
Noname manuscript No.
(will be inserted by the editor)

Estimation of smooth functionals of location
parameter in Gaussian and Poincaré random shift
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Abstract Let E be a separable Banach space and let f : E 7→ R be a smooth
functional. We discuss a problem of estimation of f(θ) based on an observation
X = θ+ξ, where θ ∈ E is an unknown parameter and ξ is a mean zero random
noise, or based on n i.i.d. observations from the same random shift model. We
develop estimators of f(θ) with sharp mean squared error rates depending
on the degree of smoothness of f for random shift models with distribution
of the noise ξ satisfying Poincaré type inequalities (in particular, for some
log-concave distributions). We show that for sufficiently smooth functionals
f these estimators are asymptotically normal with a parametric convergence
rate. This is done both in the case of known distribution of the noise and in
the case when the distribution of the noise is Gaussian with covariance being
an unknown nuisance parameter.

Keywords Smooth functionals · Efficiency · Random shift model · Poincaré
inequality · Normal approximation

1 Introduction

One of the important lines of work of C.R. Rao is related to the development
of concepts of optimality of statistical methods. As a student of R.A. Fisher
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and a creator of information lower bounds, he has made seminal contributions
to the theory of efficiency and asymptotic efficiency of statistical estimators.

The notion of asymptotic efficiency goes back to Fisher [8, 9], who con-
jectured that maximum likelihood estimators (MLE) of parameters of regular
statistical models would have the smallest limit variance among all the asymp-
totically normal estimators (“Fisher’s program”). A well-known counterexam-
ple by Hodges of superefficient estimators made apparent serious difficulties
with implementing Fisher’s program and led to the development by several
leading statisticians of the 20th century (R. R. Bahadur, J. Hàjek, L. Le Cam,
C.R. Rao, J. Wolfowitz) of contemporary view of asymptotic efficiency. In
particular, in order to overcome the difficulties with Fisher’s initial definition,
C.R. Rao in [29] came up with an important idea of uniformity (with respect
to the parameter) of convergence in distribution of properly normalized esti-
mators. A widely used concept of asymptotic efficiency as “local asymptotic
minimaxity” and the complete proof of asymptotic efficiency of MLE for reg-
ular statistical models are due to Hàjek and Le Cam ( [10,19,20]).

Let X1, . . . , Xn be i.i.d. random variables sampled from the distribution
with density pθ, θ ∈ Θ, Θ ⊂ Rd being an open subset, and let θ̂ = θ̂n be the
MLE. If f : Θ 7→ R is a continuously differentiable function and the model {pθ :
θ ∈ Θ} is “regular”, then the asymptotic normality of MLE easily implies that

the sequence of r.v.
√
n(f(θ̂n)−f(θ)) converges in distribution to N(0;σ2

f (θ)),

where σ2
f (θ) := 〈I(θ)−1f ′(θ), f ′(θ)〉 and I(θ) is the Fisher information matrix.

Moreover, Hàjek–Le Cam’s local asymptotic minimax lower bound

lim
c→∞

lim sup
n→∞

inf
Tn

sup
‖θ−θ0‖≤cn−1/2

nEθ(Tn − f(θ))2 ≥ σ2
f (θ0), θ0 ∈ Θ

with the infimum taken over all estimators Tn = Tn(X1, . . . , Xn) implies the
optimality of both the rate and the limit variance of the simple plug-in esti-
mator f(θ̂) of f(θ).

The same problem is considerably harder when the parameter of the model
is high-dimensional or infinite-dimensional (nonparametric models). In this
case, the naive plug-in estimator often fails partly due to its large bias and
more sophisticated estimators have to be designed to achieve optimal error
rates (in particular, to achieve

√
n-rate in the problems where the optimal rates

of estimation of the whole parameter θ are slower than
√
n). Such problems

have been studied by many authors since the seventies, most often, for specific
models and for special functionals. A very incomplete list of references includes
[2–4,6, 7, 11–13,16,23–28,30–32].

In this paper, we study the problem of estimation of smooth function-
als of location parameters in random noise models in Banach spaces. This
framework includes a number of high-dimensional models for vector, matrix
or functional data. Following [13–15, 17, 18, 27, 28], we study how the mean
squared error rates in these problems depend on the smoothness of the func-
tionals and determine how much smoothness is needed for efficient estimation.
More specifically, we extend the results of [17] from Gaussian shift models to
more general random shift models with noise having a distribution satisfying a
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Poincaré inequality (in particular, log-concave distribution). We do it both in
the case of known noise distribution and also in the case when the distribution
of the noise is Gaussian and the covariance is an unknown nuisance parameter.

2 Random shift models

Let E be a separable Banach space and let E∗ be its dual space. In what
follows, we often use the inner product notation 〈x, u〉 for the value of a linear
functional u ∈ E∗ on a vector x ∈ E. We will use a generic norm notation ‖ · ‖
for the norms of E,E∗ and other Banach spaces (providing it with subscripts
only when the space it is not clear from the context).

Let X = θ + ξ be a random variable in E with θ ∈ E being an unknown
location parameter and ξ being a random noise with E‖ξ‖ <∞,Eξ = 0. This
simple model will be called a random shift model. In particular, if ξ is a mean
zero Gaussian r.v. in E, it is called a Gaussian shift model.

Given a smooth functional f : E 7→ R, the goal is to estimate f(θ) based
on an observation of X. The main difficulty in this problem is that a trivial
plug-in estimator f(X) could have a large bias (at least, when the norm of the
noise is sufficiently large). We will try to overcome this difficulty by replacing
f with another functional g : E 7→ R, such that the bias of estimator g(X)
is small. To this end, define an operator (acting on uniformly bounded Borel
functions g : E 7→ R)

(T g)(θ) := Eθg(X) = Eg(θ + ξ), θ ∈ E

and let B := T − I. Note that the plug-in estimator f(X) has bias

Eθf(X)− f(θ) = (Bf)(θ), θ ∈ E.

We can estimate this bias with a plug-in estimator (Bf)(X) and define an
estimator f1(X) with the first order bias correction as

f1(X) := f(X)− (Bf)(X).

This estimator has bias

Eθf1(X)− f(θ) = −(B2f)(θ), θ ∈ E.

This yields the second order bias correction:

f2(X) := f(X)− (Bf)(X) + (B2f)(X).

Iterating these bias corrections k times yields the estimator

fk(X) :=
k∑
j=0

(−1)j(Bjf)(X),
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whose bias is equal to

Eθfk(X)− f(θ) = (−1)k(Bk+1f)(θ), θ ∈ E.

In other words, to find an estimator g(X) of f(θ) with a small bias, one has to
find an approximate solution of the equation T g = f. If T = I + B is a small
perturbation of the identity operator I, one can formally write

g = (I + B)−1 = I − B + B2 − . . .

Truncating this Neumann’s series yields the function

fk(θ) :=
k∑
j=0

(−1)j(Bjf)(θ), θ ∈ E

and the estimator fk(X).
Of course, it is assumed here that the distribution of the noise ξ is known

and, hence, the functions Bjf, j = 1, . . . , k and fk are also known. As a result,
the estimator fk(X) is well defined. Later on, we will consider a different
version of the problem in which the distribution of the noise is an unknown
nuisance parameter and the function fk has to be replaced by its estimator
f̂k. It will be said in what follows that the functions fk defined above are
associated with the model X = θ + ξ.

