ ︸

I

+ |ERN (θ̄t)−R(ρt)|
︸ ︷︷ ︸

II

.

where the expectation is taken with respect to θ̄0
i ∼ ρ0. The result holds simply by combining

Lemma 14 and Lemma 15.

Lemma 14 (Term II bound) We have

|ERN (θ̄t)−R(ρt)| ≤ K/N.

Proof [Proof of Lemma 14] The bound holds simply by observing that

|ERN (θ̄t)−R(ρt)| =
1

N

∣
∣
∣

∫

U(θ,θ)ρt(dθ)−
∫

U(θ1,θ2)ρt(dθ1)ρt(dθ2)
∣
∣
∣ ≤ K/N.

Lemma 15 (Term I bound) There exists a constant K, such that

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≤ K[
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .
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Proof [Proof of Lemma 15] Let θ = (θ1, . . . ,θi, . . . ,θN ) and θ′ = (θ1, . . . ,θ
′
i, . . .θN ) be two

configurations that differ only in the i’th variable. Then

|RN (θ)−RN (θ′)|

≤ 2

N
|V (θi)− V (θ′

i)|+
1

N2
|U(θi,θi)− U(θ′

i,θ
′
i)|+

2

N2

∑

j∈[N ],j 6=i

|U(θi,θj)− U(θ′
i,θj)|

≤K

N
.

(29)

Applying McDiarmid’s inequality, we have

P

(

|RN (θ̄t)− ERN (θ̄t)| ≥ δ
)

≤ exp{−Nδ2/K}.

By Lemma 12 and 11, we have
∣
∣
∣|RN (θ̄t)− ERN (θ̄t)| − |RN (θ̄s)− ERN (θ̄s)|

∣
∣
∣ ≤ K|s− t|.

Hence taking the union bound over s ∈ η{0, 1, . . . , ⌊T/η⌋} and bounding the difference between

time in the interval and grid, we have

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≥ δ +Kη
)

≤ (T/η) exp{−Nδ2/K}.

Now taking η = 1/
√
N and δ = K[

√

log(NT ) + z]/
√
N , we get the desired result.

B.3. Bound between nonlinear dynamics and particle dynamics

Proposition 16 (ND-PD) There exists a constant K, such that with probability at least 1 − e−z2 ,

we have

sup
t∈[0,T ]

max
i∈[N ]

‖θt
i − θ̄t

i‖2 ≤KeKT 1√
N

[
√

log(NT ) + z], (30)

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤KeKT 1√
N

[
√

log(NT ) + z]. (31)

Proof [Proof of Proposition 16] Note we have

1

2

d

dt
‖θt

i − θ̄t
i‖22 =〈θt

i − θ̄t
i ,∇V (θ̄t

i)−∇V (θt
i)〉

+
〈

θt
i − θ̄t

i ,
1

N

N∑

j=1

∇1U(θ̄t
i , θ̄

t
j)−∇1U(θt

i,θ
t
j)
〉

− 1

N
〈θt

i − θ̄t
i ,∇1U(θ̄t

i , θ̄
t
i)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)〉

−
〈

θt
i − θ̄t

i ,
1

N

∑

j 6=i

∇1U(θ̄t
i , θ̄

t
j)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

〉

≤K‖θt
i − θ̄t

i‖2 · max
j∈[N ]

‖θt
j − θ̄t

j‖2 + ‖θt
i − θ̄t

i‖2(K/N + Iti ),

(32)
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where

Iti ≡
∥
∥
∥
1

N

∑

j 6=i

[

∇1U(θ̄t
i , θ̄

t
j)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

]∥
∥
∥
2
.

We would like to prove a uniform bound for Iti for i ∈ [N ] and t ∈ [0, T ].

Lemma 17 There exists a constant K, such that

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≤ K[
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .

Proof [Proof of Lemma 17] Define Xt
i = ∇1U(θ̄t

i , θ̄
t
j) −

∫
∇1U(θ̄t

i ,θ)ρt(dθ). Note we have

E[Xt
i |θ̄t

i ] = 0 (where expectation is taken with respect to θ̄0
j ∼ ρ0 for j 6= i), and ‖Xt

i‖2 ≤ 2K
(by assumption that ‖∇U‖2 ≤ K). By Lemma 59, we have for any fixed i ∈ [N ] and t ∈ [0, T ],

P

(

Iti ≥ K(
√

1/N + δ)
)

= E

[

P

(

Iti ≥ K(
√

1/N + δ)|θ̄t
i

)]

≤ exp{−Nδ2}.

By Lemma 12, there exists K such that, for any 0 ≤ t, s ≤ T and i ∈ [N ], we have

|Iti − Isi | ≤ K|t− s|.

Taking the union bound over i ∈ [N ] and s ∈ η{0, 1, . . . , ⌊T/η⌋} and bounding time in the interval

and the grid, we have

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≥ K(
√

1/N + δ) +Kη
)

≤ (NT/η) exp{−Nδ2}.

Taking η =
√

1/N , and δ = K[
√

log(NT ) + z]/
√
N , we get the desired result.

Let δ(N,T, z) = K[
√

log(NT ) + z]/
√
N , and define

∆(t) = sup
s∈[t]

max
i∈[N ]

‖θs
i − θ̄s

i ‖2.

We condition on the good event in Lemma 17 to happen. By Eq. (32), we have

d∆

dt
(t) ≤ K ·∆(t) + δ(N,T, z),

and by Gronwall’s inequality, we obtain

∆(T ) ≤ KeKT δ(N,T, z).

By Eq. (28), this proves Eq. (30) and (31) hold with probability at least 1− e−z2 .
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B.4. Bound between particle dynamics and GD

Proposition 18 (PD-GD) There exists a constant K such that:

sup
k∈[0,t/ε]∩N

max
i≤N

‖θkε
i − θ̃k

i ‖2 ≤KeKT ε,

sup
k∈[0,T/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤KeKT ε.

Proof [Proof of Proposition 18] By Lemma 12, we have

‖θt
i − θs

i‖2 ≤K|t− s|,
W2(ρ

(N)
t

, ρ(N)
s

) ≤K|t− s|.

For k ∈ N and t = kε, we have

‖θt
i − θ̃k

i ‖2 ≤
∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ̃
[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds

≤
∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]/ε
i ; ρ

(N)
[s]/ε)‖2ds

+

∫ t

0
‖G(θ

[s]
i ; ρ

(N)
[s] )−G(θ̃

[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds

≤Ktε+K

∫ t

0
max
i∈[N ]

‖θ[s]
i − θ̃

[s]/ε
i ‖2ds.

Denoting ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi≤N ‖θkε
i − θ̃k

i ‖2. We get the equation

∆(t) ≤ K

∫ t

0
∆(s)ds+Ktε = K

∫ t

0
[∆(s) + ε]ds.

Applying Gronwall’s lemma, we get:

∆(T ) ≤ KeKT ε.

Using Eq. (28) concludes the proof.

B.5. Bound between GD and SGD

Proposition 19 (GD-SGD) There exists a constant K, such that with probability at least 1−e−z2 ,

we have

sup
k∈[0,T/ε]∩N

max
i∈[N ]

‖θ̃k
i − θk

i ‖2 ≤KeKT
√
Tε[

√

D + logN + z], (33)

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θk)| ≤KeKT
√
Tε[

√

D + logN + z]. (34)
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Proof [Proof of Proposition 19] Denoting Fk = σ((θ0
i )i∈[N ], z1, . . . , zk) the σ-algebra generated

by observations zℓ = (yℓ,xℓ) up to step k, we get:

E[Fi(θ
k; zk+1)|Fk] = −∇V (θk

i )−
1

N

N∑

j=1

∇1U(θk
i ,θ

k
j ) = G(θk

i , ρ
(N)
k ),

where ρ
(N)
k ≡ (1/N)

∑

i∈[N ] δθk
i

is the empirical distribution of the SGD iterates. Hence we get:

‖θk
i − θ̃k

i ‖2 =
∥
∥
∥ε

k−1∑

l=0

Fi(θ
l; zl+1)− ε

k−1∑

l=0

G(θ̃l
i; ρ̃

(N)
l )

∥
∥
∥
2

≤
∥
∥
∥ε

k−1∑

l=0

Z l
i

∥
∥
∥
2
+ ε

k−1∑

l=0

∥
∥
∥G(θl

i; ρ
(N)
l )−G(θ̃l

i; ρ̃
(N)
l )

∥
∥
∥
2

≡Ak
i +Bk

i ,

where we denoted Z l
i ≡ Fi(θ

l; zl+1)− E[Fi(θ
l; zl+1)|Fl] and Ak

i = ‖ε∑k−1
l=0 Z l

i‖2.

Note Fi(θ
l; zl+1) = (yl+1 − ŷl+1)∇wσ(xl+1;w

l
i) for zl+1 = (yl+1,xl+1). Since we assumed

in A2 that ∇wσ(x;w) is K-sub-Gaussian, and since yl+1 and ŷl+1 are K bounded, we have that Z l
i

is K-sub-Gaussian (the product of a bounded random variable and a sub-Gaussian random variable

is sub-Gaussian). We can therefore apply Azuma-Hoeffding inequality (Lemma 60) and get:

P

(

max
k∈[0,T/ε]∩N

Ak
i ≥ K

√
Tε(

√
D + z)

)

≤ e−z2 .

Taking the union bound over i ∈ [N ], we get:

P

(

max
i∈[N ]

max
k∈[0,T/ε]∩N

Ak
i ≥ K

√
Tε(

√

D + logN + z)
)

≤ e−z2 . (35)

Introducing ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi∈[N ] ‖θk
i − θ̃k

i ‖2, the Bk
i terms can be bounded by:

Bk
i ≤ K

∫ kε

0
‖G(θ

[s]/ε
i ; ρ

(N)
[s]/ε)−G(θ̃

[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds ≤ K

∫ kε

0
∆(s)ds.

Assuming the bad events in Eq. (35) does not happen, we have

∆(t) ≤ K

∫ t

0
∆(s)ds+K

√
Tε(

√

D + logN + z).

Applying Gronwall’s inequality and applying Eq. (28) concludes the proof.

Appendix C. Proof of Theorem 1 part (B)

The difference in the proof of part (B) with the proof of part (A) comes from the fact that the

functions V and U are not bounded and Lipschitz anymore, and that f̂(x;θ) is not bounded by a

constant. However, we show that when starting from an initial distribution ρ0 with compact support
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in the variable a, the support of ρt in the variable a remains bounded uniformly on the interval [0, T ]
by a constant that only depends on the Ki, i = 1, 2, 3, 4, and T .

For θ = (a,w) and θ′ = (a′,w′), remember we have

σ⋆(x;θ) =aσ(x;w),

v(w) =− Ey,x[yσ(x;w)],

u(w,w′) =Ex[σ(x;w)σ(x;w′)],

V (θ) =a · v(w),

U(θ,θ′) =aa′ · u(w,w′),

hence we have
∇θV (θ) =(v(w), a∇wv(w)),

∇θU(θ,θ′) =(a′ · u(w,w′), aa′ · ∇wu(w,w′)).

Throughout this section, the assumptions A1 - A4 are understood to hold. For the sake of simplicity

we will write the proof under the following restriction:

R1. The step size function ξ(t) ≡ 1/2.

The proof for a general function ξ(t) is obtained by a straightforward adaptation.

We define the four dynamics with the same definitions as at the beginning of Section B. We

copy them here for reader’s convenience.

• The nonlinear dynamics (ND): (θ̄t
i)i∈[N ],t≥0 with initialization θ̄0

i ∼ ρ0 i.i.d.:

θ̄t
i = θ̄0

i + 2

∫ t

0
ξ(s)G(θ̄s

i ; ρs)ds, (36)

where we denoted G(θ; ρ) = −∇Ψ(θ; ρ) = −∇V (θ)−
∫
∇1U(θ,θ′)ρ(dθ′).

• The particle dynamics (PD): (θt
i)i∈[N ],t≥0 with initialization θ0

i = θ̄0
i :

θt
i = θ0

i + 2

∫ t

0
ξ(s)G(θs

i ; ρ
(N)
s

)ds, (37)

where ρ(N)
t

= (1/N)
∑N

i=1 δθt
i
.

• The gradient descent (GD): (θ̃k
i )i∈[N ],k∈N with initialization θ̃0

i = θ̄0
i :

θ̃k
i = θ̃0

i + 2ε

k−1∑

l=0

ξ(lε)G(θ̃l
i; ρ̃

(N)
l ). (38)

where sk = εξ(kε) and ρ̃
(N)
k = (1/N)

∑N
i=1 δθ̃k

i
.

• The stochastic gradient descent (SGD): (θk
i )i∈[N ],k∈N with initialization θ0

i = θ̄0
i :

θk
i = θ0

i + 2ε

k−1∑

l=0

ξ(lε)Fi(θ
l; zl+1), (39)

where Fi(θ
k; zk+1) = (yk+1 − ŷk+1)∇θσ⋆(xk+1;θ

k
i ), with zk ≡ (xk, yk) and ŷk+1 =

(1/N)
∑N

j=1 a
k
jσ(xk+1;w

k
j ).
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We have the decomposition

∣
∣
∣R(ρkε)−RN (θk)

∣
∣
∣ ≤

∣
∣
∣R(ρkε)−RN (θ̄kε)

∣
∣
∣

︸ ︷︷ ︸

PDE−ND

+
∣
∣
∣RN (θ̄kε)−RN (θkε)

∣
∣
∣

︸ ︷︷ ︸

ND−PD

+
∣
∣
∣RN (θkε)−RN (θ̃k)

∣
∣
∣

︸ ︷︷ ︸

PD−GD

+
∣
∣
∣RN (θ̃k)−RN (θk)

∣
∣
∣

︸ ︷︷ ︸

GD−SGD

.

By Proposition 23, 26, 28, 29, there exists constants K and K0, such that if we take ε ≤ 1/[K0(D+
logN + z2)eK0(1+T )3 ], with probability at least 1− e−z2 , we have

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤K(1 + T )4
1√
N

[
√

log(NT ) + z],

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤KeK(1+T )3 1√
N

[
√

log(NT ) + z],

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θkε)| ≤KeK(1+T )3ε,

sup
k∈[0,T/ε]∩N

|RN (θk)−RN (θ̃k)| ≤KeK(1+T )3√ε[
√

D + logN + z].

Combining these inequalities, and noting that KeK(1+T )3 ≤ K ′eK
′T 3

for some K ′ ≥ K, give the

conclusion of Theorem 1 (B). In the following subsections, we prove all the above interpolation

bounds, under the setting of Theorem 1 (B).

C.1. Technical lemmas

Lemma 20 There exists a constant K depending only on the Ki, i = 1, 2, 3, 4, such that

supp(ρt) ⊆[−K(1 + t),K(1 + t)]× R
D−1,

|āti| ≤K(1 + t),

|ati| ≤K(1 + t).

Proof [Proof of Lemma 20]

Step 1. Let θ̄t
i = (āti, w̄

t
i), and ŷ(x; ρt) =

∫
aσ(x;w)ρt(dθ). Note that along the PDE, we have

d

dt
R(ρt) = −

∫

‖∇Ψ(θ; ρt)‖22ρt(dθ) ≤ 0.

Hence we have (note |y| ≤ K, |σ| ≤ K, and supp(ρ0) ⊆ [−K,K]× R
D−1)

R(ρt) = Ey,x[(y − ŷ(x; ρt))
2] ≤ R(ρ0) = Ey,x

[(

y −
∫

aσ(x;w)ρ0(dθ)
)2]

≤ K.

The nonlinear dynamics for āti gives

d

dt
āti = Ey,x[(y − ŷ(x; ρt))σ(x; w̄

t
i)],
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which gives
∣
∣
∣
d

dt
āti

∣
∣
∣ ≤ {Ey,x[(y − ŷ(x; ρt))

2]Ey,x[σ(x; w̄
t
i)

2]}1/2 ≤ K.

Hence, we have

|āti| ≤ |ā0i |+Kt ≤ K(1 + t).

Note (āti, w̄
t
i) ∼ ρt, hence we have supp(ρt) ⊆ [−K(1 + t),K(1 + t)]× R

D−1.

Step 2. Denote θt
i = (ati,w

t
i), ρ

(N)
t

= (1/N)
∑N

i=1 δθt
i
, and denote

y(x;θt) =
1

N

∑

i∈[N ]

atiσ(x;w
t
i).

Note along the PDE, we have

d

dt
RN (θt) = −

∫

‖∇Ψ(θ; ρ(N)
t

)‖22ρ(N)
t

(dθ) ≤ 0.

Hence we have (note |y| ≤ K, |σ| ≤ K, and |a0i | ≤ K)

RN (θt) = Ey,x[(y − y(x; ρ(N)
t

))2] ≤ RN (θ0) = Ey,x

[(

y −
∫

aσ(x;w)ρ(N)
0

(dθ)
)2]

≤ K.

The nonlinear dynamics for ati gives

d

dt
ati = Ey,x[(y − y(x;θt))σ(x;wt

i)],

which gives
∣
∣
∣
d

dt
ati

∣
∣
∣ ≤ {Ey,x[(y − y(x;θt))2]Ey,x[σ(x;w

t
i)
2]}1/2 ≤ K.

Hence, we have

|ati| ≤ |a0i |+Kt ≤ K(1 + t).

This proves the lemma.

Lemma 21 (Boundness and Lipschitzness) Denoting θ = (a,w), θ1 = (a1,w1) and θ2 =
(a2,w2). We have

|V (θ)|, ‖∇V (θ)‖2 ≤K(1 + |a|),
|V (θ1)− V (θ2)|, ‖∇V (θ1)−∇V (θ2)‖2 ≤K · [1 + |a1| ∧ |a2|] · ‖θ1 − θ2‖2,

|U(θ,θ′)|, ‖∇1U(θ,θ′)‖2 ≤K(1 + |a|)(1 + |a′|),
|U(θ1,θ)− U(θ2,θ)| ≤K(1 + |a|) · [1 + |a1| ∧ |a2|] · ‖θ1 − θ2‖2,

‖∇(1,2)U(θ1,θ)−∇(1,2)U(θ2,θ)‖2 ≤K(1 + |a|) · [1 + |a1| ∧ |a2|] · ‖θ1 − θ2‖2,
|RN (θ)−RN (θ′)| ≤K max

i∈[N ]
(1 + |ai| ∨ |a′i|)2 · max

j∈[N ]
‖θj − θ′

j‖2.
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Proof [Proof of Lemma 21] We have

|V (θ)| =|av(w)| ≤ K|a|,
‖∇V (θ)‖2 =‖(v(w), a∇wv(w))‖2 ≤ K(1 + |a|),

and (assuming |a1| ≥ |a2|)
|V (θ1)− V (θ2)| =|a1v(w1)− a2v(w2)|

≤K[|a1 − a2|+ |a2|‖w1 −w2‖2]
≤K[1 + |a2|]‖θ1 − θ2‖2,

and
‖∇V (θ1)−∇V (θ2)‖2

=‖(v(w1)− v(w2), a1∇v(w1)− a2∇v(w2))‖2
≤K‖w1 −w2‖2 +K‖a1∇v(w1)− a2∇v(w1)‖2 + ‖a2[∇v(w1)−∇v(w2)]‖2
≤K[‖w1 −w2‖2 + |a1 − a2|] +K|a2|‖w1 −w2‖2
≤K(1 + |a2|)‖θ1 − θ2‖2,

and

|U(θ,θ′)| =|aa′u(w,w′)| ≤ K|a||a′|,
and

‖∇U(θ,θ′)‖2 =‖(a′u(w,w′), aa′ · ∇1u(w,w′))‖2 ≤ K|a′|(1 + |a|),
and (assuming |a1| ≥ |a2|)

|U(θ1,θ)− U(θ2,θ)| =|a1au(w1,w)− a2au(w2,w)|
≤K[|a1 − a2||a|+ |a2||a|‖w1 −w2‖2]
≤K(1 + |a2|)|a|‖θ1 − θ2‖2,

and
‖∇1U(θ1,θ)−∇1U(θ2,θ)‖2

=‖(au(w1,w)− au(w2,w), a1a∇1u(w1,w)− a2a∇1u(w2,w))‖2
≤|a|‖w1 −w2‖2 +K|a||a1 − a2|+K|a||a2|‖w1 −w2‖2
≤K|a|(1 + |a2|)‖θ1 − θ2‖2,

and
‖∇2U(θ1,θ)−∇2U(θ2,θ)‖2

=‖(a1u(w1,w)− a2u(w2,w), a1a∇2u(w1,w)− a2a∇2u(w2,w))‖2
≤K|a1 − a2|+K|a2|‖w1 −w2‖2 +K|a||a1 − a2|+K|a||a2|‖w1 −w2‖2
≤K(1 + |a|)(1 + |a2|)‖θ1 − θ2‖2.

