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Abstract— We consider a problem of cooperative evasion
between a single pursuer and multiple evaders in which the
evaders are constrained to move in the positive Y direction. The
evaders are slower than the vehicle and can choose their speeds
from a bounded interval. The pursuer aims to intercept all
evaders in a given sequence by executing a Manhattan pursuit
strategy of moving parallel to the X axis, followed by moving
parallel to the Y axis. The aim of the evaders is to cooperatively
pick their individual speeds so that the total time to intercept all
evaders is maximized. We first obtain conditions under which
evaders should cooperate in order to maximize the total time
to intercept as opposed to each moving greedily to optimize its
own intercept time. Then, we propose and analyze an algorithm
that assigns evasive strategies to the evaders in two iterations
as opposed to performing an exponential search over the choice
of evader speeds. We also characterize a fundamental limit on
the total time taken by the pursuer to capture all evaders when
the number of evaders is large. Finally, we provide numerical
comparisons against random sampling heuristics.

I. INTRODUCTION

We consider a single pursuer multi-evader pursuit evasion

problem in which the aim of the pursuer is to intercept

all of the evaders in a fixed given sequence. The evaders

are constrained to move along the positive Y direction. The

pursuer follows the Manhattan distance, i.e., moving parallel

to the X-axis followed by moving parallel to the Y -axis. The

aim of the evaders is to cooperatively maximize the total time

to intercept all evaders. Such a set-up arises in riot control or

border protection scenarios in which a ground or air vehicle

would like to optimally visit mobile locations headed toward

a boundary/asset, or in UAV monitoring of vehicles along a

highway. This setup is also applicable in multiple robotic

decoy deployment [1].

A. Related work

Since the seminal work by Isaacs in [2], much has been

done in the field of pursuit evasion with a lot of focus

on multi-agent pursuit evasion [3], [4], [5]. The case of a

single pursuer and 2 evaders has been extensively analyzed

[6], [7]. Protector-Prey-Predator [8] and Target-Attacker-

Defender differential game [9] are some examples of this

scenario. With more than two evaders, the complexity of

the problem grows exponentially with number of evaders.

The problem of successive pursuit with cooperative multiple

evaders is considered in [10], [11], [12] and [13]. Our

problem differs as the evaders are constrained to move in a
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fixed direction and can choose their individual speeds from a

bounded interval to maximize the total intercept time. Thus,

the evasive strategies are based on the range of evader speeds.

B. Contributions

We consider an optimal evasion problem between a single

pursuer and n evaders. The pursuer moves with unit speed.

The evaders are constrained to move in the positive Y
direction such that their speeds vi, i ∈ {1, . . . , n}, lie in

the interval [umin, umax] with 0 < umin < umax < 1. The

evaders need to choose their speeds in order to maximize

the total intercept time. We first present a complete solution

to the optimal evasion problem for n ≤ 2. We then show,

for general n, that the optimal choice of the speed for each

evader is one of the extremes, i.e., umin or umax. We further

show that, by enforcing cooperation among evaders, they are

able to maximize the total intercept time. In order to imple-

ment the cooperative strategies, it is important to determine

the conditions under which cooperation is optimal. Such

conditions are also provided in this paper. We present an

algorithm which assigns the evasive strategies to the evaders

in two iterations as opposed to performing an exponential

search over the choice of evader speeds. For sufficiently large

n, for which the global optimum is difficult to compute, we

establish a fundamental upper bound to the total intercept

time taken by the pursuer to capture all evaders. Finally, we

provide comparisons through numerical results.

C. Organization

The paper is organized as follows. Section II comprises

the formal problem definition. In section III, we derive

an evasive strategy for multiple evaders and provide a

Sequential-Greedy-Cooperation algorithm. Section IV es-

tablishes a fundamental upper bound on the total time

to intercept all evaders. Section V presents the numerical

simulations. Finally, section VI summarizes this paper and

outlines directions for future work.

II. PROBLEM FORMULATION

We consider an optimal evasion problem played between

a single pursuer with simple motion and n mobile evaders.

We denote the pursuer as P and evaders as Ei with i ∈
{1, . . . , n}. The pursuer with an arbitrary initial location

at (X,Y ) is assumed to be moving with unit speed either

along the X or the Y axis. We term this pursuit strategy as

Manhattan pursuit, and is formally defined as follows.

