
Séminaire Lotharingien de Combinatoire 85B (2021) Proceedings of the 33
rd

Conference on Formal Power

Article #27, 12 pp. Series and Algebraic Combinatorics (Ramat Gan)

Mixing time for Markov chain on linear extensions

John Rhodes1 and Anne Schilling*2

1
Department of Mathematics, University of California, Berkeley, CA 94720, U.S.A.

2
Department of Mathematics, UC Davis, One Shields Ave., Davis, CA 95616-8633, U.S.A.

Abstract. We provide a general framework for computing mixing times of finite
Markov chains when its minimal ideal is left zero. Our analysis is based on combining
results by Brown and Diaconis with our previous work on stationary distributions of
finite Markov chains. We introduce a new Markov chain on linear extensions of a poset
with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and
the last author, and show that it has a mixing time O(n log n).
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1 Introduction

A Markov chain is a model that describes transitions between states in a state space
according to certain probabilistic rules. The defining characteristic of a Markov chain is
that the transition from one state to another only depends on the current state and the
elapsed time, but not how the system arrived there. In other words, a Markov chain is
“memoryless”. Markov chains have an abundance of applications, from data analysis,
population dynamics to traffic models.

For a Markov chain, the stationary distribution Y is the long-term limiting distribution.
Mathematically speaking, it is the eigenvector of the transition matrix T of the Markov
chain with eigenvalue one. That is TY = Y. An important question is how quickly
does the Markov chain converge to the stationary distribution. In Markov chain theory,
distance is usually the total variation distance. If W is the state space, the total variation
distance between two probability distributions n and µ is defined as

kn � µk = max
A✓W

|n(A)� µ(A)|.

For a given small e > 0, the mixing time tmix is the smallest t such that

kT
tn � Yk 6 e,

independent of the initial distribution n.
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In seminal work of Bidigare, Hanlon and Rockmore [5], which was continued by
Diaconis, Brown, Athanasiadis, Björner, Chung and Graham, amongst others [11, 6, 10,
7, 8, 1, 14, 30], the special family of semigroups, now known as left regular bands first
studied by Schützenberger [31] in the 1940s, was applied to random walks or Markov
chains on hyperplane arrangements. In his 1998 ICM lecture [15], Diaconis discussed
these developments. In Section 4.1, entitled What is the ultimate generalization?, he asks
how far the semigroup techniques can be taken.

Every finite state Markov chain M has a random letter representation, that is, a rep-
resentation of a semigroup S acting on the left on the state space W. See for example [22,
Proposition 1.5] and [3, Theorem 2.3]. In this setting, there is a transition s

a�! s
0 with

probability 0 6 xa 6 1, where s, s
0 2 W, a 2 S and s

0 = a.s is the action of a on the state s.
It is enough to consider the semigroup S generated by the elements a 2 A with xa > 0.

In the pursuit of finding Diaconis’ ultimate generalization [15], the arguments in
Brown and Diaconis [11] were generalized to Markov chains for R-trivial semigroups [3].
In [25, 26], the current authors developed a general theory for computing the stationary
distribution for any finite Markov chain. The theory uses semigroup methods such as
the Karnofsky–Rhodes and McCammond expansion of a semigroup. These expansions
give rise to loop graphs which immediately yield Kleene expressions for all paths from
the root of the graph to elements in the minimal ideal of the semigroup. The Kleene
expressions in turn give rational expressions for the stationary distribution.

In this paper we apply the findings of [25, 26] to study bounds on the mixing time
of the Markov chain. In particular, Theorems 2.4 and 2.5 provide upper bounds for the
mixing time directly from the rational expression of the stationary distribution in the
case when the minimal ideal of the semigroup is left zero. In Section 3 we consider
specific examples such as the Tsetlin library [13] and a new Markov chain on linear
extensions of a finite poset with n vertices, which is a variant of the promotion Markov
chain introduced in [2]. The new Markov chain on linear extensions has a mixing time
of O(n log n) as compared to the mixing time of the model of Bubley and Dyer [12] with
mixing time O(n3 log n).

A long version of this paper has appeared in [27].