Finally, we have

|R(θ)−R(θ′)|
≤2max

i∈[N ]
|V (θi)− V (θ′

i)|+ max
i,j∈[N ]

|U(θi,θj)− U(θ′
i,θ

′
j)|

≤K
[

max
i∈[N ]

(1 + |ai| ∧ |a′i|)‖θi − θ′
i‖2 + max

i,j∈[N ]
(1 + |ai| ∧ |a′i|)(|aj | ∨ |a′j |)‖θi − θ′

i‖2
]

≤K max
i∈[N ]

(1 + |ai| ∨ |a′i|)2 · max
j∈[N ]

‖θj − θ′
j‖2.
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This concludes the proof.

Lemma 22 There exists a constant K such that for any time 0 ≤ s < t

‖θt
i − θs

i‖2 ≤K(1 + s)2|t− s|,
‖θ̄t

i − θ̄s
i ‖2 ≤K(1 + s)2|t− s|,

W2(ρt, ρs) ≤K(1 + s)2|t− s|.

Proof [Proof of Lemma 22] This lemma holds by the bounds of ∇V and ∇1U in Lemma 21 and

the bounds for |āti|, |ati| in Lemma 20, and by the inequality

W2(ρt, ρs) ≤ (E[‖θ̄t
i − θ̄s

i ‖22])1/2.

C.2. Bound between PDE and nonlinear dynamics

Proposition 23 (PDE-ND) There exists a constant K, such that with probability at least 1− e−z2 ,

we have

sup
t∈[0,T ]∩N

|RN (θ̄t)−R(ρt)| ≤ K(1 + T )4
1√
N

[
√

log(NT ) + z]

Proof [Proof of Proposition 23] We decompose the difference into the following two terms

|RN (θ̄t)−R(ρt)| ≤ |RN (θ̄t)− ERN (θ̄t)|
︸ ︷︷ ︸

I

+ |ERN (θ̄t)−R(ρt)|
︸ ︷︷ ︸

II

.

where the expectation is taken with respect to θ̄0
i ∼ ρ0. The result holds simply by combining

Lemma 24 and Lemma 25.

Lemma 24 (Term II bound) We have

|ERN (θ̄t)−R(ρt)| ≤ K(1 + t)2/N.

Proof [Proof of Lemma 24] The bound hold simply by observing that

|ERN (θ̄t)−R(ρt)| =
1

N

∣
∣
∣

∫

a2u(w,w)ρt(dθ)−
∫

a1a2u(w1,w2)ρt(dθ1)ρt(dθ2)
∣
∣
∣

≤(K/N)

∫

a2ρt(dθ) ≤ K(1 + t)2/N.

Lemma 25 (Term I bound) There exists a constant K, such that

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≤ K(1 + T )4[
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .
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Proof [Proof of Lemma 25] Let θ = (θ1, . . . ,θi, . . . ,θN ) and θ′ = (θ1, . . . ,θ
′
i, . . .θN ) be two

configurations that differ only in the i’th variable. Assuming a, a′ ∈ [−K(1 + t),K(1 + t)], then

|RN (θ)−RN (θ′)|

≤ 2

N
|V (θi)− V (θ′

i)|+
1

N2
|U(θi,θi)− U(θ′

i,θ
′
i)|+

2

N2

∑

j∈[N ],j 6=i

|U(θi,θj)− U(θ′
i,θj)|

≤K

N
(1 + t)2.

(40)

Note we have āti ∈ [−K(1 + t),K(1 + t)], applying McDiarmid’s inequality, we have

P

(

|RN (θ̄t)− ERN (θ̄t)| ≥ δ
)

≤ exp{−Nδ2/[K(1 + t)4]}.

By Lemma 22, 21 and 20, for 0 ≤ s < t, we have

|RN (θ̄t)−RN (θ̄s)|
≤K max

i∈[N ]
(1 + |āsi | ∨ |āti|)2 · max

j∈[N ]
‖θ̄t

j − θ̄s
j‖2 ≤ K(1 + t)4|t− s|,

which gives

∣
∣
∣|RN (θ̄t)− ERN (θ̄t)| − |RN (θ̄s)− ERN (θ̄s)|

∣
∣
∣ ≤ K(1 + t)4|t− s|.

Hence taking union bound over s ∈ η{0, 1, . . . , ⌊T/η⌋} and bounding difference between time in

the interval and grid, we have

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≥ δ +K(1 + T )4η
)

≤ (T/η) exp{−Nδ2/[K(1 + T )4]}.

Now taking η = 1/
√
N and δ = K(1 + T )4[

√

log(NT ) + z]/
√
N , we get the desired inequality.

C.3. Bound between nonlinear dynamics and particle dynamics

Proposition 26 (ND-PD) There exists a constant K, such that with probability at least 1 − e−z2 ,

we have

sup
t∈[0,T ]

max
i∈[N ]

‖θt
i − θ̄t

i‖2 ≤KeK(1+T )3 1√
N

[
√

log(NT ) + z], (41)

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤KeK(1+T )3 1√
N

[
√

log(NT ) + z]. (42)

Proof [Proof of Proposition 26]
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Note we have

1

2

d

dt
‖θt

i − θ̄t
i‖22 =〈θt

i − θ̄t
i ,∇V (θ̄t

i)−∇V (θt
i)〉

+
〈

θt
i − θ̄t

i ,
1

N

N∑

j=1

∇1U(θ̄t
i , θ̄

t
j)−∇1U(θ̄t

i ,θ
t
j)
〉

+
〈

θt
i − θ̄t

i ,
1

N

N∑

j=1

∇1U(θ̄t
i ,θ

t
j)−∇1U(θt

i,θ
t
j)
〉

− 1

N
〈θt

i − θ̄t
i ,∇1U(θ̄t

i , θ̄
t
i)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)〉

−
〈

θt
i − θ̄t

i ,
1

N

∑

j 6=i

∇1U(θ̄t
i , θ̄

t
j)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

〉

≤K(1 + t)2‖θt
i − θ̄t

i‖2 · max
j∈[N ]

‖θt
j − θ̄t

j‖2 + ‖θt
i − θ̄t

i‖2(K(1 + t)2/N + Iti ),

(43)

where

Iti =
∥
∥
∥
1

N

∑

j 6=i

[

∇1U(θ̄t
i , θ̄

t
j)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

]∥
∥
∥
2
.

The last inequality follows by Lemma 21 and 20. Now we would like to prove a uniform bound for

Iti for i ∈ [N ] and t ∈ [0, T ].

Lemma 27 There exists a constant K, such that

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≤ K(1 + T )2[
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .

Proof [Proof of Lemma 27] Denote Xt
i = ∇1U(θ̄t

i , θ̄
t
j) −

∫
∇1U(θ̄t

i ,θ)ρt(dθ). Note we have

E[Xt
i |θ̄t

i ] = 0 (where expectation is taken with respect to θ̄0
j ∼ ρ0 for j 6= i), and ‖Xt

i‖2 ≤
2(1 + t)2K (by Lemma 21 and 20). By Lemma 59, we have for any fixed i ∈ [N ] and t ∈ [0, T ],

P

(

Iti ≥ K(1 + t)2(
√

1/N + δ)
)

= E

[

P

(

Iti ≥ K(1 + t)2(
√

1/N + δ)|θ̄t
i

)]

≤ exp{−Nδ2}.

By Lemma 22, there exists K such that, for any 0 ≤ s < t ≤ T and i ∈ [N ], we have

|Iti − Isi | ≤ K(1 + t)2|t− s|.

Taking the union bound over i ∈ [N ] and s ∈ η[T/η] and bounding time in the interval and the grid,

we have

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≥ K(1 + T )2(
√

1/N + δ) +K(1 + T )2η
)

≤ (NT/η) exp{−Nδ2}.

Taking η =
√

1/N , and δ = K[
√

log(NT ) + z]/
√
N , we get the desired result.

Denote δ(N,T, z) = K(1 + T )2[
√

log(NT ) + z]/
√
N and

∆(t) = sup
s∈[t]

max
i∈[N ]

‖θs
i − θ̄s

i ‖2.
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We condition on the good event in Lemma 27 to happen. By Eq. (43), we have

∆′(t) ≤ K(1 + T )2 ·∆(t) + δ(N,T, z),

By Gronwall’s inequality, we have

∆(T ) ≤ KeK(1+T )3δ(N,T, z).

This happens with probability 1 − e−z2 . This proves Eq. (41). Finally, Eq. (42) holds by Lemma

21.

C.4. Bound between particle dynamics and GD

Proposition 28 (PD-GD) There exists constants K and K0 such that, for ε ≤ 1/(K0e
K0(1+T )3),

we have for any t ≤ T ,

sup
k∈[0,t/ε]∩N

|ãki | ≤K(1 + t),

sup
k∈[0,t/ε]∩N

max
i∈[N ]

‖θkε
i − θ̃k

i ‖2 ≤KeK(1+T )2tε,

sup
k∈[0,t/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤KeK(1+T )2tε.

Proof [Proof of Proposition 28] Let ρ(N)
s

= (1/N)
∑N

i=1 δθs
i
, and ρ̃

(N)
k = (1/N)

∑N
i=1 δθ̃k

i
. For

k ∈ N and t = kε, we have

‖θt
i − θ̃k

i ‖2 ≤2

∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ̃
[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds

≤2

∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2ds

+ 2

∫ t

0
‖G(θ

[s]
i ; ρ

(N)
[s] )−G(θ̃

[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds.

By Lemma 22 and 21, for 0 ≤ s ≤ t, we have

‖G(θs
i ; ρ

(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2

≤‖∇V (θs
i )−∇V (θ

[s]
i )‖2 + sup

j∈[N ]
‖∇1U(θs

i ,θ
s
j)−∇1U(θs

i ,θ
[s]
j )‖2

+ sup
j∈[N ]

‖∇1U(θs
i ,θ

[s]
j )−∇1U(θ

[s]
i ,θ

[s]
j )‖2

≤K[1 + |asi |]‖θs
i − θ

[s]
i ‖2 + sup

j∈[N ]
K(1 + |asi |)(1 + |a[s]j |)[‖θs

i − θ
[s]
i ‖2 + ‖θs

j − θ
[s]
j ‖2]

≤K(1 + t)4(s− [s]) ≤ K(1 + t)4ε,
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and for u = kε ≤ t,

‖G(θu
i ; ρ

(N)
u

)−G(θ̃k
i ; ρ̃

(N)
k )‖2

≤‖∇V (θu
i )−∇V (θ̃k

i )‖2 + sup
j∈[N ]

‖∇1U(θu
i ,θ

u
j )−∇1U(θ̃k

i ,θ
u
j )‖2

+ sup
j∈[N ]

‖∇1U(θ̃k
i ,θ

u
j )−∇1U(θ̃k

i , θ̃
k
j )‖2

≤K(1 + |aui |)‖θu
i − θ̃k

i ‖2 + sup
j∈[N ]

K(1 + |aui |)(1 + |auj |)‖θu
i − θ̃k

i ‖2

+ sup
j∈[N ]

K(1 + |ãki |)(1 + |auj |)‖θu
j − θ̃k

j ‖2

≤max
j∈[N ]

K(1 + t+ |ãkj − auj |)(1 + t)‖θu
i − θ̃k

j ‖2 ≤ K(1 + t)2 · max
j∈[N ]

{‖θu
j − θ̃k

j ‖2, ‖θu
j − θ̃k

j ‖22}.

Denoting ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi≤N ‖θkε
i − θ̃k

i ‖2, we get the equation

∆(t) ≤K(1 + t)2
∫ t

0
max{∆(s),∆(s)2}ds+K(1 + t)4tε

≤K(1 + T )2
∫ t

0
[max{∆(s),∆(s)2}+ (1 + T )2ε]ds.

Let T∆ = inf{t : ∆(t) ≥ 1}. For t ≤ T∆, we have ∆(s)2 ≤ ∆(s). Applying Gronwall’s lemma,

we get for any t ≤ T∆,

∆(t) ≤ KeK(1+T )2tε.

Note we assumed ε ≤ 1/(K0e
K0(1+T )3), which gives KeK(1+T )2T ε ≤ 1/2. This shows that

T∆ ≥ T . Hence we get

∆(T ) ≤ KeK(1+T )2T ε.

Moreover, we immediately have,

max
i∈[N ]

sup
k∈[0,T/ε]∩N

|ãki | ≤max
i∈[N ]

sup
t∈[0,T ]

|ati|+ max
i∈[N ]

sup
k∈[0,T/ε]∩N

‖θ̃t
i − θt

i‖2

≤K(1 + t) +KeK(1+T )2T ε

≤2K(1 + t).

Finally, applying the last inequality in Lemma 21 concludes the proof.

C.5. Bound between GD and SGD

Proposition 29 (GD-SGD) There exists constants K and K0, such that if we take ε ≤ 1/[K0(D+
logN + z2)eK0(1+T )3 ], the following holds with probability at least 1 − e−z2: for any t ≤ T , we

have
sup

k∈[0,t/ε]∩N
max
i∈[N ]

|aki | ≤K(1 + t),

sup
k∈[0,t/ε]∩N

max
i∈[N ]

‖θ̃k
i − θk

i ‖2 ≤KeK(1+T )2t√ε[
√

D + logN + z],

sup
k∈[0,t/ε]∩N

|RN (θ̃k)−RN (θk)| ≤KeK(1+T )2t√ε[
√

D + logN + z].
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Proof [Proof of Proposition 29] Denoting Fk = σ((θ0
i )i∈[N ], z1, . . . , zk) the σ-algebra generated

by the data sample zℓ = (yℓ,xℓ) for ℓ ≤ k, we get:

E[Fi(θ
k; zk+1)|Fk] = −∇V (θk

i )−
1

N

N∑

j=1

∇1U(θk
i ,θ

k
j ) = G(θk

i , ρ
(N)
k ),

where ρ
(N)
k ≡ (1/N)

∑

i∈[N ] δθk
i

denotes the empirical distribution of the iterates of SGD. Hence

we get:

‖θk
i − θ̃k

i ‖2 =
∥
∥
∥ε

k−1∑

l=0

Fi(θ
l
i; zl+1)− ε

k−1∑

l=0

G(θ̃l
i; ρ̃

(N)
l )

∥
∥
∥
2

≤
∥
∥
∥ε

k−1∑

l=0

Z l
i

∥
∥
∥
2
+ ε

k−1∑

l=0

∥
∥
∥G(θl

i; ρ
(N)
l )−G(θ̃l

i; ρ̃
(N)
l )

∥
∥
∥
2
,

where Z l
i ≡ Fi(θ

l; zl+1)− E[Fi(θ
l; zl+1)|Fl].

Denote Ak
i =

∑k−1
l=0 εZ l

i . Hence {Ak
i }k∈N is a martingale adapted to {Fk}k∈N. Note we have

Fi(θ
k; zk+1) =((yk+1 − ŷ(xk+1,θ

k))σ(xk+1;w
k
i ),

(yk+1 − ŷ(xk+1,θ
k))aki∇wσ(xk+1;w

k
i )),

where ŷ(xk+1,θ
k) = (1/N)

∑n
j=1 a

k
jσ(xk+1;w

k
j ).

The following discussion is under the conditional law L( · |Fk). Note that |σ(xk+1;w
k
i )| ≤ K,

and |yk+1 − ŷk+1(θ
k)| ≤ K(1 + maxj |akj |), hence (yk+1 − ŷ(xk+1,θ

k))σ(xk+1;w
k
i ) is K(1 +

maxi |aki |)-sub-Gaussian. Furthermore, ∇wσ(xk+1;w
k
i ) is a K-sub-Gaussian random vector, and

|(yk+1 − ŷ(xk+1,θ
k))aki | ≤ K(1 + maxi |aki |)2, hence (yk+1 − ŷ(xk+1,θ

k))aki∇wσ(xk+1;w
k
i )

is a K(1 + maxj |akj |)2-sub-Gaussian random vector. As a result, we have Fi(θ
k; zk+1) under the

conditional law L( · |Fk) is a K(1 + maxj |akj |)2-sub-Gaussian random vector (concatenation of

two possibly dependent sub-Gaussian random vectors is sub-Gaussian).

Let Ta = min{l : maxi∈[N ] |ali| ≥ MT } where MT ≡ 2K(1 + T ). Then we have

E[e〈λ,εZ
k
i 〉|Fk]1{max

i∈[N ]
|aki | ≤ MT } ≤ eε

2K2M4

T ‖λ‖2
2
/2.

Now let Āk
i = Ak∧Ta

i . Then Āk
i is also a martingale. Furthermore, we have

E[e〈λ,Ā
k
i −Ā

k−1

i 〉|Fk−1]

=E[e〈λ,A
k
i −A

k−1

i 〉
1{Ta ≥ k}|Fk−1] + E[e〈λ,A

Ta
i −A

Ta
i 〉

1{Ta ≤ k − 1}|Fk−1]

=E[e〈λ,εZ
k−1

i 〉|Fk−1]1{Ta ≥ k}+ 1{Ta ≤ k − 1}
=E[e〈λ,εZ

k−1

i 〉|Fk−1]1{max
i∈[N ]

|ak−1
i | < MT }+ 1{Ta ≤ k − 1}

≤eε
2K2M4

T ‖λ‖2
2
/2.

Hence we can apply Azuma-Hoeffding’s concentration bound (Lemma 60) to ‖Āl
i‖2,

P

(

max
k∈[0,T/ε]∩N

‖Āk
i ‖2 ≥ KM2

T

√
Tε(

√
D + z)

)

≤ e−z2 ,
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and taking the union bound over i ∈ [N ], we get:

P

(

max
i∈[N ]

max
k∈[0,T/ε]∩N

‖Ak∧Ta

i ‖2 ≤ KM2
T

√
Tε(

√

D + logN + z)
)

≥ 1− e−z2 . (44)

Denote the above event to be a good event Egood,

Egood =
{

max
i∈[N ]

max
k∈[0,T/ε]∩N

‖Ak∧Ta

i ‖2 ≤ KM2
T

√
Tε(

√

D + logN + z)
}

.

We consider the case in which Egood happens. We have (note we assumed ε ≤ 1/(K0e
K0(1+T )3),

by Proposition 28, we have supk∈[0,t/ε]∩Nmaxi∈[N ] |ãki | ≤ K(1 + t))

‖G(θk
i ; ρ

(N)
k )−G(θ̃k

i ; ρ̃
(N)
k )‖2

≤‖∇V (θk
i )−∇V (θ̃k

i )‖2 + sup
j∈[N ]

‖∇1U(θ̃k
i ,θ

k
j )−∇1U(θ̃k

i , θ̃
k
j )‖2

+ sup
j∈[N ]

‖∇1U(θk
i ,θ

k
j )−∇1U(θ̃k

i ,θ
k
j )‖2

≤K(1 + |ãki |)‖θk
i − θ̃k

i ‖2 + sup
j∈[N ]

K(1 + |ãki |)(1 + |ãkj |)‖θk
j − θ̃k

j ‖2

+ sup
j∈[N ]

K(1 + |ãki |)(1 + |akj |)‖θk
i − θ̃k

i ‖2

≤K(1 + T + |ãki − aki |)(1 + T ) max
j∈[N ]

‖θk
j − θ̃k

j ‖2

≤K(1 + T )2 · max
j∈[N ]

{‖θk
j − θ̃k

j ‖2, ‖θk
j − θ̃k

j ‖22}.

