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Abstract—In nonlinear systems, the control input often directly
impacts observability of the system. In this paper, we investigate
the use of control barrier functions (CBFs) for enforcing ob-
servability of a mobile robot in target tracking, when only the
distance to the target is measured. The problem is motivated
by practical applications for autonomous robots when operating
in GPS-denied environments. To address the tradeoffs between
localization accuracy and tracking performance, a tracking
controller is augmented by a control barrier function based on
an observability metric. Two examples are used to show the
efficacy of the approach, one with unicycle dynamics on a plane,
and the other based on gliding robotic fish with complex 3D
dynamics. The approach taken in this work is compared to a
model predictive controller that optimizes a joint cost function of
tracking error and observability metric. While both approaches
are shown to maintain observability and enable tracking, the
CBF-based approach is shown to have several advantages.

I. INTRODUCTION

It is often possible to obtain measurements of distance to a
beacon or another robot using the hardware embedded in the
communication systems of the robots. This is a useful feature
for autonomous robots operating in GPS-denied environments.
Autonomous underwater vehicles (AUVs), which have become
valuable for a myriad of applications [1], [2], are one such
class of robots that regularly operate in GPS-denied environ-
ments. The inability to take advantage of radio frequency-
based solutions to localization, navigation, and communication
makes these tasks considerably more difficult for AUVs. In ad-
dition, techniques like simultaneous localization and mapping
are not always applicable due to the lack of sufficient number
of landmarks.

Several approaches to localization and navigation have
been developed for underwater environments [3]. One such
approach involves acoustic modems, such as the micromodem
developed by Woods Hole Oceanographic Institute [4], to pro-
vide communication and ranging between underwater vehicles
or beacons. Due to the capabilities of acoustic modems, many
researchers began a general study of using static beacons
or surface vehicles as communication and navigation aids
(CNAs) to underwater vehicles [5]-[10]. The single beacon
navigation (SBN) problem and its variants are a particularly
interesting instance of this class of problems. In the SBN
problem, an AUV estimates its position using inertial sensors,
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the knowledge of its dynamic model, and the measurement of
its range to a single beacon while locomoting.

The observability of the SBN problem has been heavily
studied in literature. The authors of [11] studied the observ-
ability of SBN with the kinematic model of an AUV moving
in the horizontal plane and gave an explanation of when the
position of the vehicle can be found using only measurements
of distance from a static beacon. The authors of [12] inves-
tigated the observability of relative localization of two AUVs
equipped with velocity, depth, and range measurement sensors.
They proposed an observability metric, derived an expres-
sion for it, and showed that the degradation of localization
performance depends on the range between the vehicles and
the angle between the relative velocity and position vectors.
The condition number of the empirical observability Gramian
has been used in path planning to improve observability of
a uniform flow field in [13]. Relative pose estimation based
on range measurements between two robots moving in a 3D
environment is explored in [14], but only the kinematic model
is considered. In [15], the authors argued that optimizing
measures of the observability Gramian as a surrogate for the
estimation performance may provide irrelevant or misleading
trajectories for planning under observation uncertainty. They
instead suggested using measures of the Posterior Fisher
Information Matrix. As an example, they used the trace of
the covariance matrix produced by a Kalman filter as a metric
to improve observability while path planning.

Most of these works focus on localization, navigation, or
path planning. Control based on observability metrics in the
context of range measurement is relatively less explored. The
authors of [16] developed a controller for homing in on a static
beacon using range measurements. The controller was inspired
by previous results on observable paths, but used a heuristic
approach based on a covariance threshold to achieve observ-
able maneuvers. In [17], the authors proposed two methods for
greedy-optimal steering control for CNAs. They considered the
AUVs as static beacons and used approximate optimization of
the condition number of the observability Gramian to steer the
CNAs, thereby improving localization for underwater vehicles.
In [18], a model predictive controller (MPC) is designed to
optimize a weighted cost on observability metrics and tracking
error to improve tracking performance for a robot unable to
measure its position.