Definition 1 (Simple Manhattan pursuit) Given initial

locations (xi, yi) and (X,Y ) of an evader Ei and the

pursuer P respectively, the pursuer





Proof: The outline of the proof is as follows. We first

assume that equation (1) holds which implies that after the

completion of stage (1) for the pursuit of E2, the evader’s

y-coordinate strictly exceeds the pursuer’s location, thus,

yielding the expression. The case when equation (1) does

not hold is analogous.

Lemma III.5 (Monotonicity of time to intercept E2)

Given that E1 moves with v1, the time T 1
2 (v1, v2) is

monotonically increasing function of v2 if condition (1)

holds. Otherwise, T 1
2 (v1, v2) is a monotonically decreasing

function of v2.

Proof: From Lemma III.4,
dT 1

2 (v1,v2)
dv2

> 0 if condition

(1) holds and
dT 1

2 (v1,v2)
dv2

< 0, otherwise.

We now characterize an optimal greedy strategy for E2. In

what follows, we denote V := umin+umax

2+umin−umax
.

Lemma III.6 (E2’s greedy strategy) The greedy strategy

v∗2g for E2 for a greedy E1 moving with v∗1g is

v∗2g =

{

umax, if y2 ≥ y1 −∆x1
2V + (v∗1g − V )T 0

1 (v
∗

1g),

umin, otherwise.

Proof: The central idea is to determine a location y′2
such that if y2 = y′2, then irrespective of E2’s choice of umin

or umax, the time to intercept E2 will be the same and will

be maximum at both umin and umax. Then it follows that the

time to intercept is maximized for v∗2g = umin when y2 < y′2,

and v∗2g = umax when y2 > y′2.

Lemma III.6 yields a greedy strategy for E2 when E1 and

E2 both move greedily. However, it might be better for the

evaders to cooperate to maximize the total intercept time.

We now characterize the conditions on cooperation between

the two evaders.

We define that a point A, located at (xA, yA), is above

point B, located at (xB , yB), if yA > yB and we define

point A is below point B if yA < yB .

Lemma III.7 (Conditions on cooperation) Given the ini-

tial locations of E1, E2, and P as (x1, y1), (x2, y2), and

(X,Y ) respectively, E1 cooperates with E2 if

(i) Case 1:

Y −∆x0
1V ≤ y1 ≤ Y −∆x0

1umin, and

y2 > y1 −∆x1
2V +

(

v∗1g − V )T 0
1 (v

∗

1g)+

2
(umin∆x0

1 + y1 − Y

2 + umin − umax

)

,
(2)

(ii) Case 2:

Y −∆x0
1umax ≤ y1 ≤ Y −∆x0

1V, and

y2 ≤ y1 −∆x1
2V + (v∗1g − V )T 0

1 (v
∗

1g)+

2
(umax∆x0

1 + y1 − Y

2 + umin − umax

)

.
(3)

Proof: The main idea for this proof is as follows.

We observe that there are only two ways for E1 and E2

to cooperate. First, E1 moves with a speed v1 such that

E1 is intercepted below the pursuer and E2 moves greedily

and second, when E1 moves greedily and E2 with speed

v2 such that it is intercepted below the intercept point of

E1. Thus, to determine which of the two scenarios yield the

greater time to intercept, we arrive at a condition T 0
1 (umin)+

T 1
2 (umin, umax) > T 0

1 (umax)+T 1
2 (umax, umin) which yields the

result.

Theorem III.8 (Optimal cooperative strategy for E1)

Given the initial locations (x1, y1), (x2, y2), and (X,Y ) of

E1, E2 and P , respectively, if the conditions for cooperation

in Lemma III.7 hold, then the optimal cooperative strategy

v∗1c for E1 is

v∗1c =

{

umin, for case 1 from Lemma III.7 or,

umax, for case 2 from Lemma III.7.

Proof: Consider that case 1 of Lemma III.7 holds. Then

E1 moves with speed v1 such that ∆x0
1 < (Y − y1)/v1. We

know from Lemma III.7 that the conditions on cooperation

ensure that the total time to intercept during cooperation is

higher than the greedy choice. Since T 0
1 (v1) is monotonic

in v1, from Lemma III.2, v∗1c = umin. The second case is

derived analogously.

In this subsection, we analyzed the case of 2 evaders,

primarily to highlight the underlying problem structure. Next,

we will consider the case of n evaders. Similar to the two

evader case, we will first present a result on the time taken to

intercept the kth evader after intercepting the k−1th evader.

