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Abstract

We investigate the capacity control provided by
dropout in various machine learning problems.
First, we study dropout for matrix completion,
where it induces a distribution-dependent regular-
izer that equals the weighted trace-norm of the
product of the factors. In deep learning, we show
that the distribution-dependent regularizer due to
dropout directly controls the Rademacher com-
plexity of the underlying class of deep neural net-
works. These developments enable us to give con-
crete generalization error bounds for the dropout
algorithm in both matrix completion as well as
training deep neural networks.

1. Introduction

Dropout is a popular algorithmic regularization technique
for training deep neural networks that aims at “breaking
co-adaptation” among neurons by randomly dropping them
at training time (Hinton et al., 2012). Dropout has been
shown effective across a wide range of machine learning
tasks, from classification (Srivastava et al., 2014; Szegedy
et al., 2015) to regression (Toshev & Szegedy, 2014). No-
tably, dropout is considered an essential component in the
design of AlexNet (Krizhevsky et al., 2012), which won the
ImageNet challenge in 2012 with a significant margin.

Dropout regularizes the empirical risk by randomly perturb-
ing the model parameters during training. A natural first
step toward understanding generalization due to dropout,
therefore, is to instantiate the explicit form of the regularizer
due to dropout. In linear regression, with dropout applied
to the input layer (i.e., on the input features), the explicit
regularizer was shown to be akin to a data-dependent ridge
penalty (Srivastava et al., 2014; Wager et al., 2013; Baldi
& Sadowski, 2013; Wang & Manning, 2013). In factored
models, dropout yields more exotic forms of regulariza-
tion. For instance, dropout induces regularizer that behaves
similar to nuclear norm regularization in matrix factoriza-
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tion (Cavazza et al., 2018; Mianjy et al., 2018), in two layer
linear networks (Mianjy et al., 2018), and in deep linear
networks (Mianjy & Arora, 2019). However, none of the
works above discuss how the induced regularizer provides
capacity control, or help us establish generalization bounds
for dropout.

In this paper, we give explicit forms of the regularizers
induced by dropout for the matrix sensing problem and two-
layer neural networks with ReLU activations. Further, we
establish capacity control due to dropout and give precise
generalization bounds. Our key contributions are as follows.

1. Our generalization bounds are solely in terms of
the value of the explicit regularizer due to dropout.
This is a significant departure from most of the prior
work wherein dropout is analyzed in conjunction with
additional norm-based capacity control, e.g., max-
norm (Wan et al., 2013; Gao & Zhou, 2016), or `p norm
on the weights of the model (Zhai & Wang, 2018).

2. Our generalization bounds are data-dependent. We
identify a simple distributional property (a notion we
refer to as retentivity) that yields tight generalization
bounds as evidenced by matching lower and upper
bounds. We believe that this property may be useful
more generally; see Zhang et al. (2021) for another
application.

3. Our results emphasize the role of parametrization, i.e.,
the choice of model architecture. We find that dropout
does not yield useful capacity control when training a
two-layer linear networks (unless we further assume
that the covariance matrix of input features satisfies cer-
tain isotropic assumption). On the other hand, dropout
for training a network with convolutional topology or
a non-linearity imparts useful inductive bias (see Sec-
tion 4 for more details).

4. We provide extensive numerical evaluations for vali-
dating our theory including verifying that the proposed
theoretical bound on the Rademacher complexity is
predictive of the observed generalization gap as well as
highlighting how dropout breaks “co-adaptation”, a no-
tion that was the main motivation behind the invention
of dropout (Hinton et al., 2012).
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The rest of the paper is organized as follows.

1. In Section 2, we study dropout for matrix completion,
wherein, the matrix factors are dropped randomly during
training. We show that this algorithmic procedure induces
a data-dependent regularizer that in expectation behaves
similar to the weighted trace-norm which has been shown
to yield strong generalization guarantees for matrix comple-
tion (Foygel et al., 2011).

2. In Section 3, we study dropout in two-layer ReLU net-
works. We show that the regularizer induced by dropout
is a data-dependent measure that in expectation behaves
as `2-path norm (Neyshabur et al., 2015a), and establish
distribution-dependent generalization bounds.

3. In Section 5, we present empirical evaluations that con-
firm our theoretical findings for matrix completion and deep
regression on real world datasets including the MovieLens
data, as well as the MNIST and Fashion MNIST datasets.

1.1. Related Work

Dropout was first introduced by Hinton et al. (2012) as an
effective heuristic for algorithmic regularization, yielding
lower test errors on the MNIST and TIMIT datasets. In a
subsequent work, Srivastava et al. (2014) reported similar
improvements over several tasks in computer vision (on
CIFAR-10/100 and ImageNet datasets), speech recognition,
text classification and genetics.

Thenceforth, dropout has been widely used in training state-
of-the-art systems for several tasks including large-scale
visual recognition (Szegedy et al., 2015), large vocabulary
continuous speech recognition (Dahl et al., 2013), image
question answering (Yang et al., 2016), handwriting recog-
nition (Pham et al., 2014), sentiment prediction and ques-
tion classification (Kalchbrenner et al., 2014), dependency
parsing (Chen & Manning, 2014), and brain tumor segmen-
tation (Havaei et al., 2017).