Like [18], this work studies the application of observability-
based control to the target tracking problem. It differentiates
itself from existing work by taking a constraint-based approach
and enforcing observability through control barrier functions
(CBFs). In recent years, CBFs have been heavily studied
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in the context of safety-critical controllers [19]-[22]. Some
works also leverage CBFs to facilitate multi-objective con-
trol in multi-robot systems [23]-[26]. CBFs enforce forward
invariance of a set with respect to the state of a dynamical
system, and thereby, ensure safety properties [19]. This par-
ticular ability is shown to work with any locally Lipschitz
controller for control affine systems through a computation-
ally efficient optimization scheme. The ease of computation
and theoretical guarantees for forward invariance makes this
approach an attractive solution for improving observability
when tracking with only range measurements. In contrast,
adding optimization of the observability metrics to the finite
horizon MPC cost function causes the problem to quickly
become infeasible for real-time operation of complex systems.
In addition, the weight that balances observability and control
performance in the MPC approach has to be carefully selected
in order to obtain acceptable performance. We circumvent
the computational complexity and manual tuning by enforcing
the forward invariance of an observable set through the CBF
constraint at every instant.

The rest of this paper is organized as follows. Section
IT reviews some concepts of observability and control bar-
rier functions. Section III discusses the proposed approach.
Analysis for two example systems and simulation results are
presented in Section IV followed by concluding remarks in
Section V.

II. BACKGROUND MATERIAL

In this section, we briefly review the concepts of the nonlin-
ear observability rank condition and control barrier functions.

A. Nonlinear Observability Rank Condition
Given a general nonlinear system modeled by
&= f(z,u)
1
{ y = h(z), M
with state # € R", input u € R‘, and output y € RC,
its observability can be studied using the concept of local

weak observability introduced in [27]. By defining the Lie
derivatives of the output vector h(x) as

LGh = h,

Lih = V,hf,

L3h = V. [Lih)f,
Lhh =V [ h)f,

and the nonlinear observability matrix for the system in Eq.
(1), evaluated at x = 1, can be constructed as

Vo Lyh(z)

2

O(z1) = ; 3)

where [ is a positive integer index. The observability rank
condition for nonlinear systems states that system (1) is locally
weakly observable at x; if there exists an input, u, such that
the resulting matrix O(z1) is full rank.

B. Control Barrier Functions

Consider a general nonlinear control system

z = f(x) 4)
with a Lipschitz function f(-) and a set C given by
C={xeDcCR":B(x) >0},
OC={xre€DCR":B(x) =0},

Int(C) = {xr € D C R": B(x) > 0}, ®)

for a smooth function B(z) : R™ — R. The set C is called
forward invariant with respect to (4) if the initial condition
xo = x(0) € C implies that z(t) € C,Vt > 0. If there exists
an extended class K, function « : (—a, b) — (—o0, 00) with
a,b> 0 and a set D with C C D C R" such that

LyB(x) > —a(B(z)), (6)

for all € D, then B(x) is a zeroing barrier function and C
is forward invariant with respect to the system in Eq. (4) [21].

Control barrier functions are a synthesis tool derived from
barrier functions' and are used to enforce forward invariance
of a set C for a control system. In the case of an affine control
system

&= f(z) + g(z)u ()

with f and g locally Lipschitz, the state x € D C R", and
input w € U C R™, if there exists an extended class K
function « such that

sup[L;B(z) + LyB(x)u] > —a(B(x)),Vz € D, (8)
uelU
then, B(x) is a control barrier function and the set C is forward
invariant with respect to the system (7). This holds for any
Lipschitz controller in the set

Key(x) ={ueU: L;B(x)+ L;B(z)u+ a(B(x)) > 0}

where K,y (z) is the set of all controls that render the set C
forward invariant [21], [22] .

III. PROPOSED APPROACH
A. Problem Formulation

In this work, we consider the problem of target tracking
given the measurement of distance from a target. The objective
is to find a feedback controller that improves the observability
of the tracker’s location, while simultaneously achieving the
goal of tracking the target’s position. We assume that the
target’s absolute location is communicated to the tracker, a
good estimate of initial relative position is given, and the range
to the target is measured. We also assume that the tracker is
able to measure or estimate its own full state vector with the
exception of position. Given the target’s position x4 (t), Yo (%)

'Both zeroing barrier functions and the closely related reciprocal barrier
functions are discussed in [21]. Here, we focus only on the zeroing barrier
functions.
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in real time, we desire to minimize the error between the target
and tracker positions. We define

x(t) — T4a(t) }
Te(t) = 9
© [ y() — wra?) ®
as the tracking error between the target and tracker positions,
('rtamyta) and (I‘,y), and

el = [ 260750

as the estimation error between the true and estimated tracker
positions. The tracker is a general nonlinear agent with state
X, control input U, dynamics

(10)

X = f(X,U), (1)
and a nonlinear measurement function
_ HTeH

where M (X) is the state vector with the exception of the
position of the tracker. The goal now, is to minimize both the
Euclidean tracking error norm ||7.|| and the estimation error
norm ||k||.

