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Abstract—In nonlinear systems, the control input often directly
impacts observability of the system. In this paper, we investigate
the use of control barrier functions (CBFs) for enforcing ob-
servability of a mobile robot in target tracking, when only the
distance to the target is measured. The problem is motivated
by practical applications for autonomous robots when operating
in GPS-denied environments. To address the tradeoffs between
localization accuracy and tracking performance, a tracking
controller is augmented by a control barrier function based on
an observability metric. Two examples are used to show the
efficacy of the approach, one with unicycle dynamics on a plane,
and the other based on gliding robotic fish with complex 3D
dynamics. The approach taken in this work is compared to a
model predictive controller that optimizes a joint cost function of
tracking error and observability metric. While both approaches
are shown to maintain observability and enable tracking, the
CBF-based approach is shown to have several advantages.

I. INTRODUCTION

It is often possible to obtain measurements of distance to a

beacon or another robot using the hardware embedded in the

communication systems of the robots. This is a useful feature

for autonomous robots operating in GPS-denied environments.

Autonomous underwater vehicles (AUVs), which have become

valuable for a myriad of applications [1], [2], are one such

class of robots that regularly operate in GPS-denied environ-

ments. The inability to take advantage of radio frequency-

based solutions to localization, navigation, and communication

makes these tasks considerably more difficult for AUVs. In ad-

dition, techniques like simultaneous localization and mapping

are not always applicable due to the lack of sufficient number

of landmarks.

Several approaches to localization and navigation have

been developed for underwater environments [3]. One such

approach involves acoustic modems, such as the micromodem

developed by Woods Hole Oceanographic Institute [4], to pro-

vide communication and ranging between underwater vehicles

or beacons. Due to the capabilities of acoustic modems, many

researchers began a general study of using static beacons

or surface vehicles as communication and navigation aids

(CNAs) to underwater vehicles [5]–[10]. The single beacon

navigation (SBN) problem and its variants are a particularly

interesting instance of this class of problems. In the SBN

problem, an AUV estimates its position using inertial sensors,
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the knowledge of its dynamic model, and the measurement of

its range to a single beacon while locomoting.

The observability of the SBN problem has been heavily

studied in literature. The authors of [11] studied the observ-

ability of SBN with the kinematic model of an AUV moving

in the horizontal plane and gave an explanation of when the

position of the vehicle can be found using only measurements

of distance from a static beacon. The authors of [12] inves-

tigated the observability of relative localization of two AUVs

equipped with velocity, depth, and range measurement sensors.

They proposed an observability metric, derived an expres-

sion for it, and showed that the degradation of localization

performance depends on the range between the vehicles and

the angle between the relative velocity and position vectors.

The condition number of the empirical observability Gramian

has been used in path planning to improve observability of

a uniform flow field in [13]. Relative pose estimation based

on range measurements between two robots moving in a 3D

environment is explored in [14], but only the kinematic model

is considered. In [15], the authors argued that optimizing

measures of the observability Gramian as a surrogate for the

estimation performance may provide irrelevant or misleading

trajectories for planning under observation uncertainty. They

instead suggested using measures of the Posterior Fisher

Information Matrix. As an example, they used the trace of

the covariance matrix produced by a Kalman filter as a metric

to improve observability while path planning.

Most of these works focus on localization, navigation, or

path planning. Control based on observability metrics in the

context of range measurement is relatively less explored. The

authors of [16] developed a controller for homing in on a static

beacon using range measurements. The controller was inspired

by previous results on observable paths, but used a heuristic

approach based on a covariance threshold to achieve observ-

able maneuvers. In [17], the authors proposed two methods for

greedy-optimal steering control for CNAs. They considered the

AUVs as static beacons and used approximate optimization of

the condition number of the observability Gramian to steer the

CNAs, thereby improving localization for underwater vehicles.

In [18], a model predictive controller (MPC) is designed to

optimize a weighted cost on observability metrics and tracking

error to improve tracking performance for a robot unable to

measure its position.