Following the empirical success of dropout, there have been
several studies in recent years aimed at establishing theo-
retical underpinnings of why and how dropout helps with
generalization. Early work of Baldi & Sadowski (2013)
showed that for a single linear unit (and a single sigmoid
unit, approximately), dropout amounts to weight decay reg-
ularization on the weights. A similar result was shown by
McAllester (2013) in a PAC-Bayes setting. For generalized
linear models, Wager et al. (2013) established that dropout
performs an adaptive regularization which is equivalent to a
data-dependent scaling of the weight decay penalty. In their
follow-up work, Wager et al. (2014) show that for linear
classification, under a generative assumption on the data,
dropout improves the convergence rate of the generalization
error. Finally, Mianjy & Arora (2020) studied dropout in
over-parameterized two-layer networks with ReLU activa-
tion and gave precise generalization error rates under a data

separability assumption. In contrast, this paper focuses on
predictors represented in a factored form and give gener-
alization bounds for matrix learning and two layer ReLU
networks and does not require over-parameterization or data
separability.

In a related line of work, Helmbold & Long (2015) study the
structural properties of the dropout regularizer in the con-
text of linear classification. They characterize the landscape
of the dropout criterion in terms of unique minimizers and
establish non-monotonic and non-convex nature of the regu-
larizer. In follow up work, Helmbold & Long (2017) extend
their analysis to dropout in deep ReLU networks and sur-
prisingly find that the nature of regularizer is different from
that in linear classification. In particular, they show that
unlike weight decay, dropout regularizer in deep networks
can grow exponentially with depth and remains invariant
to rescaling of inputs, outputs, and network weights. We
confirm some of these findings in our theoretical analysis.
However, counter to the claims of Helmbold & Long (2017),
we argue that dropout does indeed prevent co-adaptation.

Using an approach closely related to ours, several works
bound the Rademacher complexity of deep neural networks
trained using dropout. In particular, Gao & Zhou (2016),
(Wan et al., 2013) and (Zhai & Wang, 2018), all show that
Rademacher complexity of the target class decreases, as-
suming additional norm bounds on the weight vectors. In a
recent work, Wei et al. (2020) disentangle the explicit and
implicit regularization effects of dropout; i.e. the regular-
ization due to the expected bias that is induced by dropout,
versus the regularization induced by the noise due to the
randomness in dropout. They propose an approximation of
the explicit regularizer for deep neural networks and show it
to be effective in practice. Their generalization bounds, how-
ever, are limited to linear models and similar to other works
we discuss above, require weights to be norm bounded. In
this paper, we argue, formally, that dropout training alone
does not directly control the norms of the weight vectors.
Therefore, we seek to understand if the expected explicit reg-
ularizer alone is sufficient for controlling the capacity of the
underlying model. We give generalization error bounds for
matrix completion and non-linear neural networks, based
solely on the expected explicit regularizer and without addi-
tional norm constraints on the predictors.

Finally, we note that Mou et al. (2018) give Rademacher
complexity bounds that are independent of parameter norms,
but require boundedness of the network output. Further,
rather than bound generalization gap with a function that
vanishes asymptotically with sample size, Mou et al. (2018)
bound the one-sided gap between population risk and the
sum of empirical risk and expected explicit regularizer. We
show that for two-layer networks, the expected explicit reg-
ularizer is a positive term, implying that generalization error
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of Mou et al. (2018) does not go to zero, unless the dropout
rate goes to zero; see the remark following Corollary 1 for
a formal statement. We emphasize that this is not the case
in successful machine learning systems, as the inventors of
Dropout (Srivastava et al., 2014) pointed out “[dropout rate]
can be chosen using a validation set or can simply be set at
0.5, which seems to be close to optimal for a wide range of
networks and tasks.”

There are a bunch of other works that do not fall into any of
the categories above, and, in fact, are somewhat unrelated
to the focus in this paper. Nonetheless, we discuss them
here for completeness. For instance, Gal & Ghahramani
(2016) study dropout as Bayesian approximation. Bank &
Giryes (2018) draw insights from frame theory to connect
the notion of equiangular tight frames with dropout training
in auto-encoders. Li et al. (2016) study a variant based
on multinomial sampling (different nodes dropped with
different rates), and establish sub-optimality bounds for
learning linear models (for convex Lipschitz loss functions).

Matrix Factorization with Dropout. Our study of
dropout is motivated in part by recent works of Cavazza
et al. (2018), Mianjy et al. (2018), and Mianjy & Arora
(2019). This line of work was initiated by Cavazza et al.
(2018), who studied dropout for low-rank matrix factoriza-
tion without constraining the rank of the factors or adding an
explicit regularizer to the objective. They show that dropout
in the context of matrix factorization yields an explicit reg-
ularizer whose convex envelope is given by nuclear norm.
This result is further strengthened by Mianjy et al. (2018)
who show that induced regularizer is indeed nuclear norm.