B. Observability-Based Barrier Function

We propose to enforce observability by using a control bar-
rier function to satisfy a constraint based on an observability
metric, while achieving the tracking objective. To do this, it is
useful to consider the observability of the relative kinematics
for the target-tracker system in a general sense as done in
[12]. Consider the evolution of the relative position, XT =V,
where V. is the relative velocity of the system that can be
expressed as a function of the tracker state X and the target
velocity, [vs,,,vy,.]7 . The state of the relative kinematics can
be expressed as

T, T — Tyq
Xr Yr Y = Yta

= = ; 13

|: er :| Vgr L= Vg, ( )
Uy’,‘ y - Uyta

This simplifies the analysis by allowing the study of a time-
invariant system rather than a time-varying one.

We further note that studying the observability based on
range squared 1||7.(¢)||? simplifies computations while keep-
ing the same observability properties. Writing the kinematic
system as

X, =
T Ty (14)
{ h = 5llre@®))? = 527 + 97),
the observability matrix becomes
VLY x Y
_ f _ T r
Op o |: Vﬁ}‘h :| - |: Ugr  Uyr . (13)

A necessary and sufficient condition for O, to be full rank is
det(O,) # 0. A control barrier function using this metric of

observability and satisfying the conditions in Egs. (5) can be
constructed as

B(X,,V,) = det(0p)* = (vyrxy — varyr)®,  (16)
in a general form. Later, two specific forms will be shown for
example systems.

Denoting X, as the combined state of the target and tracker,
the dynamics f.(X.,U) = [Us,.,Vy,., F(X,U)]T become a
superset of Eq. (11) and the CBF (16) can be expressed as
B(X.). The control barrier function can then be integrated
with some nominal tracking controller % through the following
optimization problem

u* = argmin, J(u) = |ju — al|?
subject to

dB(X.)
dX.

l|u|loo < Umaz

a7

fo(X.,U) +a(B(X,) >0

to enforce forward invariance on the set defined by the barrier
function (16). The nominal controller can be any Lipchitz
controller. In previous work on control barrier functions [19],
[20], [22], quadratic programming is leveraged as an efficient
solution to solve the optimization problem (17) for affine
control systems which, as in Eq. (8), yield a linear constraint
in the control variables.

By using the proposed observability metric from Eq. 16 as
a barrier function, we enforce the observability rank condition
for nonlinear systems, essentially defining an observable set.
The control barrier function ensures that the system state
remains in this set at all times, and the system remains
observable, as long as a feasible control action exists to prevent
the state from leaving the set.

IV. SIMULATION STUDY

A. Unicycle Analysis

The unicycle is a standard model used to capture the essen-
tial dynamics of various vehicles moving on a 2-D plane. It
also provides simple dynamics, allowing more intuitive insight.
Therefore, to show the efficacy of the proposed approach, we
take the unicycle model with relative position whose state is
[, yr, 1, v] and has the system model

v cos(¢) = Vg,
vsin(y) — vy,
Uz
sllre @1
h = w )

v

X:

with control the w; being the acceleration and uy being the
turn rate. Constructing the observability matrix as described
in Section II-A, with terms up to L}, yields
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Ty Yr 0 0
0 0 1 0
0 0 01
0= v cos (V) — vy, vsin(P) —wvy,, * * (19)
0 0 0 0
0 0 0 0

where the asteriks represent non-zero terms that are inconse-
quential to the rank of O. Only VL$h and VL}h are needed
to construct the observability matrix in Eq. (15). Using the
relative speed and position from row 1 and 4 of columns 1
and 2, vy = vcos (¥) — vg,, and vy, = vsin (Y) —vy,,. We
can then construct the control barrier function in (16).