Like [18], this work studies the application of observability-

based control to the target tracking problem. It differentiates

itself from existing work by taking a constraint-based approach

and enforcing observability through control barrier functions

(CBFs). In recent years, CBFs have been heavily studied
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in the context of safety-critical controllers [19]–[22]. Some

works also leverage CBFs to facilitate multi-objective con-

trol in multi-robot systems [23]–[26]. CBFs enforce forward

invariance of a set with respect to the state of a dynamical

system, and thereby, ensure safety properties [19]. This par-

ticular ability is shown to work with any locally Lipschitz

controller for control affine systems through a computation-

ally efficient optimization scheme. The ease of computation

and theoretical guarantees for forward invariance makes this

approach an attractive solution for improving observability

when tracking with only range measurements. In contrast,

adding optimization of the observability metrics to the finite

horizon MPC cost function causes the problem to quickly

become infeasible for real-time operation of complex systems.

In addition, the weight that balances observability and control

performance in the MPC approach has to be carefully selected

in order to obtain acceptable performance. We circumvent

the computational complexity and manual tuning by enforcing

the forward invariance of an observable set through the CBF

constraint at every instant.

The rest of this paper is organized as follows. Section

II reviews some concepts of observability and control bar-

rier functions. Section III discusses the proposed approach.

Analysis for two example systems and simulation results are

presented in Section IV followed by concluding remarks in

Section V.

II. BACKGROUND MATERIAL

In this section, we briefly review the concepts of the nonlin-

ear observability rank condition and control barrier functions.

A. Nonlinear Observability Rank Condition

Given a general nonlinear system modeled by
{

ẋ = f(x, u)
y = h(x),

(1)

with state x ∈ Rn, input u ∈ Ri, and output y ∈ Ro,

its observability can be studied using the concept of local

weak observability introduced in [27]. By defining the Lie

derivatives of the output vector h(x) as

L0
fh = h,

L1
fh = ∇xhf,

L2
fh = ∇x[L

1
fh]f,

Ll
fh = ∇x[L

l−1
f h]f,

(2)

and the nonlinear observability matrix for the system in Eq.

(1), evaluated at x = x1, can be constructed as

O(x1) =











∇xL
0
fh(x1)

∇xL
1
fh(x1)
...

∇xL
l
fh(x1)











, (3)

where l is a positive integer index. The observability rank

condition for nonlinear systems states that system (1) is locally

weakly observable at x1 if there exists an input, u, such that

the resulting matrix O(x1) is full rank.

B. Control Barrier Functions

Consider a general nonlinear control system

ẋ = f(x) (4)

with a Lipschitz function f(·) and a set C given by

C = {x ∈ D ⊂ Rn : B(x) ≥ 0},

∂C = {x ∈ D ⊂ Rn : B(x) = 0},

Int(C) = {x ∈ D ⊂ Rn : B(x) > 0},
(5)

for a smooth function B(x) : Rn → R. The set C is called

forward invariant with respect to (4) if the initial condition

x0 = x(0) ∈ C implies that x(t) ∈ C, ∀t > 0. If there exists

an extended class K∞ function α : (−a, b) → (−∞,∞) with

a, b > 0 and a set D with C ⊆ D ⊂ Rn such that

LfB(x) ≥ −α(B(x)), (6)

for all x ∈ D, then B(x) is a zeroing barrier function and C
is forward invariant with respect to the system in Eq. (4) [21].

Control barrier functions are a synthesis tool derived from

barrier functions1 and are used to enforce forward invariance

of a set C for a control system. In the case of an affine control

system

ẋ = f(x) + g(x)u (7)

with f and g locally Lipschitz, the state x ∈ D ⊂ Rn, and

input u ∈ U ⊂ Rm, if there exists an extended class K∞

function α such that

sup
u∈U

[LfB(x) + LgB(x)u] ≥ −α(B(x)), ∀x ∈ D, (8)

then, B(x) is a control barrier function and the set C is forward

invariant with respect to the system (7). This holds for any

Lipschitz controller in the set

Kcbf (x) = {u ∈ U : LfB(x) + LgB(x)u+ α(B(x)) ≥ 0}

where Kcbf (x) is the set of all controls that render the set C
forward invariant [21], [22] .

