
K2: Reading Quickly from Storage Across Many Datacenters

Khiem Ngo, Haonan Lu, Wyatt Lloyd

Princeton University

Abstract—The infrastructure available to large-scale and
medium-scale web services now spans dozens of geographically
dispersed datacenters. Deploying across many datacenters has
the potential to significantly reduce end-user latency by serving
users nearer their location. However, deploying across many
datacenters requires the backend storage system be partially
replicated. In turn, this can sacrifice the low latency benefits
of many datacenters, especially when a storage system provides
guarantees on what operations will observe.

We present the K2 storage system that provides lower latency
for large-scale and medium-scale web services using partial
replication of data over many datacenters with strong guaran-
tees: causal consistency, read-only transactions, and write-only
transactions. K2 provides the best possible worst-case latency for
partial replication, a single round trip to remote datacenters, and
often avoids sending any requests to far away datacenters using
a novel replication approach, write-only transaction algorithm,
and read-only transaction algorithm.

I. INTRODUCTION

The infrastructure necessary for large-scale web services

and available to medium-scale web services now includes

resources in many geographically dispersed datacenters. The

sheer size of large-scale services requires they deploy across

many datacenters—Google has 24 datacenters [27] and Face-

book has 15 datacenters [21]. Medium-scale services that can

be fully deployed in a few datacenters also have the option of

deploying across many datacenters due to the proliferation of

available locations on cloud platforms [6], [26], [44].

Deploying a service across many datacenters has the poten-

tial to significantly decrease its latency for end-users through

increased proximity. For instance, users of a social network

in Australia can have significantly faster interactions with the

service when their requests are handled entirely in Australia

instead of needing to go to another continent. This requires

that both the frontend web server that is handling the user’s

requests be in Australia and the backend storage system that

holds the data of the social network—e.g., friend lists, status

updates—be in Australia. Spreading a service’s frontend web

servers across many datacenters does not change the required

number of web servers because each does disjoint work; 100

servers in 1 datacenter and 10 servers in each of 10 datacenters

can handle the same number of user requests. Fully replicating

a backend storage system across many datacenters, however,

proportionally increases its costs because each replica in each

datacenter does the same work of storing and serving all

the data. This makes full replication across many datacenters

economically infeasible. Instead, the large-scale services that

must use many datacenters partially replicate their data by

storing only a subset of it in each datacenter [7], [20].

Partial replication of data, however, can eliminate the

latency benefits of many datacenters and even increase a

service’s latency compared to full replication over a few

datacenters. The latency benefit is eliminated if a datacenter

does not have the required data for a request and needs to go

to a far-away datacenter once. A service’s latency is worse if

the storage system needs to go to a far-away datacenter more

than once: it would have been faster to send the user’s request

to that far-away datacenter and handle all its backend accesses

there. We contend this is why medium-scale web services

typically stick to full replication over a few datacenters.

Further complicating matters are the guarantees the data

store provides. These guarantees include consistency, i.e., what

interleavings of write operations are visible to reads; and

transactions, i.e., what operations can appear to be grouped

into an atomic block. These guarantees enable and simplify

correct application logic, for example, by ensuring a referent

and reference appear in the correct order, as well as reduce

user-visible anomalies. In storage systems that provide such

guarantees over partially-replicated data, multiple round trips

to far-away datacenters would be common, leading to even

higher latency experienced by end-users and dwarfing the

benefits of having many datacenters closer to them (§II).

We present K2, a storage system that provides lower la-

tency for large-scale and medium-scale web services using

partial replication of data over many datacenters. K2 provides

guarantees that achieve a sweet spot in the tradeoff between

the strength of abstraction and low latency: causal consistency,

read-only transactions, and write-only transactions. Prior work

that supports stronger guarantees is incompatible with low

latency; while prior work that achieves low latency does not

support any type of transactions.

K2 unlocks low latency for these guarantees by realizing

two design goals. First, it has at most one parallel round of

non-blocking requests to far-away datacenters. Second, it often

avoids sending any requests to far away datacenters. The first

goal ensures K2 has latency no worse than fully replicating

across a few datacenters while the second goal provides lower

latency for most requests.

K2’s design includes several components that work together

to achieve these goals. First, K2 fully replicates metadata and

runs its algorithms primarily on that metadata. This enables it

to directly use an existing mechanism for causal consistency:

one-hop dependency checking [39]. Providing transactions,

1

User FE BE

Far DC

(a) User to far-away FE that
is near BE with all the data.

User FE BE

Far DC

FE BE

Near DC

(b) User to nearby FE that
contacts the far-away BE
twice to ensure consistency.

User FE BE

Far DC

FE BE

Near DC

(c) User to nearby FE that
goes to far-away BE at most
once. (K2’s worst case.)

User FE BE

Far DC

BE

Near DC

FE

(d) User to nearby FE that
can access all data locally.
(K2’s common case.)

Fig. 2: User latency for requests to frontend web servers (FE) that access backend storage (BE).

B. Partial Replication for the Many

Using many datacenters is not required for medium-scale

web services. Sufficient resources are available on cloud

platforms to store all data and handle all user requests. These

services can place all frontend and backends in 1 datacenter,

e.g., on the West Coast (A). While West Coast users would

get low latency, those elsewhere like Japan would have high

latency from connecting to a far-away datacenter. A better

option is to place frontends and backends in 3 geographically

dispersed datacenters, e.g., West Coast (A), Europe (B), and

Japan (C). This reduces user latency by serving requests closer

to them. And, because data is typically replicated 3× for fault

tolerance, moving from 1 to 3 datacenters has little effect

on the cost of the deployment. Yet, it leaves many users

still connecting to far-away datacenters, e.g., Australian users.

Figure 2a shows such a connection to a far-away frontend.

One option would be to place frontends and fully replicated

backends in a large number of datacenters. Unfortunately,

this option is expensive. For instance, moving from 3 to 9

datacenters would roughly triple costs as the 6 additional

replicas of data are not necessary for fault tolerance.

An appealing alternative is to deploy a service with fron-

tends and partially replicated storage with 1/3 of the data in

each datacenter. The cost for such a deployment would be

roughly the same as using 3 datacenters with full replication.

Such a deployment, however, can result in higher latency for

end users if storage servers in the nearby datacenter contact

far-away datacenters multiple times. This is not a concern for

storage systems that provide eventual consistency because any

data can be returned with any other data.