B. Unicycle Simulation

In simulation, the target is represented by a predefined time-
dependent trajectory (4 (t), yta(t)). The range between the
target and the unicycle, the unicycle velocity, and the unicy-
cle heading are measured. The measurements are corrupted
with additive, zero mean, Gaussian noises and an extended
Kalman filter (EKF) is used to estimate the position. For fair
comparison between the different cases, the noise distribution
is held constant for each simulation by setting the random
number generator. A model predictive controller predicting 1
time step of 0.2 seconds is used as the base tracking controller.
The controller uses the estimated position along with the
measurement of the other state variables (heading, velocity)
as feedback and the tracking error norm ||7.||? is used as
the cost function. The unicycle has a maximum magnitude
of 0.37 for velocity v to mimic the speeds of underwater
gliders, and limited turn rate us of %%.

Figure 1 shows the resultant trajectories of the MPC con-
troller with and without the control barrier function. Under
state feedback, tracking is achieved with and without the
control barrier function. When the CBF is not present, the
unicycle follows the target trajectory almost exactly. When
the tracking controller is modified through the CBF using the
formulation in Eq. (17), the unicycle produces a curvy-linear
path that tightly dances around the target path. Under output
feedback, tracking fails for the vanilla tracking controller, but
when the CBF is added, behavior similar to the state feedback
case is seen and the tracking objective is still achieved.

We quantify the performance of the controllers in terms of
estimation error, tracking error, and observability by collecting
the statistics over the simulated trajectory. This is shown
in Table I. The max and mean Euclidean norms of the
estimation error x. are shown to be similar for all the cases
in which tracking is achieved. It is notable, that the max and
mean estimation errors for the output feedback case with the
CBF incorporated is lower than when using state feedback
and no CBF. The mean and max tracking errors are lowest
for the state feedback controller without the control barrier
function, while the output feedback controller with the CBF
has performance similar to that of the state feedback controller
with the CBE. In order to get a measure of observability
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Fig. 1. Paths generated from a unicycle tracking a target moving in a figure-
8 pattern using the baseline tracking controller with and without the control
barrier function in the case of state and output feedback on position.

over the whole trajectory, we define the observability score as
0 = fOT C~'dt, where C~1 € {0,1} is the inverse condition
number, a popular measure of observability [12], [15]. It is
calculated as C~1 = ::1];?(((?)’ the ratio of the minimum and
maximum singular values o of an observability matrix. A
higher number corresponds to better observability. For the
unicycle, the observability with respect to the range measure-
ment is highest when the tracking controller is combined with
the CBF. It is lowest for the tracking controller under output
feedback with no CBFE.

TABLE I
STATISTICS AND OBSERVABILITY SCORE FOR THE UNICYCLE MODEL
SIMULATION RESULTS

CBF no no yes yes
Feedback type state output state output
max/mean ||ke|| (m) | 0.56/0.17 | 52.2/23.6 | 0.48/0.14 | 0.52/0.12
min [|7.|] (m) 0.0026 0.0365 0.0034 0.0317
max |[7|[ (m) 31623 | 348930 | 3.1623 3.1623
mean ||7.|] (m) 03506 | 13.4850 | 0.7042 0.7528
Observability score 38.48 8.51 69.56 74.59
C. Gliding Robotic Fish Analysis
Next, we study the model of a gliding robotic
fish. Particulars of the robot and its dynamics are
described in detail in [28], [29]. Its state vector

X = [x,y,2,v1,v2,03,wi,ws,ws,7i;]T, consists of the
position b; = [z, y, 2]T of the robot, the 3 x 3 rotation matrix
R from the body frame to the inertial frame with elements
7ij, and the body-fixed linear velocity v, = [v1,v2,v3)7
and angular velocity wy, = [wy,wsa,ws]T. After replacing the
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elements of the vector b; with the relative positions x,, ¥,

and z, = z, the kinematic model is given by
l.)Z-:Rv — Wgyns Vy, ,OT,
! Ab [ a’ “Yta ] (20)
R = wa,

where w;, is a skew symmetric matrix constructed from wy.
The structure of the velocity dynamics is given by