III. PROPOSED APPROACH

A. Problem Formulation

In this work, we consider the problem of target tracking

given the measurement of distance from a target. The objective

is to find a feedback controller that improves the observability

of the tracker’s location, while simultaneously achieving the

goal of tracking the target’s position. We assume that the

target’s absolute location is communicated to the tracker, a

good estimate of initial relative position is given, and the range

to the target is measured. We also assume that the tracker is

able to measure or estimate its own full state vector with the

exception of position. Given the target’s position xta(t), yta(t)

1Both zeroing barrier functions and the closely related reciprocal barrier
functions are discussed in [21]. Here, we focus only on the zeroing barrier
functions.
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in real time, we desire to minimize the error between the target

and tracker positions. We define

τe(t) =

[

x(t)− xta(t)
y(t)− yta(t)

]

(9)

as the tracking error between the target and tracker positions,

(xta, yta) and (x, y), and

κe(t) =

[

x(t)− x̂(t)
y(t)− ŷ(t)

]

(10)

as the estimation error between the true and estimated tracker

positions. The tracker is a general nonlinear agent with state

X , control input U , dynamics

Ẋ = f(X,U), (11)

and a nonlinear measurement function

h =

[

||τe||
M(X)

]

(12)

where M(X) is the state vector with the exception of the

position of the tracker. The goal now, is to minimize both the

Euclidean tracking error norm ||τe|| and the estimation error

norm ||κe||.

B. Observability-Based Barrier Function

We propose to enforce observability by using a control bar-

rier function to satisfy a constraint based on an observability

metric, while achieving the tracking objective. To do this, it is

useful to consider the observability of the relative kinematics

for the target-tracker system in a general sense as done in

[12]. Consider the evolution of the relative position, Ẋr = Vr,

where Vr is the relative velocity of the system that can be

expressed as a function of the tracker state X and the target

velocity, [vxta
, vyta

]T . The state of the relative kinematics can

be expressed as

[

Xr

Vr

]

=









[

xr
yr

]

[

vxr
vyr

]









=









x− xta
y − yta
ẋ− vxta

ẏ − vyta









. (13)

This simplifies the analysis by allowing the study of a time-

invariant system rather than a time-varying one.

We further note that studying the observability based on

range squared 1
2 ||τe(t)||

2 simplifies computations while keep-

ing the same observability properties. Writing the kinematic

system as
{

Ẋr = Vr,

h = 1
2 ||τe(t)||

2 = 1
2 (x

2
r + y2r),

(14)

the observability matrix becomes

Op =

[

∇L0
fh

∇L1
fh

]

=

[

xr yr
vxr vyr

]

. (15)

A necessary and sufficient condition for Op to be full rank is

det(Op) 6= 0. A control barrier function using this metric of

observability and satisfying the conditions in Eqs. (5) can be

constructed as

B(Xr, Vr) = det(Op)
2 = (vyrxr − vxryr)

2, (16)

in a general form. Later, two specific forms will be shown for

example systems.

Denoting Xc as the combined state of the target and tracker,

the dynamics fc(Xc, U) = [vxta
, vyta

, f(X,U)]T become a

superset of Eq. (11) and the CBF (16) can be expressed as

B(Xc). The control barrier function can then be integrated

with some nominal tracking controller û through the following

optimization problem

u∗ = argminu J(u) = ||u− û||2

subject to

dB(Xc)

dXc

fc(Xc, U) + α(B(Xc)) ≥ 0

||u||∞ ≤ umax

(17)

to enforce forward invariance on the set defined by the barrier

function (16). The nominal controller can be any Lipchitz

controller. In previous work on control barrier functions [19],

[20], [22], quadratic programming is leveraged as an efficient

solution to solve the optimization problem (17) for affine

control systems which, as in Eq. (8), yield a linear constraint

in the control variables.

By using the proposed observability metric from Eq. 16 as

a barrier function, we enforce the observability rank condition

for nonlinear systems, essentially defining an observable set.

The control barrier function ensures that the system state

remains in this set at all times, and the system remains

observable, as long as a feasible control action exists to prevent

the state from leaving the set.

IV. SIMULATION STUDY

A. Unicycle Analysis

The unicycle is a standard model used to capture the essen-

tial dynamics of various vehicles moving on a 2-D plane. It

also provides simple dynamics, allowing more intuitive insight.

Therefore, to show the efficacy of the proposed approach, we

take the unicycle model with relative position whose state is

[xr, yr, ψ, v] and has the system model







































Ẋ =









v cos(ψ)− vxta

v sin(ψ)− vyta

u2
u1









,

h =





1
2 ||τe(t)||

2

ψ

v



 ,

(18)

with control the u1 being the acceleration and u2 being the

turn rate. Constructing the observability matrix as described

in Section II-A, with terms up to L1
fh, yields
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O =

















xr yr 0 0
0 0 1 0
0 0 0 1

v cos (ψ)− vxta
v sin (ψ)− vyta

∗ ∗
0 0 0 0
0 0 0 0

















(19)

where the asteriks represent non-zero terms that are inconse-

quential to the rank of O. Only ∇L0
fh and ∇L1

fh are needed

to construct the observability matrix in Eq. (15). Using the

relative speed and position from row 1 and 4 of columns 1

and 2, vxr = v cos (ψ)− vxta
and vyr = v sin (ψ)− vyta

. We

can then construct the control barrier function in (16).