Before discussing the results of the paper, we will provide a couple of exam-
ples (already considered in [17]) that illustrate the bias reduction method in
the case of two classes of functionals, polynomials and trigonometric polyno-
mials (although, the analysis of bias reduction problem in Section 3 is based on
different ideas and does not rely on approximation by polynomials or trigono-
metric polynomials).

Example 1 Consider the case of E = R and ξ ∼ N (0, σ2). Let f(θ) = θ2. It
is easy to see that (T f)(θ) = θ2 + σ2, (Bf)(θ) = σ2 and (B2f)(θ) = 0 for
all θ ∈ R. In this case, we have f1(θ) = θ2 − σ2 and f1(X) is an unbiased
estimator of f(θ). More generally, if f(θ) = θm for some m ≥ 1, it is well
known that the unbiased estimator of f(θ) is σmHm(Xσ ), where Hj , j ≥ 0 are
Hermite polynomials (see, e.g., [13]). Moreover, this estimator coincides with
fk(X) for all k ≥ [m2 ]. If now E = Rd for d ≥ 1, ξ ∼ N (0, σ2Id) and

f(θ) :=
∑

k1,...,kd

ck1,...,kdθ
k1
1 . . . θkdd , θ = (θ1, . . . , θd) ∈ Rd

is a polynomial of degree m, then, for all k ≥ [m2 ],

fk(θ) =
∑

k1,...,kd

ck1,...,kdσ
k1+...kdHk1

(θ1
σ

)
. . . Hkd

(θd
σ

)
and fk(X) is an unbiased estimator of f(θ) (see [17], Example 2.1 and Corol-
lary 3.1 for more details).
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Example 2 As another example, consider an arbitrary Banach space E (for
instance, E = Rd) and ξ ∼ N (0, Σ). By a simple computation, for all u ∈ E∗

T cos(〈·, u〉) = exp{−〈Σu, u〉} cos(〈·, u〉), T sin(〈·, u〉) = exp{−〈Σu, u〉} sin(〈·, u〉).

If now

f(θ) =
∑
i

[ci cos(〈θ, ui〉) + di sin(〈θ, ui〉)], θ ∈ E

is a trigonometric polynomial, then

fk(θ) =
∑
i

λk(Σ, ui)[ci cos(〈θ, ui〉) + di sin(〈θ, ui〉)], θ ∈ E,

where

λk(Σ, u) := exp{〈Σu, u〉/2}[1− (1− exp{−〈Σu, u〉/2})k+1],

and

Eθfk(X)− f(θ) = (−1)k(Bk+1f)(θ)

= −
∑
i

(1− exp{−〈Σui, ui〉/2})k+1[ci cos(〈θ, ui〉) + di sin(〈θ, ui〉)]

(see [17], Example 2.2). If, for all i, 〈Σui, ui〉 is bounded away from 0, then the
coefficients (1− exp{−〈Σui, ui〉/2})k+1 become small for a sufficiently large k
ensuring the reduction of the bias.

For Banach spaces E,F and a function g : E 7→ F, let

‖g‖L∞ := sup
x∈E
‖g(x)‖,

‖g‖Lip := sup
x,x′∈E,x 6=x′

‖g(x)− g(x′)‖
‖x− x′‖

and, for ρ ∈ (0, 1],

‖g‖Lipρ := sup
x,x′∈E,x 6=x′

‖g(x)− g(x′)‖
‖x− x′‖ρ

.

We will now introduce Hölder spaces Cs(E) of functionals g : E 7→ R of
smoothness s > 0. Let g(j) denote the Fréchet derivative of g of order j (in
particular, g(0) = g). 1 Note that, for all x ∈ E, g(j)(x) is a symmetric bounded
j-linear form. For such a form M [u1, . . . , uj ], u1, . . . , uj ∈ E, define its operator
norm as

‖M‖ := sup
‖u1‖≤1,...,‖uj‖≤1

|M [u1, . . . , uj ]|.

1 The definition and relevant properties of j-th order Fréchet derivatives could be found,
e.g., in [5], sections 2.1, 5.1, 5.3.
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In particular, for j = 1, M [x] = 〈x, u〉 for some u ∈ E∗ and ‖M‖ = ‖u‖.
The derivative g(j) will be always viewed as a mapping from E into the space
of symmetric bounded j-linear forms equipped with the operator norm. Let
s = k + ρ, k ≥ 0, ρ ∈ (0, 1]. For a k-times Fréchet differentiable functional g,
define

‖g‖Cs := max
(
‖g‖L∞ , max

1≤j≤k
‖g(j)‖L∞ , ‖g(k)‖Lipρ

)
.

The space Cs(E) is defined as the set of all k-times Fréchet continuously
differentiable functionals g such that ‖g‖Cs <∞.

Recall that the covariance operator Σξ : E∗ 7→ E of a mean zero r.v ξ in
E (with a finite weak second moment) is defined as

Σξu := E〈ξ, u〉ξ, u ∈ E∗.

The operator norm of Σξ is

‖Σξ‖ := sup
‖u‖≤1

‖Σξu‖.

It is easy to see that E‖ξ‖2 ≥ ‖Σξ‖.
We use the following notations. We write ξ ∼ µ if a random variable ξ

is sampled from a distribution µ. The notation η1
d
= η2 means that random

variables η1, η2 have the same distribution. For A,B ≥ 0, A . B means that
there exists a numerical constant C > 0 such that A ≤ CB, A & B means
that B . A and A � B means that A . B and A & B. If a constant C in
the above relationships is allowed to depend on some parameters, say, α, β, we
will write A .α,β B, A &α,β B and A �α,β B.

2.1 Gaussian shift models

We start with an overview of the results on estimation of smooth functionals
in Gaussian shift models obtained in [17]. It is assumed that the distribution
of the noise ξ is known. The following theorem provides an upper bound on
the mean squared error of estimator fk(X) (see Theorem 2.1 in [17]).2

Theorem 1 Suppose ξ is a Gaussian r.v. in E with mean zero and covariance
operator Σξ. Then, for all s = k + 1 + ρ, k ≥ 0, ρ ∈ (0, 1],

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X)− f(θ))2 .s
(
‖Σξ‖ ∨ (E‖ξ‖2)s

)
∧ 1.

2 In fact, a more general result was proved in [17] for spaces Cs,γ(E) of functionals of
smoothness s whose derivatives are allowed to grow as ‖θ‖γ . For simplicity, we consider here
only the case of γ = 0 (both f and its derivatives are uniformly bounded).
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It was also shown in [17] (Theorem 2.2) that the above bound is sharp in a
minimax sense in the case of the classical Gaussian shift model: E = Rd with
the standard Euclidean norm and ξ ∼ N(0, σ2Id). In this case, ‖Σξ‖ = σ2,
E‖ξ‖2 = σ2d, and we have

sup
‖f‖Cs≤1

inf
T

sup
θ∈E

Eθ(T (X)− f(θ))2 �s
(
‖Σξ‖ ∨ (E‖ξ‖2)s

)
∧ 1 (1)

with the minimax optimal rate attained (up to a constant) for the estimator
fk(X).