U1 for1 + avirsiug + forous + fo13u3

Ua fo21 + avarsaus + foarus + fo2ou3

vs | | fost + awsrasur + fusous + fuszud @1
Wio| o foi1 + for2us

Wo fu21 + @, 33U

Ws3 fusl + aw,T32u2 + fuz2us

where u; are control inputs, a,1, a,3 and a,, are constants,
Tyij are elements of R, and f,;; and f,;; are nonlinear
functions of the state vector. The measurement function in
this case is h(.]?) = [%HbZHQ, Zp, U1, V2, V3, W1, Ws, W3, ’I“ij}. The
observability matrix consists of the gradients of the first two
Lie derivatives. As with the unicycle model, the columns
associated with the measured state variables are all linearly
independent and will not cause the observability matrix to lose
rank, while the columns associated with the planar position
are not guaranteed to have full rank. In this case, the non-zero
rows can be compressed as

Ly Yr
Diny T~ Vay, Doy T2l — Uy,
which reduces to a similar expression as the observability
matrix O, in Section III-B with v, = 2?21 T1i0; — Ug,,
and vy, = 320 roiv; — vy,

D. Gliding Robotic Fish Simulation

0, = (22)

TABLE 11
STATISTICS AND OBSERVABILITY SCORE FOR THE GLIDING ROBOTIC FISH
SIMULATION RESULTS

CBF no no yes yes
Feedback type state output state output
max/mean [[ke[] (m) | 0.35/0.14 | 22.2/9.94 | 0.46/0.13 | 0.45/0.15
min [[7[] (m) 0.0209 0.3251 0.1335 0.0072
max |[7e]] (m) 5.3908 17.7734 4.7620 4.8905
mean [[7.[] (m) 1.9622 6.8107 2.9828 2.9577
Observability score 17.234 6.5732 15.6987 15.3195

Simulations with the gliding robotic fish are carried out
in a similar fashion to that of the unicycle. We leverage the
tracking controller developed in [29] as the baseline controller
with a 5 Hz control rate. The controller requires a reference
trajectories for the pitch angle and Cartesian position. The
pitch refeference is a constant that changes sign when a depth
threshold is hit, the position references are provided by the
target, and the z position reference is given as the current
depth of the gliding robotic fish.

Figure 2 shows the resultant trajectories produced by the
baseline controller with and without the control barrier func-
tion. Again, for each control approach, two cases, with and

x-y position
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O target trajectory

3 state feedback no cbf

4r Q\ }r state feedback cbf
, & = output feedback no cbf
g u ®m ® | output feedback cbf
) | -
start
-20 -15 =TU Y 0

X(m)

Fig. 2. x — y plane projections of paths generated from gliding robotic fish
tracking a target moving in a figure-8 pattern using the baseline tracking
controller with and without the control barrier function in the case of state
and output feedback on position.

without the relative position measurement, are simulated.
Under state feedback, tracking is achieved with and without
the control barrier function. When the CBF is not present,
the robot follows the target closely during the beginning and
end of the trajectory, but veers from the target path near the
middle. When the tracking controller is modified by the CBF,
the robot initially follows the target path more loosely. When
tracking is based on the EKF position estimates, the tracking is
unsuccessful without the CBF. When it is present, a trajectory
similar to the state feedback case with the CBF is produced.

The statistics taken over the resultant trajectories, shown
in Table II, quantify the behavior of each of the 4 scenarios.
As expected, the observability score is lowest, and the max
tracking error norm, and the max estimation error norm are
highest for the output feedback case when the control barrier
function is not applied. When the output feedback controller
is integrated with the CBF, statistics for the estimation and
tracking error norms and observability score are similar to
those of the state feedback controller with the CBF. When
the CBF is not present in the state feedback controller, the
mean tracking and estimation error norms are lowest of the
4 scenarios. The observability score is also higher, but this is
expected because it has been shown that the inverse condition
number for the observability matrix of the range measurement
degrades as range increases [12].