In storage systems that provide stronger guarantees—e.g.,

causal consistency—multiple round trips to far-away data-

centers would be common. For instance, consider deploying

a storage system in a configuration we call replicas across

datacenters (RAD) where 1/3 of each replica is placed in

each of the 9 datacenters. In this setting, the COPS [38] and

Eiger [39] systems would require as many 2 and 3 sequential

round-trips to far-away datacenters respectively. In COPS and

Eiger, a first round optimistically reads data, and a second

round is required if the data returned in the first round is

inconsistent. Eiger incurs an additional delay of one round-trip

between datacenters to check the status of pending updates if

the requested data is being modified by ongoing transactions.

Even 2 round-trips result in higher latency than a deployment

with full replicas in 3 datacenters as shown in Figure 2b.

Avoiding such scenarios motivates our first design goal.

Design Goal 1: At Most One Round of Non-Blocking

Cross-Datacenter Requests. When a partially-replicated stor-

age system needs at most one round of cross-datacenter

requests that do not block its latency will at worst be similar

to having full replicas in 3 datacenters, as shown in Figure 2c.

Design Goal 2: Often Zero Cross-Datacenter Requests.

Achieving design goal 1 gives K2 the best possible worst-

case end-user latency, matching full replication. But it is also

no better. To provide a latency benefit K2 must avoid cross-

datacenter requests in the common case. Such a scenario is

shown in Figure 2d. This scenario is possible in a RAD

deployments. However, it is unlikely as it requires all the data

needed to serve a user’s request to be in the 1/3 of data located

in the nearby datacenter. Our design goal 2 is thus to often

complete with zero rounds of cross-datacenter requests.

III. K2 BASIC DESIGN

This section presents the basic architecture of K2. Sec-

tions IV presents the replication design in K2. Section V

completes the design with our read-only transaction algorithm.

Figure 3 shows the architecture of K2. We base our design

on fully-replicated Eiger [39]. K2 inherits the mechanisms

for tracking and enforcing causal consistency, local write-

only transactions, and garbage collection from Eiger. The

major changes in our design include our new algorithms

for replication, cache-aware read-only transactions, and an

LRU-like cache replacement policy. We also introduce some

changes to Eiger’s replicated write-only transaction algorithm

to achieve our design goal 1.

A. Server Side Design

Within each datacenter, the keyspace is sharded across

servers that are each responsible for a subset of the keyspace.

For simplicity, our discussion here focuses on the simple

key-value storage model, though our implementation uses the

richer column-family data model [18], [34].

3

A. Replication Design

Metadata Replication and Constrained Replication Topol-

ogy. Metadata replication decouples data and metadata repli-

cation. It replicates the metadata of a write—i.e., key, version,

and dependencies—to all datacenters, and replicates the data

of a write—the value—only to replica datacenters. Con-

strained replication topology orders the replication to replica

datacenters before the replication to non-replica datacenters.

Replication of Write-Only Transactions. Replication of a

write-only transaction is done by each participant (coordi-

nator/cohort) in its local datacenter after it commits locally

(§III-C). Each participant asynchronously replicates each key

in its sub-request to its equivalent participants—the servers

storing the same key—in other datacenters in two phases.

In the first phase, the local participant replicates data and

metadata to the replica participants in parallel. When a

participant receives a replicated write that includes data, it

immediately stores it in the IncomingWrites table before

sending an acknowledgment to the sender. Once the local

participant has been notified by all replica participants, it

proceeds to the second phase. In the second phase, it replicates

the metadata and the list of replicas storing the value to the

non-replica participants. Only the coordinator needs to include

causal dependencies with its metadata replication because each

remote coordinator does dependency checks for its transaction

group. K2’s replication is asynchronous and not on-path for

client-facing operations. Hence, it does not affect the latency

of any client’s operations. K2 introduces the IncomingWrites

table to make the new data accessible only to remote reads

while the transaction is pending. This table is not visible to

local reads.

Committing Replicated Write-Only Transactions. Repli-

cated write-only transactions are committed using a protocol

that is a variant of two-phase commit. Each cohort notifies

its transaction coordinator after receiving the replicated sub-

request of the transaction. Concurrently, the coordinator issues

the dependency checks for the transaction by contacting the

local servers responsible for those dependencies. A local

server replies to the dependency check immediately if the

specified <key, version> is committed, otherwise it waits

until it is committed to reply. The coordinator then waits for

all dependencies to verify and to be notified by all cohorts

before beginning two-phase commit. This waiting for one-hop

dependencies before applying replicated writes provides causal

consistency [39]. The coordinator sends each cohort a Prepare.

Once all cohorts reply, it sets this transaction’s EVT to its

current logical time, commits the transaction, and sends each

cohort a Commit that includes EVT. Each participant deletes

this transaction’s sub-request from the IncomingWrites table

after it commits the transaction.

Multiversioning Framework and Applying Replicated

Writes. K2 keeps multiple versions of a key for a short time.

Multiversioning enables K2’s efficient read-only transaction

algorithm. How a server applies a write depends on the current

version it has for a specified key and if it is storing the data.

When applying a write a server compares its version number

with the version number of its most recent write to the same

key. The version numbers are assigned by the datacenters

that accept the writes based on Lamport timestamps and are

consistent with the causal ordering of writes. Thus, a server

should only make the write visible to local reads if its version

number is greater than its most recent write. For non-replica

servers, this results in them either applying the write if it is

newer than the current value or discarding it entirely if it is not.

This procedure would not be safe for replica servers, however,

because the write might be needed to serve a remote read.

Replica servers thus apply the write in all cases, store it in

the multiversioning framework, and make it available only to

remote reads if it is older than the current value.

Garbage Collection (GC). K2 keeps a version around if it

is not older than 5 s, or this version or any of its earlier

versions has been accessed by the first round of a read-only

transaction within the past 5 s, the configurable transaction

timeout. K2 performs garbage collection lazily whenever a

new version of a key is inserted and then removes any old

versions that do not satisfy either of the two conditions. GC is

a common component in multiversioning data stores to keep

memory and storage footprints low [38], [39], [51]. K2’s GC

is similar to Eiger’s [39] with the addition of keeping around

all versions not older than 5 s to enable our cache-aware read-

only transaction algorithm.