While matrix factorization is not a learning problem per se
(for instance, what is training versus test data), in follow-up
works by Mianjy et al. (2018) and Mianjy & Arora (2019),
the authors show that training deep linear networks with
`2-loss using dropout reduces to the matrix factorization
problem if the marginal distribution of the input feature
vectors is assumed to be isotropic, i.e., E[xx>] = I. We
note that this is a strong assumption. If we do not assume
isotropy, we show that dropout induces a data-dependent
regularizer which amounts to a simple scaling of the pa-
rameters and, therefore, does not control capacity in any
meaningful way. We revisit this discussion in Section 4. To
summarize, while we are motivated by Cavazza et al. (2018),
the problem setup, the nature of statements in this paper,
and the tools we use are different from that in Cavazza et al.
(2018). Our proofs are simple and quickly verified. We do
build closely on the prior work of Mianjy et al. (2018).

However, different from Mianjy et al. (2018), we rigorously
argue for dropout in matrix completion by 1) showing that
the induced regularizer is equal to weighted trace-norm,
which as far as we know, is a novel result, 2) giving strong
generalization bounds, and 3) providing extensive experi-

mental evidence that dropout provides state of the art perfor-
mance on one of the largest datasets in recommendation sys-
tems research. Beyond that we rigorously extend our results
to two layer ReLU networks, describe the explicit regular-
izer, bound the Rademacher complexity of the hypothesis
class controlled by dropout, show precise generalization
bounds, and support them with empirical results.

1.2. Notation and Preliminaries

We denote matrices, vectors, scalar variables and sets by
Roman capital letters, Roman small letters, small letters,
and script letters, respectively (e.g. X, x, x, and X ).
For any integer d, we represent the set {1, . . . , d} by [d].
For any vector x 2 Rd, diag(x) 2 Rd⇥d represents the
diagonal matrix with the i

th diagonal entry equal to xi,
and

p
x is the elementwise squared root of x. Let kxk

represent the `2-norm of vector x, and kXk, kXkF , and
kXk⇤ represent the spectral norm, the Frobenius norm,
and the nuclear norm of matrix X, respectively. Further-
more, kXkp,q :=

�P
j

�P
i |Xi,j |

p
�q/p�1/q. Let X† de-

note the Moore-Penrose pseudo-inverse of X. Given a pos-
itive definite matrix C, we denote the Mahalonobis norm
as kxk2C = x>Cx. For a random variable x that takes val-
ues in X , given n i.i.d. samples {x1, · · · , xn}, the em-
pirical average of a function f : X ! R is denoted by
bEi[f(xi)] := 1

n

P
i2[n] f(xi). Furthermore, we denote the

second moment of x as C := E[xx>]. The standard in-
ner product is represented by h·, ·i, for vectors or matrices,
where hX,X0

i = Tr(X>X0).

We are primarily interested in understanding how dropout
controls the capacity of the hypothesis class when using
dropout for training. To that end, we consider Rademacher
complexity, a sample dependent measure of complexity
of a hypothesis class that can directly bound the general-
ization gap (Bartlett & Mendelson, 2002). Given a sam-
ple S = {(x1, y1), . . . , (xn, yn)} of size n, the empirical
Rademacher complexity of a function class F with respect
to S , and the expected Rademacher complexity are defined,
respectively, asRS(F) = E� supf2F

1
n

Pn
i=1 �if(xi) and

Rn(F) = Ex[RS(F)]. where �i are i.i.d. Rademacher
random variables.

2. Matrix Sensing

We begin with understanding dropout for matrix sensing, a
problem which arguably is an important instance of a matrix
learning problem with lots of applications, and is well un-
derstood from a theoretical perspective. The problem setup
is the following. Let M⇤ 2 Rd2⇥d0 be a matrix with rank
r⇤ := Rank(M⇤). Let A(1)

, . . . ,A(n) be a set of measure-
ment matrices of the same size as M⇤. The goal of matrix
sensing is to recover the matrix M⇤ from n observations of
the form yi = hM⇤,A(i)

i such that n ⌧ d2d0. A natural
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approach is to represent the matrix in terms of factors and
solve the following empirical risk minimization problem:

min
U,V

bL(U,V) := bEi(yi � hUV>
,A(i)

i)2 (1)

where U = [u1, . . . , ud1 ] 2 Rd2⇥d1 ,V = [v1, . . . , vd1 ] 2
Rd0⇥d1 . When the number of factors is unconstrained,
i.e., when d1 � r⇤, there exist many “bad” empirical
minimizers, i.e., those with a large true risk L(U,V) :=
E(y � hUV>

,Ai)2. Interestingly, Li et al. (2018) showed
recently that under a restricted isometry property (RIP), de-
spite the existence of such poor ERM solutions, gradient
descent with proper initialization is implicitly biased towards
finding solutions with minimum nuclear norm – this is an
important result which was first conjectured and empirically
verified by Gunasekar et al. (2017). We do not make an RIP
assumption here. Further, we argue that for the most part,
modern machine learning systems employ explicit regular-
ization techniques. In fact, as we show in the experimental
section, the implicit bias due to (stochastic) gradient descent
does not prevent it from blatant overfitting in the matrix
completion problem.