Denoting ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi∈[N ] ‖θk
i − θ̃k

i ‖2. Denote T∆ = inf{u : ∆(u) ≥ 1}. For

t ≤ Ta ∧ T∆ ∧ T , we get the equation

∆(t) ≤KM2
T

∫ t

0
∆(s)ds+KM2

T

√
εT (

√

D + logN + z),

which gives

∆(t) ≤ KM2
T

√
εT (

√

D + logN + z)eKM2

T t.

Since we choose ε ≤ 1/[K0(D + logN + z2)eK0(1+T )3 ], we have

∆(Ta ∧ T∆ ∧ T ) ≤ M2
T

√
Tε(

√

D + logN + z)eKM2

TT ≤ 1/2.

Moreover, for t ≤ Ta ∧ T∆ ∧ T , we have

sup
k∈[0,t/ε]∩N

max
i∈[N ]

|aki | ≤ sup
k∈[0,t/ε]∩N

max
i∈[N ]

|ãki |+∆(t) ≤ K(1 + T ) + 1/2 < 2K(1 + T ).

This means that the stopping times Ta, T∆ ≥ T . Hence, for any t ≤ T , we have

∆(t) ≤M2
T

√
εT (

√

D + logN + z)eKM2

T t,

sup
k∈[0,t/ε]∩N

max
i∈[N ]

|aki | ≤2K(1 + t).

Note all these happens when event Egood happens. Hence, the probability such that the events

above happens is at least 1− e−z2 . Finally, by Lemma 21, we have the desired bound on RN . This

concludes the proof.
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Appendix D. Proof of Theorem 4 part (A)

The proof follows the same scheme as for Theorem 1 (A) and we will limit ourselves to describing

the differences.

Throughout this section, the assumptions A1-A6 of Theorem 4 are understood to hold. For the

sake of simplicity we will write the proof under the following restriction:

R1. The coefficients ai ≡ 1.

R2. The step size function ξ(t) ≡ 1/2.

The proof for a general function ξ(t) is obtained by a straightforward adaptation.

For the reader’s convenience, we copy here the limiting PDE:

∂tρt =2ξ(t)∇ · [ρ(θ)∇Ψλ(θ; ρt)] + 2ξ(t)τD−1∆θρt,

Ψλ(θ; ρ) =V (θ) +

∫

U(θ,θ′)ρ(dθ′) +
λ

2
‖θ‖22 .

We will consider four different coupled dynamics with same initialization (θ̄0
i )i≤N ∼iid ρ0 and

stochastic term. We will denote {Wi(s)}s≥0 for i ∈ [N ] independent D-dimensional Brownian

motions. The integral equations and summation forms of the four dynamics are as follows:

• The nonlinear dynamics (ND):

θ̄t
i = θ̄0

i + 2

∫ t

0
ξ(s)G(θ̄s

i ; ρs)ds+

∫ t

0

√

2ξ(s)τD−1dWi(s), (45)

where we denoted G(θ; ρ) = −∇Ψλ(θ; ρ) = −λθ − ∇V (θ) −
∫
∇θU(θ,θ′)ρ(dθ′), and

θ̄ ∼ ρ0 i.i.d.

• The particle dynamics (PD):

θt
i = θ0

i + 2

∫ t

0
ξ(s)G(θs

i ; ρ̂
(N)
s )ds+

∫ t

0

√

2ξ(s)τD−1dWi(s), (46)

where θ0
i = θ̄0

i .

• The gradient descent (GD):

θ̃k
i = θ̃0

i + 2ε
k−1∑

l=0

ξ(lε)G(θ̃l
i; ρ̃

(N)
l ) +

∫ kε

0

√

2ξ([s])τD−1dWi(s),

where θ̃0
i = θ̄0

i .

• The stochastic gradient descent (SGD):

θk
i = θ0

i + 2ε
k−1∑

l=0

ξ(lε)Fi(θ
l; zl+1) +

∫ kε

0

√

2ξ([s])τD−1dWi(s),

where we denoted Fi(θ
k; zk+1) = −λθk

i + (yk+1 − ŷk+1)∇θi
σ⋆(xk+1;θ

k
i ), and θ0

i = θ̄0
i .
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By Proposition 33, 35, 37, 38, there exists constants K and K0, such that with probability at

least 1− e−z2 , we have

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤KeKT 1√
N

[
√

log(NT ) + z],

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤KeKT 1√
N

[
√

log(NT ) + z],

sup
k∈[0,T/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤KeKT [
√

log(N(T/ε ∨ 1)) + z]
√
ε,

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θk)| ≤KeKT
√
Tε[

√

D + logN + z].

Combining these inequalities gives the conclusion of Theorem 4 (A). In the following subsections,

we prove all the above interpolation bounds, under the setting of Theorem 4 (A).

D.1. Technical lemmas

Define the maximum and the average of the norm of the initialization:

Θ∞ ≡ max
i≤N

‖θ0
i ‖2, Θ1 ≡

1

N

N∑

i=1

‖θ0
i ‖2.

Similarly define the following bounds on the Brownian noise

W∞ ≡ max
i≤N

sup
t≤T

‖W i(t)‖2, W1 ≡ sup
t≤T

1

N

N∑

i=1

‖W i(t)‖2.

where W i(t) ≡
√

τ/DWi(t) =
∫ t
0

√

τ/DdWi(s).

Lemma 30 There exists a constant K such that:

P

(

max(Θ∞,W∞) ≤ K(1 + T )
[√

logN + z
])

≥ 1− e−z2 ,

P

(

max(Θ1,W1) ≤ K(1 + T )
[
1 + z

])

≥ 1− e−z2 .

Proof [Proof of Lemma 30] Let us first consider a generic D-dimensional K2-sub-Gaussian random

vector X , we have:

EX [exp{µ‖X‖22 /2}] =EX,G[exp{√µ〈G,X〉}]
≤EG[exp{µK2‖G‖22 /2}]
=(1− µK2/2)−D/2,

where G ∼ N(0, ID). Recall that {(a0i ,w0
i )}i∈[N ] ∼iid ρ0 with w0

i being a K2/D-sub-Gaussian

vector in R
D−1 independent of a0i . Using the above inequality, we get

P

(

‖w0
i ‖2 ≥ u

)

≤ E[exp{µ‖w0
i ‖22/2}]/ exp{µu2/2} ≤ (1− µK2/D)−(D−1)/2 exp{−µu2/2}.
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Taking the union bound over i ∈ [N ], and noting that |a0i | ≤ K, we get:

P

(

max
i∈[N ]

‖θ0
i ‖2 ≥ u+K

)

≤ (1− µK2/D)−(D−1)/2 exp{−µu2/2 + logN}.

Taking µ = D/(2K2) and u = 2K[
√
D + logN + z]/

√
D, we get:

P

(

Θ∞ ≥ 2K
[√

D + logN + z
]

/
√
D
)

≤ e−z2 .

Let us now consider the average over i ∈ [N ] of the ‖w0
i ‖2, which are independent, we get:

P

(

N−1
N∑

i=1

‖w0
i ‖2 ≥ u

)

≤ P

( N∑

i=1

‖w0
i ‖22 ≥ Nu2

)

≤ (1−µK2/D)−N(D−1)/2 exp{−µNu2/2}.

Taking µ = D/(2K2) and u = 2K [1 + z], noting (1/N)
∑N

i=1 |a0i | ≤ K, we get:

P(Θ1 ≥ 2K [1 + z]) ≤ e−z2 .

Similarly, we consider W i(t) ≡
√

τ/DWi(t) which is a D-dimensional Gaussian random vari-

able with variance Var(W
j
i (t)) =

∫ t
0 (τ/D)ds = τt/D. We note that exp{µ‖Wi(t)‖22} is a sub-

martingale and by Doob’s martingale inequality, we have:

P

(

sup
t∈[0,T ]

‖Wi(t)‖2 ≥ u
)

≤E[exp{µ‖Wi(T )‖22/2}]/ exp{µu2/2}

≤(1− 2µ(τT/D))−D/2 exp{−µu2/2}.

Taking the union bound over i ∈ [N ] gives:

P

(

max
i∈[N ]

sup
t∈[0,T ]

‖Wi(t)‖2 ≥ u
)

≤ (1− 2µτT/D)−D/2 exp{−µu2/2 + logN}.

Taking µ = D/(4τT ) and u = 4
√
Tτ [

√
D + logN + z]/

√
D, we get:

P

(

W∞ ≥ 4
√
Tτ [

√

D + logN + z]/
√
D
)

≤ e−z2 .

We can consider the average over i ∈ [N ] of the preceding bound, by noticing that:

1

N

N∑

i=1

‖Wi(t)‖2 ≤
( 1

N

N∑

i=1

‖Wi(t)‖22
)1/2

≡ ‖W (t)‖2/
√
N,

where W (t) is a ND-dimensional Brownian motion. We can therefore apply Doob’s martingale

inequality to the sub-martingale exp{µ‖W (t)‖22}. We have

P

(

sup
t∈[0,T ]

‖W (t)‖2 ≥
√
Nu

)

≤ E[exp{µ‖W (t)‖22/2}]/ exp{Nµu2/2}

≤ (1− 2µTτ/D)−ND/2 exp{−Nµu2/2}.
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Taking µ = D/(4τT ) and u = 4
√
Tτ [1 + z], we get:

P

(

W1 ≥ 4
√
Tτ [1 + z]

)

≤ e−z2 .

This proves the lemma.

The two following lemmas are modified from (Mei et al., 2018, Section 7.2, Lemma 7.5).

Lemma 31 There exists a constant K, such that

sup
i≤N

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

‖θ̄kη+u
i − θ̄

kη
i ‖2 ≤ KeKT

[√

log (N(T/η ∨ 1)) + z
]√

η,

with probability at least 1− e−z2 , and for any t, h ≥ 0, t+ h ≤ T ,

W2(ρt, ρt+h) ≤ (E[‖θ̄t
i − θ̄t+h

i ‖22])1/2 ≤ KeKT
√
h.

Proof [Proof of Lemma 31] Define ∆i(t) ≡ sups≤t ‖θ̄t
i‖2. From Eq. (45),

‖θ̄t
i‖2 ≤ K

∫ t

0
‖θ̄s

i ‖2ds+Θ∞ +W∞,

which gives, after applying Gronwall’s inequality with the bounds of Lemma 30:

P

(

∆i(t) ≤ KeKT
[√

logN + z
])

≥ 1− e−z2 . (47)

Consider ∆i(h; k, ε) = sup0≤u≤ε ‖θ̄kε+u
i − θ̄kε

i ‖2. We have

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤
∥
∥
∥

∫ kε+u

kε
ξ(s)G(θ̄s

i ; ρs)ds
∥
∥
∥
2
+ ‖W i,k(u)‖2

≤ Kh sup
s≤T

[
λ‖θ̄s

i ‖2 + 1
]
+ ‖W i,k(u)‖2,

where we defined W i,k(u) ≡
∫ kε+u
kε

√

τ/DdWi(s). By a similar computation as in Lemma 30,

we have

P

(

max
i≤N

sup
k∈[0,T/ε]∩N

sup
0≤u≤ε

‖W i,k(u)‖2 ≥ 4
√
Kε

[√

log(N(T/ε ∨ 1)) + z
] )

≤ e−z2 .

Combining this bound and Eq. (47) yields:

P

(

max
i≤N

sup
k∈[0,T/ε]∩N

∆i(h; k, ε) ≤ KeKT
[√

log(N(T/ε ∨ 1)) + z
]√

ε
)

≥ 1− e−z2 . (48)

We now bound W2(ρt, ρt+h):

W2(ρt, ρt+h)
2 ≤ E[‖θ̄t − θ̄t+h‖22] =

∫ ∞

0
P(‖θ̄t − θ̄t+h‖22 ≥ u)du.

Using Eq. (48), we have (where we removed the union bound on i ∈ [N ] and k ∈ [0, T/ε] ∩ N)

P

(

‖θ̄t+h
i − θ̄t

i‖2 ≥ KeKT [1 + z]
√
h
)

≤ e−z2 .

Integrating this upper bound on the probability yields the desired inequality.

The exact same proof shows a similar lemma for the particle dynamics.
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Lemma 32 There exists a constant K, such that with probability at least 1− e−z2 ,

max
i≤N

sup
k∈[0,T/ε]∩N

sup
u∈[0,ε]

‖θkε+u
i − θkε

i ‖2 ≤ KeKT
[√

log (N(T/ε ∨ 1)) + z
]√

ε.

D.2. Bound between PDE and nonlinear dynamics

Proposition 33 (PDE-ND) There exists a constant K such that with probability at least 1− e−z2 ,

we have

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤ KeKT 1√
N

[
√

log(NT ) + z].

We will follow the same decomposition as in the proof of Proposition 13. The proof of term II

only depend on the upper bound on the potential U and still apply. The term I bound follow from a

similar proof as lemma 15.

Lemma 34 (Term I bound) There exists K, such that

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≤ KeKT [
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .

Proof [Proof of Lemma 34] Applying McDiarmid’s inequality, we have

P

(

|RN (θ̄t)− ERN (θ̄t)| ≥ δ
)

≤ exp{−Nδ2/K}.

Furthermore we have the following increment bound for t, h ≥ 0:

∣
∣
∣|RN (θ̄t+h)− ERN (θ̄t+h)| − |RN (θ̄t)− ERN (θ̄t)|

∣
∣
∣

≤
∣
∣
∣RN (θ̄t+h)−RN (θ̄t)

∣
∣
∣+

∣
∣
∣ERN (θ̄t+h)− ERN (θ̄t)

∣
∣
∣

≤K
[

sup
i∈[N ]

‖θ̄t+h
i − θ̄t

i‖2 + E[‖θ̄t+h
j − θ̄t

j‖2]
]

.

Using Lemma 31, we get

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

∣
∣
∣|RN (θ̄kη+u)− ERN (θ̄kη+u)| − |RN (θ̄kη)− ERN (θ̄kη)|

∣
∣
∣

≤KeKT
[√

logN(T/η ∨ 1) + z
]√

η,

with probability at least 1 − e−z2 . Hence taking an union bound over s ∈ η{0, 1, . . . , ⌊T/η⌋} and

bounding the variation inside the grid intervals, we have

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≥ δ +KeKT
[√

logN(T/η ∨ 1) + z
]√

η
)

≤(T/η) exp{−Nδ2/K}+ e−z2 .

Taking η = 1/N and δ = K[
√

log(NT ) + z]/
√
N concludes the proof.
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D.3. Bound between nonlinear dynamics and particle dynamics

Proposition 35 (ND-PD) There exists a constant K, such that with probability at least 1 − e−z2 ,

we have

sup
t∈[0,T ]

max
i∈[N ]

‖θt
i − θ̄t

i‖2 ≤ KeKT 1√
N

[
√

log(NT ) + z], (49)

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤ KeKT 1√
N

[
√

log(NT ) + z]. (50)

Proof [Proof of Proposition 35] The nonlinear dynamics and the particle dynamics are coupled by

using the same Brownian motion, and the noise term cancel out. By the same calculation as in

Proposition 16, we get

d

dt
‖θt

i − θ̄t
i‖2 ≤K · max

j∈[N ]
‖θt

j − θ̄t
j‖2 +K/N + Iti , (51)

where

Iti =
∥
∥
∥
1

N

∑

j 6=i

[

∇1U(θ̄t
i , θ̄

t
j)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

]∥
∥
∥
2
.

Now we would like to prove a uniform bound for Iti for i ∈ [N ] and t ∈ [0, T ].

Lemma 36 There exists a constant K, such that

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≤ KeKT [
√

log(NT ) + z]/
√
N
)

≥ 1− e−z2 .

Proof [Proof of Lemma 36] Denoting Xt
i = ∇1U(θ̄t

i , θ̄
t
j) −

∫
∇1U(θ̄t

i ,θ)ρt(dθ). Notice that

E[Xt
i |θ̄t

i ] = 0, (where the expectation is taken with respect to θ̄0
j ∼ ρ0 and {Wj(s)}s≥0 for j 6= i),

and ‖Xt
i‖2 ≤ 2K (by assumption that ‖∇U‖2 ≤ K). By Lemma 59, we have for any fixed i ∈ [N ]

and t ∈ [0, T ],

P

(

Iti ≥ K(
√

1/N + δ)
)

= E

[

P

(

Iti ≥ K(
√

1/N + δ)|θ̄t
i

)]

≤ exp{−Nδ2}.

We then bound the variation of Isi over an interval [t, t+ h], with t, h ≥ 0:

|It+h
i − Iti | ≤

1

N

∑

j≤i

∥
∥
∥∇1U(θ̄t+h

i , θ̄t+h
j )−∇1U(θ̄t

i , θ̄
t
j)
∥
∥
∥
2

+
∥
∥
∥

∫

∇1U(θ̄t+h
i ,θ)ρt+h(dθ)−

∫

∇1U(θ̄t
i ,θ)ρt(dθ)

∥
∥
∥
2

≤K
[

sup
i≤N

‖θ̄t+h
i − θ̄t

i‖2 + E[‖θ̄t+h
j − θ̄t

j‖2]
]

.

By Lemma 31, there exists K such that, we have

P

(

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

|Ikη+u
i − Ikηi | ≤ KeKT

[√

log (N(T/η ∨ 1)) + z
]√

η
)

≥ 1− e−z2 .
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Taking an union bound for i ∈ [N ] and s ∈ η{0, 1, . . . , ⌊T/η⌋} and bounding the variation inside

the grid intervals, we have

P

(

sup
t∈[0,T ]

max
i∈[N ]

Iti ≥ K(
√

1/N + δ) +KeKT
[√

logN(T/η ∨ 1)
]√

η
)

≤(NT/η) exp{−Nδ2}+ e−z2 .

Taking η = 1/N , and δ = K[
√

log(NT ) + z]/
√
N , we get the desired result.

Denote δN (T, z) = KeKT [
√

log(NT ) + z]/
√
N and

∆(t) = sup
s∈[t]

max
i∈[N ]

‖θs
i − θ̄s

i ‖2.

With probability at least 1− e−z2 , we have

∆′(t) ≤ K ·∆(t) + δN (T, z),

which, after applying Gronwall’s inequality, concludes the proof.

D.4. Bound between particle dynamic and GD

Proposition 37 (PD-GD) There exists a constant K such that with probability at least 1 − e−z2 ,

we have

sup
k∈[0,T/ε]∩N

max
i≤N

‖θkε
i − θ̃k

i ‖2 ≤KeKT
[√

log (N(T/ε ∨ 1)) + z
]√

ε,

sup
k∈[0,T/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤KeKT [
√

log(N(T/ε ∨ 1)) + z]
√
ε.

Proof [Proof of Proposition 37] For k ∈ N and t = kε,

‖θt
i − θ̃k

i ‖2 ≤
∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2ds

+

∫ t

0
‖G(θ

[s]
i ; ρ

(N)
[s] )−G(θ̃

[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds.

We have by Lemma 32

∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2ds ≤ KT sup

s∈[0,T ]
max
i∈[N ]

‖θs
i − θ

[s]
i ‖2

≤ TKeKT
[√

log (N(T/ε ∨ 1)) + z
]√

ε,

with probability at least 1 − e−z2 . Denote δ(N,T, z) = TKeKT
[√

log (N(T/ε ∨ 1)) + z
]√

ε

and

∆(t) ≡ sup
k∈[0,t/ε]∩N

max
i≤N

‖θkε
i − θ̃k

i ‖2.
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With probability at least 1− e−z2 , we get

∆(t) ≤ K

∫ t

0
∆(s)ds+ δ(N,T, z).