Note that the bound of Theorem 1 could be also applied to a sample of
i.i.d. copies X1, . . . , Xn of a Gaussian shift observation X = θ + ξ since X̄ =
X1+···+Xn

n also satisfies a Gaussian shift model X̄ = θ + ξ̄, ξ̄ ∼ N(0, n−1Σξ)
and one can define functions fk associated with this model. In this case, we
get

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X̄)− f(θ))2 .s
(‖Σξ‖

n
∨
(E‖ξ‖2

n

)s)
∧ 1. (2)

Suppose ‖Σξ‖ . 1 and E‖ξ‖2 . d, where d is the dimension or other relevant
complexity parameter. In this case, if d . nα for some α ∈ (0, 1) and s ≥ 1

1−α ,
then

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X̄)− f(θ))2 = O(n−1) as n→∞.

It follows from the minimax bound (1) that the threshold 1
1−α on the smooth-

ness of f needed for estimation of f(θ) with mean squared error rate O(n−1)
is sharp (at least, in the case of the classical Gaussian shift model): if d & nα

for some α ∈ (0, 1) and s < 1
1−α , then the minimax optimal mean squared

error rate is of the order n−(1−α)s, which is slower than n−1.
Moreover, it was also proved in [17] that, for s > 1

1−α , the estimator

fk(X̄) is asymptotically normal with
√
n-rate and limit variance σ2

f (θ) :=
〈Σξf ′(θ), f ′(θ)〉. Namely, the following fact follows from the bound of Theorem
2.3 in [17]. For r.v. η1, η2 in R, denote

dK(η1, η2) := sup
x∈R
|P{η1 ≤ x} − P{η2 ≤ x}|.

Then, under the assumptions ‖Σξ‖ . 1, E‖ξ‖2 . d . nα for some α ∈ (0, 1)
and s > 1

1−α ,
3

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣nEθ(fk(X̄)− f(θ))2 − σ2
f (θ)

∣∣∣→ 0 (3)

3 Note that these asymptotic relationships hold in the case when E = En depends on n,
for instance, when E = Rd with d = dn.
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and, for all σ0 > 0,

sup
‖f‖Cs≤1

sup
θ∈E,σf (θ)≥σ0

dK

(√n(fk(X̄)− f(θ))

σf (θ)
, Z
)
→ 0 as n→∞. (4)

Finally, note that the following Hàjek–Le Cam type local asymptotic min-
imax lower bound

lim
c→∞

lim sup
n→∞

inf
Tn

sup
‖θ−θ0‖≤cn−1/2

nEθ(Tn − f(θ))2

σ2
f (θ)

≥ 1 (5)

holds for all s > 1, all σ0 > 0 and all functionals f with ‖f‖Cs ≤ 1 under
the assumptions ‖Σξ‖ . 1, σf (θ0) ≥ σ0. This follows from a non-asymptotic
local minimax lower bound of Theorem 2.4 in [17] and it implies asymptotic
efficiency of fk(X̄) as an estimator of f(θ).

We now turn to the problem of estimation of f(θ) in the case when the
noise ξ is a mean zero Gaussian r.v. with unknown covariance operator Σξ,
which could be viewed as a nuisance parameter. Note that in the case of known
Σξ the upper bound of Theorem 1 also holds for estimator fk(X̄), where X̄ is
the sample mean based on n i.i.d. observations of X = θ + ξ, with a constant
that depends on n. Thus, in the case of a small fixed n (say, n = 2), we have

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X̄)− f(θ))2 .s,n
(
‖Σξ‖ ∨

(
E‖ξ‖2

)s)
∧ 1.

This follows from bound (2) (note also that the function fk is now associated
with the Gaussian shift model X̄ = θ + ξ̄, ξ̄ ∼ N(0;n−1Σξ)).

First, we show how to construct an estimator of f(θ) based on two inde-
pendent observations X1, X2 of X for which the same upper bound hods in
the case of unknown covariance of the noise. To this end, define X̄ := X1+X2

2

and let ξ be a version of the noise defined as follows: ξ := X1−X2√
2

. Note that

X̄ and ξ are independent r.v., ξ ∼ N(0;Σξ) and X̄
d
= θ + ξ√

2
. Define

V̂j(θ; ξ) :=

j∑
l=0

(−1)j−l
(
j

l

)
f
(
θ +

√
l

2
ξ
)

and

f̂k(θ) := f̂k(θ; ξ) :=
k∑
j=0

(−1)j V̂j(θ; ξ).

It turns out that f̂k(θ; ξ) with ξ = X1−X2√
2

is an unbiased estimator of fk(θ)

(where the function fk is associated with the Gaussian shift model X̄ = θ+ ξ̄,

ξ̄ ∼ N(0;Σξ/2)). Due to this fact, it becomes natural to use f̂k(X̄) as an
estimator of f(θ). The following proposition will be proved:
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Proposition 1 Suppose ξ is a Gaussian r.v. in E with mean zero and un-
known covariance operator Σξ. Then, for all s = k + 1 + ρ, k ≥ 0, ρ ∈ (0, 1],

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(f̂k(X̄)− f(θ))2 .s
(
‖Σξ‖ ∨ (E‖ξ‖2)s

)
∧ 1.

A similar idea can be used in the case of n i.i.d. observations X1, . . . , Xn

of r.v. X = θ + ξ when the sample size n is large. Assume that n ≥ 2m
for some m ≥ 1. Let us write X1, . . . , X2m as X1, X

′
1, . . . , Xm, X

′
m. Define

ξ̃i :=
Xi−X′i√

2
, i = 1, . . . ,m, which are i.i.d. random variables with the same

distribution as ξ. Note also that {ξ̃i : i = 1, . . . ,m} and

X̄ =
X1 + . . . Xn

n
=
X1 +X ′1 + . . . Xm +X ′m +X2m+1 + · · ·+Xn

n

are independent r.v.. Define

Ṽj(θ; ξ̃i) :=

j∑
l=0

(−1)j−l
(
j

l

)
f
(
θ +

√
l

n
ξ̃i

)
,

f̃k(θ; ξ̃i) :=
k∑
j=0

(−1)j Ṽj(θ; ξ̃i), i = 1, . . . ,m

and

f̂m,k(θ) := m−1
m∑
i=1

f̃k(θ; ξ̃i).

We will see that f̂m,k(θ) is an unbiased estimator of fk(θ) with fk being asso-
ciated with the Gaussian shift model X̄ = θ+ ξ̄, ξ̄ ∼ N(0;n−1Σξ). To estimate

f(θ), we now use the estimator f̂m,k(X̄).