We propose solving the ERM problem (1) using dropout,
where at training time, corresponding columns of U and
V are dropped uniformly at random. As opposed to an
implicit effect of gradient descent, dropout explicitly reg-
ularizes the empirical objective. It is then natural to ask,
in the case of matrix sensing, if dropout also biases the
ERM towards certain low norm solutions. To answer this,
we begin with the observation that dropout can be viewed
as an instance of SGD on the following objective (Wang
& Manning, 2013; Srivastava et al., 2014) bLdrop(U,V) =
bEjEB(yj � hUBV>

,A(j)
i)2, where B 2 Rd1⇥d1 is a diag-

onal matrix whose diagonal elements are Bernoulli random
variables distributed as Bii ⇠

1
1�pBer(1� p). It is easy to

show that for p 2 [0, 1):

bLdrop(U,V) = bL(U,V) + p

1� p

bR(U,V), (2)

where bR(U,V) :=
Pd1

i=1
bEj(u>i A

(j)vi)2 is a data-
dependent term that captures the explicit regularizer due
to dropout. A similar result was shown by Mianjy et al.
(2018), but we provide a proof for completeness (see Propo-
sition 2 in the Appendix).

Furthermore, given that we seek a minimum of bLdrop, it
suffices to consider the factors with the minimal value of
the regularizer among all that yield the same empirical
loss. This motivates studying the following distribution-
dependent induced regularizer:

⇥(M) := min
UV>=M

R(U,V), where R(U,V) :=EA[ bR(U,V)].

We instantiate induced regularizer for two instances of ran-
dom measurements (Prop. 3 in Appendix).

Gaussian Measurements. For all j 2 [n], let A(j) be
standard Gaussian matrices. In this case, it is easy to see
that L(U,V) = kM⇤ � UV>

k
2
F and we recover the matrix

factorization problem. Furthermore, we know from Mianjy
& Arora (2019) that dropout regularizer acts as trace-norm
regularization, i.e., ⇥(M) = 1

d1
kMk

2
⇤
.

Matrix Completion. For all j 2 [n], let A(j) be an in-
dicator matrix drawn from a product distribution over the
rows and columns. That is, the probability of choosing
the indicator of the (i, k)-th element is p(i)q(k), where
p(i) and q(k) denote the probability of choosing the i-th
row and the k-th column, respectively. Then, ⇥(M) =
1
d1
k diag(

p
p)UV> diag(

p
q)k2

⇤
is the weighted trace-norm

studied by Srebro & Salakhutdinov (2010) and Foygel et al.
(2011).

These observations are specifically important because they
connect dropout, an algorithmic heuristic in deep learning,
to strong complexity measures that are empirically effective
as well as theoretically well understood. To illustrate, here
we give a generalization bound for matrix completion using
dropout in terms of the value of the explicit regularizer at
the minimizer.
Theorem 1. Assume that d2 � d0 and kM⇤k  1. Fur-
thermore, assume that mini,k p(i)q(k) �

log(d2)
n
p
d2d0

. Let Let
(U,V) be the output of ERM with dropout with R(U,V) 
↵/d1. Then, for any � 2 (0, 1), the following generalization
bounds holds with probability at least 1� � over a sample
of size n:

L(g(UV>))  bL(U,V) + 8

s
2↵d2 log(d2) +

1
4 log(2/�)

n

where g(M) thresholds M at ±1, i.e. g(M)(i, j) =
max{�1,min{1,M(i, j)}}, and L(g(UV>)) := E(y �

hg(UV>),Ai)2 is the true risk of g(UV>).

The proof of Theorem 1 follows from standard generaliza-
tion bounds for `2 loss (Mohri et al., 2018) based on the
Rademacher complexity (Bartlett & Mendelson, 2002) of
the class of functions with weighted trace-norm bounded by
p
↵, i.e. M↵ := {M : k diag(

pp)M diag(
pq)k2

⇤
 ↵}.

The non-degeneracy condition mini,j p(i)q(j) �
log(d2)
n
p
d2d0

is required to obtain a bound on the Rademacher com-
plexity of M↵, as established by Foygel et al. (2011).
Furthermore, since the induced regularizer is scaled as
1/d1 compared to the squared weighted trace-norm, i.e.
⇥(UV>) = 1

d1
k diag(

p
p)UV> diag(

pq)k2
⇤
, we scale ↵

accordingly by letting R(U,V)  ↵/d1.

In practice, for models that are trained with dropout, the
training error bL(U,V) is negligible (see Figure 1 for exper-
iments on the MovieLens dataset). Moreover, given that
the sample size is large enough, the third term can be made
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arbitrarily small. Having said that, the second term, which
is Õ(

p
↵d2/n), dominates the right hand side of generaliza-

tion error bound in Theorem 9. In Appendix, we also give
optimistic generalization bounds that decay as Õ(ad2/n).