Then we will present results on the greedy and cooperative

strategies between Ek and Ek−1.

C. n Evaders

For ease of presentation, we will denote (yi − yj) as ∆yij
for some i, j and for brevity, we denote T i−1

i (v1, . . . , vi) as

T i−1
i (v−i, vi). We present the following condition for ease

of reference.

∆xk−1
k >

∆yk−1
k + (vk−1 − vk)

∑k−1
i=1 T i−1

i

vk
. (4)

Lemma III.9 (Time to intercept Ek) The time

T k−1
k (v−k, vk) taken by P to intercept Ek, moving

with vk, after intercepting Ek−1, moving with vk−1, is

T k−1
k =







∆xk−1

k
+∆yk

k−1+(vk−vk−1)
∑k−1

i=1
T i−1

i

1−vk
, if (4) holds,

∆xk−1

k
+∆yk−1

k
+(vk−1−vk)

∑k−1

i=1
T i−1

i

1+vk
, otherwise.

Proof: The main idea is to prove this result by using

the method of induction on k, the base case of which was

established in Lemma III.4 for k = 2.

Lemma III.10 (Monotonicity of time to intercept)

Given that each Ei, i ∈ 1, . . . , k − 1 moves with vi, the

time T k−1
k is monotonically increasing function of vk if



Algorithm 1: Seq-GreC Algorithm

1 Assign greedy speeds to all evaders

2 if Ei and Ei+1 can cooperate, ∀ 1 < i < n, then

3 Assign optimal cooperative strategy

4 else

5 Assign optimal greedy strategy.

6 end

7 Repeat from step 2.

condition (4) holds. Otherwise, T k−1
k is a monotonically

decreasing function of v2.

Proof: We use induction to establish the result. Lemma

III.5 yields the base of the induction. Assuming that the result

holds for some k = k̄, it can be checked that
dT k̄

k̄+1

dvk
> 0 if

condition (4) holds. Otherwise,
dT k̄

k̄+1

dvk
< 0. This concludes

the proof.

Since Lemma III.10 establishes that the time to intercept

a kth evader is maximized at either umin or umax, finding an

optimal strategy for all evaders would require analyzing all

2n possibilities in the worst case.

We now present an algorithm that assigns respective

strategies to the evaders in just two iterations. The algorithm,

summarized in Algorithm 1, first assigns the greedy strate-

gies to all evaders. Then, it assigns cooperative strategies by

considering two sequentially paired evaders at a time.

Now, we will present the results that the algorithm uses in

assigning the strategies.

Lemma III.11 (Evader k’s greedy strategy) The greedy

strategy v∗kg for Ek, when each Ei, i ∈ {1, . . . , k−1} moves

with v∗1g is

v∗kg =











umax, if yk ≥ yk−1 −∆xk−1
k V+

(v∗(k−1)g − V )
∑k−1

i=1 T i−1
i ,

umin, otherwise.

Proof: Suppose the result holds for some k =
k̄. Consider the next evader, Ek̄+1. Similar to the proof

of Lemma III.6, we find y′
k̄+1

= yk̄ − ∆xk̄
k̄+1

V +

(v∗
k̄g

− V )
∑k̄

i=1 T
i−1
i . If yk̄+1 < y′

k̄+1
, then, from

Lemma III.10, the time will be maximized at either umin

or umax. Thus, assuming T k−1
k (v∗1g, . . . , v

∗

(k−1)g, umax) >

T k−1
k (v∗1g, . . . , v

∗

(k−1)g, umin) yields yk̄+1 > y′
k̄+1

which

contradicts our assumption and hence v∗kg = umin. By

induction, the result holds for any value of k̄. Case 2 is

proved analogously.

The previous lemma presented a result on the greedy

strategy of any evader Ek. This result is the first step of the

Algorithm 1. As the second step of Algorithm 1 requires to

check the conditions of cooperation between two consecutive

evaders, we will now present a result on the conditions if two

evaders should cooperate or not. We introduce the notation,

U := 2
2+umin−umax

.