Proposition 2 Suppose ξ is a Gaussian r.v. in E with mean zero and un-
known covariance operator Σξ and let X1, . . . , Xn be i.i.d. copies of X = θ+ξ.
Then, for all s = k + 1 + ρ, k ≥ 0, ρ ∈ (0, 1],

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(f̂m,k(X̄)− f(θ))2 .s
(‖Σξ‖

n
∨
(E‖ξ‖2

n

)s)
∧ 1. (6)

Moreover, suppose that, for some d and for some α ∈ (0, 1), ‖Σξ‖ . 1, E‖ξ‖2 .
d . nα and s > 1

1−α . If m = mn →∞ as n→∞, then

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣nEθ(f̂m,k(X̄)− f(θ))2 − σ2
f (θ)

∣∣∣→ 0 (7)

and, for all σ0 > 0,

sup
‖f‖Cs≤1

sup
θ∈E,σf (θ)≥σ0

dK

(√n(f̂m,k(X̄)− f(θ))

σf (θ)
, Z
)
→ 0 as n→∞. (8)
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Remark 1 Note that limit relationships (7) and (8) along with local asymptotic

minimax bound (5) show that estimator f̂m,k(X̄) is asymptotically efficient.

Remark 2 In [34], other estimators of f(θ) were proposed in the case when
the covariance is an unknown nuisance parameter of a Gaussian shift model in
Rd equipped with the standard Euclidean norm. However, it was done under
much stronger smoothness assumptions (Besov smoothness instead of Hölder
smoothness). Since the Besov norms for functions on high-dimensional spaces
could differ from the Hölder norms (in the sense of our definition) by a dimen-
sion dependent constant, the error rates obtained in [34] are sub-optimal (see
also Remark 2.1 in [17]).

2.2 Poincaré random shift models

In this section, we extend the bound of Theorem 1 and some other results
of [17] to more general random shift models X = θ + ξ, θ ∈ E, namely, to the
models with the noise ξ satisfying Poincaré inequality. Assume that E‖ξ‖2 <∞
and that the distribution of ξ is known.

It will be said that a random variable ξ in E satisfies the Poincaré inequal-
ity iff there exists a constant C > 0 such that for all Fréchet continuously
differentiable functions g : E 7→ R 4

Var(g(ξ)) ≤ CE‖g′(ξ)‖2. (9)

Denote by CP (ξ) the smallest possible value of C in the above inequality. It
will be called the Poincaré constant of ξ (or, more precisely, of its distribution
L(ξ)). The following properties of CP (ξ) are obvious:

1. CP (ξ + a) = CP (ξ), a ∈ E;
2. CP (bξ) = b2CP (ξ), b ∈ R;
3. for any linear operator A : E 7→ E, CP (Aξ) ≤ ‖A‖2CP (ξ).

Note that if gu(x) = 〈x, u〉, x ∈ E, u ∈ E∗ is a linear functional, then
Var(gu(ξ)) = 〈Σξu, u〉 and (Lgu)(x) = ‖u‖, x ∈ E. This easily implies that

CP (ξ) ≥ ‖Σξ‖.

It is also well known that Gaussian random variables in E satisfy Poincaré
inequality with CP (ξ) = ‖Σξ‖.

Let ξ = (ξ1, . . . , ξk) ∈ E1× · · · ×Ek be a random vector, where E1, . . . , Ek
are separable Banach spaces and E := E1×· · ·×Ek is equipped with the norm

‖x‖ :=
( k∑
j=1

‖xj‖2
)1/2

, x = (x1, . . . , xk) ∈ E.

4 A standard way to write Poincaré inequality for r.v. in Rd is:

Var(g(ξ)) ≤ CE‖∇g(ξ)‖2,

where ∇g is the gradient of function g that, by Rademacher’s theorem, exists a.s. for all
locally Lipschitz functions and ‖ · ‖ is the standard Euclidean norm.
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If ξ = (ξ1, . . . , ξk) has independent components, then

CP (ξ) = max
1≤j≤k

CP (ξj)

(see, e.g., [21], Corollary 5.7).

Another well known class of random variables with a finite Poincaré con-
stant are r.v. sampled from log-concave distributions in Rd. It will be said that
ξ in Rd is log-concave iff ξ ∼ µ, where

µ(dx) = exp{−V (x)}dx

with a convex function V : Rd 7→ R̄. In addition to normal distributions, the
class of log-concave distributions also includes, for instance, uniform distribu-
tions on convex bodies of finite volume. This class of probability distributions
has been intensively studied in high-dimensional probability and convex geom-
etry and it is becoming an important modeling tool in high-dimensional statis-
tics. It is well known that log-concave random variables have finite Poincaré
constants. Moreover, according to one of the forms of well known Kannan-
Lovász-Simonovits (KLS) conjecture in convex geometry, for any log-concave
r.v. ξ with covariance Σξ, CP (ξ) . ‖Σξ‖ with a dimension free constant (this
conjecture remains open, see, e.g. [22]).

Some other well known properties of Poincaré constants of r.v. in Rd
(including partial results related to KLS conjecture) are stated below (see,
e.g., [1]):

– If µ, ν are two probability measures, ξ ∼ µ, η ∼ ν, and µ is absolutely
continuous with respect to ν with the density dµ

dν bounded from above by
a constant A > 0 and bounded from below by a constant a > 0, then
CP (ξ) ≤ A

aCP (η).

– If ξ ∼ µ, µ(dx) = e−V (x)dx with V : Rd 7→ R such that V
′′
(x) � C−1 for

a symmetric positively definite matrix C, then CP (ξ) ≤ ‖C‖.
– If C is a symmetric positively definite matrix and ξ ∼ µ,

µ(dx) = exp
{
−1

2
〈C−1x, x〉 − V (x)

}
dx,

where V is a convex function on Rd, then CP (ξ) ≤ ‖C‖.
– If ξ ∼ µ, µ(dx) = 1

Z exp{−‖x‖p`p − V (x)}dx, where V : Rd 7→ R is convex

and V (−x) = V (x), x ∈ Rd, p ∈ [1, 2], then CP (ξ) . (log d)
2−p
p

– If µ, ν are log-concave measures on Rd, ξ ∼ µ, η ∼ ν, and, for some ε ∈
(0, 1),

dTV (µ, ν) := sup
A⊂Rd,A Borel

|µ(A)− ν(A)| ≤ 1− ε,

then CP (ξ) .ε CP (η).



12 Vladimir Koltchinskii, Mayya Zhilova

– If ξ is log-concave with covariance Σξ, then

CP (ξ) . ‖Σξ‖HS . ‖Σξ‖
√
d

(see [22]).

We will prove the following theorem.

Theorem 2 Suppose ξ is a r.v. in E with mean zero, E‖ξ‖2 <∞, covariance
operator Σξ and CP (ξ) <∞. Then, for all s = k + 1 + ρ, k ≥ 0, ρ ∈ (0, 1]

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X)− f(θ))2 .s
(
‖Σξ‖ ∨ CP (ξ)(E‖ξ‖2)ρ ∨ (E‖ξ‖2)s

)
∧ 1.