Finally, the required sample size depends on the value of the
explicit regularizer (i.e., ↵/d1), and hence, on the dropout
rate p. In particular, increasing the dropout rate increases
the regularization parameter � := p

1�p , thereby intensifying
the penalty due to the explicit regularizer. Intuitively, a
larger dropout rate p results in a smaller ↵, thereby a tighter
generalization gap can be guaranteed. We show through
experiments that that is indeed the case in practice.

3. Non-linear Networks

Next, we focus on neural networks with a single hidden layer.
LetX ✓ Rd0 andY ✓ [�1, 1]d2 denote the input and output
spaces, respectively. Let D denote the joint probability dis-
tribution on X ⇥ Y . Given n examples {(xi, yi)}ni=1 ⇠ D

n

drawn i.i.d. from the joint distribution and a loss function
` : Y ⇥ Y ! R, the goal of learning is to find a hypoth-
esis fw : X ! Y , parameterized by w, that has a small
population risk L(fw) := ED[`(fw(x), y)].

We focus on the squared `2 loss, i.e., `(y, y0) =
ky � y0k2, and study the generalization properties of
the dropout algorithm for minimizing the empirical risk
bL(fw) := bEi[kyi � fw(xi)k2]. We consider the hypothesis
class associated with feed-forward neural networks with 2
layers, i.e., functions of the form fw(x) = U�(V>x), where
U = [u1, . . . , ud1 ] 2 Rd2⇥d1 ,V = [v1, . . . , vd1 ] 2 Rd0⇥d1

are the weight matrices. The parameter w is the collection
of weight matrices {U,V} and � : R ! R is the ReLU
activation function applied entrywise to an input vector. As
in Section 2, we view dropout as an instance of stochastic
gradient descent on the following dropout objective:

bLdrop(w) := bEiEBkyi�UB�(V>xi)k2, (3)

where B is a diagonal randommatrix with diagonal elements
distributed i.i.d. as Bii ⇠

1
1�pBern(1 � p), i 2 [d1], for

some dropout rate p. We seek to understand the explicit
regularizer due to dropout:

bR(w) := bLdrop(w)� bL(fw). (4)

We denote the output of the i-th hidden node on an input
vector x by ai(x) 2 R; for example, a2(x) = �(v>2 x).
Similarly, the vector a(x) 2 Rd1 denotes the activation
of the hidden layer on input x. Using this notation, we
can rewrite the objective in (3) as bLdrop(w) := EiEBkyi �
UBa(xi)k2. It is then easy to show that the regularizer due
to dropout in (4) is given as (Proposition 4 in Appendix):

bR(w) =
p

1� p

d1X

j=1

kujk2ba2j , where baj =
q

bEiaj(xi)2.

The explicit regularizer bR(w) is a summation over hidden
nodes, of the product of the squared norm of the outgoing
weights with the empirical second moment of the output
of the corresponding neuron. We should view it as a data-
dependent variant of the `2 path-norm of the network, stud-
ied recently by Neyshabur et al. (2015b) and shown to yield
capacity control in deep learning. Indeed, if we consider
ReLU activations and input distributions that are symmetric
and isotropic (Mianjy et al., 2018), the expected regularizer
is equal to the sum over all paths from input to output of
the product of the squares of weights along the paths, i.e.,
R(w) := E[ bR(w)] = 1

2

Pd0,d1,d2

i0,i1,i2=1 U(i2, i1)
2V(i0, i1)2,

which is precisely the squared `2 path-norm of the network.
We refer the reader to Proposition 5 in the Appendix for a
formal statement and proof.

Generalization Bounds. To understand the generaliza-
tion properties of dropout, we focus on the following
distribution-dependent hypothesis class

F↵ := {fw : x 7! u>�(V>x),
d1X

i=1

|ui|ai  ↵}, (5)

where u 2 Rd1 is the top layer weight vector, ui denotes the
i-th entry of u, and a2i :=Ex[ba2i ]=Ex[ai(x)2] is the expected
squared activation of the i-th hidden node. For simplicity,
we focus on networks with one output neuron (d2 = 1);
extension to multiple output neurons is straightforward.

We argue that networks trained with dropout belong to
the class F↵, for a small value of ↵. In particular,
by Cauchy-Schwartz inequality, it is easy to to see thatPd1

i=1 |ui|ai 
p
d1R(w). Thus, for a fixed width, dropout

implicitly controls the function class F↵. More importantly,
this inequality is loose if a small subset of hidden nodes
J ⇢ [d1] “co-adapt” in a way that for all j 2 [d1] \ J ,
the other hidden nodes are almost inactive, i.e. ujaj ⇡ 0.
In other words, by minimizing the expected regularizer,
dropout is biased towards networks where gap between
R(w) and (

Pd1

i=1|ui|ai)2/d1 is small, which in turn hap-
pens if |ui|ai ⇡ |uj |aj , 8i, j 2 [d1]. In this sense, dropout
breaks “co-adaptation” between neurons by promoting so-
lutions with nearly equal contribution from hidden neurons.