2 Mixing time

Let T be the transition matrix of a finite Markov chain. Assuming that the Markov chain is
ergodic (meaning that it is irreducible and aperiodic), by the Perron–Frobenius Theorem
there exists a unique stationary distribution Y and T

tn converges to Y as t ! • for any
initial state n. A Markov chain is irreducible if the graph of the Markov chain is strongly
connected. It is aperiodic if the gcd of the cycle lengths in the graph of the Markov chain
is one.
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2.1 Upper bound

Brown and Diaconis [11] [10, Theorem 0] showed, for Markov chains associated to left
regular bands, that the total variational distance from stationarity after t steps is bounded
above by the probability Pr(t > t), where t is the first time that the walk hits a certain
ideal. The arguments in Brown and Diaconis [11] can be generalized to arbitrary finite
Markov chains (not just those related to left regular bands). To state the details, we need
some more notation. Let M(S, A) be a finite state Markov chain with state space W and
transition matrix T associated to the semigroup S with generators A with probabilities
0 < xa 6 1 for a 2 A.

A two-sided ideal I (or ideal for short) is a subset I ✓ S such that uIv ✓ I for all
u, v 2 S , where S is the semigroup S with identity added (even if S already contains
an identity). If I, J are ideals of S, then I J ✓ I \ J, so that I \ J 6= ∆. Hence every finite
semigroup has a unique nonempty minimal ideal denoted K(S).

Assume that the minimal ideal K(S) is left zero, that is, xy = x for all x, y 2 K(S).
This assumption implies that the Markov chain on the minimal ideal (given by the left
action) is ergodic. Let t be the random variable which is the time that the random walk
is absorbed into the minimal ideal K(S).

Theorem 2.1 ([3]). Let S be a finite semigroup whose minimal ideal K(S) is a left zero semigroup

and let T be the transition matrix of the associated Markov chain. Then kT
tn�Yk 6 Pr(t > t).

2.2 Ideals and semaphore codes

Let A be a finite alphabet, A
+ the set of all nonempty words in the alphabet A, and A

?

the set of all words in the alphabet A. As shown in [28], ideals in A
+ are in bijection

with semaphore codes [4]. A prefix code is a subset of A
+ such that all elements are

incomparable in prefix order (meaning that no element is the prefix of any other element
of the code). A semaphore code S is a prefix code such that AS ✓ SA

?. There is a natural
left action on a semaphore code. If u 2 S ✓ A

+ and a 2 A, then au has a prefix in
S (and hence a unique prefix of au). The left action a.u is the prefix of au that is in S .
Assigning probability 0 6 xa 6 1 to a 2 A, the left action on a semaphore code S defines
a Markov chain with a countable state space S .

The bijection between ideals I ✓ A
+ and semaphore codes S over A is given as

follows (see [28, Proposition 4.3]). If u = a1a2 . . . aj 2 I ✓ A
+, find the (necessarily

unique) index 1 6 i 6 j such that a1 . . . ai�1 62 I, but a1 . . . ai 2 I. Then a1 . . . ai is a code
word and the set of all such words forms the semaphore code S . Conversely, given a
semaphore code S , the corresponding ideal is SA

?.
In this setting, t can be interpreted as the random variable given by the length of the

semaphore code words. Let S be a semaphore code and I the ideal under the bijection
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described above. A semaphore code word s = s1s2 . . . s` has the property that s 2 I, but
s1 . . . s`�1 62 I. Hence t can be interpreted as the random variable given by the length `.

2.3 Rational expressions for stationary distributions

Let M(S, A) be the Markov chain associated to the finite semigroup S with generators
in A. Assume that its minimal ideal K(S) is left zero, so that K(S) can be taken as the
state space W of the Markov chain. Denote by S(S, A) the semaphore code associated to
K(S) (see Section 2.2). For a word s 2 A

+, we denote by [s]S the image of the word in
the alphabet A in S. The following theorem is stated in [26, Corollaries 2.23 & 2.28].

Theorem 2.2 ([26]). If K(S) is left zero, the stationary distribution of the Markov chain M(S, A)
labeled by w 2 K(S) is given by

Yw(x1, . . . , xn) = Â
s2S(S,A)

[s]S=w

’
a2s

xa. (2.1)

In [25, 26], we developed a strategy using loop graphs to compute the expressions
in Theorem 2.2 as rational functions in the probabilities xa for a 2 A. This is done in
several steps:

1. We used the McCammond and Karnofsky–Rhodes expansion Mc � KR(S, A) of the
right Cayley graph RCay(S, A) of the semigroup S with generators A. In this paper
we do not require the details of these definitions, except that the right Cayley graph
as well as its expansions are rooted graphs with root . The Karnofsky–Rhodes ex-
pansion is another right Cayley graph, whereas the McCammond expansion is only
an automata. For the precise definition of the Karnofsky–Rhodes expansion, we re-
fer the reader to [24, Definition 4.15], [23, Section 3.4], [25, Section 2.4], and [29,
Section 2]. For the definition of the McCammond expansion, we refer the reader
to [24, Section 2.7] and [25, Section 2.5]. The Markov chain M(S, A) is a lump-

ing [22] of the Markov chains associated to the expansions.