Applying Gronwall’s inequality concludes the proof.

D.5. Bound between GD and SGD

Proposition 38 (GD-SGD) There exists a constant K such that, with probability at least 1−e−z2 ,

we have
sup

k∈[0,T/ε]∩N
max
i∈[N ]

‖θ̃k
i − θk

i ‖2 ≤KeKT
√
Tε[

√

D + logN + z],

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θk)| ≤KeKT
√
Tε[

√

D + logN + z].

Proof [Proof of Proposition 38] We coupled the noise between the GD and SGD such that the noise

cancels out. Noticing furthermore that the regularization term does not depend on zk and vanishes

in the martingale difference Z l
i ≡ Fi(θ

l; zl+1)− E[Fi(θ
l; zl+1)|Fl], where

Fk = σ((θ0
i )i∈[N ], (zl)

k
l=0, (Wi(s))s≤kε).

Therefore the same proof as Proposition 19 applies here.

Appendix E. Proof of Theorem 4 part (B)

We remind the notations used in the proof of Theorem 1 (B): for θ = (a,w) and θ′ = (a′,w′),

v(w) =− Ey,x[yσ(x;w)],

u(w,w′) =Ex[σ(x;w)σ(x;w′)],

V (θ) =a · v(w),

U(θ,θ′) =aa′ · u(w,w′)

∇θV (θ) =(v(w), a∇wv(w)),

∇θU(θ,θ′) =(a′ · u(w,w′), aa′ · ∇wu(w,w′)).

For convenience, we copy here the properties of the potentials V (θ) and U(θ,θ′) listed in

Lemma 21. Denoting θ = (a,w), θ1 = (a1,w1) and θ2 = (a2,w2). We have

|V (θ)|, ‖∇V (θ)‖2 ≤K(1 + |a|),
‖∇V (θ1)−∇V (θ2)‖2 ≤K · [1 + min{|a1|, |a2|}] · ‖θ1 − θ2‖2,

|U(θ,θ′)|, ‖∇1U(θ,θ′)‖2 ≤K(1 + |a|)(1 + |a′|),
‖∇(1,2)U(θ1,θ)−∇(1,2)U(θ2,θ)‖2 ≤K(1 + |a|) · [1 + min{|a1|, |a2|}] · ‖θ1 − θ2‖2.

Throughout this section, the assumptions A1 - A6 are understood to hold. For the sake of

simplicity we will write the proof under the following restriction:
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R1. The step size function ξ(t) ≡ 1/2.

The proof for a general function ξ(t) is obtained by a straightforward adaptation.

We recall the form of the limiting PDE:

∂tρt =2ξ(t)∇ · [ρ(θ)∇Ψλ(θ; ρt)] + 2ξ(t)τD−1∆θρt,

Ψλ(θ; ρ) =V (θ) +

∫

U(θ,θ′)ρ(dθ′) +
λ

2
‖θ‖22 .

We will consider four different coupled dynamics with same initialization (θ̄0
i )i≤N ∼iid ρ0. The

integral equations and summation form are as follows:

• The nonlinear dynamics (ND):

θ̄t
i = θ̄0

i + 2

∫ t

0
ξ(s)G(θ̄s

i ; ρs)ds+

∫ t

0

√

2ξ(s)τD−1dWi(s), (52)

where we denoted G(θ; ρ) = −∇Ψλ(θ; ρ) = −λθ − ∇V (θ) −
∫
∇θU(θ,θ′)ρ(dθ′), and

θ̄ ∼ ρ0 iid.

• The particle dynamics (PD):

θt
i = θ0

i + 2

∫ t

0
ξ(s)G(θs

i ; ρ̂
(N)
s )ds+

∫ t

0

√

2ξ(s)τD−1dWi(s), (53)

where θ0
i = θ̄0

i .

• The gradient descent (GD):

θ̃k
i = θ̃0

i + 2ε

k−1∑

l=0

ξ(lε)G(θ̃l
i; ρ̃

(N)
l ) +

∫ kε

0

√

2ξ([s])τD−1dWi(s),

where θ̃0
i = θ̄0

i .

• The stochastic gradient descent (SGD):

θk
i = θ0

i + 2ε
k−1∑

l=0

ξ(lε)Fi(θ
l; zl+1) +

∫ kε

0

√

2ξ([s])τD−1dWi(s),

where we defined Fi(θ
k; zk+1) = −λθk

i + (yk+1 − ŷk+1)∇θi
σ⋆(xk+1;θ

k
i ), and θ0

i = θ̄0
i .

By Proposition 43, 47, 49, 50, there exists constants K, such that with probability at least

1− e−z2 , we have

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤KeKT [log3/2(NT ) + z3]/
√
N,

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤Kee
KT [

√
logN+z2][

√

D logN + log3/2(NT ) + z5]/
√
N,

sup
k∈[0,T/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤Kee
KT [

√
logN+z2][log(N(T/ε ∨ 1)) + z6]

√
ε,

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θk)| ≤Kee
KT [

√
logN+z2][

√
D logN + log3/2N + z5]

√
ε.

Combining these inequalities gives the conclusion of Theorem 4 (B). In the following subsections,

we prove all the above interpolation bounds, under the setting of Theorem 4 (B).
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E.1. Technical lemmas

The bounds on the potentials U, V , and their derivatives scales with the coefficients a, which can be

arbitrarily large with non-zero probability due to the Brownian noise. In our analysis we will need

to keep track of the maximum and the first moment of |a| for each of the different dynamics. In this

section we will show that there exists high probability bounds along the trajectories.

We recall the following notations introduced in Appendix Section D.1,

Θ∞ ≡ max
i≤N

‖θ0
i ‖2, Θ1 ≡

1

N

N∑

i=1

‖θ0
i ‖2.

and on the Brownian motion,

W∞ ≡ max
i≤N

sup
t≤T

‖W i(t)‖2, W1 ≡ sup
t≤T

1

N

N∑

i=1

‖W i(t)‖2.

where we recall W i(t) ≡
√

τ/DWi(t) =
∫ t
0

√

τ/DdWi(s). For convenience, we recall here the

bounds derived in Lemma 30:

P

(

max(Θ∞,W∞) ≤ K(1 + T )
[√

logN + z
])

≥ 1− e−z2 ,

P

(

max(Θ1,W1) ≤ K(1 + T )
[
1 + z

])

≥ 1− e−z2 .

In the following lemma, and throughout the proof, we will denote āt ≡ (āt1, . . . , ā
t
N ) ∈ R

N the

vector of the āti variables of the nonlinear dynamics. Similarly we will denote at, ãk and ak the

vectors of variable a associated to the particle dynamics, gradient descent and stochastic gradient

descent. We will furthermore use ‖a‖1, ‖a‖∞ to denote the ℓ1 and ℓ∞ norms of the coefficients

vector.

Lemma 39 There exists a constant K, such that denoting M2(t) = KeKt, we have

sup
s∈[0,t]

∫

a2ρs(da) ≤ M2(t).

Furthermore, letting (āt, w̄t) ∼ ρt, then āt is M2(t)-sub-Gaussian.

Proof [Proof of Lemma 39] Denote A(t) =
∫
a2ρt(da)/2. For simplicity, we will directly take the

derivative of this function. This computation can be made rigorous by considering smooth approxi-

mation of a truncated squared function, with bounded second derivative, and using the definition of

weak solution. We get:

d

dt
A(t) = τ/D −

∫ [

λa2 + a · v(w) + a ·
∫

a′u(w,w′)ρt(dθ
′)
]

ρt(dθ) ≤ K +KA(t),

which implies by applying Gronwall’s lemma we have

sup
s∈[0,t]

∫

a2ρs(da) ≤ KeKt.
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Let us consider the nonlinear dynamics for the variable āt ∼ ρt:

dāt = −λātdt+
[

− v(w̄t)−
∫

a′u(w̄t,w′)ρt(dθ
′)
]

dt+

√
τ

D
dW a(t).

Denote uλ(t) = āteλt and

K(w̄t, ρt) = −v(w̄t)−
∫

a′u(w̄t,w′)ρt(dθ
′),

we get

duλ(t) = eλtK(w̄s, ρt)dt+ eλt
√

τ

D
dW a(t),

and in integration form we have

uλ(t) = uλ(0) +

∫ t

0
eλsK(w̄s, ρs)ds+

∫ t

0
eλs

√
τ

D
dW a(s).

We deduce that we can rewrite āt ∼ ρt as the sum of three random variables:

āt = e−λta0
︸ ︷︷ ︸

Γ1

+

∫ t

0
e−λ(t−s)K(w̄s, ρs)ds

︸ ︷︷ ︸

Γ2

+

∫ t

0
e−λ(t−s)

√
τ

D
dW a(s)

︸ ︷︷ ︸

Γ3

.

By assumption a0 is K-bounded, and thus Γ1 is K2-sub-Gaussian. By the boundedness of u and v,

Cauchy Schwartz inequality, and by A(t) ≤ M2(t), then for s ≤ t, we have |K(w̄s, ρs)| ≤ KeKt,

hence the random variable Γ2 is KeKt-bounded and thus KeKt-sub-Gaussian. The random variable

Γ3 is a Gaussian random variable with variance

Var(Γ3) =

∫ t

0
e−2λ(t−s) τ

D
ds ≤ Kt.

We deduce that āt is the sum of three (dependent) sub-Gaussian random variables with parameters

K2,KeKt,Kt respectively, and therefore the sum āt is KeKt-sub-Gaussian.

Lemma 40 There exists a constant K such that with probability at least 1− e−z2 , we have

max
(

sup
t∈[0,T ]

{‖āt‖1, ‖at‖1}, sup
k∈[0,T/ε]∩N

{‖ãk‖1, ‖ak‖1}
)

≤ N ·KeKT [1 + z] ≡ N ·M1,

max
(

sup
t∈[0,T ]

{‖āt‖∞, ‖at‖∞}, sup
k∈[0,T/ε]∩N

{‖ãk‖∞, ‖ak‖∞}
)

≤ KeKT [
√

logN + z] ≡ M∞.

Proof [Proof of Lemma 40] Let us start with the non-linear dynamics trajectories. We have in

integral form:

∣
∣
∣āti

∣
∣
∣ =

∣
∣
∣ā0i +

∫ t

0

[

− λāsi − v(w̄s
i )−

∫

au(w̄s
i ,w)ρs(dθ)

]

ds+

∫ t

0

√
τ

D
dW a

i (s)
∣
∣
∣

≤ |ā0i |+K

∫ t

0
|āsi |ds+KT

√

M2 + |W a
i (t)|

≤ K

∫ t

0
|āsi | ds+Θ∞ +KT

√

M2 +W∞,

(54)
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where we recall that W
a
i (t) =

√

τ/DW a
i (t). Applying Gronwall’s lemma to ∆(t) = sups∈[0,t] |āsi |

with Lemma 30 gives:

∆(T ) ≤ KeKT [
√

logN + z],

while summing (54) over i yields:

(‖āt‖1/N) ≤ Θ1 +K

∫ t

0
(‖ās‖1/N)ds+KeKT +W1,

and by Gronwall’s lemma: supt∈[0,T ] ‖ās‖1/N ≤ KeKT [1+z]. The same proof applies to the other

trajectories and we will only write down the corresponding inequality on the integral or summation

form:

|ati| ≤ |a0i |+KT +K

∫ t

0
|asi |ds+K

∫ t

0
(‖as‖1/N)ds+ |W a

i (t)|,

|ãki | ≤ |a0i |+KT +Kε

k−1∑

l=1

|ãli|+Kε

k−1∑

l=1

(‖ãl‖1/N) + |W a
i (t)|,

|aki | ≤ |a0i |+KT +Kε
k−1∑

l=1

|ali|+Kε
k−1∑

l=1

(‖al‖1/N) + |W a
i (t)|.

Lemma 41 There exists a constant K such that:

P

(

sup
i≤N

sup
k∈[0,T/ε]∩N

sup
u∈[0,ε]

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤ KeKT
[√

log(N(T/ε ∨ 1)) + z
]√

ε
)

≤ 1− e−z2 ,

P

(

sup
i≤N

sup
k∈[0,T/ε]∩N

sup
u∈[0,ε]

‖θkε+u
i − θkε

i ‖2 ≤ KeKT
[√

log(N(T/ε ∨ 1)) + z
]√

ε
)

≤ 1− e−z2 .

Furthermore, we have for t, h ≥ 0, t+ h ≤ T ,

W2(ρt, ρt+h) ≤
(

E[‖θ̄t − θ̄t+h‖22]
)1/2

≤ KeKT
√
h.

Proof [Proof of Lemma 41] We will only show the result for the non-linear dynamic. The proof for

the particle dynamic will be exactly the same, upon replacing
√
M2 by M1.

Step 1. Let us consider ∆i(t) ≡ sups≤t ‖θ̄t
i‖2 and ∆0(t) ≡ sups≤t

1
N

∑

i≤N ‖θ̄t
i‖2 :

‖θ̄t
i‖2 ≤ ‖θ0

i ‖2 + 2K

∫ t

0

(

λ‖θ̄s
i ‖2 +K(1 + |āsi |) +K

√

M2(1 + |āsi |)
)

ds+ ‖W i‖2

≤ K

∫ t

0
‖θ̄s

i ‖2ds+KeKTT sup
s∈[0,t]

|āsi |+Θ∞ +W∞,

which gives, after applying Gronwall’s inequality with the bounds of Lemma 30 and 40:

P

(

∆i(t) ≤ KeKT
[√

logN + z
])

≥ 1− e−z2 .
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Similarly:

∆0(t) ≤ K

∫ t

0
∆0(s)ds+KeKT sup

s∈[0,t]
(‖ās‖1/N) + Θ1 +W1,

and thus:

P

(

∆0(t) ≤ KeKT [1 + z]
)

≥ 1− e−z2 . (55)

Step 2. Let us bound sup0≤u≤ε ‖θ̄kε+u
i − θ̄kε

i ‖2:

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤
∥
∥
∥

∫ kε+u

kε
ξ(s)G(θ̄s

i ; ρs)ds
∥
∥
∥
2
+ ‖W i,k(u)‖2

≤ Kh sup
s≤T

[

λ‖θ̄s
i ‖2 + (1 +

√

M2)(1 +|āsi |)
]

+ ‖W i,k(u)‖2,

where we defined W i,k(u) ≡
∫ kε+u
kε

√

τ/DdWi(s). By a similar computation as in Lemma 30,

we have

P

(

max
i≤N

sup
k∈[0,T/ε]∩N

sup
0≤u≤ε

‖W i,k(u)‖2 ≥ 4
√
Kε

[√

log(N(T/ε ∨ 1)) + z
] )

≤ e−z2 .

Injecting this bound in the above inequality yields:

P

(

max
i≤N

sup
k∈[0,T/ε]∩N

sup
0≤u≤ε

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤ KeKT
[√

log(N(T/ε ∨ 1)) + z
]√

ε
)

≥ 1− e−z2 .

Another useful bound can be obtained by taking the average over i ∈ [N ]:

1

N

N∑

i=1

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤K∆0(t) +KeKT sup
s≤T

‖ās‖1 +
1

N

N∑

i=1

‖W i,k(u)‖2.

We get by a similar computation as in Lemma 30, we have

P

(

sup
k∈[0,T/ε]∩N

sup
0≤u≤ε

1

N

N∑

i=1

‖W i,k(u)‖2 ≥ 4
√
Kε[

√

log(T/ε ∨ 1) + z]
)

≤ e−z2 .

We get the following bound:

P

(

sup
k∈[0,T/ε]∩N

sup
0≤u≤ε

1

N

N∑

i=1

‖θ̄kε+u
i − θ̄kε

i ‖2 ≤ KeKT [
√

log(T/ε ∨ 1)+z]
√
ε
)

≥ 1−e−z2 . (56)

Step 3. We now bound W2(ρt, ρt+h):

W2(ρt, ρt+h)
2 ≤ E[‖θ̄t − θ̄t+h‖22] =

∫ ∞

0
P(‖θ̄t − θ̄t+h‖22 ≥ u)du.

Using step 2, we have (where we removed the union bound over i ∈ [N ] and k ∈ [0, T/ε] ∩ N):

P

(

‖θ̄t+h
i − θ̄t

i‖2 ≥ KeKT [1 + z]
√
h
)

≤ e−z2 .

Integrating this upper bound on the probability yields the desired inequality.
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Lemma 42 There exists a constant K, such that for θ,θ′ ∈ R
ND

|RN (θ)−RN (θ′)| ≤ K(1 + ‖a‖1/N + ‖a′‖1/N + ‖a′‖21/N2) max
i∈[N ]

‖θi − θ′
i‖2.

Proof [Proof of Lemma 42] We have

|RN (θ)−RN (θ)|

≤ 2

N

N∑

i=1

∣
∣aiv(wi)− a′iv(w

′
i)
∣
∣+

1

N2

N∑

i,j=1

|aiaju(wi,wj)− a′ia
′
ju(w

′
i,w

′
j)|

≤ 2

N

N∑

i=1

K(|a′i − ai|+ |a′i|‖wi −w′
i‖2)

+
1

N2

N∑

i,j=1

K
[

|ai||aj − a′j |+ |a′j ||ai − a′i|+ |a′ia′j |(‖wi −w′
i‖2 + ‖wj −w′

j‖2)
]

≤K(1 + ‖a‖1/N + ‖a′‖1/N + ‖a′‖21/N2) max
i∈[N ]

‖θi − θ′
i‖2.

E.2. Bound between PDE and nonlinear dynamics

Proposition 43 (PDE-ND) There exists a constant K such that

P

(

sup
t∈[0,T ]

|RN (θ̄t)−R(ρt)| ≤ KeKT
[

log3/2(NT ) + z3
]

/
√
N
)

≥ 1− e−z2 .

The proof will use the same decomposition in two terms as in the proof of proposition 13.

Lemma 44 (Term II bound) We have

|ERN (θ̄t)−R(ρt)| ≤ KeKT /N.

Proof [Proof of Lemma 44] The bound hold simply by observing that

|ERN (θ̄t)−R(ρt)| =
1

N

∣
∣
∣

∫

a2u(w,w)ρt(dθ)−
∫

a1a2u(w1,w2)ρt(dθ1)ρt(dθ2)
∣
∣
∣

≤ K/N

∫

a2ρt(da) ≤ KeKT /N

where we used the upper bound on the second moment of variable a in Lemma 39.

Lemma 45 (Term I bound) There exists K, such that

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≤ KeKT
[

log(NT ) + z3
]

/
√
N
)

≥ 1− e−z2 .
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Proof [Proof of Lemma 45] We have:

∣
∣
∣RN (θ̄t)− ERN (θ̄t)

∣
∣
∣ ≤2

∣
∣
∣
1

N

N∑

i=1

[

V (θ̄t
i)− EV (θ̄t

i)
] ∣
∣
∣+

1

N2

N∑

i=1

∣
∣
∣U(θ̄t

i , θ̄
t
i)− E

θ̄t
i
U(θ̄t

i , θ̄
t
i)
∣
∣
∣

+
1

N

N∑

i=1

∣
∣
∣
1

N

N∑

j=1,j 6=i

[

U(θ̄t
i , θ̄

t
j)− E

θ̄t
j
U(θ̄t

i , θ̄
t
j)
] ∣
∣
∣

+
1

N

N∑

i=1

∣
∣
∣
1

N

N∑

j=1,j 6=i

[

E
θ̄t
j
U(θ̄t

i , θ̄
t
j)− E

θ̄t
i ,θ̄

t
j
U(θ̄t

i , θ̄
t
j)
] ∣
∣
∣.