As we mentioned in the introduction, a bound on the dropout
regularizer is not sufficient to guarantee a bound on a norm-
based complexity measures that are common in the deep
learning literature (see, e.g., Golowich et al. (2018) and the
references therein), whereas a norm bound on the weight
vector would imply a bound on the explicit regularizer due
to dropout. Formally, we show the following.
Proposition 1. For anyC > 0, there exists a distribution on
the unit Euclidean sphere, and a network fw : x 7! �(w>x),
such that R(w) =

p
E�(w>x)2  1, while kwk > C.

In other words, even though we connect the dropout regu-
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larizer to path-norm, the data-dependent nature of the regu-
larizer prevents us from leveraging that connection in data-
independent manner (i.e., for all distributions). At the same
time, making strong distributional assumptions (as in Propo-
sition 5) would be impractical. Instead, we argue for the
following milder condition on the input distribution which
we show as sufficient to ensure generalization.
Assumption 1 (�-retentive). The marginal input distribu-
tion is �-retentive for some � 2 (0, 1/2], if for any non-zero
vector v 2 Rd, it holds that E�(v>x)2 � �E(v>x)2.
Intuitively, what the assumption implies is that the vari-
ance (aka, the information or signal in the data) in the
pre-activation at any node in the network is not quashed
considerably due to the non-linearity. In fact, no reason-
able training algorithm should learn weights where � is
small. However, we steer clear from algorithmic aspects of
dropout training, and make the assumption above for every
weight vector as we need to take a union bound. We now
present the first main result of this section, which bounds
the Rademacher complexity of F↵ in terms of ↵, the re-
tentiveness coefficient �, and Mahalanobis norm of data
w.r.t. the pseudo-inverse of the second moment matrix, i.e.
kXk2C† =

Pn
i=1 x

>

i C
†xi.

Theorem 2. For any sample S = {(xi, yi)}ni=1 of size n,
RS(F↵) 

2↵kXkC†
n
p
�

. Furthermore, it holds for the expected

Rademacher complexity that Rn(F↵)  2↵
q

Rank(C)
�n .

First, note that the bound depends on the quantity kXkC†

which can be in the same order as kXkF with both scal-
ing as ⇣

p
nd0; the latter is more common in the litera-

ture (Neyshabur et al., 2018; Bartlett et al., 2017; Neyshabur
et al., 2017; Golowich et al., 2018; Neyshabur et al.,
2015b). This is unfortunately unavoidable, unless one
makes stronger distributional assumptions.

Second, as we discussed earlier, the dropout regularizer
directly controls the value of ↵, thereby controlling the
Rademacher complexity in Theorem 2. This bound also
gives us a bound on the Rademacher complexity of the
networks trained using dropout. To see that, consider the
following class of networks with bounded explicit regu-
larizer, i.e., Hr := {hw : x 7! u>�(V>x), R(u,V)  r}.
Then, Theorem 2 yieldsRS(Hr) 

2
p
d1rkXkC†
n
p
�

. In fact, we
can show that this bound is tight up to 1/

p
� by a reduction

to the linear case. Formally, we show the following.
Theorem 3 (Lowerbound). There is a constant c such that
for any r>0, RS(Hr)�

c
p
d1rkXkC†

n .

Moreover, it is easy to give a generalization bound based on
Theorem 2 that depends only on the distribution dependent
quantities ↵ and �. Let gw(·) := max{�1,min{1, fw(·)}}
project the network output fw onto the range [�1, 1]. We
have the following generalization gurantees for gw.

Corollary 1. For any w 2 F↵, for any � 2 (0, 1), with
probability at least 1� � over a sample S of size n, we have

L(gw)  bL(gw) +
16↵kXkC†p

�n
+ 12

q
log(2/�)

2n .

Comparison with Mou et al. (2018) We note that the
Corollary above bounds the generalization gap, i.e., L(·)�
bL(·). In contrast, Mou et al. (2018) bound L(·)� bLdrop(·),
where bLdrop(w) = bL(fw) + bR(w), as in Equation (4). The
explicit regularizer bR(·) is a positive quantity that does
not vanish with the sample size. Therefore, the bound of
Mou et al. (2018) can guarantee that the generalization gap
decays as 1/

p
n only if the dropout rate decreases as 1/

p
n

(to ensure that bR(·) = O(1/
p
n)). In sharp contrast, our

analysis is valid for any dropout rate.