2. The stationary distributions of the Markov chains associated to the expansions can
be expressed using loop graphs G, see [25]. A loop graph is a straight line path from

to an endpoint s with directed loops of any finite length attached recursively to
any vertex (besides and s). In this way [25, Theorem 1.4]

Yw(x1, . . . , xn) = Â
G

YG(x1, . . . , xn), (2.2)

where the sum is over certain loop graphs G with end point s such that [s]S = w.
Here [25, Definition 1.3]

YG(x1, . . . , xn) = Â
p

’
a2p

xa, (2.3)
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where the sum is over all path p in G starting at and ending in s.

3. There is a Kleene expression for the set of all paths from to s in G. The Kleene
expression immediately yields a rational expression for the stationary distribution
YG(x1, . . . , xn) and hence Yw(x1, . . . , xn) by (2.2).

Remark 2.3. An important property of the above construction is that in the series expan-
sion of the rational expression for Yw(x1, . . . , xn) (resp. YG(x1, . . . , xn)) the total degree
of each term corresponds to the length of the underlying semaphore code word in (2.1)
(resp. the underlying path in G in (2.3)).

2.4 Mixing time via truncation of Kleene expressions

As stated in Theorem 2.1, Pr(t > t) provides an upper bound on the mixing time in
the setting that K(S) is left zero. As discussed in Section 2.2, t can be interpreted as
the random variable given by the length of the semaphore code words or paths in the
loop graph. To compute Pr(t > t), one needs to compute the sum of probabilities of all
paths of length weakly greater than t. By Remark 2.3, the length of the paths is given
by the total degree in the probability variables x1, . . . , xn for the generators a1, . . . , an of
the semigroup S. Hence we obtain Pr(t > t) by truncating the rational function for the
stationary distribution to total degree weakly bigger than t.

Let Y>t
w (x1, . . . , xn) be the truncation of the formal power series associated to the

rational function Yw(x1, . . . , xn) to terms of degree weakly bigger than t In addition, let
Y<t

w (x1, . . . , xn) be the truncation of the formal power series associated to the rational
function Yw(x1, . . . , xn) to terms of degree strictly smaller than t. Note that

Yw(x1, . . . , xn) = Y<t
w (x1, . . . , xn) + Y>t

w (x1, . . . , xn).

Theorem 2.4 ([27]). Suppose the Markov chain satisfies the conditions of Theorem 2.1. If

Yw(x1, . . . , xn) is represented by a rational function such that each term of degree ` in its formal

power sum expansion corresponds to a semaphore code word s of length ` with [s]S = w, we have

Prw(t > t) =
Y>t

w (x1, . . . , xn)
Yw(x1, . . . , xn)

= 1 � Y<t
w (x1, . . . , xn)

Yw(x1, . . . , xn)
.

For each w 2 K(S), we can also give an explicit formula for the expected number
of steps Ew[t] it takes to reach the endpoint of w using the Cauchy–Euler operator. By
Markov’s inequality [22] Pr(t > t) 6 E[t]

t+1 , this also yields a bound on the mixing time.

Theorem 2.5 ([27]). With the same assumptions as in Theorem 2.4, we have

Ew[t] =

 
n

Â
i=1

xi

∂

∂xi

!
ln Yw(x1, . . . , xn).

Remark 2.6. Note that the formal expression for Yw(x1, . . . , xn) cannot be manipulated
using that x1 + · · ·+ xn = 1 when using Theorems 2.4 and 2.5.



6 J. Rhodes, A. Schilling

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

1 2 3

2
3
1 23

1

3
2 1

1 2 3

1, 2 1, 3 2, 3

1, 2, 3

Figure 1: The right Cayley graph RCay(S, A) with S = P(3) and A = {1, 2, 3}.