B. Unicycle Simulation

In simulation, the target is represented by a predefined time-

dependent trajectory (xta(t), yta(t)). The range between the

target and the unicycle, the unicycle velocity, and the unicy-

cle heading are measured. The measurements are corrupted

with additive, zero mean, Gaussian noises and an extended

Kalman filter (EKF) is used to estimate the position. For fair

comparison between the different cases, the noise distribution

is held constant for each simulation by setting the random

number generator. A model predictive controller predicting 1

time step of 0.2 seconds is used as the base tracking controller.

The controller uses the estimated position along with the

measurement of the other state variables (heading, velocity)

as feedback and the tracking error norm ||τe||
2 is used as

the cost function. The unicycle has a maximum magnitude

of 0.3m
s

for velocity v to mimic the speeds of underwater

gliders, and limited turn rate u2 of π
4
rad
s

.

Figure 1 shows the resultant trajectories of the MPC con-

troller with and without the control barrier function. Under

state feedback, tracking is achieved with and without the

control barrier function. When the CBF is not present, the

unicycle follows the target trajectory almost exactly. When

the tracking controller is modified through the CBF using the

formulation in Eq. (17), the unicycle produces a curvy-linear

path that tightly dances around the target path. Under output

feedback, tracking fails for the vanilla tracking controller, but

when the CBF is added, behavior similar to the state feedback

case is seen and the tracking objective is still achieved.

We quantify the performance of the controllers in terms of

estimation error, tracking error, and observability by collecting

the statistics over the simulated trajectory. This is shown

in Table I. The max and mean Euclidean norms of the

estimation error κe are shown to be similar for all the cases

in which tracking is achieved. It is notable, that the max and

mean estimation errors for the output feedback case with the

CBF incorporated is lower than when using state feedback

and no CBF. The mean and max tracking errors are lowest

for the state feedback controller without the control barrier

function, while the output feedback controller with the CBF

has performance similar to that of the state feedback controller

with the CBF. In order to get a measure of observability

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

X(m)

-5

-4

-3

-2

-1

0

1

2

3

4

Y
(m

)

x-y position

target trajectory

state feedback no cbf

state feedback cbf

output feedback no cbf

output feedback cbf

start

Fig. 1. Paths generated from a unicycle tracking a target moving in a figure-
8 pattern using the baseline tracking controller with and without the control
barrier function in the case of state and output feedback on position.

over the whole trajectory, we define the observability score as

Os =
∫ T

0
C−1dt, where C−1 ∈ {0, 1} is the inverse condition

number, a popular measure of observability [12], [15]. It is

calculated as C−1 = min(σ)
max(σ) , the ratio of the minimum and

maximum singular values σ of an observability matrix. A

higher number corresponds to better observability. For the

unicycle, the observability with respect to the range measure-

ment is highest when the tracking controller is combined with

the CBF. It is lowest for the tracking controller under output

feedback with no CBF.

TABLE I
STATISTICS AND OBSERVABILITY SCORE FOR THE UNICYCLE MODEL

SIMULATION RESULTS

CBF no no yes yes

Feedback type state output state output

max/mean ||κe|| (m) 0.56/0.17 52.2/23.6 0.48/0.14 0.52/0.12

min ||τe|| (m) 0.0026 0.0365 0.0034 0.0317

max ||τe|| (m) 3.1623 34.8930 3.1623 3.1623

mean ||τe|| (m) 0.3506 13.4850 0.7042 0.7528

Observability score 38.48 8.51 69.56 74.59

C. Gliding Robotic Fish Analysis

Next, we study the model of a gliding robotic

fish. Particulars of the robot and its dynamics are

described in detail in [28], [29]. Its state vector

X = [x, y, z, v1, v2, v3, ω1, ω2, ω3, rij ]
T , consists of the

position bi = [x, y, z]T of the robot, the 3× 3 rotation matrix

R from the body frame to the inertial frame with elements

rij , and the body-fixed linear velocity vb = [v1, v2, v3]
T

and angular velocity ωb = [ω1, ω2, ω3]
T . After replacing the
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elements of the vector bi with the relative positions xr, yr,

and zr = z, the kinematic model is given by
{

ḃi = Rvb − [vxta
, vyta

, 0]T ,

Ṙ = Rω̂b,
(20)

where ω̂b is a skew symmetric matrix constructed from ωb.