�-independent Bounds. Geometrically, �-retentiveness
requires that for any hyperplane passing through the ori-
gin, both halfspaces contribute significantly to the sec-
ond moment of the data in the direction of the normal
vector. It is not clear, however, if � can be estimated
efficiently on a dataset. Nonetheless, when X ✓ Rd0

+ ,
which is the case for image datasets, a simple symmetriza-
tion technique, described below, allows us to give bounds
that are �-independent. We propose the following ran-
domized symmetrization. Given a training sample S =
{(xi, yi), i 2 [n]}, consider the randomly perturbed dataset,
S
0 = {(⇣ixi, yi), i 2 [n]}, where ⇣i’s are i.i.d. Rademacher

random variables. We give a generalization bound (w.r.t.
the original data distribution) for the hypothesis class with
bounded regularizer w.r.t. perturbed data distribution.
Corollary 2. Given an i.i.d. sample S = {(xi, yi)}ni=1,
let F 0

↵ := {fw : x 7! u>�(V>x),
Pd1

i=1 |ui|a
0

i  ↵},

where a
0

i
2 := Ex,⇣ [ai(⇣x)2]. For any w 2 F

0

↵, for any
� 2 (0, 1), with probability at least 1� � over a sample of
size n and the randomization in symmetrization, we have

that L(gw)  2bL(gw) +
46↵kXkC†

n + 24
q

log(2/�)
2n , where bL

is evaluated on the symmetrized sample S 0.

Note that the population risk of the clipped predictor
gw(·) := max{�1,min{1,fw(·)}} is bounded in terms of
empirical risk on S

0. Finally, we verify in Section 5 that
symmetrization of the training set, on MNIST and Fashion-
MNIST datasets, does not have an effect on performance of
the trained models.

4. Role of Parametrization

In this section, we argue that parametrization plays an
important role in determining the nature of the inductive
bias. We begin by considering matrix sensing in non-
factorized form, which entails minimizing bL(M) := bEi(yi�
hvec (M) , vec

�
A(i)

�
i)2, where vec (M) denotes the column

vectorization of M. Then, the expected explicit regular-
izer due to dropout equals R(M) = p

1�pk vec (M) k2diag(C),
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plain SGD dropout
width last iterate best iterate p = 0.1 p = 0.2 p = 0.3 p = 0.4
d1 = 30 0.8041 0.7938 0.7805 0.785 0.7991 0.8186
d1 = 70 0.8315 0.7897 0.7899 0.7771 0.7763 0.7833
d1 = 110 0.8431 0.7873 0.7988 0.7813 0.7742 0.7743
d1 = 150 0.8472 0.7858 0.8042 0.7852 0.7756 0.7722
d1 = 190 0.8473 0.7844 0.8069 0.7879 0.7772 0.772

Table 1. MovieLens dataset: Test RMSE of plain SGD as well as the dropout algorithm with various dropout rates for various factorization
sizes. The grey cells shows the best performance(s) in each row.

Figure 1.MovieLens dataset: training error (left), test error (middle), and generalization gap (right) for plain SGD and dropout with
p 2 {0.1, 0.2, 0.3, 0.4} as a function of number of iterations; factorization size, d1 = 70.

where C = E[vec (A) vec (A)>] is the second moment of
the measurement matrices. For instance, with Gaussian mea-
surements, the second moment equals the identity matrix, in
which case, the regularizer reduces to the Frobenius norm
of the parameters R(M) = p

1�pkMk
2
F . While such a ridge

penalty yields a useful inductive bias in linear regression, it
is not “rich” enough to capture the kind of inductive bias
that provides rank control in matrix sensing.

However, simply representing the hypotheses in a factored
form alone is not sufficient in terms of imparting a rich
inductive bias to the learning problem. Recall that in linear
regression, dropout, when applied on the input features,
yields ridge regularization. However, if we were to represent
the linear predictor in terms of a deep linear network, then
we argue that the effect of dropout is markedly different.
Consider a deep linear network, fw : x 7! Wk · · ·W1x with
a single output neuron. In this case, Mianjy & Arora (2019)
show that ⌫kfk2bC = min

fw=f
bR(w), where ⌫ is a regularization

parameter independent of the parameters w. Consequently,
in deep linear networks with a single output neuron, dropout
reduces to solving

min
u2Rd0

bEi(yi � u>xi)2 + ⌫kuk2bC.

All the minimizers of the above problem are solutions to
the system of linear equations (1 + ⌫

n )XX
>u = Xy, where

X = [x1, . . . , xn] 2 Rd0⇥n
, y = [y1; . . . ; yn] 2 Rn are the

design matrix and the response vector, respectively. In other
words, the dropout regularizer manifests itself merely as a
scaling of the parameters.

What we argue above may at first seem to contradict the
results of Section 2 on matrix sensing, which is arguably an
instance of regression with a two-layer linear network. Note

though that casting matrix sensing in a factored form as a
linear regression problem requires us to use a convolutional
structure. This is easy to check since

hUV>
,Ai = hvec

�
U>

�
, vec

�
V>A>

�
i

= hvec
�
U>

�
, (Id2 ⌦ V>) vec

�
A>

�
i,

where ⌦ is the Kronecker product, and we used the fact
that vec (AB) = (I ⌦ A) vec (B) for any pair of matrices
A,B. The expression (I⌦V>) represents a fully connected
convolutional layer with d1 filters specified by columns of V.
The convolutional structure in addition to dropout is what
imparts the problem of matrix sensing the nuclear norm
regularization. For nonlinear networks, however, a simple
feed-forward structure suffices as we saw in Section 3.