E. Comparison Between Constraint-Based and Optimization
Based Approaches

In our previous work [18], we addressed target tracking
with range only measurement by posing and solving the
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Fig. 3. Paths generated from a unicycle tracking a target moving in a figure-8
pattern with control barrier funtion-based and observability optimization-based
controllers.

optimization problem

Ty
min J = Bllre| > + (1 — B)Odt
U Ty
23
subject to the dynamics (11), 23)

Umin S U S Umaz

over a finite time horizon, where [ is a tuning parameter
to be chosen and O is some observability metric. This work
leverages the control barrier function framework discussed in
Section II-B to enforce observability in a point wise fashion.
The two approaches are compared using O = —B(X,) for
the output feedback case for the unicycle model in Fig. 3 and
the gliding robotic fish model in Fig. 4. For the unicycle, it is
clear to see that the control barrier function-based approach is
superior with respect to the tracking objective. Table III shows
that CBF-based approach performs better on all metrics. For
the gliding robotic fish model, both methods are only able to
loosely track the target, but Table III shows the CBF-based
approach to have the advantage. It also has a slight advantage
in terms of tracking and estimation error.

TABLE III
OPTIMIZATION VS CONSTRAINT BASED APPROACHES: STATISTICS AND
OBSERVABILITY SCORE

method Optimze CBF Optimize CBF
sysyem unicycle unicycle glider glider
max/mean ||ke|] (m) | 1.30/0.33 | 0.52/0.12 | 0.62/0.19 | 0.45/0.15
min ||7|| (m) 0.0166 0.0317 0.0722 0.0072
max ||7e|| (m) 4.1965 3.1623 9.0728 4.8905
mean ||7e|| (m) 1.6762 0.7528 4.0742 2.9577
Observability Score 39.6335 74.589 13.9230 15.3195

One difference in the two approaches is that the solution
to (23) directly gives a set of controls that jointly maximizes

x-y position
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4 ' —_— optimization, 3=0.8
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e \ P
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Fig. 4. x — y plane projection of paths generated from gliding robotic fish
tracking a target moving in a figure-8 pattern with control barrier funtion-
based and observability optimization-based controllers.

B(X.) and minimizes ||7.|| over the time horizon Tj to T,
while the approach taken in this paper modifies the control of
a nominal controller in order to satisfy the nonlinear observ-
ability rank condition discussed in II-A. The major advantages
of the control barrier function-based approach are provable
forward invariance, relative ease of computation for control
affine systems, and no requirement for the tuning parameter
[ that gives a relative importance to the control objective
versus maintaining observability. Instead of giving the choice
of the tradeoff in the control design, the proposed approach
guarantees that the system remains observable and makes
progress toward the tracking objective whenever possible. In
terms of computation, the CBF-based approach is much less
intensive. The time to simulate the 250 second trajectory for
the CBF-based approach is approximately 75% of the time
required for the optimization based approach with the unicycle
model and 5% with the gliding robotic fish model. In addition,
it requires no prediction or future knowledge of the target
trajectory.

In [18], the optimization-based approach was also used
with two other metrics, the inverse condition number and the
posterior probability of the estimation error, to improve the
estimation error. The latter is dependent on the estimation
scheme and does not immediately present a way to define a
set that enforces observability. The inverse condition number
itself, however, can be used as a zeroing barrier function.
Like the determinant, the inverse condition number provides a
straight forward constraint for enforcing observability and is a
property of the observability matrix, so increasing it improves
estimation regardless of the estimation scheme. However, the
expression for the inverse condition number is not as simple
as the determinant, but would likely produce the same set of
valid controls.
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V. CONCLUSION AND FUTURE WORK

In this work, we studied the use of control barrier functions
to improve observability and enhance overall control perfor-
mance for a mobile robot in target tracking with only dis-
tance measurements. By introducing a barrier function based
on an observability metric, an observable set that satisfied
the nonlinear observability rank test was formed. Forward
invariance of that set was enforced through the minimally
invasive controller formulation used in the control barrier
function literature. Simulation studies were carried out for a
unicycle model and a gliding robotic fish model. The example
systems were shown to improve observability (in terms of
the inverse condition number) and estimation performance,
enabling tracking without access to the relative position to the
target. The results were compared to an optimization-based
solution for the same objective and shown to be better overall
in terms of tracking performance and estimation error. While
this paper focuses mainly on the application of target tracking
given range measurements, enforcing observability through
control barrier functions (observability barrier functions) may
be applicable to other types of systems.

Future directions for this work include thorough analysis of
forward invariance subject to output feedback, exploration of
a barrier function based on the estimator’s error covariance,
and evaluation of this method on physical systems.
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