(10)

Moreover, if E1/2‖ξ‖2 ≤ 1/2, then

sup
‖f‖Cs≤1

sup
θ∈E
‖fk(X)− f(θ)− 〈ξ, f ′(θ)〉‖L2(Pθ)

≤ 2
(

3C
1/2
P (ξ)(E1/2‖ξ‖2)ρ + (E1/2‖ξ‖2)s

)
. (11)

For r.v. η1, η2 in R and p ≥ 1, define the Wasserstein p-distance between
η1, η2 as

Wp(η1, η2) := inf{E1/p|η′1 − η′2|p : η′1
d
= η1, η

′
2
d
= η2},

where the infimum is taken over all the copies (in distribution) η′1 of η1 and
η′2 of η2. Note that Wp is, in fact, the distance between the distributions of η1
and η2. It is easy to see that

1. for all c ∈ R

Wp(η1 + c, η2 + c) = Wp(η1, η2); (12)

2. for all c ∈ R

Wp(cη1, cη2) = |c|Wp(η1, η2). (13)

Also, it is well known that

W1(η1, η2) = sup
‖g‖Lip(R)≤1

|Eg(η1)− Eg(η2)|.

The last formula allows one to show that, for an arbitrary r.v. η and Z ∼
N(0, 1),

dK(η, Z) ≤ 2W
1/2
1 (η, Z) ≤ 2W

1/2
2 (η, Z). (14)

Let

σ2
f (θ) := σ2

f (θ, ξ) := E〈ξ, f ′(θ)〉2.

The following corollary is obvious.
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Corollary 1 Suppose ξ is a r.v. in E with mean zero, E1/2‖ξ‖2 ≤ 1/2, covari-
ance operator Σξ and CP (ξ) <∞. Then, for all s = k+ 1 +ρ, k ≥ 0, ρ ∈ (0, 1]

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣E1/2
θ (fk(X)− f(θ))2 − σf (θ)

∣∣∣ ≤ 2
(

3C
1/2
P (ξ)(E1/2‖ξ‖2)ρ + (E1/2‖ξ‖2)s

)
.

and

sup
‖f‖Cs≤1

sup
θ∈E

W2(fk(X)− f(θ), σf (θ)Z) ≤ 2
(

3C
1/2
P (ξ)(E1/2‖ξ‖2)ρ + (E1/2‖ξ‖2)s

)
.

As an example, consider the following linear model:

X = Aβ + n−1/2ξ,

where β ∈ Rp is the vector of unknown coefficients, A : Rp 7→ Rm is a linear
operator and ξ is a mean zero random vector in Rm. Let L := Im(A) = ARp ⊂
Rm with d := dim(L) and let θ = Aβ ∈ L. Denote θ̂ = Aβ̂ = PLX, where

β̂ is a least squares estimator of β and PL denotes the orthogonal projection
onto subspace L. Then θ̂ = θ + PL(n−1/2ξ) and we can use this random shift
model to define the associated functions fk. The goal is to estimate a smooth
functional f(θ) of unknown parameter θ = Aβ based on an observation X
when the noise level tends to zero (or n→∞).

Corollary 2 Suppose that d . nα for some α ∈ (0, 1) and s > 1
1−α . Suppose

also that CP (ξ) . 1. Then

sup
‖f‖Cs(L)≤1

sup
θ∈E

∣∣∣nEθ(fk(θ̂)− f(θ))2 − σ2
f (θ)

∣∣∣→ 0

and, for all σ0 > 0,

sup
‖f‖Cs(L)≤1

sup
θ∈E,σf (θ)≥σ0

dK

(√n(fk(θ̂)− f(θ))

σf (θ)
, Z
)
→ 0 as n→∞.

Consider now the case of i.i.d. observations X1, . . . , Xn of r.v. X = θ+ξ, θ ∈
E with mean zero noise ξ such that CP (ξ) < ∞. We will use X̄ = X1+···+Xn

n
as an estimator of θ and define the functions fk associated with the model
X̄ = θ + ξ̄.

Suppose the following assumption holds: for some parameter d ≥ 1, for all
n ≥ 1 and for i.i.d. copies ξ1, . . . , ξn of ξ,

E
∥∥∥ξ1 + · · ·+ ξn

n

∥∥∥2 . CP (ξ)
d

n
. (15)

In this assumption, d is typically a dimension, or some other complexity pa-
rameter of the problem (such as the effective rank of ξ, see [17]). For instance,
if E = Rd is equipped with the standard Euclidean norm, then

E
∥∥∥ξ1 + · · ·+ ξn

n

∥∥∥2 =
tr(Σξ)

n
≤ ‖Σξ‖

d

n
≤ CP (ξ)

d

n
,

so, assumption (15) holds.
More generally, the following simple proposition provides a sufficient con-

dition for assumption (15) to hold.
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Proposition 3 Let U∗ := {u ∈ E∗ : ‖u‖ ≤ 1} be the unit ball of the dual
space E∗. Suppose there exists a set U ⊂ U∗ of cardinality card(U) ≤ Cd for
some numerical constant C such that

‖x‖ .C max
u∈U
|〈x, u〉|.

Then condition (15) holds.

In particular, this proposition could be used in the case when E = Md is
the space of d×d matrices with real entries equipped with the operator norm.
The dual space E∗ is equipped with the nuclear norm and, for all A ∈Md,

‖A‖ = sup
‖u‖≤1,‖v‖≤1,u,v∈Rd

|〈Au, v〉| ≤ 2 max
u,v∈M

|〈Au, v〉|,

where M is a 1/4-net for {u ∈ Rd : ‖u‖ ≤ 1}. Note that one can choose
M such that card(M) ≤ 9d (see [33], Chapter 4 for more details on such
discretization arguments). Thus, one can choose U := {u ⊗ v : u, v ∈ M} for
which card(U) ≤ 81d.

Under assumption (15), the following result will be proved (that can be
applied, for instance, to the examples of E = Rd or E = Md).

Corollary 3 Suppose assumption (15) holds for some d ≥ 1. Then, for all
s = k + 1 + ρ, k ≥ 0, ρ ∈ (0, 1],

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X̄)− f(θ))2 .s
(‖Σξ‖

n
∨
C1+ρ
P (ξ)

n

( d
n

)ρ
∨ CsP (ξ)

( d
n

)s)
∧ 1.

(16)

Moreover, if CP (ξ) . 1, d . nα for some α ∈ (0, 1) and s > 1
1−α , then

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣nEθ(fk(X̄)− f(θ))2 − σ2
f (θ)

∣∣∣→ 0

and, for all σ0 > 0,

sup
‖f‖Cs≤1

sup
θ∈E,σf (θ)≥σ0

dK

(√n(fk(X̄)− f(θ))

σf (θ)
, Z
)
→ 0 as n→∞.

3 Proofs

The analysis of estimator fk(X) is based on simple representation formulas
for functions Bjf. Note that, by Newton’s binomial formula,

Bj = (T − I)j =

j∑
i=0

(−1)j−i
(
j

i

)
T i.
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Let ξ1, ξ2, . . . be i.i.d. copies of ξ. It follows from the definition of operator T
that

(T if)(θ) = Ef
(
θ +

i∑
l=1

ξl

)
. (17)

Thus, one can write

(Bjf)(θ) = E
j∑
i=0

(−1)j−i
(
j

i

)
f
(
θ +

i∑
l=1

ξl

)
. (18)

For a k times continuously differentiable function f, its j-th order difference

(∆j
hf)(θ) = ∆h . . . ∆hf(θ) =

j∑
i=0

(−1)j−i
(
j

i

)
f(θ + ih) = f (j)(θ)[h, . . . , h] + o(‖h‖j),

where (∆hf)(θ) := f(θ + h)− f(θ). In particular, this implies that

|(∆j
hf)(θ)| = O(‖h‖j) as h→ 0.