3 Markov chain on linear extensions

3.1 The Tsetlin library

The Tsetlin library [13] is a Markov chain whose states are all permutations Sn of n

books (on a shelf). Given p 2 Sn, construct p0 2 Sn from p by removing book a from
the shelf and inserting it to the front. In this case write p

a�! p0. Let 0 < xa 6 1 be
probabilities for each 1 6 a 6 n such that Ân

a=1 xa = 1. In the Tsetlin library Markov
chain, we transition p

a�! p0 with probability xa. The stationary distribution for the
Tsetlin library was derived by Hendricks [18, 17]

Yp =
n

’
i=1

xpi

1 � Âi�1
j=1 xpj

for all p 2 Sn. (3.1)

In [26, Section 3.1], the stationary distribution was derived using right Cayley graphs
and their Karnofsky–Rhodes and McCammond expansions.

Consider the semigroup P(n), which consists of the set of all non-empty subsets of
[n] := {1, 2, . . . , n}. Multiplication in P(n) is union of sets. We pick as generators [n].
Then the right Cayley graph RCay(P(n), [n]) is the Boolean poset with as root. The
right Cayley graph for P(3) is depicted in Figure 1. Except for the loops at a given
vertex, all edges are transitional. Hence Mc �KR(P(n), [n]) = KR(P(n), [n]) is a tree with
leaves given by the permutations Sn of [n]. The case n = 3 is depicted in Figure 2.

To obtain a bound on the mixing time, we compute E[t] from the Karnofsky–Rhodes
expansion of the right Cayley graph. The ideal consists of the leaves of KR(P(n), [n]),
which are labeled by permutations in Sn. The Kleene expression for all paths from

to 12 . . . n is given by 11?2{1, 2}?3{1, 2, 3}? . . . {1, 2, . . . , n � 1}?n. Hence we obtain
(compare with (3.1))

Y12...n(x1, . . . , xn) =
x1 · · · xn

(1 � x1)(1 � x1 � x2) · · · (1 � x1 � · · ·� xn�1)
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1 2 3

12 13 21 23 31 32

123 132 213 231 312 321

1 2 3

2 3 1 3 1 3
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1 2 3

1, 2 1, 3 1, 2 2, 3 1, 3 2, 3

1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

Figure 2: The Karnofsky–Rhodes expansion of the right Cayley graph of Figure 1.

and by Theorem 2.5

E12...n[t] = n +
x1

1 � x1
+

x1 + x2
1 � x1 � x2

+ · · ·+ x1 + · · ·+ xn�1
1 � x1 � · · ·� xn�1

. (3.2)

If xi =
1
n

for all 1 6 i 6 n, we hence have

EG[t] = n +
1

n � 1
+

2
n � 2

+ · · ·+ n � 1
1

= n

 
n

Â
i=1

1
i

!
. (3.3)

The last equality can be proved by induction on n. It is well-known that the sequence
tn = Ân

i=1
1
i
� ln(n) approaches the Euler–Mascheroni constant g as n ! •. Therefore

E[t] = EG[t] 6 n ln(n) + ng and by Markov’s inequality kT
tn � pk 6 n ln(n)+ng

t+1 .

3.2 Markov chain on linear extensions

Let P be a partially ordered set, also known as a poset, on n elements with partial order 4.
A partial order must be reflexive (a 4 a for all a 2 P), antisymmetric (a 4 b and b 4 a

implies a = b for a, b 2 P), and transitive (a 4 b and b 4 c implies a 4 c for a, b, c 2 P).
We assume that the elements of P are labeled by integers in [n] := {1, 2, . . . , n} such that
if i, j 2 P with i 4 j then i 6 j as integers. Let L := L(P) be the set of linear extensions of
P defined as L(P) = {p 2 Sn | i � j in P =) p�1

i
< p�1

j
as integers}.

In computer science, linear extensions are also known as topological sortings [20, 21].
Computing the number of linear extensions is an important problem for real world
applications [19]. For example, it relates to sorting algorithms. Suppose one wants to
schedule a sequence of tasks based on their dependencies. Specifying that a certain task
has to come before another task gives rise to a partial order. A linear extension gives a
total order in which to perform the jobs. A recursive formula for the number of linear
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extensions for a given poset P was given in [16]. Brightwell and Winkler [9] showed that
counting the number of linear extensions is #P-complete. Bubley and Dyer [12] provided
an algorithm to (almost) uniformly sample the set of linear extensions of a finite poset of
size n with mixing time O(n3 log n). In [2], the promotion Markov chain was introduced,
which is a random walk on the linear extensions of a finite poset P. Here we discuss a
new Markov chain on linear extensions which has mixing time of order O(n log n).

Denote by W(P) the set of subwords of linear extensions in L(P) and set A = [n].
We define a semigroup on W(P) as follows. Let w 2 W(P) and a 2 A. Then define

wa =

(
w if a 2 w,
straight(wa) if a 62 w.