B. Rationale and Key Insights

K2’s replication design differs significantly from past work

and is what ensures at most one round of non-blocking cross-

datacenter requests. At the lowest level is K2’s metadata

replication design that ensures at most one round of cross-

datacenter requests. Above that K2 layers a constrained repli-

cation topology and a write-only transaction algorithm that

together ensure cross-datacenter requests do not block.

Metadata Replication. Partial replication of the data gives K2

most of the storage capacity benefit of a partially-replicated

storage system, while full replication of the metadata enables

K2 to achieve at most one round of cross-datacenter requests.

The key insight is that metadata is all that is necessary to

determine what data a client can consistently read. K2 fully

replicates metadata, consistently updates metadata in each

datacenter, and then runs its read-only transaction algorithm

on that consistent metadata in the local datacenter to determine

consistent data versions. Then, only a single round of cross-

datacenter read requests is required if the consistent versions

are not stored locally. K2 can thus avoid multiple unnecessary

rounds of cross-datacenter requests to figure out consistent

data values to read.

Decoupling data and metadata replication, however, intro-

duces a new challenge that can lead to blocking. The metadata

replication in a non-replica datacenter can race ahead of data

replication in replica datacenter. Then, when the non-replica

datacenter requests a specific value from the replica datacenter

its request will need to block until that value arrives. K2

overcomes this challenge to ensure cross-datacenter requests

5

do not block with its constrained replication topology and

write-only transaction algorithm.

Constrained Replication Topology. K2’s constrained repli-

cation carefully orders how data and metadata are replicated

to replica and non-replica datacenters to ensure a datacenter

always knows where to read a value without blocking. This

ordering provides an important invariant: once a non-replica

datacenter learns about an update, the value must be available

from each of the replica datacenters.

This invariant is sufficient to ensure cross-datacenter re-

quests do not block for writes to individual keys. It, however,

breaks existing algorithms for write transactions that atomi-

cally update multiple keys. These existing algorithms include

general transaction algorithms like two-phase locking and

optimistic concurrency control as well as specialized write-

only transaction algorithms like Eiger’s [39]. The existing

algorithms break because they include two-phase commit,

which waits for all participants in a transaction to prepare

successfully before any commit. For example, consider a write

transaction that updates keys A and B that are replicated in

disjoint datacenters. Using the invariant, the replica datacenters

for key A will not be able to prepare non-replica key B until

they know it has committed in its replica datacenters and thus

is available for reads. But the same is true for the replica

datacenters for key B, they will not be able to prepare non-

replica key A until they know it has committed. Thus, the

different sets of replicas are deadlocked and never commit. K2

sidesteps this issue with its write-only transaction algorithm.

Replicated Write-Only Transactions. The key insight behind

K2’s write-only transaction algorithm is to decouple the avail-

ability of data for remote reads from its availability for local

reads. Data should be available for remote reads immediately

and for as long as necessary to ensure remote reads can be

served without blocking. While data should be available for

local reads only when it satisfies the guarantees of the storage

system. This decoupling allows K2 to provide its invariant

that ensures remote reads do not block. It breaks down into

two cases: before and after a replica datacenter applies a

write to make it visible to local reads. Before a write is

applied, K2 makes it available only to remote reads through

the IncomingWrites table. This is safe since K2 ensures that

the remote read only requests a version that is already causally

consistent in the requesting datacenter. After a write is applied,

K2 keeps it in the multiversioning framework until it can be

safely garbage collected.

V. READ-ONLY TRANSACTIONS

This section completes K2’s design by describing our cache-

aware, read-only transaction algorithm. The algorithm is built

around two key insights that allow it to often avoid any

cross-datacenter requests: cache awareness and trading a little

freshness for a lot of performance.

A. Cache Awareness

The read-only transaction algorithm exploits the temporal

locality of data access by leveraging the data cached as part

A2 = ∅
1

A1 = a1A:

5

B2 = b2B:

7 12

C1 = c1C:

3 9

Logical time

13

C2 = ∅

16

B1 = b1
2

K2 Straw-man

Fig. 4: A and C are non-replica keys, B is a replica key.

a1 and c1 are cached versions. A straw-man solution incurs

unnecessary remote fetches, while K2’s read-only transaction

reuses cached versions when safe.

of K2’s design. Caching values which are likely to be accessed

again soon [5], [9], [17], [28], [48] avoids unnecessary remote

fetches of the same data. For instance, after Alice uploads a

new photo (cache after write), she is likely to verify the upload

was successful by downloading it (read the cached photo).

Similarly, after Bob reads a photo (cache after remote fetch),

the same photo will likely be recommended to Bob’s friends

(read the cached photo). The benefits of caching are even more

promising for real-world applications, which usually exhibit

Zipfian workloads, i.e., most operations are on a small subset

of the data. For instance, Facebook’s TAO caching system

reported an overall hit rate of 96.4% [16].

Caching makes it possible to avoid many cross-datacenter

requests. The challenge, however, is realizing this possibility

with our read-only transaction algorithm. Previous algorithms

focused on providing low latency and consistency. Our algo-

rithm adds the need to reuse cached values.

B. Trading Freshness for Performance

K2’s read-only transactions provide causal consistency.

Causal consistency has two properties we can leverage to

achieve better read performance. First, it does not require

a read to reflect the most recent updates, commonly known

as the real-time requirement in stronger consistency models,

e.g., linearizability [30]. Second, it does not require all clients

to advance their views of the system at the same rate: it is

technically causally consistent if the system keeps making a

client read at a fixed timestamp that only advances when the

client issues writes. Our algorithm does much better than this

as we guarantee that clients make progress through the garbage

collection that safely discards any versions older than 5s. In

addition, in our evaluation we find much lower staleness with

a median of no staleness at all.

With these two observations in mind, we explore the pos-

sibility of avoiding remote fetches by allowing each client

to maintain and manage its read timestamp, which could be

slightly stale but for which most non-replica items have cached

values. For instance, in Figure 4, a straw-man solution for

read-only transactions is to read at the most-recent timestamp,

12. However, this will incur two unnecessary remote fetches on

A2 and C2 since those versions are not present locally. Instead,

K2’s read-only transaction algorithm reads at timestamp 3

since both A and C have cached values at that timestamp.