These facts are well known for smooth functions in the real line and could be
easily extended to an arbitrary Banach space. The function (Bjf)(θ) is the
expectation of the “j-th order difference” of f with respect to i.i.d. random
translations ξ1, . . . , ξj (rather than a single translation h) and we need similar
properties of j-th order differences in this case.

Proposition 4 Let f be a j times Fréchet continuously differentiable function
on E. Suppose that E‖ξ‖ <∞. Let τ1, τ2, . . . be i.i.d. r.v. uniformly distributed
in [0, 1] and independent of ξ1, ξ2, . . . . Then

(Bjf)(θ) = Ef (j)
(
θ +

j∑
l=1

τlξl

)
[ξ1, . . . , ξj ], θ ∈ E. (19)

Proof Define

ψ(t1, . . . , tj) := f
(
θ +

j∑
l=1

tlξl

)
, (t1, . . . , tj) ∈ [0, 1]j .

Then, for all (t1, . . . , tj) ∈ {0, 1}j such that
∑j
l=1 tl = i, we have

(T if)(θ) = Eψ(t1, . . . , tj).

Therefore,

(Bjf)(θ) =

j∑
i=0

(−1)j−i
(
j

i

)
(T if)(θ)

=

j∑
i=0

(−1)j−i
∑

(t1,...,tj)∈{0,1}j ,
∑j
l=1 tl=i

Eψ(t1, . . . , tj)

= E
∑

(t1,...,tj)∈{0,1}j
(−1)j−

∑j
l=1 tlψ(t1, . . . , tj). (20)
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It is also easy to observe that∑
(t1,...,tj)∈{0,1}j

(−1)j−
∑j
l=1 tlψ(t1, . . . , tj) = ∆(1) . . . ∆(j)ψ(t1, . . . , tj), (21)

where

∆(l)ψ(t1, . . . , tj) := ψ(t1, . . . , tj)|tl=1 − ψ(t1, . . . , tj)|tl=0.

Moreover, if f is j times continuously differentiable, then so is the function
ψ(t1, . . . , tj) and

∂jψ(t1, . . . , tj)

∂t1 . . . ∂tj
= f (k)

(
θ +

j∑
l=1

tlξl

)
[ξ1, . . . , ξj ]. (22)

By Newton-Leibnitz formula,

∆(1) . . . ∆(j)ψ(t1, . . . , tj) =

∫ 1

0

· · ·
∫ 1

0

∂jψ(t1, . . . , tj)

∂t1 . . . ∂tj
dt1 . . . dtj . (23)

It follows from (20), (21), (22) and (23) that

(Bjf)(θ) =

∫ 1

0

· · ·
∫ 1

0

Ef (j)
(
θ +

j∑
l=1

tlξl

)
[ξ1, . . . , ξj ],

which implies (19).

This simple integral representation of functions Bjf (obtained first in [17])
provides a way to study various smoothness properties of these functions under
further smoothness assumptions on f. These properties are summarized in the
following proposition (it could be proved similarly to Proposition 3.3, Theorem
3.3. and Proposition 3.4 in [17], where the proof is given in the Gaussian case).

Proposition 5 Suppose E‖ξ‖ <∞. The following statements hold:

1. If f ∈ Cj(E), then

‖Bjf‖L∞ ≤ ‖f (j)‖L∞(E‖ξ‖)j .

2. If f ∈ Cj+1(E), then the function Bjf is Fréchet continuously differentiable
with derivative

〈h, (Bjf)′(θ)〉 = (Bjf)′(θ)[h] = Ef (j+1)
(
θ +

j∑
l=1

τlξl

)
[ξ1, . . . , ξj , h], h ∈ E.

3. If s = k + 1 + ρ for some k ≥ 0, ρ ∈ (0, 1], and f ∈ Cs(E), then, for all
j = 1, . . . , k,

‖Bjf‖C1+ρ ≤ 2‖f‖Cs(E‖ξ‖)j .
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It immediately follows from Proposition 5 and the definition of function fk
that

‖fk‖C1+ρ ≤ 4‖f‖Cs (24)

provided that E‖ξ‖ ≤ 1/2.
It is now easy to derive an upper bound on the bias of estimator fk(X) of

functional f(θ). For this, the following simple lemma will be useful.

Lemma 1 For a Fréchet differentiable function g : E 7→ R, denote by

Sg(θ;h) := g(θ + h)− g(θ)− 〈h, g′(θ)〉, θ, h ∈ E

the remainder of its first order Taylor expansion. Then

|Sg(θ;h)| ≤ ‖g‖C1+ρ‖h‖1+ρ.

In addition, the function E 3 h 7→ Sg(θ;h) is continuously differentiable with
derivative

(Sg(θ;h))′h = g′(θ + h)− g′(θ)

and

‖(Sg(θ;h))′h‖ ≤ ‖g‖C1+ρ‖h‖ρ.

Proposition 6 Suppose s = k + 1 + ρ for some k ≥ 0, ρ ∈ (0, 1], and f ∈
Cs(E). Then

|Eθfk(X)− f(θ)| ≤ 2‖f‖Cs(E‖ξ‖)kE‖ξ‖1+ρ, θ ∈ E.

Proof Recall that

Eθfk(X)− f(θ) = (−1)k(Bk+1f)(θ), θ ∈ E.

We have

(Bk+1f)(θ) = B(Bkf)(θ) = E(Bkf)(θ + ξ)− (Bkf)(θ)

= E〈ξ, (Bkf)′(θ)〉+ ESBkf (θ; ξ) = ESBkf (θ; ξ).

Thus, using statement 3 of Proposition 5 and the first bound of Lemma 1, we
get

|(Bk+1f)(θ)| ≤ E|SBkf (θ; ξ)| ≤ ‖Bkf‖C1+ρE‖ξ‖1+ρ

≤ 2‖f‖Cs(E‖ξ‖)kE‖ξ‖1+ρ,

implying the claim.

We are now ready to prove Theorem 2.
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Proof We will use the following decomposition:

fk(X)− f(θ) = Eθfk(X)− f(θ) + fk(X)− Eθfk(X)

= Eθfk(X)− f(θ) + fk(θ + ξ)− Efk(θ + ξ)

= Eθfk(X)− f(θ) + 〈ξ, f
′

k(θ)〉+ Sfk(θ; ξ)− ESfk(θ; ξ)

= Eθfk(X)− f(θ) + 〈ξ, f ′(θ)〉+ 〈ξ, f
′

k(θ)− f ′(θ)〉+ Sfk(θ; ξ)− ESfk(θ; ξ).