(3.4)

Here straight(wa) is defined as follows. If wa is a subword of a linear extension of P,
then straight(wa) = wa. If not, write w = w1 . . . wk and find the largest 1 6 j1 6 k such
that a � wj1 in P. Interchange wj1 and a. Repeat by finding the largest 1 6 j2 < j1 such
that a � wj2 . Interchange wj2 and a. Repeat until no further element bigger than a exists
to the left. The result is straight(wa).

Example 3.1. Let P be the poset on four vertices with cover relations {(1, 4), (2, 4), (2, 3)}.
Then its Hasse diagram is the following:

r r
1 2

r r4 3
@
@
@

This poset has five linear extensions L(P) = {1234, 1243, 2134, 2143, 2314}. Take w =
234 2 W(P) and a = 1. We have 1 � 4, so j1 = 3. Both 2 and 3 are incomparable to 1, so
we find straight(wa) = 2314 2 L(P).

Lemma 3.2 ([27]). Let a 2 A and w 2 W(P) such that a 62 w. Then straight(wa) 2 W(P).

Proposition 3.3 ([27]). The set W(P) together with the product as in (3.4) forms a semigroup.

Define (W(P), A) to be the semigroup with product (3.4) and generators A = [n].

Theorem 3.4 ([27]). The semigroup (W(P), A) is R-trivial.

Example 3.5. The right Cayley graph of (W(P), A) for the poset of Example 3.1 is given
in Figure 3.

The minimal ideal of (W(P), A) is the set of linear extensions L(P) of the poset P.
Let M(W(P), A) be the Markov chain on L(P) induced by the semigroup (W(P), A).
More precisely, we transition from p 2 L(P) to ap 2 L(P) with probability xa.
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1
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4 3 2 1 4 3 2 1 4 3 2 14 3 2 1 4 3 2 1

Figure 3: The right Cayley graph of (W(P), A) for the poset of Example 3.1.

Proposition 3.6 ([27]). M(W(P), A) is ergodic.

The stationary distribution for M(W(P), A) is given by

Yp = Â
s2Sn

[s]W(P)=p

 
n

’
i=1

xsi

1 � Âi�1
j=1 xsj

!
for all p 2 L(P).

Theorem 3.7 ([27]). The expected value E[t] for M(W(P), A) is bounded above by n ln(n) +
ng.

Remark 3.8. Note that the Markov chain M(W(P), A) is not identical to the promotion
Markov chain in [2]. For example, left multiplication by 4 on 2143 in (W(P), {1, 2, 3, 4})
for the poset in Example 3.1 yields 2143, whereas in the promotion Markov chain 2143
goes to 1243 under the promotion operator ∂4 (see [2]). The full transition diagram for
the new Markov chain is given in Figure 4.

Theorem 3.7 shows that the mixing time for M(W(P), [n]) is of order O(n log n).
This does not take the computational complexity of computing the product (3.4) into
account. For a word of length k, this involves up to k swaps.
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Figure 4: The Markov chain M(W(P), [4]) for the poset of Example 3.1

References
[1] C. A. Athanasiadis and P. Diaconis. “Functions of random walks on hyperplane arrange-

ments”. Adv. in Appl. Math. 45.3 (2010), pp. 410–437. doi.

[2] A. Ayyer, S. Klee, and A. Schilling. “Combinatorial Markov chains on linear extensions”.
J. Algebraic Combin. 39.4 (2014), pp. 853–881. doi.

[3] A. Ayyer, A. Schilling, B. Steinberg, and N. M. Thiéry. “Markov chains, R-trivial monoids
and representation theory”. Internat. J. Algebra Comput. 25.1-2 (2015), pp. 169–231. doi.

[4] J. Berstel, D. Perrin, and C. Reutenauer. Codes and automata. Vol. 129. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, 2010, pp. xiv+619.

[5] P. Bidigare, P. Hanlon, and D. Rockmore. “A combinatorial description of the spectrum for
the Tsetlin library and its generalization to hyperplane arrangements”. Duke Math. J. 99.1
(1999), pp. 135–174. doi.

[6] L. J. Billera, K. S. Brown, and P. Diaconis. “Random walks and plane arrangements in three
dimensions”. Amer. Math. Monthly 106.6 (1999), pp. 502–524. doi.