The structure of the velocity dynamics is given by
















v̇1
v̇2
v̇3
ω̇1

ω̇2

ω̇3

















=

















fv11 + av1r31u1 + fv12u3 + fv13u
2
3

fv21 + av2r32u1 + fv21u3 + fv22u
2
3

fv31 + av3r33u1 + fv32u3 + fv33u
2
3

fω11 + fω12u3
fω21 + aω2

r33u2
fω31 + aω2

r32u2 + fω32u3

















(21)

where ui are control inputs, av1, av3 and aω2
are constants,

rvij are elements of R, and fvij and fωij are nonlinear

functions of the state vector. The measurement function in

this case is h(x) = [ 12 ||bi||
2, zr, v1, v2, v3, ω1, ω2, ω3, rij ]. The

observability matrix consists of the gradients of the first two

Lie derivatives. As with the unicycle model, the columns

associated with the measured state variables are all linearly

independent and will not cause the observability matrix to lose

rank, while the columns associated with the planar position

are not guaranteed to have full rank. In this case, the non-zero

rows can be compressed as

Op =

[

xr yr
∑3

i=1 r1ivi − vxta

∑3
i=1 r2ivi − vyta

]

(22)

which reduces to a similar expression as the observability

matrix Op in Section III-B with vxr =
∑3

i=1 r1ivi − vxta

and vyr =
∑3

i=1 r2ivi − vyta
.

D. Gliding Robotic Fish Simulation

TABLE II
STATISTICS AND OBSERVABILITY SCORE FOR THE GLIDING ROBOTIC FISH

SIMULATION RESULTS

CBF no no yes yes

Feedback type state output state output

max/mean ||κe|| (m) 0.35/0.14 22.2/9.94 0.46/0.13 0.45/0.15

min ||τe|| (m) 0.0209 0.3251 0.1335 0.0072

max ||τe|| (m) 5.3908 17.7734 4.7620 4.8905

mean ||τe|| (m) 1.9622 6.8107 2.9828 2.9577

Observability score 17.234 6.5732 15.6987 15.3195

Simulations with the gliding robotic fish are carried out

in a similar fashion to that of the unicycle. We leverage the

tracking controller developed in [29] as the baseline controller

with a 5 Hz control rate. The controller requires a reference

trajectories for the pitch angle and Cartesian position. The

pitch refeference is a constant that changes sign when a depth

threshold is hit, the position references are provided by the

target, and the z position reference is given as the current

depth of the gliding robotic fish.

Figure 2 shows the resultant trajectories produced by the

baseline controller with and without the control barrier func-

tion. Again, for each control approach, two cases, with and

Fig. 2. x− y plane projections of paths generated from gliding robotic fish
tracking a target moving in a figure-8 pattern using the baseline tracking
controller with and without the control barrier function in the case of state
and output feedback on position.

without the relative position measurement, are simulated.

Under state feedback, tracking is achieved with and without

the control barrier function. When the CBF is not present,

the robot follows the target closely during the beginning and

end of the trajectory, but veers from the target path near the

middle. When the tracking controller is modified by the CBF,

the robot initially follows the target path more loosely. When

tracking is based on the EKF position estimates, the tracking is

unsuccessful without the CBF. When it is present, a trajectory

similar to the state feedback case with the CBF is produced.

The statistics taken over the resultant trajectories, shown

in Table II, quantify the behavior of each of the 4 scenarios.

As expected, the observability score is lowest, and the max

tracking error norm, and the max estimation error norm are

highest for the output feedback case when the control barrier

function is not applied. When the output feedback controller

is integrated with the CBF, statistics for the estimation and

tracking error norms and observability score are similar to

those of the state feedback controller with the CBF. When

the CBF is not present in the state feedback controller, the

mean tracking and estimation error norms are lowest of the

4 scenarios. The observability score is also higher, but this is

expected because it has been shown that the inverse condition

number for the observability matrix of the range measurement

degrades as range increases [12].