5. Experimental Results

In this section, we report our empirical findings on real
world datasets. All results are averaged over 50 independent
runs with random initialization.

Matrix Completion. We evaluate dropout on the Movie-
Lens dataset (Harper & Konstan, 2016), a publicly avail-
able collaborative filtering dataset that contains 10M ratings
for 11K movies by 72K users of the online movie recom-
mender service MovieLens. We initialize the factors using
the standard He initialization scheme (He et al., 2015). We
train the model for 100 epochs over the training data, where
we use a fixed learning rate of lr = 1, and a batch size of
2000. We report the results for plain SGD (p = 0.0) as well
as the dropout algorithm with p 2 {0.1, 0.2, 0.3, 0.4}.

Figure 1 shows the progress in terms of the training and
test error as well as the gap between them as a function
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Figure 2. (left) “co-adaptation”; (middle) generalization gap; and (right) ↵/
p
n as a function of the width of networks trained with

dropout on MNIST. In left figure, the dashed brown and dotted purple lines represent minimal and maximal co-adaptations, respectively.

of the number of iterations for d1 = 70. It can be seen
that plain SGD is the fastest in minimizing the empirical
risk. The dropout rate clearly determines the trade-off be-
tween the goodness of fit and the model complexity: as the
dropout rate p increases, the algorithm favors less complex
solutions that suffer larger empirical error (left figure) but
enjoy smaller generalization gap (right figure). The best
trade-off here seems to be achieved by a moderate dropout
rate of p = 0.3. We observe similar behaviour for different
factorization sizes; please see the Appendix for additional
plots with factorization sizes d1 2 {30, 110, 150, 190}.

It is remarkable, how even in the “simple” problem of matrix
completion, plain SGD lacks a proper inductive bias. As
it is clearly depicted in the middle plot, without explicit
regularization – in particular early stopping or dropout in
this figure – SGD suffers from gross overfitting. We further
illustrate this fact in Table 1, where we compare the test
root-mean-squared-error (RMSE) of plain SGD with the
dropout algorithm, for various factorization sizes. To show
the superiority of dropout over SGD with early stopping,
we give SGD the advantage of having access to the test set
(and not a separate validation set), and report the best iterate
in the third column. Even with this impractical privilege,
dropout performs significantly better (> 0.01 difference in
test RMSE).

Neural Networks. We train 2-layer neural networks with
and without dropout, on MNIST dataset of handwritten dig-
its and Fashion MNIST dataset of Zalando’s article images,
each of which contains 60K training examples and 10K
test examples, where each example is a 28⇥ 28 grayscale
image, associated with a label from 10 classes. We extract
two classes {4, 7} and label them as {�1,+1}. We observe
similar results across other choices of target classes. The
learning rate in all experiments is set to lr = 1e� 3. We
train the models for 30 epochs over the training set. We
run the experiments both with and without symmetrization.
Here we only report the results with symmetrization, and on

the MNIST dataset. For experiments without symmetriza-
tion, and experiments on FashionMNIST, please see the
Appendix. We remark that under the above experimental
setting, trained networks achieve 100% training accuracy.

For any node i 2 [d1], define its flow as  i := |ui|ai (respec-
tively  i := |ui|a

0

i for symmetrized data), which measures
the overall contribution of a node to the output of the net-
work. Co-adaptation occurs when a small subset of nodes
dominate the overall function of the network. We argue that
�(w) = k k1

p
d1k k2

is a suitable measure of co-adaptation (or
lack thereof) in a network parameterized by w. In case of
high co-adaptation, only a few nodes have a high flow, which
implies �(w) ⇡ 1

p
d1
. At the other end of the spectrum, all

nodes are equally active, in which case �(w) ⇡ 1. Figure 2
(left) illustrates this measure as a function of the network
width for several dropout rates p 2 {0, 0.25, 0.5, 0.75}. In
particular, we observe that a higher dropout rate corresponds
to less co-adaptation. More interestingly, even plain SGD is
implicitly biased towards networks with less co-adaptation.
Moreover, for a fixed dropout rate, the regularization effect
due to dropout decreases as we increase the width. Thus,
it is natural to expect more co-adaptation as the network
becomes wider, which is what we observe in the plots.

The generalization gap is plotted in Figure 2 (middle). As ex-
pected, increasing dropout rate decreases the generalization
gap. In our experiments, the generalization gap increases
with the width of the network. The figure on the right shows
the quantity ↵/

p
n that shows up in the Rademacher com-

plexity bounds in Section 3. We note that, the bound on the
Rademacher complexity is predictive of the generalization
gap, in the sense that a smaller bound corresponds to a curve
with smaller generalization gap.

6. Conclusion

In this paper, we studied the capacity control provided by
dropout in matrix completion as well as two-layer neural
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networks. The focus here has been on understanding how
the expected explicit regularizer alone – withought any addi-
tional norm-bounds on the weights – can provide generaliza-
tion. If one is interested in predicting the generalization gap,
then one can estimate the (empirical) explicit regularizer
on a held-out dataset, and appeal to simple concentration
arguments, just as we do in our experiments.
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