Lemma III.12 (Cooperation conditions for Ek−1) Given

the initial locations of Ek−1, Ek, and P as (xk−1, yk−1),
(xk, yk), and (X,Y ) respectively, then Ek−1 will cooperate

with Ek if

(i) Case 1:

yk−2 + (v∗(k−2)a − V )

k−2
∑

i=1

T i−1
i −∆xk−2

k−1V ≤ yk−1

≤ yk−2 + (v∗(k−2)a − umin)

k−2
∑

i=1

T i−1
i −∆xk−2

k−1umin

and

∆yk−1
k > −∆xk

k−1V + (v∗(k−1)g − V )

k
∑

i=1

T i−1
i +

U
(

umin∆xk−2
k−1 +∆yk−1

k−2 − (v∗(k−2)a − umin)

k−2
∑

i=1

T i−1
i

)

(5)

(ii) Case 2:

yk−2 + (v∗(k−2)a − umax)

k−2
∑

i=1

T i−1
i −∆xk−2

k−1umax

≤ yk−1 ≤ yk−2 + (v∗(k−2)a − V )

k−2
∑

i=1

T i−1
i −∆xk−2

k−1V

and

∆ykk−1 < −∆xk−1
k V + (v∗(k−1)g − V )

k
∑

i=1

T i−1
i +

U
(

umax∆xk−2
k−1 +∆yk−1

k−2 − (v∗(k−2)a − umax)

k−2
∑

i=1

T i−1
i

)

,

(6)

where v∗(k−2)a determined by Algorithm 1.

Proof: We use induction hypothesis to establish this

result following similar steps in the proof of Lemma III.7.

Lemma III.12 establishes the conditions for cooperation

between any two consecutive evaders. The next result char-

acterizes the cooperative strategies of the evaders.

Theorem III.13 (Cooperative strategy for Ek−1) If the

conditions on cooperation in Lemma III.12 hold, then the

optimal cooperative strategy v∗(k−1)c for Ek−1 is

v∗(k−1)c =

{

umin, for case 1 of Lemma III.12 ,

umax, for case 2 of Lemma III.12.

Proof: We use induction hypothesis to establish this

result using Lemma III.8 as the base case.

Remark 2 (Sandwiched evader) For some i ∈ {1, . . . , n},

if Lemma III.12 holds for evader Ei−1 and Ei as well as Ei

and Ei+1, then evader Ei moves greedy.



IV. FUNDAMENTAL LIMIT

In the previous sections, we considered that the pursuer

followed a fixed strategy to capture all evaders. We now

establish a fundamental upper bound, for a large number of

evaders, on the total time taken to intercept all evaders by

the pursuer following any strategy. We first provide some

existing results that will be useful in establishing the bound.

Given a set of m points, a Euclidean minimum Hamil-

tonian path (EMHP) is the shortest path through m points

such that each point is visited exactly once. When the points

are translating with some constant speed v ∈ (0, 1), then

the shortest tour though the points is called Translational

minimum Hamiltonian path (TMHP) [19].

Lemma IV.1 (Length of EMHP tour) Given m points in

a l×h rectangle in the plane, where h ∈ R>0 and l ∈ R>0,

there exists a path that starts from a unit length edge of the

rectangle, passes through each of the m points exactly once,

and terminates on the opposite unit length edge, with length

upper bounded by
√
2lhm+ h+ 2.5

Proof: The proof is similar to the proof provided in [20]

for a 1× h rectangle and thus, has been omitted.

To calculate the EMHP tour through translating points

s, s1, . . . , sf , f that move with speed v, the points are scaled

by defining a conversion map Cv : R
2 → R

2 such that

Cv(x, y) = ( x√
(1−v2)

, y
1−v2 ) [19].

Lemma IV.2 (Length of TMHP tour [19]) Let the initial

and final point be denoted as s = (xs, ys) and f =
(xf , yf ) respectively, and v ∈ (0, 1) denote a constant

speed of all evaders, then the length of the TMHP tour

is
v(yf−ys)

1−v2 +LE(Cv(s), Cv(s1), . . . , Cv(sf ), Cv(f)) where,

LE(Cv(s), Cv(s1), . . . , Cv(sf ), Cv(f)) denotes the length of

the EMHP starting with point s, moving through points

s1, . . . , sf and ending at point f .

The optimal order followed by the vehicle in the TMHP

solution is the same as the optimal order followed by the

vehicle in the EMHP solution.