E. Comparison Between Constraint-Based and Optimization

Based Approaches

In our previous work [18], we addressed target tracking

with range only measurement by posing and solving the
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Fig. 3. Paths generated from a unicycle tracking a target moving in a figure-8
pattern with control barrier funtion-based and observability optimization-based
controllers.

optimization problem

min
u

J =

∫ T1

T0

β||τe||
2 + (1− β)Odt

subject to the dynamics (11),

umin ≤ u ≤ umax

(23)

over a finite time horizon, where β is a tuning parameter

to be chosen and O is some observability metric. This work

leverages the control barrier function framework discussed in

Section II-B to enforce observability in a point wise fashion.

The two approaches are compared using O = −B(Xc) for

the output feedback case for the unicycle model in Fig. 3 and

the gliding robotic fish model in Fig. 4. For the unicycle, it is

clear to see that the control barrier function-based approach is

superior with respect to the tracking objective. Table III shows

that CBF-based approach performs better on all metrics. For

the gliding robotic fish model, both methods are only able to

loosely track the target, but Table III shows the CBF-based

approach to have the advantage. It also has a slight advantage

in terms of tracking and estimation error.

TABLE III
OPTIMIZATION VS CONSTRAINT BASED APPROACHES: STATISTICS AND

OBSERVABILITY SCORE

method Optimze CBF Optimize CBF

sysyem unicycle unicycle glider glider

max/mean ||κe|| (m) 1.30/0.33 0.52/0.12 0.62/0.19 0.45/0.15

min ||τe|| (m) 0.0166 0.0317 0.0722 0.0072

max ||τe|| (m) 4.1965 3.1623 9.0728 4.8905

mean ||τe|| (m) 1.6762 0.7528 4.0742 2.9577

Observability Score 39.6335 74.589 13.9230 15.3195

One difference in the two approaches is that the solution

to (23) directly gives a set of controls that jointly maximizes

Fig. 4. x − y plane projection of paths generated from gliding robotic fish
tracking a target moving in a figure-8 pattern with control barrier funtion-
based and observability optimization-based controllers.

B(Xc) and minimizes ||τe|| over the time horizon T0 to T1,

while the approach taken in this paper modifies the control of

a nominal controller in order to satisfy the nonlinear observ-

ability rank condition discussed in II-A. The major advantages

of the control barrier function-based approach are provable

forward invariance, relative ease of computation for control

affine systems, and no requirement for the tuning parameter

β that gives a relative importance to the control objective

versus maintaining observability. Instead of giving the choice

of the tradeoff in the control design, the proposed approach

guarantees that the system remains observable and makes

progress toward the tracking objective whenever possible. In

terms of computation, the CBF-based approach is much less

intensive. The time to simulate the 250 second trajectory for

the CBF-based approach is approximately 75% of the time

required for the optimization based approach with the unicycle

model and 5% with the gliding robotic fish model. In addition,

it requires no prediction or future knowledge of the target

trajectory.

In [18], the optimization-based approach was also used

with two other metrics, the inverse condition number and the

posterior probability of the estimation error, to improve the

estimation error. The latter is dependent on the estimation

scheme and does not immediately present a way to define a

set that enforces observability. The inverse condition number

itself, however, can be used as a zeroing barrier function.

Like the determinant, the inverse condition number provides a

straight forward constraint for enforcing observability and is a

property of the observability matrix, so increasing it improves

estimation regardless of the estimation scheme. However, the

expression for the inverse condition number is not as simple

as the determinant, but would likely produce the same set of

valid controls.
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V. CONCLUSION AND FUTURE WORK

In this work, we studied the use of control barrier functions

to improve observability and enhance overall control perfor-

mance for a mobile robot in target tracking with only dis-

tance measurements. By introducing a barrier function based

on an observability metric, an observable set that satisfied

the nonlinear observability rank test was formed. Forward

invariance of that set was enforced through the minimally

invasive controller formulation used in the control barrier

function literature. Simulation studies were carried out for a

unicycle model and a gliding robotic fish model. The example

systems were shown to improve observability (in terms of

the inverse condition number) and estimation performance,

enabling tracking without access to the relative position to the

target. The results were compared to an optimization-based

solution for the same objective and shown to be better overall

in terms of tracking performance and estimation error. While

this paper focuses mainly on the application of target tracking

given range measurements, enforcing observability through

control barrier functions (observability barrier functions) may

be applicable to other types of systems.

Future directions for this work include thorough analysis of

forward invariance subject to output feedback, exploration of

a barrier function based on the estimator’s error covariance,

and evaluation of this method on physical systems.
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