We will bound each of these terms separately. For any fixed t, we have (θ̄t
i)i∈[N ] ∼ ρt indepen-

dently. Define:

Q1(t) =
∣
∣
∣
1

N

N∑

i=1

[

V (θ̄t
i)− EV (θ̄t

i)
] ∣
∣
∣,

which is the absolute value of the sum of martingale differences. Furthermore, we can rewrite

V (θ̄t
i) = ātiv(w̄

t
i) which is KeKT -sub-Gaussian (product of a sub-Gaussian random variable, by

Lemma 39, and a bounded random variable). We can therefore apply Azuma-Hoeffding’s inequality

(Lemma 60),

P

(

Q1(t) ≤ KeKT [1 + z] /
√
N
)

≥ 1− e−z2 .

The second term is bounded as follow:

E2(t) ≡
1

N2

N∑

i=1

∣
∣
∣U(θ̄t

i , θ̄
t
i)− E

θ̄t
i
U(θ̄t

i , θ̄
t
i)
∣
∣
∣ ≤ 1

N2

N∑

i=1

|(āti)2u(w̄t
i , w̄

t
i)|

+
1

N2

N∑

i=1

∣
∣
∣Eθ̄t

i

[

(āti)
2u(w̄t

i , w̄
t
i)
] ∣
∣
∣

≤ K

N2
· ‖āt‖∞ · ‖āt‖1 +

KeKT

N
,

where we used that
∫
a2ρt(da) ≤ KeKT . Using Lemma 40, we get:

P

(

E2(t) ≤ KeKT
[√

logN + z2
]

/N
)

≥ 1− e−z2 .

Define:

Qi
2(t) =

∣
∣
∣
1

N

N∑

j=1,j 6=i

[

U(θ̄t
i , θ̄

t
j)− E

θ̄t
j
U(θ̄t

i , θ̄
t
j)
] ∣
∣
∣.

Because θ̄t
i is independent of the (θ̄t

j)j∈[N ],j 6=i, we can condition on θ̄t
i , and restrict ourselves to

the event where θ̄t
i ≤ M∞. Qi

2(t) is the absolute value of a sum of martingale difference, with

U(θ̄t
i , θ̄

t
j) = ātiā

t
ju(w̄

t
i , w̄

t
j) which is KeKT |āti|2-sub-Gaussian (product of a sub-Gaussian random
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variable and a bounded random variable). We apply Azuma-Hoeffding’s inequality (Lemma 60),

P

(

Qi
2(t) ≥ KeKTM∞ [1 + z] /

√
N
)

≤E
θ̄t
i

[

P

(

Qi
2(t) ≥ KeKTM∞ [1 + z] /

√
N
∣
∣
∣θ̄

t
i

)

1(|āti| ≤ M∞)

]

+ P(|āti| > M∞)

≤2e−z2

We take the union bound over i ∈ [N ] and get:

P

(

max
i∈[N ]

Qi
2(t) ≥ KeKT

[

logN + z2
]

/
√
N
)

≤ e−z2 .

Define:

Qi
3(t) =

∣
∣
∣
1

N

N∑

j=1,j 6=i

[

E
θ̄t
j
U(θ̄t

i , θ̄
t
j)− E

θ̄t
i ,θ̄

t
j
U(θ̄t

i , θ̄
t
j)
] ∣
∣
∣.

We have:

E
θ̄t
j
U(θ̄t

i , θ̄
t
j) = āti ·

∫

au(w̄t
i ,w)ρ(dθ),

with

∣
∣
∣

∫
au(w̄t

i ,w)ρ(dθ)
∣
∣
∣ ≤ K

( ∫
a2ρt(da)

)1/2
≤ KeKT . Thus, E

θ̄t
j
U(θ̄t

i , θ̄
t
j) is KeKT -sub-

Gaussian (product of a sub-Gaussian random variables and of a bounded random variable). Ap-

plying Azuma-Hoeffding’s inequality Lemma 60, followed by an union bound over i ∈ [N ], we

get

P

(

max
i∈[N ]

Qi
3(t) ≥ KeKT

[√

logN + z
]

/
√
N
)

≤ e−z2 .

Combining the above bounds with the bound on sups∈[0,T ]{‖ās‖1, ‖ās‖∞} of Lemma 40 yields:

P

(∣
∣
∣RN (θ̄t)− ERN (θ̄t)

∣
∣
∣ ≥ KeKT

[

logN + z2
]

/
√
N
)

≤ e−z2 . (57)

In order to extend this concentration uniformly on the interval [0, T ], we use the following result:

Lemma 46 There exists K, such that

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

∣
∣
∣|RN (θ̄kη+u)− ERN (θ̄kη+u)| − |RN (θ̄kη)− ERN (θ̄kη)|

∣
∣
∣

≤ KeKT
[√

log (N(T/η ∨ 1)) + z3
]√

η,

with probability at least 1− e−z2 .

Proof [Proof of Lemma 46] Consider t, h ≥ 0, t+ h ≤ T . From Lemma 42,

|RN (θ̄t+h)−RN (θ̄t)| ≤ K(1 + ‖āt+h‖1/N + ‖āt‖1/N + ‖āt+h‖21/N2) max
i∈[N ]

‖θ̄t+h
i − θ̄t

i‖2.

Using Lemma 41 without the union bound over s ∈ η{0, 1, . . . , ⌊T/η⌋} and the bounds of Lemma

40 on supt∈[0,T ]{‖āt‖1}, we get

P

(

|RN (θ̄t+h)−RN (θ̄t)| ≥ KeKT
[√

logN + z3
]√

h
)

≤ e−z2 .
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The difference in expectation, where the expectation is taken over (θ̄i)i∈[N ], is therefore bounded

by

|ERN (θ̄t+h)− ERN (θ̄t)| ≤ E|RN (θ̄t+h)−RN (θ̄t)| ≤
∫ ∞

0
P

(

|RN (θ̄t+h)−RN (θ̄t)| ≥ u
)

du.

Doing a change of variable, we get:

|ERN (θ̄t+h)− ERN (θ̄t)| ≤ KeKT
√

h logN +

∫ ∞

0
e−z2KeKT

√
hz2dz

≤ KeKT (
√

logN + 1)
√
h.

Hence using that

∣
∣
∣|RN (θ̄t+h)− ERN (θ̄t+h)| − |RN (θ̄t)− ERN (θ̄t)|

∣
∣
∣

≤|RN (θ̄t+h)−RN (θ̄t)|+ |ERN (θ̄t+h)− ERN (θ̄t)|,

with Lemma 41, we get

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

∣
∣
∣|RN (θ̄kη+u)− ERN (θ̄kη+u)| − |RN (θ̄kη)− ERN (θ̄kη)|

∣
∣
∣

≤ KeKT
[√

log (N(T/η ∨ 1)) + z3
]√

η,

with probability at least 1− e−z2 .

Taking an union bound over s ∈ η{0, . . . , ⌊T/η⌋} in Eq. (57) and bounding the variation inside

the grid intervals, we get

P

(

sup
t∈[0,T ]

|RN (θ̄t)− ERN (θ̄t)| ≥ KeKT
[

logN + z2
]

/
√
N

+KeKT
[√

log (N(T/η ∨ 1)) + z3
]√

η
)

≤ (T/η) exp{−z2}.

Taking η = 1/(N logN) and z = [
√

log(NT logN) + z′] concludes the proof.

E.3. Bound between nonlinear dynamics and particle dynamics

Proposition 47 (ND-PD) There exists a constant K, such that with probability at least 1 − e−z2 ,

we have

sup
t∈[0,T ]

max
i∈[N ]

‖θ̄t
i − θt

i‖2 ≤Kee
KT [

√
logN+z2]

[√

D logN + log3/2(NT ) + z3
]

/
√
N,

sup
t∈[0,T ]

|RN (θt)−RN (θ̄t)| ≤Kee
KT [

√
logN+z2]

[√

D logN + log3/2(NT ) + z5
]

/
√
N.
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Proof [Proof of Proposition 47] Define ∆(t) ≡ sups≤tmaxi∈[N ] ‖θ̄s
i − θs

i‖2. We have

‖θt
i − θ̄t

i‖2 ≤
∫ t

0
‖G(θ̄s

i ; ρs)−G(θs
i ; ρ

(N)
s

)‖2ds

≤
∫ t

0
λ‖θ̄s

i − θs
i‖2ds+

∫ t

0
‖∇V (θ̄s

i )−∇V (θs
i )‖2ds

+

∫ t

0

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i , θ̄

s
j )−∇1U(θs

i ,θ
s
j)
∥
∥
∥
2
ds

+

∫ t

0

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i , θ̄

s
j )−

∫

∇1U(θ̄s
i ,θ)ρs(dθ)

∥
∥
∥
2
ds. (58)

Let us bound each term separately. We have

‖∇V (θ̄s
i )−∇V (θs

i )‖2 ≤|v(w̄s
i )− v(ws

i )|+ ‖āsi∇v(w̄s
i )− asi∇v(ws

i )‖2
≤K(‖w̄s

i −ws
i‖2 + |āsi − asi |+ |āsi |‖w̄s

i −ws
i‖2)

≤K(1 + ‖ās‖∞)‖θ̄s
i − θs

i‖2.

We decompose the second term into two terms

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i , θ̄

s
j )−∇1U(θs

i ,θ
s
j)
∥
∥
∥
2
≤
∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i , θ̄

s
j )−∇1U(θ̄s

i ,θ
s
j)
∥
∥
∥
2

+
∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i ,θ

s
j)−∇1U(θs

i ,θ
s
j)
∥
∥
∥
2
,

where

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i , θ̄

s
j )−∇1U(θ̄s

i ,θ
s
j)
∥
∥
∥
2

≤
∣
∣
∣
1

N

N∑

j=1

āsju(w̄
s
i , w̄

s
j )− asju(w̄

s
i ,w

s
j)
∣
∣
∣+

∥
∥
∥
1

N

N∑

j=1

āsi ā
s
j∇1u(w̄

s
i , w̄

s
j )− āsia

s
j∇1u(w̄

s
i ,w

s
j)
∥
∥
∥
2

≤K(1 + |āsi |)
[

max
j∈[N ]

|āsj − asj |+
[ 1

N

N∑

j=1

|āsj |
]

max
j∈[N ]

‖w̄s
j −ws

j‖2
]

≤K(1 + ‖ās‖∞) · (1 + ‖ās‖1/N) · max
j∈[N ]

‖θ̄s
j − θs

j‖2,
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and

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̄s
i ,θ

s
j)−∇1U(θs

i ,θ
s
j)
∥
∥
∥
2

≤
∣
∣
∣
1

N

N∑

j=1

asju(w̄
s
i ,w

s
j)− asju(w

s
i ,w

s
j)
∣
∣
∣+

∥
∥
∥
1

N

N∑

j=1

āsia
s
j∇1u(w̄

s
i ,w

s
j)− asia

s
j∇1u(w

s
i ,w

s
j)
∥
∥
∥
2

≤
[K

N

N∑

j=1

|asj |
]

sup
j∈[N ]

‖w̄s
j −ws

j‖2 +K|āsi − asi |
[ 1

N

N∑

j=1

|asj |
]

+K|asi |
[ 1

N

N∑

j=1

|asj |
]

‖w̄s
i −ws

i‖2

≤K(1 + ‖as‖∞) · (1 + ‖as‖1/N) · max
j∈[N ]

‖θ̄s
j − θs

j‖2.

The last term in Eq. (58) can be decomposed into two terms. Consider j = i:

1

N
‖∇1U(θ̄s

i , θ̄
s
i )−

∫

∇1U(θ̄s
i ,θ)ρs(dθ)‖2

≤ 1

N
‖∇1U(θ̄s

i , θ̄
s
i )‖2 +

1

N

∫

‖∇1U(θ̄s
i ,θ)‖2ρs(dθ)

≤ 1

N

[

|āsiu(w̄s
i , w̄

s
i )|+ ‖(āsi )2∇1u(w̄

s
i , w̄

s
i )‖2

]

+

∫
[
|au(w̄s

i ,w)|+ ‖āsia∇1u(w̄
s
i ,w)‖2

]
ρs(dθ)

≤ 1

N
K‖ās‖∞ · (1 + ‖ās‖∞) +KeKT (1 + ‖ās‖∞),

where we used that
∫
|a|ρs(dθ) ≤

( ∫
a2ρs(dθ)

)1/2
and Lemma 39. We consider j 6= i and

denote:

Qi(s) =
∥
∥
∥
1

N

N∑

j=1,j 6=i

[

∇1U(θ̄s
i , θ̄

s
j )−

∫

∇1U(θ̄s
i , θ̄)ρs(dθ)

] ∥
∥
∥
2
,

which is bounded in the following lemma:

Lemma 48 There exists a constant K, such that:

P

(

sup
s∈[0,T ]

max
i≤N

Qi(s) ≥ KeKT
[√

D logN + log3/2(NT ) + z3
]

/
√
N
)

≤ e−z2 .

Proof [Proof of Lemma 48] The concentration of Qi(s) follows from a similar method as in the

proof of Lemma 45. For any fixed s, we have (θ̄s
i )i∈[N ] ∼ ρs independently. In particular, we have

∫

∇1U(θ̄s
i , θ̄)ρs(dθ) = E

[

∇1U(θ̄s
i , θ̄

s
j )
∣
∣
∣θ̄

s
i

]

,

and Qi(s) conditioned on θ̄s
i is the norm of a martingale difference sum. We furthermore restrict

ourselves to the event where āsi ≤ M∞. We have ∇1U(θ̄s
i , θ̄

s
j ) = ātj · (u(w̄t

i , w̄
t
j), ā

s
i∇1u(w̄

t
i , w̄

t
j))

which is KeKTM2
∞-sub-Gaussian (the product of a sub-Gaussian random variable and a bounded
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random variable is sub-Gaussian). We can therefore apply Azuma-Hoeffding ’s inequality (Lemma

60),

P

(

Qi(s) ≥ KeKTM∞
[√

D + z
]

/
√
N
)

≤E
θ̄t
i

[

P

(

Qi(s) ≥ KeKTM∞
[√

D + z
]

/
√
N
∣
∣
∣θ̄

s
i

)

1(|āsi | ≤ M∞)

]

+ P(‖ās‖∞ ≥ M∞)

≤2e−z2 .

Taking the union bound over the i ∈ [N ]

P

(

max
i≤N

Qi(s) ≥ KeKT
[√

D logN + log(N) + z2
]

/
√
N

)

≤ e−z2 .

Furthermore, let us consider t, h ≥ 0, t+ h ≤ T :

1

N

N∑

j=1,j 6=i

‖∇1U(θ̄t+h
i , θ̄t+h

j )−∇1U(θ̄t
i , θ̄

t
j)‖2

≤ 1

N

N∑

j=1,j 6=i

|āt+h
j u(w̄t+h

i , w̄t+h
j )− ātju(w̄

t
i , w̄

t
j)|

+
1

N

N∑

j=1,j 6=i

‖āt+h
i āt+h

j ∇1u(w̄
t+h
i , w̄t+h

j )− ātiā
t
j∇1u(w̄

t
i , w̄

t
j)‖2

≤K(1 + ‖āt‖∞) · (1 + ‖āt‖1/N) · sup
i≤N

‖θ̄t+h
i − θ̄t

i‖2.

Considering Lemma 41 without the union bound over s ∈ η{0, 1, . . . , ⌊T/η⌋} and the high proba-

bility bounds on supt∈[0,T ]{‖āt‖∞, ‖āt‖1} of Lemma 40, we get:

P

( 1

N

N∑

j=1,j 6=i

‖∇1U(θ̄t+h
i , θ̄t+h

j )−∇1U(θ̄t
i , θ̄

t
j)‖2 ≥ KeKT (1+ z)

[√

logN + z
]2√

h
)

≤ e−z2 .

The difference in expectation, where the expectation is taken over θ̄j , is bounded by

‖E∇1U(θ̄t+h
i , θ̄t+h

j )− E∇1U(θ̄t
i , θ̄

t
j)‖2

≤E

[ 1

N

N∑

j=1,j 6=i

‖∇1U(θ̄t+h
i , θ̄t+h

j )−∇1U(θ̄t
i , θ̄

t
j)‖2

]

≤
∫ ∞

0
P

( 1

N

N∑

j=1,j 6=i

‖∇1U(θ̄t+h
i , θ̄t+h

j )−∇1U(θ̄t
i , θ̄

t
j)‖2 ≥ u

)

du.

Noticing that (1 + z)
[√

logN + z
]2 ≤ (

√
logN + z)3 and doing a change of variable, we get:

‖E∇1U(θ̄t+h
i , θ̄t+h

j )− E∇1U(θ̄t
i , θ̄

t
j)‖2 ≤ KeKT logN

√
h+

∫ ∞

−
√
logN

e−z2KeKT z2
√
hdz

≤ KeKT (logN + 1)
√
h.
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Hence using that

|Qi(t+ h)−Qi(t)| ≤ 1

N

N∑

j=1,j 6=i

‖∇1U(θ̄t+h
i , θ̄t+h

j )−∇1U(θ̄t
i , θ̄

t
j)‖2

+ ‖E∇1U(θ̄t+h
i , θ̄t+h

j )− E∇1U(θ̄t
i , θ̄

t
j)‖2,

and the bounds derived above, with an union bound over t ∈ η{0, 1, . . . , ⌊T/η⌋}, we get

sup
k∈[0,T/η]∩N

sup
u∈[0,η]

max
i∈[N ]

|Qi(kη + u)−Qi(kη)| ≤ KeKT
[

log (N(T/η ∨ 1)) + z3
]√

η,

with probability at least 1− e−z2 . We can therefore take the supremum over the interval [0, T ] :

P

(

max
i≤N

sup
s∈[0,T ]

Qi(s) ≥ KeKT
[√

D logN + log(N) + z2
]

/
√
N

+KeKT
[

log (N(T/η ∨ 1)) + z3
]√

η
)

≤ (T/η) exp{−z2}.

Taking η = 1/N and z = [
√

log(NT ) + z′]:

P

(

max
i≤N

sup
s∈[0,T ]

Qi(s) ≥ KeKT
[√

D logN + log3/2(NT ) + z3
]

/
√
N
)

≤ e−z2 .

Using the high probability bound on sups∈[0,T ]{‖ās‖1/N, ‖ās‖∞} of Lemma 40, we get with

probability at least 1− e−z2 that for all t ∈ [0, T ]

∆(t) ≤KeKT (1 + z)
[√

logN + z
] ∫ t

0
∆(s)ds+ TKeKT

[√

logN + z
]2

/N

+ TKeKT
[√

D logN + log3/2(NT ) + z3
]

/
√
N.

Applying Gronwall’s inequality, we get:

P

(

∆(T ) ≤ Kee
KT [

√
logN+z2]

[√

D logN + log3/2(NT ) + z3
]

/
√
N
)

≥ 1− e−z2 .

Using Lemma 42 and the high probability bounds of Lemma 40 concludes the proof.

E.4. Bound between particle dynamics and GD

Proposition 49 (PD-GD) There exists constant K, such that with probability at least 1− e−z2 , we

have

sup
k∈[0,T/ε]∩N

max
i∈[N ]

‖θkε
i − θ̃k

i ‖2 ≤Kee
KT [

√
logN+z2]

[

log(N(T/ε ∨ 1)) + z4
]√

ε,

sup
k∈[0,T/ε]∩N

|RN (θkε)−RN (θ̃k)| ≤Kee
KT [

√
logN+z2]

[

log(N(T/ε ∨ 1)) + z6
]√

ε.
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Proof [Proof of Proposition 49] Denote ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi∈[N ] ‖θkε
i − θ̃k

i ‖2. For k ∈ N

and t = kε,

‖θt
i − θ̃k

i ‖2 ≤
∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ̃
[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds

≤
∫ t

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2ds

+

∫ t

0
‖G(θ

[s]
i ; ρ

(N)
[s] )−G(θ̃

[s]/ε
i ; ρ̃

(N)
[s]/ε)‖2ds.