It implies that

‖fk(X)− f(θ)− 〈ξ, f ′(θ)〉‖L2(Pθ)

≤ |Eθfk(X)− f(θ)|+ ‖〈ξ, f
′

k(θ)− f ′(θ)〉‖L2(P) + ‖Sfk(θ; ξ)− ESfk(θ; ξ)‖L2(P).
(25)

To control the bias of fk(X), we use Proposition 6 and observe that

(E‖ξ‖)kE‖ξ‖1+ρ ≤ (E‖ξ‖2)k/2(E‖ξ‖2)(1+ρ)/2 = (E‖ξ‖2)s/2.

This yields

|Eθfk(X)− f(θ)| ≤ 2‖f‖Cs(E‖ξ‖2)s/2, θ ∈ E. (26)

Note also that

‖〈ξ, f
′

k(θ)− f ′(θ)〉‖L2(P) = 〈Σξ(f
′

k(θ)− f ′(θ)), f
′

k(θ)− f ′(θ)〉1/2

≤ ‖Σξ‖1/2‖f
′

k(θ)− f ′(θ)‖

and, by statement 2 of Proposition 5,

‖f
′

k(θ)− f ′(θ)‖ ≤
k∑
j=1

‖(Bjf)′(θ)‖ ≤
k∑
j=1

‖f (j+1)‖L∞(E‖ξ‖)j ≤ 2‖f‖CsE‖ξ‖

(under the assumption that E‖ξ‖ ≤ 1/2). Therefore,

‖〈ξ, f
′

k(θ)− f ′(θ)〉‖L2(P) ≤ 2‖f‖Cs‖Σξ‖1/2E1/2‖ξ‖2. (27)

Finally, let

g(h) := Sfk(θ;h), h ∈ E.

By the second bound of Lemma 1,

‖g′(h)‖ ≤ ‖fk‖C1+ρ‖h‖ρ.

Using Poincaré inequality, we get

‖Sfk(θ; ξ)− ESfk(θ; ξ)‖2L2(P) = Var(g(ξ)) ≤ ‖fk‖2C1+ρCP (ξ)E‖ξ‖2ρ,

and, using (24), this implies

‖Sfk(θ; ξ)− ESfk(θ; ξ)‖L2(P) ≤ 4‖f‖CsC1/2
P (ξ)(E1/2‖ξ‖2)ρ. (28)
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It follows from bounds (25), (26), (27) and (28) that

‖fk(X)− f(θ)− 〈ξ, f ′(θ)〉‖L2(Pθ) (29)

≤ 2‖f‖Cs(E‖ξ‖2)s/2 + 2‖f‖Cs‖Σξ‖1/2E1/2‖ξ‖2 + 4‖f‖CsC1/2
P (ξ)(E1/2‖ξ‖2)ρ.

(30)

Since ‖Σξ‖1/2E1/2‖ξ‖2 ≤ C
1/2
P (ξ)(E1/2‖ξ‖2)ρ, this completes the proof of

bound (11). To complete the proof of bound (10), observe that

‖〈ξ, f ′(θ)〉‖L2(Pθ) = 〈Σξf ′(θ), f ′(θ)〉1/2 ≤ ‖Σξ‖1/2‖f ′(θ)‖ ≤ ‖Σξ‖1/2

for all f satisfying ‖f‖Cs ≤ 1, and combine this with bound (29). It now
remains to show that

sup
‖f‖Cs≤1

sup
θ∈E

Eθ(fk(X)− f(θ))2 .s 1,

which follows from the facts that, for ‖f‖Cs ≤ 1, we have ‖f‖L∞ ≤ 1 and
‖fk‖L∞ .k 1 (the last fact easily follows from the definition of fk and repre-
sentation (18)).

We give the proof of Proposition 3.

Proof For ξ̄ = ξ1+···+ξn
n , we have

‖ξ̄‖ .C max
u∈U
|〈ξ̄, u〉| = max

u∈U

∣∣∣n−1 n∑
j=1

〈ξj , u〉
∣∣∣.

It is well known and easy to check that, for all u ∈ U∗, 〈ξ, u〉 is a sub-
exponential r.v. with5

‖〈ξ, u〉‖ψ1 . C
1/2
P (ξ)

(see [21], Theorem 3.1). Using Bernstein’s inequality for sums of i.i.d. sub-
exponential r.v. (see [33], Theorem 2.8.1), we conclude that, for all u ∈ U ⊂ U∗,
with probability at least 1 − e−t∣∣∣n−1 n∑

j=1

〈ξj , u〉
∣∣∣ . C

1/2
P (ξ)

(√ t

n
∨ t

n

)
.

Recall that card(U) ≤ Cd. Replacing t by t + d logC and using the union
bound, we get that with probability at least 1 − e−t

‖ξ̄‖ .C max
u∈U

∣∣∣n−1 n∑
j=1

〈ξj , u〉
∣∣∣ . C

1/2
P (ξ)

(√ t+ d

n
∨ t+ d

n

)
.

5 Here ‖ · ‖ψ1
is the Orlicz ψ-norm corresponding to the sub-exponential tails; see [33],

Chapter 2 for the definitions.
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Integrating out the tail probabilities in the above inequality, we easily get that,
for d ≤ n,

E‖ξ̄‖2 . CP (ξ)
d

n
.

The proof of Corollary 2 is straightforward. We will now prove corollary 3.

Proof Note that X̄ = θ + ξ̄, where ξ̄ = ξ1+···+ξn
n , ξ1, . . . , ξn being i.i.d. copies

of ξ and, by assumption (15),

E‖ξ̄‖2 ≤ CP (ξ)
d

n
.

Since

CP ((ξ1, . . . , ξn)) ≤ max
1≤j≤n

CP (ξj) = CP (ξ),

it is easy to check that

CP (ξ̄) ≤ CP (ξ)

n
.

Indeed, denote g̃(x1, . . . , xn) := g(n−1(x1+ · · ·+xn)), xj ∈ E. For C = CP (ξ),
we have

Var(g(ξ̄)) = Var(g̃(ξ1, . . . , ξn)) ≤ CE‖g̃′(ξ1, . . . , ξn)‖2.

Since

g̃′(ξ1, . . . , ξn)[h] =

n∑
j=1

〈hj , g̃′xj (ξ1, . . . , ξn)〉, h = (h1, . . . , hn) ∈ E × · · · × E

and

g̃′xj (ξ1, . . . , ξn) = n−1g′(ξ̄),

we easily get

‖g̃′(ξ1, . . . , ξn)‖2 =
n∑
j=1

‖g̃′xj (ξ1, . . . , ξn)‖2 = n−1‖g′(ξ̄)‖2.