6

1 function read_txn(<keys>):

2 vers[][] = [][], vals[] = []

3 for k in keys: /* 1st round */

4 vers[k] = read(k, cli.read_ts)

5 ts = find_ts(vers)

6 for k in keys:

7 for ver in vers[k]:

8 if ver.evt ≤ ts ≤ ver.lvt and

9 ver.val != null:

10 vals[k] = ver.val; break

11 if !vals.contains(k): /* 2nd round */

12 vals[k] = read_by_time(k, ts)

13 cli.read_ts = max(cli.read_ts, ts)

14 for k in keys: deps.add(k, vals[k].ver)

15 return vals

Fig. 5: Pseudocode for read-only transaction.

C. Read-only Transaction Algorithm

Figure 5 shows the pseudocode for K2’s read-only trans-

action algorithm at a client. Each client maintains a read

timestamp read_ts, and includes this timestamp when it

sends read-only transaction requests to the servers. The client

begins with a round of parallel requests to the servers in its

local datacenter. Each server returns all visible versions of each

key in its request that are valid at or after read_ts. Each

version includes the version number, EVT, LVT, and value if

it is stored or cached locally. The LVT (latest valid time) of a

version is the latest logical time before it is overwritten by a

new version. The server returns its current logical time for LVT

if the version is the latest. The server returns an empty value

if the version or any of its earlier versions are pending. (The

empty value indicates that the a version is potentially being

modified by some ongoing write-only transactions.) The client

examines the returned versions and finds a consistent logical

time ts that minimizes cross-datacenter requests. Specifically,

find_ts examines the EVTs of all returned versions. It finds

the earliest EVT where either (1) all keys have a valid value, or

(2) all non-replica keys have a valid value, or (3) the most keys

have a valid value. This procedure for picking the effective

logical time is what makes our algorithm cache-aware.

A second round of read requests is required if a key has no

consistent version or value at ts. If the key is being modified

by pending write-only transactions earlier than ts, the server

waits for the pending transactions to commit. This waiting

does not appreciably affect latency because the longest a write-

only transaction will remain pending is a single roundtrip

within the local datacenter (from the cohorts to the coordinator

and back). Once the pending transactions commit, the server

determines the committed version at time ts, and returns

the value if it is available. If not, the server sends a remote

read request to its equivalent server in the nearest replica

datacenter to fetch the value given the key and the version

number. Our constrained replication topology and write-only

transaction algorithm ensure the requested version will be

accessible in the replica datacenter. The remote server checks

its IncomingWrites table and multiversioning framework for

the requested version, and sends its value to the requesting

server. Upon receiving the response, the local server caches the

value and replies to the client. To maintain causal consistency,

the client updates its read_ts and dependencies. It also

advances read_ts to max(read_ts, write_ts) after it

completes a local write-only transaction that returns a write

timestamp write_ts (§III-C).

VI. FAULT TOLERANCE

This section describes unimplemented extensions to K2 for

handling failures and enabling clients to switch datacenters.

These extensions are similar to prior work [38], [39].

A. Handling Failures

Server failures within a DC: Server failures are unavoidable

in practice. K2 can provide availability for a logical server

despite failures using a fault-tolerant protocol like Paxos [36]

or Chain Replication [55].

Datacenter failures: With a replication factor of f , K2

assumes up to f − 1 replica datacenters can fail. Replicating

writes to replica datacenters can proceed if at least one replica

datacenter of each key in those writes is available. The non-

replica datacenters can send their remote read requests to

the available replica datacenters. Permanent datacenter failures

(e.g., a datacenter being destroyed by a tsunami) may lead to

data loss in K2 if a local datacenter is destroyed after replying

to a client’s write request but before successfully replicating

them to any other datacenter. This cost of achieving low

latency for local writes that return faster than inter-datacenter

latency is inevitable [38], [39]. Transient failures (e.g., tem-

porary power failures) do not result in data loss. However,

the local (temporarily failed) datacenter should replicate its

pending updates to other datacenters once it is restored.

B. Switching Datacenters

The clients of K2 are frontend servers co-located in the

same datacenters as the backend storage servers of K2 (§II-A).

These clients will continue to access their co-located servers.

The users they issue operations on behalf of, however, may

wish to switch datacenters, e.g., after flying to another part

of the world. K2 can allow users to switch datacenters using

the following steps: (0) Dependencies are propagated back to

users, e.g., in an HTTP cookie. (1) When a user switches to a

new datacenter it sends its dependencies to its frontend, e.g.,

the user request includes the cookie. (2) That frontend checks

(by polling with reads) and waits until all dependencies (which

includes its last write and all its reads since the last write)

are satisfied by the metadata in the local datacenter. (3) That

frontend then uses the included dependencies for this user.

Steps 0 and 1 ensure the new frontend knows the dependencies

for this user. Step 2 ensures all causal dependencies are present

in the new datacenter. Step 3 ensures later operations on behalf

of this user include the correct dependencies.

VII. EVALUATION

Our evaluation compares K2 to RAD, a baseline that

directly adapts causal consistency for partial replication, and

7

VA CA SP LDN TYO
CA 60
SP 146 194

LDN 76 136 214
TYO 162 110 269 233

SG 243 178 333 163 68

Fig. 6: Round trip latencies in ms between datacenters emu-

lated on Emulab and based on EC2 measurements.

PaRiS⋆, a baseline that uses a per-client cache [51], to

understand the improvements and tradeoffs of K2’s design.

Specifically, our evaluation answers these questions:

§VII-C What improvement in latency does K2 provide?

§VII-D How does the throughput and write latency of K2

compare to the RAD baseline?

§VII-D What staleness does K2’s new read-only transaction

algorithm introduce?

A. Implementation and Baseline

K2 is implemented as a modification to the Java codebase of

Eiger, a scalable geo-replicated storage system that provides

causal consistency [39]. The major changes in our implemen-

tation include our new algorithms for replication, write-only

transactions, read-only transactions, LRU-like cache replace-

ment policy, and garbage collection.

Replicas Across Datacenters (RAD). We use a direct adapta-

tion of scalable causal consistency to partial replication as our

baseline for comparison. We compare to RAD because it is a

reasonable adaptation of a fully-replicated causal consistency

design to a partially replicated setting. To implement RAD, we

configure Eiger to split data in each replica across datacenters,

which together form a replica group. Clients send read and

write requests directly to the datacenters in its group that hold

the relevant keys. A datacenter in a group needs to replicate

writes to its equivalent datacenters, which hold the same key

ranges, in other groups. Before committing a replicated write,

a datacenter sends dependency checks to other datacenters in

its group. It applies the replicated write once all dependencies

are satisfied. RAD uses Eiger’s read-only and write-only

transaction algorithms.