Let us consider each terms separately:

‖G(θs
i , ρ

(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2

≤λ‖θs
i − θ

[s]
i ‖2 + ‖∇V (θs

i )−∇V (θ
[s]
i )‖2 +

∥
∥
∥
1

N

N∑

j=1

∇1U(θs
i ,θ

s
j)−∇1U(θ

[s]
i ,θ

[s]
j )

∥
∥
∥
2

≤K(1 + ‖as‖∞) · ‖θs
i − θ

[s]
i ‖2 +K(1 + ‖as‖∞) · (1 + ‖as‖1/N) · max

j∈[N ]
‖θs

i − θ
[s]
i ‖2

+K(1 + ‖a[s]‖∞) · (1 + ‖a[s]‖1/N) · max
j∈[N ]

‖θs
j − θ

[s]
j ‖2.

From Lemma 41, we know that

P

(

sup
i≤N

sup
k∈[0,T/ε]∩N

sup
u∈[0,ε]

‖θkε+u
i − θkε

i ‖2 ≤ KeKT
[√

log(N(T/ε ∨ 1)) + z2
]√

ε
)

≤ 1− e−z2 ,

which combined with the upper bound on sups∈[0,T ]{‖as‖1/N, ‖as‖∞} of Lemma 40, shows that

with probability at least 1− e−z2 , we have

∫ kε

0
‖G(θs

i ; ρ
(N)
s

)−G(θ
[s]
i ; ρ

(N)
[s] )‖2ds ≤ KTeKT

[

log(N(T/ε ∨ 1)) + z4
]√

ε.

Consider the second term:

‖G(θ̃
[s]/ε
i , ρ̃

(N)
[s]/ε)−G(θ

[s]
i ; ρ

(N)
[s] )‖2

≤λ‖θ̃[s]/ε
i − θ

[s]
i ‖2

+ ‖∇V (θ̃
[s]/ε
i )−∇V (θ

[s]
i )‖2 +

∥
∥
∥
1

N

N∑

j=1

∇1U(θ̃
[s]/ε
i , θ̃

[s]/ε
j )−∇1U(θ

[s]
i ,θ

[s]
j )

∥
∥
∥
2

≤K(1 + ‖ã[s]‖∞) · ‖θ̃[s]/ε
i − θ

[s]
i ‖2

+K(1 + ‖ã[s]/ε‖∞) · (1 + ‖ã[s]/ε‖1/N) · max
j∈[N ]

‖θ̃[s]/ε
i − θ

[s]
i ‖2

+K(1 + ‖a[s]‖∞) · (1 + ‖a[s]‖1/N) · max
j∈[N ]

‖θ̃[s]/ε
j − θ

[s]
j ‖2.

Using the high probability bound on supk∈[0,T/ε]∩N{‖akε‖1/N, ‖akε‖∞, ‖ãk‖1/N, ‖ãk‖∞} of

Lemma 40, we get with probability at least 1− e−z2 that for all t ∈ [0, T ]

∆(t) ≤KeKT (1 + z)
[√

logN + z
] ∫ t

0
∆(s)ds+KeKT

[

log(N(T/ε ∨ 1)) + z4
]√

ε.
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Applying Gronwall’s inequality, we get with probability at least 1− e−z2 ,

P

(

∆(T ) ≤ Kee
KT [

√
logN+z2]

[

log(N(T/ε ∨ 1)) + z4
]√

ε
)

≥ 1− e−z2 .

This bound combined with Lemma 42 concludes the proof.

E.5. Bound between GD and SGD

Proposition 50 (GD-SGD) There exists K, such that with probability at least 1− e−z2 , we have

sup
k∈[0,T/ε]∩N

max
i∈[N ]

‖θ̃k
i − θk

i ‖2 ≤Kee
KT [

√
logN+z2]

[√
D logN + log3/2N + z3

]√
ε,

sup
k∈[0,T/ε]∩N

|RN (θ̃k)−RN (θk)| ≤Kee
KT [

√
logN+z2]

[√
D logN + log3/2N + z5

]√
ε.

Proof [Proof of Proposition 50] Define ∆(t) ≡ supk∈[0,t/ε]∩Nmaxi∈[N ] ‖θ̃k
i − θk

i ‖2. Denote the

generated σ-algebra:

Fk = σ((θ0
i )i∈[N ], {Wi(s)}i∈[N ],s≤kε, z1, . . . , zk).

We get:

E[Fi(θ
k; zk+1)|Fk] = −λθk

i −∇V (θk
i )−

1

N

N∑

j=1

∇1U(θk
i ,θ

k
j ) = G(θk

i , ρ
(N)
k ),

where we denoted ρ
(N)
k ≡ (1/N)

∑

i∈[N ] δθk
i

the particle distribution of SGD. Hence we get

‖θk
i − θ̃k

i ‖2 =
∥
∥
∥ε

k−1∑

l=0

Fi(θ
l
i; zl+1)− ε

k−1∑

l=0

G(θ̃l
i; ρ̃

(N)
l )

∥
∥
∥
2

≤
∥
∥
∥ε

k−1∑

l=0

Z l
i

∥
∥
∥
2
+ ε

k−1∑

l=0

∥
∥
∥G(θl

i; ρ
(N)
l )−G(θ̃l

i; ρ̃
(N)
l )

∥
∥
∥
2

≤Ak
i +Bk

i ,

where we denoted Z l
i ≡ Fi(θ

l; zl+1)− E[Fi(θ
l; zl+1)|Fl] and Ak

i = ‖ε∑k−1
l=0 Z l

i‖2.

Denote Ak
i =

∑k−1
l=0 εZ l

i . Hence {Ak
i }k∈N is a martingale adapted to {Fk}k∈N. Note the

regularization term cancels out. We have Zk
i equal component-wise to

(

(yk+1 − ŷ(xk+1;θk))σ(xk+1;wk
i )− E

[

(yk+1 − ŷ(xk+1;θk))σ(xk+1;wk
i )|Fk

]

,

(yk+1 − ŷ(xk+1;θk))aki∇wσ(x
k+1;wk

i ))− E

[

(yk+1 − ŷ(xk+1;θk))aki∇wσ(x
k+1;wk

i )|Fk

] )

.

The following discussion is under the conditional law L(·|Fk). Note |σ(xk+1;wk
i )| ≤ K, and

|yk+1 − ŷ(xk+1;θk)| ≤ K(1 + ‖ak‖1/N), hence (yk+1 − ŷ(xk+1;θk))σ(xk+1;wk
i ) is K(1 +
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‖ak‖1/N)2-sub-Gaussian. Note that by assumption, ∇wσ(x
k+1;wk

i ) is K-sub-Gaussian (ran-

dom vector), and |(yk+1 − ŷ(xk+1;θk))aki | ≤ K(1 + ‖ak‖1/N)‖ak‖∞, hence the rest of the

coordinates (yk+1 − ŷ(xk+1;θk))aki∇wσ(x
k+1;wk

i ) is a K(1+ ‖ak‖1/N)2‖ak‖2∞-sub-Gaussian

random vector. As a result, we have Fk(θ
k; zk+1) under the conditional law L(·|Fk) is a K(1 +

‖ak‖1/N)2‖ak‖2∞-sub-Gaussian random vector.

Let τ ≡ inf{k|‖ak‖∞ ≥ M∞ or ‖ak‖1 ≥ N ·M1}. Notice that At∧τ
i −At∧τ−1

i = Zk∧τ−1
i .

Following the same argument as in the proof of Proposition 29, we deduce that for A
k
i ≡ Ak∧τ

i , the

martingale difference A
k
i −A

k−1
i is ε2K2M2

1M
2
∞-sub-Gaussian under the conditional law L(·|Fk).

We apply Azuma-Hoeffding’s inequality (Lemma 60)

P

(

max
k∈[0,T/ε]∩N

‖Ak
i ‖2 ≥ KM1M∞

√
ε
[√

D + z
] )

≤ e−z2 .

We get:

P

(

max
k∈[0,T/ε]∩N

‖Ak
i ‖2 ≥ KM1M∞

√
ε
[√

D + z
] )

≤P

(

max
k∈[0,T/ε]∩N

‖Ak
i ‖2 ≥ KM1M∞

√
ε
[√

D + z
] )

+ P(τ ≤ T/ε)

≤2e−z2 ,

where we used the high probability bound of supk∈[0,T/ε]∩N{‖ak‖1, ‖ak‖1} in Lemma 40. Taking

the union bound over i ∈ [N ] yields

P

(

max
i≤N

max
k∈[0,T/ε]∩N

Ak
i ≥ KeKT

[√
D logN + log3/2N + z3

]√
ε
)

≤ e−z2 .

For the second term, we get:

‖G(θl
i, ρ

(N)
l )−G(θ̃l

i; ρ̃
(N)
l )‖2

≤λ‖θl
i − θ̃l

i‖2 + ‖∇V (θl
i)−∇V (θ̃l

i)‖2 +
∥
∥
∥
1

N

N∑

j=1

∇1U(θl
i,θ

l
j)−∇1U(θ̃l

i, θ̃
l
j)
∥
∥
∥
2

≤K(1 + ‖al‖∞) · ‖θl
i − θ̃l

i‖2 +K(1 + ‖āl‖∞) · (1 + ‖āl‖1/N) · max
j∈[N ]

‖θl
j − θ̃l

j‖2

+K(1 + ‖ãl‖∞) · (1 + ‖ãl‖1/N) · max
j∈[N ]

‖θl
j − θ̃l

j‖2.

Using the high probability bound on supk∈[0,T/ε]∩N{‖ak‖1/N, ‖ak‖∞, ‖ãk‖1/N, ‖ãk‖∞} proved

in Lemma 40, we get with probability at least 1− e−z2 that for all t ∈ [0, T ]

∆(t) ≤KeKT (1 + z)
[√

logN + z
] ∫ t

0
∆(s)ds+KeKT

[√
D logN + log3/2N + z3

]√
ε.

Applying Gronwall’s inequality, we get:

P

(

∆(T ) ≤ Kee
KT [

√
logN+z2]

[√
D logN + log3/2N + z3

]√
ε
)

≥ 1− e−z2 .

This bound combined with Lemma 42 concludes the proof.
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Appendix F. Existence and uniqueness of PDEs solutions

F.1. Equation (DD) (noiseless SGD)

For the readers convenience, we reproduce here the form of the limiting PDE

∂tρt = 2ξ(t)∇ ·
(
ρt∇Ψ(θ; ρt)

)
, (59)

Ψ(θ; ρt) = V (θ) +

∫

U(θ, θ̃) ρt(dθ̃). (60)

This PDE describes an evolution in the space of probability distribution on R
D and has to be in-

terpreted in the weak sense. Namely ρt is a solution of Eq. (59), if for any bounded function

h : RD 7→ R differentiable with bounded gradient:

d

dt

∫

h(θ)ρt(dθ) = −2ξ(t)

∫

〈∇h(θ),∇Ψ(θ; ρt〉ρt(dθ). (61)

For fixed coefficient, under assumptions A1, A2, A3, A4, we have ∇V (θ) and ∇1U(θ,θ′) bounded

Lipschitz. By (Sznitman, 1991, Theorem 1.1), these assumptions are sufficient to guarantee the

existence and uniqueness of solution of PDE (59).

For general coefficients, the potentials are not bounded and Lipschitz anymore. The existence

and uniqueness under assumptions A1, A2, A3, A4, can be derived by a similar argument as in

(Sirignano and Spiliopoulos, 2018, Section 4), which uses an adaptation of the argument of (Sznit-

man, 1991, Theorem 1.1).

F.2. Equation (diffusion-DD) (noisy SGD)

For the readers convenience, we reproduce here the form of the limiting PDE

∂tρt = 2ξ(t)∇ ·
(
ρt∇Ψλ(θ; ρt)

)
+ 2ξ(t)/β∆θρt, (62)

Ψλ(θ; ρt) = V (θ) +

∫

U(θ, θ̃) ρt(dθ̃) +
λ

2
‖θ‖22. (63)

We say that ρt is a weak solution of Eq. (62) if for any ζ ∈ C∞
0 (R × R

D) (the space of smooth

functions decaying to 0 at infinity), we have for any T > 0
∫

RD

ζ0(θ)ρ0(dθ)−
∫

RD

ζ0(θ)ρT (dθ)

=−
∫

(0,T )×RD

[∂tζt(θ)− 2ξ(t)〈∇θΨλ(θ; ρt),∇θζt(θ)〉+ 2ξ(t)∆θζt(θ)]ρt(dθ)dt. (64)

Note that this notion of weak solution is equivalent to the one introduced earlier in Eq. (61), see for

instance (Santambrogio, 2015, Proposition 4.2).

For fixed coefficients, the existence and uniqueness of solution of Eq. (62) was proven in (Mei

et al., 2018, Section 10.2), under the assumptions A1, A2, A3, A6. The proof follows from an

adaptation of the proof of (Jordan et al., 1998, Theorem 5.1).

For general coefficients, we can follow a similar contraction argument as in (Sirignano and

Spiliopoulos, 2018, Section 4) and (Sznitman, 1991, Theorem 1.1), by bounding more carefully

each term.

60



MEAN-FIELD THEORY OF TWO-LAYERS NEURAL NETWORKS

Proposition 51 Assume conditions A1-A5. Then PDE (62) admits a weak solution (ρt)t≥0 which

is unique.

Proof [Proof of Lemma 51] Without loss of generality, we assume ξ(t) = 1/2, which corresponds

to a reparametrization of variable time t. Denote by P(RD) the set of probability measures on

R
D, endowed with the topology of weak convergence. Note that Eq. (64) immediately implies that

t 7→ ρt is continuous in P(RD).
Denote by D([0, T ];P(RD)) the set of maps from [0, T ] into P(RD) and by C([0, T ];P(RD))

the set of continuous maps in this class. We introduce the map ΦT : C([0, T ];P(RD)) →
D([0, T ];P(RD)), which associates m ∈ D([0, T ];P(RD)) to the law of the solution

θ̄t = θ̄0 +

∫ t

0
G(θ̄s;ms)ds+W (t), for t ≤ T, θ̄0 ∼ ρ0.

Observe that if m is a weak solution of PDE (62) defined on interval [0, T ], then m is a fixed point

of ΦT . Further, for any such fixed point m, Lemma 39 and Lemma 41 both apply. In particular,

t 7→ mt is continuous in P(RD) and therefore ΦT maps C([0, T ];P(RD)) to C([0, T ];P(RD)).
Further, again by the same derivation, there exists a constant C, such that

∫

a2mt(da) ≤ CeCt, for all t ∈ [0, T ].

Let us define PC0,T0
(RD) the space of probability measures such that

∫
a2µ(da) ≤ C0e

C0T0 . We

consider m ∈ C([0, T0];PC0,T0
(RD)), the set of continuous mapping from [0, T0] on PC0,T0

(RD).
Using the same computation as in the proof of Lemma 39, we have:

āt = e−λtā0 +

∫ t

0
e−λ(t−s)K(w̄s,ms)ds+

∫ t

0
e−λ(t−s)

√

τ/DdW a(s),

where |K(w̄s,ms)| =
∣
∣
∣− v(w̄s)−

∫
au(w̄s,w)ms(da, dw)

∣
∣
∣ ≤ K +K

√
C0e

C0s/2. We get:

(āt)2 ≤ 9K2 + 18K2t+ 18K2tC0e
C0t +B2

t ,

where Bt is a normal random variable with variance bounded by 9tτ/D. Taking the expectation

with respect to ΦT (m), we get:

∫

a2ΦT (m)t(da) ≤ (9K2 + 18K2t+ 18K2tC0 + 9tτ/D)eC0t.

Hence we deduce that for C0 sufficiently big and T0 sufficiently small, we have for every T ∈
[0, T0], ΦT (m) ∈ C([0, T ];PC0,T (R

D)). We can therefore restrict our mapping Φ to the subsets

C([0, T ];PC0,T (R
D)) for T ≤ T0, which must contains all the fixed points by the above discussion.

We introduce the following metric on C([0, T ];PC0,T (R
D)):

DT (m
1,m2) =

(

inf
{∫

sup
t≤T

‖θt
1 − θt

2‖22γ(dθ1, dθ2) : γ is a coupling of m1,m2
})1/2

.

We show that for T1 ≤ T0 sufficiently small, the mapping ΦT1
is a contraction with respect to this

distance.
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Lemma 52 There exists a constant K such that

DT (ΦT (m
1),ΦT (m

2)) ≤ TKDT (m
1,m2),

for all T ≤ T0, and for all m1,m2 ∈ C([0, T ];PC0,T (R
D)).

Proof [Proof of Lemma 52] We fix T ≤ T0, and we consider a coupling γ between m1,m2 ∈
C([0, T ];PC0,T (R

D)). We consider the following coupling between ΦT (m
1) and ΦT (m

2):

θ̄t
1 = θ̄0 +

∫

G1(θ̄
s
1; γs)ds+W (t),

θ̄t
2 = θ̄0 +

∫

G2(θ̄
s
2; γs)ds+W (t),

where G1(θ̄
s
1; γs) = −λθ̄s

1 −∇V (θ̄s
1)−

∫

RD×RD ∇1U(θ̄s
1,θ1)γ(dθ1, dθ2) (and similarly for G2).

We have:

‖G1(θ̄
s
1; γs)−G2(θ̄

s
2; γs)‖2 ≤K(1 + |ās1|)‖θ̄s

1 − θ̄s
2‖2

+K

∫

|a1|(1 + |ās1|)‖θ̄s
1 − θ̄s

2‖2γs(dθ1, dθ2)

+

∫

(1 + |a1|)(1 + |ās2|)‖θ1 − θ2‖2γs(dθ1, dθ2).

Hence, we get (using that m1
s ∈ PC0,T (R

D))

‖θ̄t
1 − θ̄t

2‖2 ≤KeKT0

∫ t

0
(1 + |ās1|)‖θ̄s

1 − θ̄s
2‖2ds

+K

∫ t

0
(1 + |ās2|)

∫

(1 + |a1|)‖θ1 − θ2‖2γs(dθ1, dθ2)ds,

where K is a constant depending on the constants of the assumptions and C0. Taking the square

and using Cauchy-Schwartz inequality

‖θ̄t
1 − θ̄t

2‖22

≤KeKT0

∫ t

0
(1 + |ās1|)2ds

∫ t

0
‖θ̄s

1 − θ̄s
2‖22ds

+K

∫ t

0
(1 + |ās2|)2ds

∫ t

0

(∫

(1 + |a1|)2γs(dθ1, dθ2)
∫

‖θ1 − θ2‖22γs(dθ1, dθ2)
)

ds

≤KeKT0T0MT0

∫ t

0
‖θ̄s

1 − θ̄s
2‖22ds+KeKT0MT0

t2
∫

sup
t≤T

‖θt
1 − θt

2‖22γ(dθ1, dθ2),

where MT0
= (1 + supt≤T0

(|āt1| ∨ |āt2|))2. Applying Gronwall’s lemma, we get, for any T < T0,

sup
t≤T

‖θ̄t
1 − θ̄t

2‖22 ≤ KT 2eKT 2

0
eKT0MT0

∫

sup
t≤T

‖θt
1 − θt

2‖22γ(dθ1, dθ2).

Taking the expectation:

E[sup
t≤T

‖θ̄t
1 − θ̄t

2‖22] ≤ KT 2
E{exp(KT 2

0 e
KT0MT0

)}
∫

sup
t≤T

‖θt
1 − θt

2‖22γ(dθ1, dθ2).
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By a similar argument as in Lemma 40, we have P(MT0
≥ KeKT0(1 + z2)) ≤ e−z2 , i.e.

P(exp{KT 2
0 e

KT0MT0
} ≥ exp{KT 2

0 e
KT0(1 + z2)}) ≤ e−z2 .