Therefore,

Var(g(ξ̄)) ≤ C

n
E‖g′(ξ̄)‖2,

implying the claim.
It is now easy to derive bound (16) from bound (10).
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To prove other claims, note that σf (θ, ξ̄) =
σf (θ,ξ)√

n
. It follows from Corollary

1 that

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣√nE1/2
θ (fk(X̄)− f(θ))2 − σf (θ)

∣∣∣
≤ 2
(

3C
(1+ρ)/2
P (ξ)

( d
n

)ρ/2
+
√
nC

s/2
P (ξ)

( d
n

)s/2)
and

sup
‖f‖Cs≤1

sup
θ∈E

W2(
√
n(fk(X̄)− f(θ)), σf (θ)Z)

≤ 2
(

3C
(1+ρ)/2
P (ξ)

( d
n

)ρ/2
+
√
nC

s/2
P (ξ)

( d
n

)s/2)
with σf (θ) = σf (θ, ξ). Assuming that d . nα for some α ∈ (0, 1) and s > 1

1−α ,
the right-hand sides of the above bounds tend to zero as n → ∞, implying
that

sup
‖f‖Cs≤1

sup
θ∈E

∣∣∣√nE1/2
θ (fk(X̄)− f(θ))2 − σf (θ)

∣∣∣→ 0

and

sup
‖f‖Cs≤1

sup
θ∈E

W2(
√
n(fk(X̄)− f(θ)), σf (θ)Z)→ 0

(where we also used properties (12) and (13) of metric W2). In view of bound
(14) and property (13), the last relationship also implies that, for all σ0 > 0,

sup
‖f‖Cs≤1

sup
θ∈E,σf (θ)≥σ0

dK

(√n(fk(X̄)− f(θ))

σf (θ)
, Z
)
→ 0 as n→∞,

which completes the proof.

We turn to the proof of Proposition 1.

Proof Note that, for the model X̄ = θ + ξ̄, ξ̄ ∼ N(0;Σξ/2), formula (18)
becomes

(Bjf)(θ) = E
j∑
l=0

(−1)j−l
(
j

l

)
f
(
θ +

1√
2

l∑
i=1

ξi

)
.

Note also that 1√
2

∑l
i=1 ξi

d
=
√

l
2ξ. Thus, for

V̂j(θ; ξ) =

j∑
l=0

(−1)j−l
(
j

l

)
f
(
θ +

√
l

2
ξ
)
,
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we have EV̂j(θ; ξ) = (Bjf)(θ), which implies that Ef̂k(θ; ξ) = fk(θ). Note also
that the function g(x) := fk(θ;x), x ∈ E is continuously differentiable with

‖g′‖L∞ =
∥∥∥ k∑
j=0

(−1)j(Vj)
′
x(θ; ·)

∥∥∥
L∞
≤

k∑
j=0

‖(Vj)′x(θ; ·)‖L∞

≤
k∑
j=0

j∑
l=0

(
j

l

)√
l

2
‖f ′‖L∞ ≤

√
k2k+1/2‖f ′‖L∞ .

Therefore, by Poincaré inequality,

Var(f̂k(θ; ξ)) = Var(g(ξ)) ≤ ‖Σξ‖‖g′‖2L∞
≤ k22k+1‖f ′‖2L∞‖Σξ‖ ≤ k22k+1‖f‖2Cs‖Σξ‖. (31)

Since X̄ and ξ are independent, we can now condition on X̄ to get

Eθ(f̂k(X̄)− f(θ))2 = Eθ(f̂k(X̄)− fk(X̄) + fk(X̄)− f(θ))2

EθE((f̂k(X̄)− fk(X̄))2|X̄) + 2EθE((f̂k(X̄)− fk(X̄)|X̄)(fk(X̄)− f(θ))

+ Eθ(fk(X̄)− f(θ))2. (32)

Note that

E((f̂k(X̄; ξ)− fk(X̄)|X̄) = 0

since f̂k(θ; ξ) is an unbiased estimator of fk(θ). Moreover, by bound (31),

E((f̂k(X̄)− fk(X̄))2|X̄) ≤ k22k+1‖f‖2Cs‖Σξ‖.

Therefore,

Eθ(f̂k(X̄)− f(θ))2 ≤ k22k+1‖f‖2Cs‖Σξ‖+ Eθ(fk(X̄)− f(θ))2,

and the result follows from the bound of Theorem 1.

We will now prove Proposition 2.

Proof As in the proof of Proposition 1,

EṼj(θ; ξ̃i) =

j∑
l=0

(−1)j−l
(
j

l

)
Ef
(
θ +

√
l

n
ξ̃i

)
= (Bjf)(θ),

which implies that Ef̃k(θ; ξ̃i) = fk(θ) and Ef̂m,k(θ) = fk(θ), θ ∈ E. Moreover,
using Poincaré inequality, we get (similarly to (31)) that

Var(f̃k(θ; ξ̃i)) ≤ k22k+1‖f‖2Cs
‖Σξ‖
n

.
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Therefore, for all θ ∈ E,

Var(f̂m,k(θ)) =
1

m2

m∑
i=1

Var(f̃k(θ; ξ̃i)) ≤ k22k+1‖f‖2Cs
‖Σξ‖
nm

. (33)

Since {ξ̃i : i = 1, . . . ,m} and X̄ are independent, we can use the same condi-
tioning argument as in (32) to get

Eθ(f̂k(X̄)− f(θ))2 = EθE((f̂k(X̄)− fk(X̄))2|X̄) + Eθ(fk(X̄)− f(θ))2,

which, in view of (33), implies that

|Eθ(f̂k(X̄)− f(θ))2 − Eθ(fk(X̄)− f(θ))2| ≤ k22k+1‖f‖2Cs
‖Σξ‖
nm

. (34)

Taking into account (2), this immediately implies (6).
If ‖Σξ‖ . 1 and m→∞ as n→∞, bound (34) also implies that

sup
‖f‖Cs≤1

sup
θ∈Θ
|nEθ(f̂k(X̄)− f(θ))2 − nEθ(fk(X̄)− f(θ))2| → 0

as n→∞. Together with (3), this yields (7).
Finally, it also follows from bound (33) (again, by conditioning on X̄) that

‖f̂m,k(X̄)− fk(X̄)‖2L2(Pθ) = EθE((f̂m,k(X̄)− fk(X̄))2|X̄) ≤ k22k+1‖f‖2Cs
‖Σξ‖
nm

.

Therefore, using (12) and (13), we get

W2(
√
n(f̂m,k(X̄)− f(θ)),

√
n(fk(X̄)− f(θ)))

≤
√
n‖f̂m,k(X̄)− fk(X̄)‖L2(Pθ) ≤ k

1/22k+1/2‖f‖Cs
‖Σξ‖1/2√

m
.

If ‖Σξ‖ . 1 and m → ∞ as n → ∞, the last bound and (13) imply that, for
all σ0 > 0,

sup
‖f‖Cs≤1

sup
θ∈Θ,σf (θ)≥σ0

W2

(√n(f̂m,k(X̄)− fk(θ))

σf (θ)
,

√
n(fk(X̄)− f(θ))

σf (θ)

)
→ 0

as n→∞, and the same limit relationship also holds for the distance dK (in
view of inequality (14)). It remains to combine it with (4) to complete the
proof.

Acknowledgements V. Koltchinskii was supported in part by NSF Grant DMS-1810958.
M. Zhilova was supported in part by NSF Grant DMS-1712990.



24 Vladimir Koltchinskii, Mayya Zhilova

References

1. F. Barthe and B. Klartag. Spectral gaps, symmetries and log-concave perturbations.
2019, arXiv:1907.01823.

2. P. Bickel and Y. Ritov. Estimating integrated square density derivatives: sharp best
order of convergence estimates. Sankhya, 1988, 50, 381–393.
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