It is not straightforward to adapt the design of Eiger to

make efficient use of a cache. Eiger’s read-only transaction

algorithm’s first round returns the currently visible value for

each key within a replica. A local datacenter cache would only

contain previously read values and would not know if these

values were still visible. All first round requests for non-replica

keys would thus need to contact a remote datacenter. This

precludes the possibility of achieving zero cross-datacenter

requests, which is the purpose of our cache. Thus, our RAD

baseline does not include a datacenter cache.

PaRiS⋆. We also implement another baseline, PaRiS⋆, which

uses a per-client cache and has at most one round of reads [51].

PaRiS⋆ implements a subset of the full design of PaRiS and

provides slightly optimistic lower-bounds on the latency of a

full PaRiS implementation. We modify K2’s implementation

to augment each client with a private cache as in PaRiS. A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2 (Emu)
K2 (EC2)

RAD (Emu)
RAD (EC2)

Fig. 7: Comparing K2 and RAD on EC2 and Emulab with

the default workload. Results are similar with K2 providing a

significant improvement at all percentiles: its average latency

improvement is 297 ms on EC2 and 243 ms on Emulab.

client’s recent writes are kept in its cache for 5 s. This is longer

than they would be in cache for a full PaRiS implementation

which will clear them once their timestamp is passed by the

Universal Stable Time. PaRiS⋆’s read-only transactions take at

most one round of non-blocking remote reads as in PaRiS.

B. Experimental Setup

Most experiments are run on the Emulab testbed [57] where

we have exclusive bare-metal access to 72 machines. Each

machine has one 2.4GHz 64-bit 8-Core E5-2630 “Haswell”

processor, 64GB 2133MT/s DDR4 RAM, and are networked

with 1Gbps Ethernet. Emulab machines are physically co-

located so we emulate the latency between datacenters. We

validate this use of emulated latency on Emulab by running

some experiments on Amazon EC2 in geo-distributed regions.

On EC2 we use t3.2xlarge instances, which have CPU and

memory specifications comparable to the machines on Emulab

testbed: each has 8 virtual CPUs and 32GB of memory.

Configuration and Workloads. We use 72 machines config-

ured as 6 datacenters with 4 servers and 8 co-located clients

in each. Machines in the Emulab testbed are physically co-

located, so we use Linux’s tc to emulate wide-area latency

between datacenters. To emulate a globally-distributed de-

ployment, we choose locations that are spread around the

world: Virginia (VA), California (CA), São Paulo (SP), London

(LDN), Tokyo (TYO), and Singapore (SG). The wide-area

latencies are based on latencies between EC2 regions [11].

Each set of clients reads from and writes to their local data-

center. We measure system throughput as the total throughput

of all datacenters. We generate the workload using Eiger’s

benchmarking system with SNOW’s [40] addition of Zipf

request generation. All experiments use 1 million keys, 128

byte values, 5 keys per operation, and 5 columns per key.

Unless otherwise specified all experiments use a cache size of

5% of the total keys, a Zipf constant of 1.2, a write percentage

of 1%, a write-only transaction percentage of 50% (of writes),

and a replication factor of 2. We experimentally vary each of

these parameters to observe their effect.

Most experiments use a write percentage of 1% because

most workloads are read heavy. Our choice of 1% is a

compromise between the 0.2% writes reported for Facebook’s

8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(a) Read-only (0% writes)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(b) High skew (zipf=1.4)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(c) High replication factor (f=3)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(d) High write percentage (5%)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(e) Moderate skew (zipf=0.9)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

C
D
F

Read-only Transaction Latency (ms)

K2
PaRiS*
RAD

(f) Low replication factor (f=1)

Fig. 8: Read-only transaction latency. K2 provides significantly lower latency than PaRiS⋆ and RAD at all percentiles for all

tested workloads. The average improvement of K2 over PaRiS⋆ and RAD is 53–165 ms and 88–297 ms, respectively.

production TAO system [16], and the 5% writes in YCSB’s

workload B [19]. We also evaluate with other write percent-

ages that match realistic workloads: 0.0% (YCSB’s workload

C [19]), 0.1% (approximate write percentage reported for

Google’s advertising backend F1 on Spanner [20]), 0.2%

(Facebook’s production TAO system), 5% (YCSB’s workload

B). Most experiments use a Zipf constant of 1.2 because

most workloads are highly skewed. We are not aware of

specific skew numbers for storage systems like K2, so we

based skew on the reported access characteristics of Facebook

photos [31]. Facebook photos were reported to follow a power-

law distribution with α = 1.84, which is equivalent to a Zipf

constant of 1.2. We test with Zipf constants as low as 0.9 and

high as 1.4. A Zipf constant of 1.4 is equivalent to the α = 1.72

power-law distribution observed for Facebook videos [53].

Methodology. To fairly configure our later experiments we

probed the operation of each system under increasing load.

For each system in the latency experiments, we choose the

number of closed-loop client threads on each of the 48 client

machines where the system operates at medium load. This is in

the appropriate range for production systems [56] and reduces

the effect of queuing delays. Each data point we report is the

median of 3 trials that each last for 12 minutes. This duration

is sufficiently long to warm up the cache, i.e., most keys are

requested at least once. We omit the first 9 minutes and the

last 20 seconds of each trial to exclude the cache warm-up

period and experimental artifacts.

Validating results on Amazon EC2. We deploy K2 and RAD

on Amazon EC2 datacenters in the six different locations

with actual wide-area latency shown in Figure 6. Network

bandwidth is not the bottleneck in our evaluation settings.

K2’s write-only transaction latency is low on both EC2 and

Emulab since K2 commits writes locally and its commit is not

affected by the network delay. Figure 7 shows the CDFs of

read-only transaction latency under default settings. There are

three differences in the results. First, EC2 results are smoother

due to slight variations in actual latency and noise from the

virtualized environment. Second, the EC2 results have a longer

tail: the 99.9th percentile latency is ~1 second for K2 and

~1.4 seconds for RAD. Third, the latency improvement of

K2 is higher on EC2 than it is on Emulab: the average

latency improvement on EC2 is 297 ms and 243 ms on Emulab.