Denote nmax ∈ Z
+
0 as the total number of evaders that

move with umax and nmin = n− nmax as the total number of

evaders that move with umin. Let Amax and Amin denote the

area of the smallest enclosing rectangular environment that

the nmax and nmin evaders occupy initially. We assume that

all of the evaders are initially located within a rectangular

environment of area A. The pursuer’s strategy is to capture

all the nmax evaders first, followed by capturing all the

evaders moving with umin. This is because if the pursuer

captures the nmin evaders first then naturally, the evaders

moving with umax will be further away from the pursuer.

Let Tnmax
be the time taken by the vehicle to capture all

of the nmax evaders and Tnmax
nmin

be the time taken to intercept

the last evader that moves with umax and the first evader

that moves with umin after capturing all of the nmax evaders

respectively. Let Tnmin
be the total time taken by the vehicle

to capture all of the remaining nmin − 1 evaders. The next

result characterizes an upper bound on the time taken by the

pursuer to capture all evaders following any strategy.

Theorem IV.3 (Upper bound on intercept time) Let ∆y
and ∆x be the difference between the initial y and x-

coordinate of the last evader captured moving with umax and

the first evader that is captured moving with umin. Then, from

Lemma IV.1 and Lemma IV.2, the total time taken by the

pursuer to capture all evaders is T = Tnmax
+ Tnmax

nmin
+ Tnmin

where,

Tnmax
=

√

2Amaxnmax

(1− u2
max)

3/2
, Tnmin

=

√

2Amin(nmin − 1)

(1− u2
min)

3/2

Tnmax
nmin

=
umin

1− u2
min

(∆y + (umin − umax)Tnmax
)+

√

∆x2

1− u2
min

+
(∆y + (umin − umax)Tnmax

)2

(1− u2
min)

2
.

Moreover, for large n, T is maximum for

n∗

max =

⌊

(umin − umax)
2n

(1− u2
min)

1
2 (1− u2

max)
3
2 + (umin − umax)2

⌉

,

where bxe denotes the integer nearest to x.

Proof: The outline of the proof is as follows. The

expression for Tnmax
and Tnmin

follows directly from Lemma

IV.1 and noting that n is large. The expression for Tnmax
nmin

follows from [19]. Then we use the derivative test to establish

the result.

V. SIMULATION RESULTS

We first present the numerical results for Algorithm 1. We

compare the mean of the total time to intercept all evaders

using Algorithm 1 to the mean of the total time to intercept

all evaders by randomly sampling over the evader speeds

of either umin or umax (see Figure 2). For each value of n,

we randomly generate the initial locations of the evaders

and the pursuer and we consider 50 Monte Carlo trials.

To select the best evader speeds, we choose 10nln(2/δ)
samples uniformly randomly over the set, which guarantees

that the violation probability is less than a small quantity

δ [21], where δ = 0.1. We compute the maximum over the

samples and then report the mean value in Figure 2. We

observe that Algorithm 1 outperforms random sampling.

Figure 3 shows a comparison when nmax is selected

uniformly randomly to the upper bound obtained by n∗

max for

given initial locations. To obtain the EMHP tour required for

the time to intercept evaders, the linkern1 solver was used.

We consider 50 Monte Carlo trials for each value of n and

report the mean and standard deviation. It is observed that the

total time to intercept all evaders by randomly selecting nmax

is well below the upper bound obtained from n∗

max. Thus,

1The TSP solver linkern is freely available for academic research use
at http://www.math.uwaterloo.ca/tsp/concorde/.



Fig. 2. Comparison of Seq-Grec with Random Sampling. The blue
circles represent the mean of the total time to intercept of Seq-Grec
Algorithm. The orange star represents the mean over the samples
of Random Sampling

Fig. 3. Comparison of the total time to intercept when nmax is
randomly uniformly selected to that of the upper bound obtained
from n

∗

max.

by performing an additional optimization to select nmax the

evaders can reach the upper bound on time to intercept. This

means that a strategy that only depends on nmax may be

sub-optimal for the evaders.

VI. CONCLUSIONS AND FUTURE WORK

An optimal evasion problem between single a pursuer and

multiple evaders was addressed. It is shown that by enforcing

cooperation among evaders, they are able to maximize the

total interception time. Conditions where cooperation is

optimal are also presented which are crucial to implement

the cooperative strategies. An upper bound on the total time

to intercept all evaders is also presented.

In subsequent work, a generalized setup of multiple

pursuers and evaders will be considered. Constant factor

approximations for both, the evaders and the pursuers will

also be addressed. Identifying which evaders should move

with umax is another possible extension.
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