[7] A. Björner. “Random walks, arrangements, cell complexes, greedoids, and self-organizing
libraries”. Building bridges. Vol. 19. Bolyai Soc. Math. Stud. Springer, Berlin, 2008, pp. 165–
203. doi.

[8] A. Björner. “Note: Random-to-front shuffles on trees”. Electron. Commun. Probab. 14 (2009),
pp. 36–41. doi.



Mixing time 11

[9] G. Brightwell and P. Winkler. “Counting linear extensions”. Order 8.3 (1991), pp. 225–242.
doi.

[10] K. S. Brown. “Semigroups, rings, and Markov chains”. J. Theoret. Probab. 13.3 (2000),
pp. 871–938. doi.

[11] K. S. Brown and P. Diaconis. “Random walks and hyperplane arrangements”. Ann. Probab.

26.4 (1998), pp. 1813–1854. doi.

[12] R. Bubley and M. Dyer. “Faster random generation of linear extensions”. Discrete Math.

201.1-3 (1999), pp. 81–88. doi.

[13] M. L. Cetlin. “Finite automata and the simulation of the simplest forms of behavior”.
Uspehi Mat. Nauk 18.4 (112) (1963), pp. 3–28.

[14] F. Chung and R. Graham. “Edge flipping in graphs”. Adv. in Appl. Math. 48.1 (2012),
pp. 37–63. doi.

[15] P. Diaconis. “From shuffling cards to walking around the building: an introduction to
modern Markov chain theory”. Proceedings of the International Congress of Mathematicians,

Vol. I (Berlin, 1998). Extra Vol. I. 1998, pp. 187–204.

[16] P. Edelman, T. Hibi, and R. P. Stanley. “A recurrence for linear extensions”. Order 6.1
(1989), pp. 15–18. doi.

[17] W. J. Hendricks. “The stationary distribution of an interesting Markov chain”. J. Appl.

Probability 9 (1972), pp. 231–233.

[18] W. J. Hendricks. “An extension of a theorem concerning an interesting Markov chain”. J.

Appl. Probability 10 (1973), pp. 886–890.

[19] A. Karzanov and L. Khachiyan. “On the conductance of order Markov chains”. Order 8.1
(1991), pp. 7–15. doi.

[20] D. E. Knuth. The art of computer programming. Vol. 1. Fundamental algorithms, Third edition
[of MR0286317]. Addison-Wesley, Reading, MA, 1997, pp. xx+650.

[21] D. E. Knuth. The art of computer programming. Vol. 3. Sorting and searching, Second edition
[of MR0445948]. Addison-Wesley, Reading, MA, 1998, pp. xiv+780.

[22] D. A. Levin and Y. Peres. Markov chains and mixing times. Second edition of [ MR2466937],
With contributions by Elizabeth L. Wilmer, With a chapter on “Coupling from the past”
by James G. Propp and David B. Wilson. American Mathematical Society, Providence, RI,
2017, pp. xvi+447.

[23] S. Margolis, F. Saliola, and B. Steinberg. “Combinatorial topology and the global dimension
of algebras arising in combinatorics”. J. Eur. Math. Soc. (JEMS) 17.12 (2015), pp. 3037–3080.
doi.

[24] J. McCammond, J. Rhodes, and B. Steinberg. “Geometric semigroup theory”. 2011. arXiv:
1104.2301.

[25] J. Rhodes and A. Schilling. “Normal distributions of finite Markov chains”. Internat. J.

Algebra Comput. 29.8 (2019), pp. 1431–1449. doi.



12 J. Rhodes, A. Schilling

[26] J. Rhodes and A. Schilling. “Unified theory for finite Markov chains”. Adv. Math. 347
(2019), pp. 739–779. doi.

[27] J. Rhodes and A. Schilling. “Bounds on mixing time of finite Markov chains”. 2020. arXiv:
2010.08879.

[28] J. Rhodes, A. Schilling, and P. V. Silva. “Random walks on semaphore codes and delay de
Bruijn semigroups”. Internat. J. Algebra Comput. 26.4 (2016), pp. 635–673. doi.

[29] J. Rhodes, A. Schilling, and P. V. Silva. “Holonomy theorem for finite semigroups”. 2020.
arXiv:2007.15552.

[30] F. Saliola. “Eigenvectors for a random walk on a left-regular band”. Adv. in Appl. Math.

48.2 (2012), pp. 306–311. doi.

[31] M.-P. Schützenberger. “Sur certains treillis gauches”. C. R. Acad. Sci. Paris 224 (1947),
pp. 776–778.