We observe that the distributions and trends are similar on

Emulab with emulated latency and on EC2 with actual wide-

area delays. We are thus confident that results from Emulab

with emulated latency are indicative of deployments on cloud

platforms. If there is any appreciable difference, it is that K2

latency improvement would be greater in a deployment on

a cloud platform. We run experiments on Emulab for higher

repeatability and lower cost.

C. Read Latency Improvement

K2 is designed to decrease the latency of read-only transac-

tions over partially replicated storage. Figure 8 shows the la-

tency of read-only transactions in K2, RAD, and PaRiS⋆ under

a variety of workloads. We find that K2 significantly improves

latency compared to RAD and PaRiS⋆ at all percentiles in all

evaluated workloads. The magnitude of these improvements

varies with the workload. In most workloads, K2 provides an

average latency improvement of 140–297 ms over RAD, and

53–165 ms over PaRiS⋆. This significant latency improvement

of K2 over the baselines is enabled by K2’s novel design which

optimizes latency of read-only transactions by providing all-

9

Default Replication Write (%) Zipf Cache (%)

f=1 f=3 0.1 5 0.9 1.4 1 15

K2 41.6 21.1 53.7 47.7 26.0 21.3 46.3 30.9 44.3

RAD 24.8 11.7 51.9 59.0 20.2 85.4 14.8 24.8 24.8

Fig. 9: Throughput (K txns/sec) under different settings.

local latency more often and guaranteeing the best possible

worst-case latency.

More All-Local Latency. RAD does not cache non-replica

data in datacenters, so any read-only transaction that accesses

non-replica data must go to a remote datacenter. This happens

>99% of the time in all workloads as shown by RAD’s 1st

percentile latency being >60ms, the lowest inter-datacenter

latency. PaRiS⋆ uses a per-client cache to keep client’s recent

writes. PaRiS⋆ provides local latency when all requested keys

are replica keys or are stored in the client’s private cache.

This happens <6% of the time in all workloads as shown

by PaRiS⋆’s 6th percentile latency being >60ms. >95%

of PaRiS⋆’s read-only transactions must contact a remote

datacenter and thus incur high latency. K2 caches a small

percentage of non-replica data in each datacenter and uses

them when safe. This allows K2 to serve many read-only

transactions entirely locally.

K2 provides local latency for 19–83% of read-only trans-

actions depending on the workload. K2’s most significant

improvements are for the highly skewed workload (8b), the

high replication factor (8c), and the read-only workload (8a).

Its smallest improvement comes with a moderately skewed

workload (8e). This is as expected because more skewed

workloads are easier to cache. The percentage of transactions

with all-local latency decreases with a higher write percentage

(8d) and with a lower replication factor (8f). These changes

are also due to changes in the effectiveness of the cache. For

instance, increasing the replication factor from 2 to 3 results

in 33% less non-replica data vying for a spot in the cache.

Best Possible Worst-Case Latency. K2 and PaRiS⋆ achieve

the best possible worst-case latency for read-only transactions

on partially-replicated data: they need at most one inter-

datacenter round trip to fetch the values of non-replica keys.

In contrast, RAD needs two inter-datacenter round-trips if

the non-replica keys fetched in the first round of the read-

only transaction are not consistent. Figures 8b, 8d, and 8f

show workloads where RAD issues the second round of

remote reads often: high skew, high write percentage, and low

replication factor. In each of these workloads 91–98% of read-

only transactions take two wide-area rounds.

Facebook TAO Workload. We experiment with a syn-

thetic workload that uses the value sizes, columns/key, and

keys/operations reported for Facebook’s TAO system [16],

[39]. We use the default Zipf constant of 1.2 since it is not

reported in TAO. We find that K2 provides local latency for

73% of read-only transactions, while PaRiS⋆ and RAD achieve

local latency for <1% of read-only transactions.

D. Throughput, Write Latency, Staleness

Throughput Comparison. K2 aims to avoid remote reads

by leveraging cached values and thus can potentially improve

throughput by reducing the number of requests in the system.

However, K2 has three sources of overhead: replicating meta-

data to non-replicas, doing dependency checks before applying

replicated metadata, and returning multiple versions in its

read-only transaction algorithm. We quantify the throughput

overhead of K2 compared to RAD.

Figure 9 shows the peak throughput of the systems for

several settings using the minimum and maximum values of

each parameter while keeping the others at their default. We

observe that in many settings (e.g., high write percentage of

5%, and highly skewed Zipf constant of 1.4), K2 provides

higher throughput than RAD. Under these workloads, RAD

often needs the second round of reads to request consistent

versions of the contended keys and is bottlenecked by a small

set of servers. K2 avoids the bottleneck better by allowing

each datacenter to read a slightly older, consistent version of

highly contended keys from its local cache, and thus avoids

imposing high remote read loads on the replica datacenters of

those keys. In some settings (e.g., a moderately skewed Zipf

constant of 0.9), we find that RAD has higher throughput than

K2. Unlike K2, each datacenter in RAD handles dependency

checks and replication for only replica keys, leaving more CPU

and memory capacity to serve local client requests.

Write Latency. K2 achieves much lower write latency than

RAD for single-key writes and write-only transactions because

K2 can commit write operations locally, while RAD often must

contact remote datacenters. For instance, under our default

settings K2’s 99th percentile latency is 23 ms for write-only

transactions while RAD’s 50th percentile latency is 147 ms for

simple writes and 201 ms for write-only transactions.

Data Staleness. K2 aims to satisfy read requests entirely in-

side a local datacenter by leveraging older cached versions and

thus accepts some staleness for better performance. Staleness

is measured on servers as the time since a newer version of

that key has been written. For instance, if the returned version

is the newest version on the server, the staleness is 0. Or, if the

returned version was overwritten by a newer version 100ms

ago, the staleness is 100ms. RAD provide 0 staleness if its

read-only transactions complete in one round. We quantified

the staleness in K2 for write percentages between 0.1–5%. The

median staleness is 0 ms for all cases, 75th percentile staleness

is 105ms or less, and 99th percentile staleness is between 516

and 1117 ms. We expect this staleness to be an acceptable

tradeoff for the lower latency provided by K2.

VIII. RELATED WORK

This section reviews previous partially replicated systems,

fully replicated systems, and systems that provide causal con-

sistency. K2 is primarily distinguished by being the first work

to realize the low latency benefit of many datacenters with

strong guarantees: causal consistency, read-only transactions,

and write-only transactions.