Doing a change of variable, we get:

E{exp(KT 2
0 e

KT0MT0
)} =

∫

P(exp(KT 2
0 e

KT0MT0
) ≥ u)du

≤KT 2
0 e

KT0 +KT 2
0 e

KT 2

0
eKT0

∫ ∞

0
z exp{−(1−KT 2

0 e
KT0)z2}dz

<∞,

for T0 small enough. We conclude that there exists a constant K < ∞ such that

DT (ΦT (m
1),ΦT (m

2)) ≤ (inf
γ
E[sup

t≤T
‖θ̄t

1 − θ̄t
2‖22])1/2 ≤ TKDT (m

1,m2),

where we used that the coupling γ was chosen arbitrarily.

We can therefore consider T1 < 1/K. We showed that the mapping ΦT1
is a contraction on the

space C([0, T1];PC0,T1
(RD)). By the Banach fixed-point theorem, there exists a fixed point for

ΦT1
on the interval [0, T1], which is unique. We can further iterate the same argument. Assume that

the fixed point of ΦT is unique, for some T > 0. Then Φ[0,T+T1] has a unique fixed point, which is

a map m : [0, T + T1] → P(RD). This suffices to conclude that PDE (62) admits a weak solution

on [0,∞), and this solution is unique.

Further, Duhamel’s principle for PDE (62) holds. Denote G (θ,θ′; t) the heat kernel:

G (θ,θ′; t) ≡ 1

(2πt)d/2
exp{−‖θ − θ′‖22/(2t)}.

Lemma 53 Assume conditions A1-A5. Let ρ be a weak solution of PDE (62). Then, for any t > 0,

ρt(dθ) has a density, denoted ρ(t, ·), which satisfies

ρ(t,θ) =

∫

G (θ,θ1; τt/D)ρ0(dθ1)

−
∫ t

0

∫

〈∇θ1G (θ,θ1; τ(t− s)/D),∇θ1Ψ(θ1; ρs)〉ρ(s,θ1)dθ1ds.

Proof [Proof of Lemma 53] For ease of notation, let us set τ/D = 1 and ξ(t) = 1/2, which amounts

to rescaling time. Consider η ∈ C∞(RD) (space of smooth real-valued functions) with bounded

support, and define:

Gη(θ; t) =

∫

G (θ,θ1; t)η(θ1) dθ1.

By property of the heat kernel, we have

(∂t −∆)Gη(θ; t) = 0, ∀t > 0, ∀θ ∈ R
D.
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Take ζ(θ, s) = Gη(θ; t− s) (which indeed decays to 0 at infinity) as a test function in Eq. (64) for

T = t. We get:

∫

η(θ1)ρt(dθ1) =

∫

Gη(θ; t)ρ0(dθ)−
∫

(0,t)×RD

〈Gη(θ; t− s),∇Ψ(θ; ρs)〉ρs(dθ)ds.

By applying Fubini’s theorem, we get

∫

η(θ1)ρt(dθ1) =

∫

G (θ,θ1; t)ρ0(dθ)η(θ1)dθ1

−
∫

(0,t)×RD×RD

〈G (θ,θ1; t− s),∇Ψ(θ,θ1; ρs)〉ρs(dθ)ds η(θ1)dθ1,

where η is an arbitrary function with bounded support, which concludes the proof.

Lemma 54 Assume conditions A1- A6. Assume further that ρ0 has a density. Denote (ρt)t≥0 the

solution of PDE (62), with density (ρ(t, ·))t≥0. Then (t,θ) 7→ ρ(t,θ) is in C1,2((0,∞) × R
D),

where C1,2((0,∞) × R
D) is the function space of continuous function with continuous derivative

in time, and second order continuous derivative in space.

Proof [Proof of Lemma 54] The proof follows exactly from the proof of Lemma (Mei et al., 2018,

Lemma 10.7).

F.3. The noisy PDE as a gradient flow in the space of probability distributions

We include a second independent proof of the existence of a weak solution, which is interesting

in itself. It relies on a deep connection pioneered by Jordan et al. (1998), between Fokker-Planck

PDEs and gradient flow in probability space. The proof follows closely the steps detailed in Jordan

et al. (1998). The arguments are similar to (Mei et al., 2018, Section 10.2), and we will only detail

the differences.

We will consider the set K of admissible probability densities,

K =
{

ρ : RD 7→ [0,+∞) measurable :

∫

RD

ρ(θ)dθ = 1,M(ρ) < ∞
}

,

where

M(ρ) ≡
∫

RD

‖θ‖22ρ(θ)dθ.

Recall

R(ρ) = E(y2) + 2

∫

RD

V (θ)ρ(θ)dθ +

∫

RD×RD

U(θ,θ′)ρ(θ)ρ(θ′)dθdθ′.

We will define

Ent(ρ) = −
∫

RD

ρ(θ) log ρ(θ)dθ,

F (ρ) = 1/2 · [λM(ρ) +R(ρ)]− 1/β · Ent(ρ).
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The PDE (62) can be interpreted as a gradient flow on the free energy functional F (ρ) in the space

of probability measures on R
D endowed with the W2(·, ·) Wassertein distance (Mei et al., 2018,

Section 10.2). Recall that for µ, ν probability distributions over RD, we have:

W 2
2 (µ, ν) = inf

{∫

RD×RD

‖θ1 − θ2‖22γ(dθ1, dθ2) : γ is a coupling of µ, ν
}

Proposition 55 Assume conditions A1, A2, A3, A6. Let initialization ρ0 ∈ K so that F (ρ0) < ∞.

Then the PDE (62) admits a weak solution (ρt)t≥0 which is unique. Moreover, for any fixed t,
ρt ∈ K is absolutely continuous with respect to the Lebesgue measure, and M(ρt) and Ent(ρt) are

uniformly bounded in t.

Proof [Proof of Proposition 55] Without loss of generality, we assume ξ(t) = 1/2, which corre-

sponds to a reparametrization of variable time t. To prove the existence of the solution, we consider

the limit of the following discretized scheme when the step-size h goes to zero: we define recur-

sively a sequence of distributions {ρhk}k∈N, with ρh0 = ρ0 and

ρhk+1 ∈ argmin
ρ∈K

{

hF (ρ) +
1

2
W 2

2 (ρ, ρ
h
k)
}

. (65)

Lemma 56 Given an initialization ρ0 ∈ K, there exists a unique solution of the scheme (65).

Proof [Proof of Lemma 56] Clearly it is sufficient to analyze a single step of the scheme (65). The

proof follows from the same arguments as in (Jordan et al., 1998, Proposition 4.1), which shows

that there exists a sequence of measures {ρν}ν∈N ∈ K that converges weakly to ρ∗ ∈ K such that

lim
ν→∞

{

F (ρν) +
1

2
W 2

2 (ρν , ρ0)
}

= inf
ρ∈K

{

F (ρ) +
1

2
W 2

2 (ρν , ρ0)
}

> −∞.

Moreover, there exists a constant C such that M(ρν) ≤ C and M(ρ∗) ≤ C by lower semi-

continuity of M(ρ). We only need to check lower semi-continuity of R(ρ) to conclude that ρ∗

is indeed a minimizer. Uniqueness comes from convexity of the functional and strict convexity of

−Ent(ρ).
Denote for x ∈ R, the functions φm(x) = sign(x) ·max{|x| −m, 0} and φ

m
(x) = x−φm(x),

and B(r) = B(0, r) ⊂ R
D:

|R(ρν)−R(ρ∗)| ≤
∣
∣
∣

∫

φ
m
(V (θ))[ρν(θ)− ρ∗(θ)]dθ

∣
∣
∣

+
∣
∣
∣

∫

φ
m
(U(θ,θ′))[ρν(θ)ρν(θ

′)− ρ∗(θ)ρ∗(θ′)]dθdθ′
∣
∣
∣

+
∣
∣
∣

∫

φm(V (θ))[ρν(θ)− ρ∗(θ)]dθ
∣
∣
∣

+
∣
∣
∣

∫

φm(U(θ,θ′))[ρν(θ)ρν(θ
′)− ρ∗(θ)ρ∗(θ′)]dθdθ′

∣
∣
∣.

By weak convergence in L1(RD), the first two terms converge to zero. Recalling that V (θ) =
av(w) and U(θ,θ′) = aa′u(w,w′), with |v(w)| ≤ K and |u(w,w′)| ≤ K, we deduce

∣
∣
∣

∫

φm(V (θ))[ρν(θ)− ρ∗(θ)]dθ
∣
∣
∣ ≤

∣
∣
∣

∫

B(m/K)
φm(V (θ))[ρν(θ)− ρ∗(θ)]dθ

∣
∣
∣ ≤ 2KC/m,
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and
∣
∣
∣

∫

φm(U(θ,θ′))[ρν(θ)ρν(θ
′)− ρ∗(θ)ρ∗(θ′)]dθdθ′

∣
∣
∣

≤
∣
∣
∣

∫

B(
√
m/K)×B(

√
m/K)

φm(U(θ,θ′))[ρν(θ)ρν(θ
′)− ρ∗(θ)ρ∗(θ′)]dθdθ′

∣
∣
∣ ≤ 2KC2/m,

where we used that
∫

B(r) |a|ρν(da) ≤
∫
a2/rρν(da) ≤ C/r. Because m is arbitrarily large, we

conclude that

lim
ν→∞

∣
∣R(ρν)−R(ρ∗)

∣
∣ = 0.

The rest of the proof follows the proof of (Jordan et al., 1998, Theorem 5.1), which shows that

for a given T < ∞, there exists C such that for any h and k with hk ≤ T , we have M(ρhk) ≤ C.

If we denote ρh(t, .) the piece wise constant distribution trajectory, we deduce that it converges

weakly to ρ in L1((0, T ) × R
D). Furthermore, the weak convergence applies for each given time

t ∈ [0,+∞), i.e. ρh(t) 7→ ρ(t) weakly.

We still need to show that this limiting distribution is a weak solution (61) of PDE (62). Let

ξ ∈ C∞
0 (RD,RD) be a smooth vector field with bounded support, and define {Φτ}τ∈R the corre-

sponding flux:

∂τΦτ = ξ ◦ Φτ for all τ ∈ R and Φ0 =id. (66)

Further, for τ ∈ R, define ντ to be the push forward measure of ρhk under Φτ . Namely,

∫

RD

ντ (θ)ζ(θ)dθ =

∫

RD

ρhk(θ)ζ(Φτ (θ))dθ, ∀ζ ∈ C(RD),

or equivalently ντ = 1
det∇Φτ

ρhk ◦ Φ−1
τ . We only need to consider the term R(ρ). See the proof of

(Mei et al., 2018, Lemma 10.6) for more details.

From the assumption of bounded support, we must have supθ∈RD ‖ξ(θ)‖2 ≤ K. From Eq.

(66), we have

Φτ (θ) = θ +

∫ τ

0
Φs(ξ(θ))ds. (67)

Hence applying Gronwall’s inequality to u(τ) = supθ∈B(r) ‖Φτ (θ)‖2, and considering τ ≤ 1, we

get u(τ) ≤ K. Therefore, for τ ≤ 1, we get |(∂2/∂τ2)Φτ (θ)| = |Φτ (ξ(ξ(θ)))| ≤ K. We deduce

that

‖Φτ (θ)− θ − τξ(θ)‖2 ≤ Kτ2. (68)

Let us consider the derivative of R(vτ ) with respect to τ . Recall that U is symmetric.

∫

[U(Φτ (θ1),Φτ (θ2))− U(θ1,θ2)− 2τ〈∇1U(θ1,θ2), ξ(θ1)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2

=

∫

[U(Φτ (θ1),Φτ (θ2))− U(Φτ (θ1),θ2)− τ〈∇2U(Φτ (θ1),θ2), ξ(θ2)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2

+

∫

[U(Φτ (θ1),θ2)− U(θ1,θ2)− τ〈∇1U(θ1,θ2), ξ(θ1)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2

+

∫

[τ〈∇2U(Φτ (θ1),θ2), ξ(θ2)〉 − τ〈∇2U(θ1,θ2), ξ(θ2)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2.
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Denote (aτ1 ,w
τ
1) = Φτ (θ1) and (aτ2 ,w

τ
2) = Φτ (θ2), and ξ(θ) = (ξa(θ), ξw(θ)). Consider the first

term
U(Φτ (θ1),Φτ (θ2))− U(Φτ (θ1),θ2)− τ〈∇2U(Φτ (θ1),θ2), ξ(θ2)〉

=aτ1{[aτ2 − a2]u(w
τ
1 ,w

τ
2) + a2[u(w

τ
1 ,w2)− u(wτ

1 ,w
τ
2)]}

− τaτ1{ξa(θ2)u(wτ
1 ,w2) + a2〈∇w2

u(wτ
1 ,w2), ξw(θ2)〉}

=aτ1{[aτ2 − a2 − τξa(θ2)]u(w
τ
1 ,w

τ
2)

+ a2[u(w
τ
1 ,w2)− u(wτ

1 ,w
τ
2)− τ〈∇w2

u(wτ
1 ,w2), ξw(θ2)〉]}

+ τaτ1ξa[u(w
τ
1 ,w

τ
2)− u(wτ

1 ,w2)].

Using that ‖∇u‖op, ‖∇2u‖op ≤ K, and Eq. (67) and Eq. (68), we get for τ ≤ 1

∣
∣
∣

∫

[U(Φτ (θ1),Φτ (θ2))− U(Φτ (θ1),θ2)− τ〈∇2U(Φτ (θ1),θ2), ξ(θ2)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2
∣
∣
∣

≤Kτ2
∫

|aτ1(K + a2)|ρhk(θ1)ρhk(θ2)dθ1dθ2 ≤ Kτ2C(K + C),

where we used that |aτ | ≤ |a|+Kτ from Eq. (67), and M(ρhk) ≤ C. The same computation shows

that the second and third terms, as well as the term depending on V (θ) are O(τ2).
Taking τ → 0, we conclude that:

d

dτ
[R(ντ )]τ=0 =

∫

Rd

〈∇Ψ(θ, ρhk), ξ(θ)〉ρhk(θ)dθ.

This equality combined with the analysis of (Jordan et al., 1998, Theorem 5.1) shows that ρ(t) is

indeed a weak solution of PDE (62). The proof of uniqueness follows from the regularity Lemma

54 and a standard method from elliptic-parabolic equations (see (Jordan et al., 1998, Theorem 5.1)

for details).

Appendix G. Proof of Theorem 8

Proof [Proof of Theorem 8] Let L2(Rd,P) be the space of functions on R
d that is square integrable

with respect to the measure P. For any functions u, v ∈ L2(Rd,P), we denote by 〈u, v〉L2 =
∫

Rd u(x)v(x)P(dx) the scalar product of u, v and ‖u‖L2 = (〈u, u〉L2)1/2 the associated norm in

L2(Rd,P).
We prove the case for general coefficients. The proof of fixed coefficient is the same but simpler.

Step 1. Bound the support of āt,α.

Let θ̄t,α = (āt,α, w̄t,α) satisfying the non-linear dynamics

d

dt
θ̄t,α = − 1

α
∇θΨα(θ̄

t,α; ραt )

with initialization θ̄0,α ∼ ρ0, and ραt given by Eq. (Rescaled-DD). Then we have

∣
∣
∣
d

dt
āt,α

∣
∣
∣ =

∣
∣
∣(1/α)E[(f(x)− f̂(x; ραt ))σ(x; w̄

t,α)]
∣
∣
∣

≤(1/α)E[(f(x)− f̂(x; ραt ))
2]1/2E[σ(x; w̄t,α)2]1/2

≤(1/α)KRα(ρ
α
t )

1/2.
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The last inequality follows from the assumption that ‖σ‖∞ ≤ K. Note Rα(ρ
α
t ) will always decrease

along the trajectory, i.e., we have Rα(ρ
α
t ) ≤ Rα(ρ0) ≤ B. As a result, we have |dāt,α/dt| ≤

KB1/2/α, so that

|āt,α| ≤ K(1 +B1/2t/α) ≡ Mt,α.

Denoting A(ρ) = sup(a,w)∈supp(ρ) |a|. Since (āt,α, w̄t,α) ∼ ραt , we have

A(ραt ) ≤ Mt,α = K(1 +B1/2t/α).

Step 2. Bound W2(ρ
α
t , ρ0).

For θ = (a,w), we have

‖∇θΨα(θ, ρ
α
t )‖ = ‖E{∇θσ⋆(x;θ)[f(x)− f̂α(x; ρ

α
t )]}‖

≤ E{‖∇θσ⋆(x;θ)‖2}1/2E{[f(x)− f̂α(x; ρ
α
t )]

2}1/2

= {E{σ(x;w)2}+ a2E{‖∇wσ(x;w)‖22}}1/2Rα(ρ
α
t )

1/2

≤ K(1 + |a|
√
D)B1/2 .

The last inequality follows from ‖σ‖∞ ≤ K and

E{‖∇wσ(x;w)‖22} = tr(∇1∇2u(w,w)) ≤ D‖∇1∇2u(w,w)‖op ≤ KD.

Hence, for s ≤ t,

‖θ̄t,α − θ̄s,α‖2 =
1

α

∥
∥
∥

∫ t

s
∇θΨα(θ̄

u,α; ραu)du
∥
∥
∥
2
≤ K

α
|t− s|Mt,αB

1/2
√
D.

Note that, by the coupling in terms of nonlinear dynamics, for any s ≤ t, we have

W2(ρ
α
s , ρ

α
t ) ≤ E{‖θ̄s,α − θ̄t,α‖2}1/2 ≤ K

α
|t− s|Mt,αB

1/2
√
D. (69)

Step 2. Bound ‖Hρ0 −Hραt
‖op.

Note that, for v ∈ L2(Rd,P),

〈v,Hρv〉L2 =

∫
∥
∥Ex{∇θσ⋆(x;θ)v(x)}

∥
∥2

2
ρ(dθ) . (70)

Letting γ denote the coupling that achieves the W2 distance between ρ1 and ρ2, we have

〈v, [Hρ1 −Hρ2 ]v〉L2

=

∫ {∥
∥Ex{∇θσ⋆(x;θ1)v(x)}

∥
∥2

2
−
∥
∥Ex{∇θσ⋆(x;θ2)v(x)}

∥
∥2

2

}

γ(dθ1, dθ2)

≤
[ ∫

A−(θ1,θ2)γ(dθ1, dθ2) ·
∫

A+(θ1,θ2)γ(dθ1, dθ2)
]1/2

.

where

A−(θ1,θ2) ≡
∥
∥Ex{[∇θσ⋆(x;θ1)−∇θσ⋆(x;θ2)]v(x)}

∥
∥2

2

≤ Ex{‖∇θσ⋆(x;θ1)−∇θσ⋆(x;θ2)‖22}‖v‖2L2 ,

A+(θ1,θ2) ≡ (Ex{[‖∇θσ⋆(x;θ1)‖2 + ‖∇θσ⋆(x;θ2)‖2]‖v(x)‖2})2

≤ Ex{(‖∇θσ⋆(x;θ1)‖2 + ‖∇θσ⋆(x;θ2)‖2)2}‖v‖2L2 .
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Note we have
Ex{(‖∇θσ⋆(x;θ1)‖2 + ‖∇θσ⋆(x;θ2)‖2)2}

=tr[∇1∇2U(θ1,θ1)] + tr[∇1∇2U(θ2,θ2)]

+ 2{tr[∇1∇2U(θ1,θ1)] · tr[∇1∇2U(θ2,θ2)]}1/2
≤D(‖∇1∇2U(θ1,θ1)‖op + ‖∇1∇2U(θ2,θ2)‖op
+ 2{‖∇1∇2U(θ1,θ1)‖op‖∇1∇2U(θ2,θ2)‖op}1/2)

≤KD(1 + |a1| ∨ |a2|)2,
where the last inequality is by

∇1∇2U(θ,θ′) =

[

u(w,w′) a′∇1u(w,w′)
a∇2u(w,w′) aa′∇1∇2u(w,w′)

]

,

and the assumption that |u|, ‖∇u‖2, ‖∇2u‖op ≤ K. This gives

A+(θ1,θ2) ≤ KD(1 + |a1| ∨ |a2|)2‖v‖2L2 .