Partially-Replicated Data Stores. PRACTI [12] is a classical

partial replication system that supports topology independence,

i.e., any-to-any replica propagation, and provides arbitrary

10

consistency. K2 builds on PRACTI’s insight to separate the

control path (metadata) and the data path (data replication).

One difference in K2 is our use of a cache—and our algorithms

that exploit it for many clients—in each datacenter, and

the constrained replication topology to provide non-blocking

remote reads. More importantly, PRACTI was designed for a

different era when all data that would be accessed together

could fit on a single machine. Hence, its design is based on

exchanging logs of serialized updates and is not scalable, i.e., it

is designed for at most one shard in what are now datacenters.

Karma [41] is concurrent work on enabling a causally-

consistent data store to support partial replication that uses

an approach similar to the replicas across datacenters baseline

we compare to in our evaluation. It focuses on allowing clients

to switch the datacenter to which they are connected and

enabling simple reads from a cache in a datacenter; it does

not support write-only transactions or read-only transactions.

K2, in contrast, does not focus on allowing clients to switch

datacenters though it could be extended to do so (§VI-B). K2

focuses on providing write-only and read-only transactions.

Spanner [20] is Google’s globally-distributed data store,

which provides strict serializability and partial replication.

K2 targets a much lower latency setting than Spanner with

guarantees that are compatible with handling all reads inside

the local datacenter as well as trading away some capacity for

significant read latency improvements from caching.

PaRiS [51] is a concurrently developed causally-consistent

data store that supports partial replication. PaRiS uses per-

client private caches and a universal stable time (UST) to

provide causal read-write transactions, which are stronger than

K2’s guarantees. K2’s guarantees are, however, still useful for

a large set of applications (§II-A). PaRiS provides at most

one round of non-blocking cross-datacenter requests like K2.

PaRiS handles read-only transactions locally only when all

requested keys are either replicated in this datacenter or are

stored in the client’s private cache because the client has writ-

ten to them since the UST. As our experimental comparison

with PaRiS⋆ shows, this occurs rarely. In contrast, K2 is able

to often handle read-only transactions locally. Similarly, PaRiS

requires write transactions to contact remote datacenters except

when all keys are replicated in this datacenter. In contrast, K2’s

write-only transactions always commit to the local cache.

PaRiS’s use of per-client private caches and K2’s per-

datacenter shared caches are quite different. PaRiS’s per-client

cache is necessary for correctness. They cannot be shared be-

tween clients because they contain newer-than-UST state and

thus it would be unsafe for one client to read data from another

client’s private cache. K2’s per-datacenter shared caches, in

contrast, are safely shared between all clients in a datacenter

and enable K2 to often handle read-only transactions locally.

Improving Partial Replication. Volley [1], Tuba [8], and

Akkio [7] deal with data placement and migration for partially

replicated systems. They optimize data placement policies and

dynamically migrate data to different replicas based on system

logs to satisfy user requirements and reduce operational costs.

This line of work is orthogonal to K2, which operates indepen-

dently of any placement policy. Integrating such policies into

K2 could further reduce latency by increasing the likelihood

that a read’s local datacenter is a replica datacenter.

Saturn [14] and C3 [24] focus on improving the throughput

and data visibility latency of a partially-replicated data store

through novel metadata propagation and causal-consistency

enforcing algorithms. Saturn and C3, however, only support

simple read and write operations. K2, in contrast, focuses on

achieving lower latency for partial replication with stronger

guarantees: read-only and write-only transactions.

Partial replication has also been studied in file systems [29],

[42], [49]. This work focused on detecting and repairing

conflicting updates [29], [42] or enabling good performance

by aggressively creating new replicas. K2 instead focuses on

higher-layer concerns like consistency and transactions.

Cache-Aware Read-Only Transactions. TxCache [47] uses

a set of caches to increase the throughput of an underlying

monolithic database while providing serializability within an

application specified staleness bound. It uses a cache-aware

read-only transaction algorithm that starts with a set of pinned

snapshots identifiers from the underlying database and refines

the set of acceptable identifiers as a transaction proceeds.

TxCache’s algorithm influenced our design, but it cannot be

applied to our setting because we do not have a monolithic

database that can pin snapshots of all the data. Instead, K2

determines if the local datacenter has cached values that can

be used in a consistent snapshot dynamically.

Causal Consistency. Causal consistency is provided by many

systems [2], [3], [12], [13], [24], [32], [33], [38], [39],

[43], [46], [51], [52]. Excluding PRACTI [12], C3 [24] and

PaRiS [51], all these systems are built atop fully replicated

data stores and inevitably suffer from its limitations. We based

our design and implementation on fully-replicated Eiger [39].

Since Eiger, there have been many innovations [4], [14], [22]–

[24] in reducing the granularity of metadata for tracking causal

consistency and thus decreasing the throughput overhead of

enforcing causal consistency in datacenters. These innovations

are orthogonal to our contributions here; we believe it would

be straightforward (though time-consuming) to incorporate

these designs into K2 to achieve higher throughput.

IX. CONCLUSION

Deploying web services across many datacenters has the

potential to significantly reduce end-user latency. Realizing

this lower latency, however, is complicated by the need to

partially replicate data in the backend storage system. K2 is a

partially-replicated storage system that unlocks low latency

for the strong guarantees of causal consistency, read-only

transactions, and write-only transactions.

ACKNOWLEDGMENT

We thank our shepherd, José Orlando Pereira, and the

anonymous reviewers for their helpful comments. We are

grateful to Theano Stavrinos, Christopher Hodsdon, Jeffrey

Helt, and Matthew Burke for their feedback. This work was

supported by the National Science Foundation under grant

number CNS-1827977.

11

REFERENCES

[1] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec
Wolman, and Harbinder Bhogan. Volley: Automated data placement
for geo-distributed cloud services. In NSDI, 2010.

[2] Mustaque Ahamad, Gil Neiger, Prince Kohli, James Burns, and Phil
Hutto. Causal memory: Definitions, implementation, and programming.
Distributed Computing, 9(1), 1995.

[3] Deepthi D. Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao
Li, Tyler Crain, Annette Bieniusa, Nuno Preguia, and Marc Shapiro.
Cure: Strong semantics meets high availability and low latency. In
ICDCS, 2016.

[4] Sergio Almeida, Joao Leitao, and Luis Rodrigues. ChainReaction: A
causal+ consistent datastore based on chain replication. In EuroSys,
2013.

[5] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana
De Oliveira. Characterizing reference locality in the WWW. In PDIS,
1996.

[6] https://aws.amazon.com/about-aws/global-infrastructure/, 2021.

[7] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,
Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. Sharding the shards: Managing datastore locality at scale with
Akkio. In OSDI, 2018.

[8] Masoud Saeida Ardekani and Douglas B. Terry. A self-configurable
geo-replicated cloud storage system. In OSDI, 2014.

[9] Martin F Arlitt and Carey L Williamson. Web server workload charac-
terization: The search for invariants. ACM SIGMETRICS Performance

Evaluation Review, 24(1), 1996.

[10] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus
linearizability. ACM TOCS, 12(2), 1994.

[11] https://www.cloudping.co/, 2021.

[12] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun
Venkataramani, Praveen Yalagandula, and Jiandan Zheng. PRACTI
replication. In NSDI, 2006.

[13] Kenneth P. Birman and Robbert V. Renesse. Reliable Distributed

Computing with the ISIS Toolkit. IEEE Comp. Soc. Press, 1994.

[14] Manuel Bravo, Luis Rodrigues, and Peter Van Roy. Saturn: A distributed
metadata service for causal consistency. In EuroSys, 2017.

[15] Eric Brewer. Towards robust distributed systems. PODC Keynote, July
2000.

[16] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. TAO: Facebook’s distributed data store for
the social graph. In ATC, 2013.

[17] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms.
In USITS, 1997.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. ACM TOCS, 26(2), 2008.

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In SOCC, 2010.

[20] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In OSDI, 2012.

[21] https://engineering.fb.com/data-center-engineering/data-centers-2018/,
2021.

[22] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.
Orbe: Scalable causal consistency using dependency matrices and phys-
ical clocks. In SOCC, 2013.

[23] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency with physical clocks.
In SOCC, 2014.

[24] P. Fouto, J. Leito, and N. Preguia. Practical and fast causal consistent
partial geo-replication. In NCA, 2018.

[25] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM SIGACT

News, 33(2), 2002.

[26] https://cloud.google.com/about/locations/, 2021.

[27] https://www.google.com/about/datacenters/inside/locations/, 2021.

[28] Steven D Gribble and Eric A Brewer. System design issues for internet
middleware services: Deductions from a large client trace. In USITS,
1997.

[29] Richard Guy, John S. Heidemann, Wai Mak, Gerald J. Popek, and Dieter
Rothmeier. Implementation of the Ficus replicated file system. In
Summer USENIX Conference, 1990.

[30] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM TOPLAS, 1990.

[31] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev
Kumar, and Harry C. Li. An analysis of Facebook photo caching. In
SOSP, 2013.

[32] Diptanshu Kakwani and Rupesh Nasre. Orion: Time estimated causally
consistent key-value store. In PaPoC, 2020.

[33] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat.
Providing high availability using lazy replication. ACM TOCS, 10(4),
1992.

[34] Avinash Lakshman and Prashant Malik. Cassandra – a decentralized
structured storage system. In LADIS, 2009.

[35] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Comm. ACM, 21(7), 1978.

[36] Leslie Lamport. The part-time parliament. ACM TOCS, 16(2), 1998.

[37] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared
memory. Technical Report TR-180-88, Princeton Univ., Dept. Comp.
Sci., 1988.

[38] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Don’t settle for eventual: Scalable causal consistency for
wide-area storage with COPS. In SOSP, 2011.

[39] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Stronger semantics for low-latency geo-replicated storage. In
NSDI, 2013.

[40] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt
Lloyd. The SNOW theorem and latency-optimal read-only transactions.
In OSDI, 2016.

[41] Tariq Mahmood, Shankaranarayanan Puzhavakath Narayanan, Sanjay
Rao, T. N. Vijaykumar, and Mithuna Thottethodi. Karma: Cost-
effective geo-replicated cloud storage with dynamic enforcement of
causal consistency. IEEE TCC, 2018.

[42] Dahlia Malkhi and Doug Terry. Concise version vectors in WinFS. In
DISC, 2005.

[43] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. I can’t believe it’s not causal!
Scalable causal consistency with no slowdown cascades. In NSDI, 2017.

[44] https://azure.microsoft.com/en-us/global-infrastructure/regions/, 2021.

[45] Ruoming Pang, Ramón Cáceres, Mike Burrows, Zhifeng Chen, Pratik
Dave, Nathan Germer, Alexander Golynski, Kevin Graney, Nina Kang,
Lea Kissner, and et al. Zanzibar: Google’s consistent, global authoriza-
tion system. In ATC, 2019.

[46] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer,
and Alan J. Demers. Flexible update propagation for weakly consistent
replication. In SOSP, 1997.

[47] Dan R.K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and
Barbara Liskov. Transactional consistency and automatic management
in an application data cache. In OSDI, 2010.

[48] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy
cache. IEEE/ACM Transactions on Networking, 8(2), 2000.

[49] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik
Mahalingam. Taming aggressive replication in the Pangaea wide-area
file system. SIGOPS Oper. Syst. Rev., 36(SI), 2002.

[50] Dale Skeen and Michael Stonebraker. A formal model of crash recovery
in a distributed system. IEEE Trans. Info. Theory, 9(3), 1983.

[51] K. Spirovska, D. Didona, and W. Zwaenepoel. Paris: Causally consistent
transactions with non-blocking reads and partial replication. In ICDCS,
2019.

[52] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. Wren:
Nonblocking reads in a partitioned transactional causally consistent data
store. In DSN, 2018.

[53] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt
Lloyd, and Kai Li. Popularity prediction of Facebook videos for higher
quality streaming. In ATC, 2017.

[54] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Sys., 4(2),
1979.

12

[55] Robbert van Renesse and Fred B. Schneider. Chain replication for
supporting high throughput and availability. In OSDI, 2004.

[56] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia
Margulis, Scoot Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri
Perelman, and Yee Jiun Song. Kraken: Leveraging live traffic tests to
identify and resolve resource utilization bottlenecks in large scale Web
services. In OSDI, 2016.

[57] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and
networks. In OSDI, 2002.

13