Moreover, we have

Ex[‖∇θσ⋆(x;θ1)−∇θσ⋆(x;θ2)‖22]
=tr[∇1∇2U(θ1,θ1) +∇1∇2U(θ2,θ2)− 2∇1∇2U(θ1,θ2)]

≤D‖∇1∇2U(θ1,θ1) +∇1∇2U(θ2,θ2)− 2∇1∇2U(θ1,θ2)‖op
≤KκD(1 + |a1| ∨ |a2|)2‖θ1 − θ2‖22,

where the last inequality follows from

‖∇1∇2U(θ1,θ1) +∇1∇2U(θ2,θ2)− 2∇1∇2U(θ1,θ2)‖op ≤ ‖∇2
1∇2

2U(θ̃1, θ̃2)‖op‖θ1 − θ2‖22,

and ‖∇3u‖op, ‖∇4u‖op ≤ κ. This gives

A−(θ1,θ2) ≤KκD(1 + |a1| ∨ |a2|)2‖θ1 − θ2‖22‖v‖2L2 .

Remember the notation A(ρ) = sup(a,w)∈supp(ρ) |a| and we have shown A(ραt ) ≤ Mt,α = K(1 +

B1/2t/α) in step 1, we have

〈v, [Hρ1 −Hρ2 ]v〉L2

=
[

κKD2[1 +A(ρ1) ∨A(ρ2)]
2 · [1 +A(ρ1) ∨A(ρ2)]

2 ·
∫

‖θ1 − θ2‖22γ(dθ1, dθ2)‖v‖4L2

]1/2

≤Kκ1/2D[1 +A(ρ1) ∨A(ρ2)]
2W2(ρ1, ρ2) · ‖v‖2L2 .

Substituting above, we get

‖Hρ0 −Hραt
‖op ≤ Kκ1/2DW2(ρ0, ρ

α
t )(1 +Mt,α)

2 ≤ Kκ1/2D3/2(1 +B1/2t/α)3B1/2t/α.
(71)

Step 3. Bound the difference of mean field and linearized residue dynamics vt = uαt − u∗t .
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We now consider the mean field residual dynamics (RD) and the linearized residual dynamics

(17). Defining vt = uαt − u∗t , we have

∂tvt = −Hραt
vt + (Hρ0 −Hραt

)u∗t . (72)

Since Hραt
� 0, this implies

d

dt
‖vt‖2L2 ≤ 2〈vt, (Hρ0 −Hραt

)u∗t 〉L2 ≤ 2‖vt‖L2‖Hρ0 −Hραt
‖op‖u∗t ‖L2 . (73)

Using the bound (71), and ‖u∗t ‖2L2 ≤ ‖u∗0‖2L2 = Rα(ρ0) ≤ Bα, we obtain

d

dt
‖vt‖L2 ≤‖Hρ0 −Hραt

‖op‖u∗t ‖L2 ≤ Kκ1/2D3/2(1 +B1/2t/α)3Bt/α , (74)

Integrating this inequality yields Eq. (20). Eq. (21) follows by triangle inequality.

Step 4. Proving Eq. (22).

For ρ0 = ρa0 × ρw0 with |E(a)| ≤ K/α, we have

‖f̂(x; ρ0)‖ = α
∥
∥
∥

∫

aρa0(da) ·
∫

σ(x;w)ρw0 (dw)
∥
∥
∥ ≤ K

Then we have

Rα(ρ0) = 2E[f(x)2] + 2E[f̂(x; ρ0)
2] ≤ K,

which is independent of α. Hence we have in both cases

lim
α→∞

Rα(ρ
α
t ) ≤ ‖u∗t ‖2L2 .

Equation (22) holds by Lemma 7.

Appendix H. The mean field limit and kernel limit

This section is a self-contained note comparing the mean field limit and kernel limit. We introduce

the distributional dynamics and residual dynamics, which we consider in the pre-limit and in the

limit of infinite number of neurons.

Let us emphasize that the material presented here is not new and appears in the literature, pos-

sibly in a slightly different formulations.

H.1. Two layers neural networks with a scale parameter α

Let f : Rd → R. We use a two layer’s neural network to fit this function f over data x ∼ Px. We

denote f̂α,N (x;θ) the N -neurons prediction function at point x ∈ R
d with weights θ ∈ R

D×N ,

f̂α,N (x;θ) =
α

N

N∑

j=1

σ⋆(x;θj) .
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Here α serves as a scale parameter, which can be used to explore different regimes of the learning

dynamics. We minimize the population risk over θ = (θ1, . . . ,θN ):

Rα,N (θ) = Ex

[(

f(x)− f̂α,N (x;θ)
)2]

.

In the rest of this appendix, we will first consider the gradient flow dynamics of the finite neuron

risk function. This can be described via a distributional dynamics, which is a flow in the space of

probability measures. The distributional dynamics induces an evolution of the residuals at the data

points, which we call residual dynamics. We then consider the limit N → ∞, which we refer to as

the mean field limit.

Finally, we consider the limit of both α → ∞ after N → ∞, that we call the kernel limit. Of

course, it is also possible (and interesting) to study joint limits α,N → ∞ Jacot et al. (2018). Our

rationale for the focusing on α → ∞ after N → ∞ (following Chizat and Bach (2018b)) is that it

allows to explore the crossover between mean field and kernel behaviors.

H.2. The residual dynamics in the pre-limit

Calculating the gradient ∇θj
Rα,N (θ) using chain rule, we get

∇θj
Rα,N (θ) = −2α

N
Êx[(f(x)− f̂α,N (x;θ))∇θσ⋆(x;θj)].

We consider the gradient flow ODE with time reparameterization given by N/(2α2),

dθt
j

dt
= − N

2α2
∇θj

Rα,N (θt) =
1

α
Ex[(f(x)− f̂α,N (x;θt))∇θσ⋆(x;θ

t
j)].

The time derivative of f̂α,N (z;θt) can be calculated using the chain rule. We have

∂tf̂α,N (z;θt) =
α

N

N∑

j=1

〈∇θσ⋆(z;θ
t
j),

dθt
j

dt
〉

=Ex

[( 1

N

N∑

j=1

〈∇θσ⋆(x;θ
t
j),∇θσ⋆(z;θ

t
j)〉

)(

f(x)− f̂α,N (x;θt)
)]

.

Define the kernel function H(x, z;θ) with weights θ ∈ R
D×N to be

H(x, z;θ) =
1

N

N∑

j=1

〈∇θσ⋆(x;θj),∇θσ⋆(z;θj)〉,

then we have

∂tf̂α,N (z;θt) =Ex

[(

f(x)− f̂α,N (x;θt)
)

H(x, z;θt)
]

.

Taking the residue function to be uα,Nt (z) = f(z)− f̂α,N (z;θt), we have

∂tu
α,N
t (z) =− Ex[H(x, z;θt)uα,Nt (x)], (75)

with initialization uα,N0 (z) = f(z)− fα,N (z;θ0) and θ0
i ∼ ρ0 independently. We call Eq. (75) the

residual dynamics. The residual dynamics is not a self-contained equation and depends on θt.
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H.3. The distributional dynamics in the pre-limit

Define

ρα,Nt (dθ) =
1

N

N∑

j=1

δθt
j
.

Define the prediction function with distribution ρ and scaled parameter α to be

f̂α(x; ρ) = α

∫

σ⋆(x;θ)ρ(dθ).

Consider again the gradient flow dynamics

dθt
j

dt
=

1

α
Ex[(f(x)− f̂α,N (x;θt))∇θσ⋆(x;θj)] = − 1

α
∇θΨα(θ

t
j ; ρ

α,N
t ).

where we defined

Ψα(θ; ρ) = −Ex[(f(x)− f̂α(x; ρ))σ⋆(x;θ)].

Then we have
∂tρ

α,N
t =(1/α)∇θ · (ρα,Nt [∇θΨ(θ; ρα,Nt )]),

ρα,N0 =
1

N

N∑

j=1

δθ0

i
,

(76)

with θ0
i ∼ ρ0 independently. We call dynamics (76) the distributional dynamics. The distributional

dynamics is equivalent to the gradient flow.

H.4. The coupled dynamics

Writing the distributional dynamics and residual dynamics together (in the pre-limit), we have

∂tρ
α,N
t =(1/α)∇θ · (ρα,Nt [∇θΨα(θ; ρ

α,N
t )]),

∂tu
α,N
t (z) =− Ex[u

α,N
t (x)H

ρα,N
t

(x, z)],

where

Hρ(x, z) ≡
∫

〈∇θσ⋆(x;θ),∇θσ⋆(z;θ)〉ρ(dθ),

Ψα(θ; ρ
α,N ) =− Ex[(f(x)− f̂α(x; ρ

α,N ))σ⋆(x;θ)] = −Ex[u
α,N
t (x)σ⋆(x;θ)],

with initialization conditions given by ρN0 = (1/N)
∑N

i=1 δθ0

i
, uN (0,x) = f(x) − f̂α,N (x;θ0),

and (θ0
i )i≤N ∼i.i.d. ρ0.

Note these coupled dynamics are random, where the randomness comes from the random ini-

tialization (θ0
i )i≤N ∼i.i.d. ρ0.
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H.5. The mean field limit

In the mean field limit, we fix α and take N → ∞. Under some conditions, it can be shown that

there exists (ρt)t≥0 satisfying the mean field distributional dynamics

∂tρ
α
t =(1/α)∇ · (ραt [∇θΨα(θ; ρ

α
t )]), (77)

with initialization condition ρα0 = ρ0. Moreover, we have almost surely (over θ0
i ∼ ρ0 indepen-

dently)

lim
N→∞

W2(ρ
α,N
t , ραt ) → 0.

The mean field distributional dynamics was proposed and studied in Mei et al. (2018); Sirignano and

Spiliopoulos (2018); Rotskoff and Vanden-Eijnden (2018); Chizat and Bach (2018a) under various

conditions.

Now define the mean field residual function uαt (z) to be

uαt (z) ≡ f(z)− f̂α(z; ρ
α
t ).

For any fixed z, we have almost surely

lim
N→∞

uα,Nt (z) = uαt (z).

Under some regularity conditions, it is not hard to show that this mean field residual function satis-

fies mean field residual dynamics

∂tu
α
t (z) = −Ex[u

α
t (x)Hραt

(x, z)].

The mean field residual dynamics is not a self-contained equation. It depends on the distribution

through the kernel Hραt
. The mean field residual dynamics was first explicitly given in (Rotskoff

and Vanden-Eijnden, 2018, Proposition 2.5).

H.6. The kernel limit

Theorem 8 shows that, as α becomes large, for any fixed t, we have

lim
α→∞

W2(ρ
α
t , ρ0) = 0,

and hence

lim
α→∞

‖Hραt
−Hρ0‖op = 0.

In this limit, the mean field residual dynamics converges to the linearized residual dynamics,

∂tu
∗
t (z) = −Ex[u

∗
t (x)Hρ0(x, z)]. (78)

The linearized residual dynamics is exactly the same as the continuous time kernel boosting dynam-

ics with kernel Hρ0 , whose solution can be written down explicitly

u∗t = e−Hρ0
tu∗0. (79)
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When the kernel is strictly positive definite, one can show that the L2-norm of the residual function

converges to 0 as time goes to infinity.

The kernel limit is studied in Jacot et al. (2018); Geiger et al. (2019) in the joint limit α =
N1/2 → ∞, and in a multi-layer neural network settings. The specific limit considered here (N →
∞ followed by α → ∞) is discussed in Chizat and Bach (2018b).

An interesting line of research Li and Liang (2018); Du et al. (2018b,a); Allen-Zhu et al. (2018)

also studies the kernel limit, but focusing on dynamics on empirical risk. Note that all the equations

discussed above also holds for Px = (1/n)
∑n

k=1 δxk
. The benefit of working with the empirical

risk is that, under mild assumptions, the kernel matrix {Hρ0(xi,xj)}i,j∈[n] is strictly positive defi-

nite with least eigenvalue λmin > 0. As a result, it is possible to upper bound the convergence time

of the empirical risk to 0 using Eq. (78). Hence, it is possible to choose the number of neurons large

enough that the residual dynamics (75) is well approximated by the linearized residual dynamics

(78) along the whole trajectory.

H.7. Kernel limit as kernel ridge regression

Consider the case when Px = (1/n)
∑n

k=1 δxk
is the empirical data distribution. We make an

additional assumption on the initialization weight distribution ρ0:

(I) The initialization distribution (a,w) ∼ ρ0 verifies: a is independent of w and E(a) = 0. In

other words, ρ0 = ρa0 × ρw0 with
∫
aρa0(da) = 0.

Under this assumption, we have f̂α(z; ρ
α
t ) ≡ 0 for any z ∈ R

d, so that uα0 (xk) = f(xk) for k ∈ [n].
Denote

uα
t =[uαt (x1), . . . , u

α
t (xn)]

T,

u∗
t =[u∗t (x1), . . . , u

∗
t (xn)]

T,

y =[f(x1), . . . , f(xn)]
T.

Further we denote the data kernel matrix H ∈ R
n×n with Hij = Hρ0(xi,xj). Then Eq. (17) can

be rewritten as

u∗
t = e−Ht/nu∗

0 = e−Ht/ny.

Note Theorem 8 holds also in the case when Px is an empirical data distribution. Hence we have

lim
α→∞

sup
t∈[0,T ]

1√
n
‖uα

t − u∗
t ‖2 = lim

α→∞
sup

t∈[0,T ]
‖uαt − u∗t ‖L2 = 0.

The following proposition considers the scaling limit (kernel limit) of the prediction function at

time t,

f̂α(z; ρ
α
t ) = α

∫

σ⋆(x;θ)ρ
α
t (dθ),

where ραt is the solution of the rescaled distributional dynamics (Rescaled-DD).

This fact already appears (implicitly or explicitly) in several of the papers mentioned above. We

state and prove it here for the sake of completeness.

Proposition 57 Assume conditions A1 - A4 hold, and Px = (1/n)
∑n

k=1 δxk
to be the empirical

data distribution. Additionally assume the finite data kernel matrix H ∈ R
n×n is invertible, and ρ0

verifies property (I). Then for any fixed z ∈ R
d, we have

lim
t→∞

lim
α→∞

f̂α(z; ρ
α
t ) = h(z)TH−1y,
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where

h(z) =[Hρ0(z,x1), . . . ,Hρ0(z,xn)]
T.

Remark 58 Given a data set {(xi, yi)}i∈[n], kernel ridge regression is a function estimator f̂λ that

solves the following minimization problem

min
f

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖Hρ0

.

The norm ‖f‖Hρ0
is the reproducible kernel Hilbert space (RKHS) norm of function f , where the

RKHS is associated to the kernel Hρ0 . The solution of the minimization problem above gives

f̂λ(z) = h(z)T(H + λI)−1y.

Proposition 57 shows that, the mean field prediction function in the kernel limit is performing a

kernel ridge regression with regularization parameter λ = 0.

Proof [Proof of Proposition 57] Recall that

uα
t =[uαt (x1), . . . , u

α
t (xn)]

T,

u∗
t =[u∗t (x1), . . . , u

∗
t (xn)]

T,

y =[f(x1), . . . , f(xn)]
T.

The data kernel matrix H ∈ R
n×n is given by Hin = Hρ0(xi,xj). By Eq. (17) and the assumption

on ρ0, we have

u∗
t = e−Ht/nu∗

0 = e−Ht/ny.

For any fixed z ∈ R
d, denote

hα
t (z) =[Hραt

(z,x1), . . . ,Hραt
(z,xn)]

T,

h(z) =[Hρ0(z,x1), . . . ,Hρ0(z,xn)]
T.

Using chain rule, the time derivative of the prediction function f̂α(z; ρ
α
t ) = α

∫
σ⋆(x;θ)ρ

α
t (dθ)

gives

∂tf̂α(z; ρ
α
t ) =α∂t

∫

σ⋆(z;θ)ρ
α
t (dθ) =

∫

〈∇θσ⋆(z;θ),∇θΨα(θ; ρ
α
t )〉ραt (dθ)

=Ex

[

uαt (x)

∫

〈∇θσ⋆(z;θ),∇θσ⋆(x;θ)〉ραt (dθ)
]

= hα
t (z)u

α
t /n.

(80)

By the same argument as Step 2 of Theorem 8, we have

sup
t∈[0,T ]

‖h(z)− hα
t (z)‖2 = O(1/α). (81)

By Theorem 8, we have

sup
t∈[0,T ]

‖uα
t − u∗

t ‖2 = sup
t∈[0,T ]

‖uαt − u∗t ‖L2 = O(1/α). (82)
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Now, we denote f̂t(z) be the solution of the following linearized prediction dynamics,

∂tf̂t(z) =h(z)Tu∗
t /n,

f̂0(z) =0.
(83)

By Eq (80), (81), (82) and (83), we have

sup
t∈[0,T ]

|∂tf̂t(z)− ∂tf̂α(z; ρ
α
t )| = O(1/α),

together with f̂0(z) = f̂α(z; ρ
α
0 ) = 0 we get

f̂t(z) = lim
α→∞

f̂α(z; ρ
α
t ).

Note the solution of Eq. (83) gives

f̂t(z) =n−1

∫ t

0
h(z)Tu∗

sds = n−1

∫ t

0
h(z)Te−Hs/nyds = h(z)TH−1(I − e−Ht/n)y,

so that

f̂∞(z) = lim
t→∞

f̂t(z) = lim
t→∞

h(z)TH−1(I − e−Ht/n)y = h(z)TH−1y.

This proves the proposition.

Appendix I. Technical lemmas

Lemma 59 Let Xi ∈ R
D with {Xi}i∈[N ] to be i.i.d. random variables, with ‖Xi‖2 ≤ K and

E[Xi] = 0. Then we have (the constant K in the result is up to some universal constant)

P

(∥
∥
∥
1

N

N∑

i=1

Xi

∥
∥
∥
2
≥ K(

√

1/N + δ)
)

≤ e−Nδ2 .

Proof

Denote f(X1, . . . ,XN ) = ‖(1/N)
∑N

i=1Xi‖2. Then we have

|E[f(X1, . . . ,XN )]| ≤E[f(X1, . . . ,XN )2]1/2 = E

[〈 1

N

N∑

i=1

Xi,
1

N

N∑

j=1

Xj

〉]1/2

=
{ 1

N2

N∑

i=1

E[‖Xi‖22]
}1/2

≤ K

√

1

N
.

Note by triangle inequality, we have

|f(X1, . . . ,Xi, . . . ,XN )− f(X1, . . . ,X
′
i, . . . ,XN )| ≤ 1

N
‖Xi −X ′

i‖2 ≤
2K

N
.

By McDiarmid’s inequality, we have

P

(

|f(X1, . . . ,XN )− E[f(X1, . . . ,XN )]| ≥ δ
)

≤ exp{−Nδ2/K},

which gives the desired result.
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Lemma 60 (Azuma-Hoeffding bound) Let (Xk)k≥0 be a martingale taking values in R
D with

respect to the filtration (Fk)k≥0, with X0 = 0. Assume that the following holds almost surely for

all k ≥ 1:

E{e〈λ,Xk−Xk−1〉|Fk−1} ≤ eL
2‖λ‖2

2
/2

Then we have

P

(

max
k≤n

‖Xk‖2 ≥ 2L
√
n
[√

D + δ
] )

≤ e−δ2 .

Proof This lemma is proven in (Mei et al., 2018, Section A, Lemma A.1).
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