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Abstract— We consider a problem of cooperative evasion
between a single pursuer and multiple evaders in which the
evaders are constrained to move in the positive Y direction. The
evaders are slower than the vehicle and can choose their speeds
from a bounded interval. The pursuer aims to intercept all
evaders in a given sequence by executing a Manhattan pursuit
strategy of moving parallel to the X axis, followed by moving
parallel to the Y axis. The aim of the evaders is to cooperatively
pick their individual speeds so that the total time to intercept all
evaders is maximized. We first obtain conditions under which
evaders should cooperate in order to maximize the total time
to intercept as opposed to each moving greedily to optimize its
own intercept time. Then, we propose and analyze an algorithm
that assigns evasive strategies to the evaders in two iterations
as opposed to performing an exponential search over the choice
of evader speeds. We also characterize a fundamental limit on
the total time taken by the pursuer to capture all evaders when
the number of evaders is large. Finally, we provide numerical
comparisons against random sampling heuristics.

I. INTRODUCTION

We consider a single pursuer multi-evader pursuit evasion
problem in which the aim of the pursuer is to intercept
all of the evaders in a fixed given sequence. The evaders
are constrained to move along the positive Y direction. The
pursuer follows the Manhattan distance, i.e., moving parallel
to the X -axis followed by moving parallel to the Y -axis. The
aim of the evaders is to cooperatively maximize the total time
to intercept all evaders. Such a set-up arises in riot control or
border protection scenarios in which a ground or air vehicle
would like to optimally visit mobile locations headed toward
a boundary/asset, or in UAV monitoring of vehicles along a
highway. This setup is also applicable in multiple robotic
decoy deployment [1].

A. Related work

Since the seminal work by Isaacs in [2], much has been
done in the field of pursuit evasion with a lot of focus
on multi-agent pursuit evasion [3], [4], [5]. The case of a
single pursuer and 2 evaders has been extensively analyzed
[6], [7]. Protector-Prey-Predator [8] and Target-Attacker-
Defender differential game [9] are some examples of this
scenario. With more than two evaders, the complexity of
the problem grows exponentially with number of evaders.
The problem of successive pursuit with cooperative multiple
evaders is considered in [10], [11], [12] and [13]. Our
problem differs as the evaders are constrained to move in a
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fixed direction and can choose their individual speeds from a
bounded interval to maximize the total intercept time. Thus,
the evasive strategies are based on the range of evader speeds.

B. Contributions

We consider an optimal evasion problem between a single
pursuer and n evaders. The pursuer moves with unit speed.
The evaders are constrained to move in the positive Y
direction such that their speeds v;,i € {1,...,n}, lie in
the interval [Umin, Umax] With 0 < Umin < Umax < 1. The
evaders need to choose their speeds in order to maximize
the total intercept time. We first present a complete solution
to the optimal evasion problem for n < 2. We then show,
for general n, that the optimal choice of the speed for each
evader is one of the extremes, i.€., Umin O Umax. We further
show that, by enforcing cooperation among evaders, they are
able to maximize the total intercept time. In order to imple-
ment the cooperative strategies, it is important to determine
the conditions under which cooperation is optimal. Such
conditions are also provided in this paper. We present an
algorithm which assigns the evasive strategies to the evaders
in two iterations as opposed to performing an exponential
search over the choice of evader speeds. For sufficiently large
n, for which the global optimum is difficult to compute, we
establish a fundamental upper bound to the total intercept
time taken by the pursuer to capture all evaders. Finally, we
provide comparisons through numerical results.

C. Organization

The paper is organized as follows. Section II comprises
the formal problem definition. In section III, we derive
an evasive strategy for multiple evaders and provide a
Sequential-Greedy-Cooperation algorithm. Section IV es-
tablishes a fundamental upper bound on the total time
to intercept all evaders. Section V presents the numerical
simulations. Finally, section VI summarizes this paper and
outlines directions for future work.

II. PROBLEM FORMULATION

We consider an optimal evasion problem played between
a single pursuer with simple motion and n mobile evaders.
We denote the pursuer as P and evaders as F; with ¢ €
{1,...,n}. The pursuer with an arbitrary initial location
at (X,Y) is assumed to be moving with unit speed either
along the X or the Y axis. We term this pursuit strategy as
Manhattan pursuit, and is formally defined as follows.

Definition 1 (Simple Manhattan pursuit) Given  initial
locations (x;,y;) and (X,Y) of an evader E; and the
pursuer P respectively, the pursuer
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Fig. 1. Problem setup. The triangle represents the pursuer and
the blue dots represent the evaders. The red dashed line represents
the path taken by the pursuer to intercept the evaders. The cross
represents the intercept locations.

1) moves with unit speed along the positive or negative
X direction until X (t) = x; and then,

2) moves with unit speed along positive or negative Y
axis to intercept the evader.

The evaders, initially located at {(z1,%1), ..., (Zn,yn)}, are
constrained to move along the positive Y direction with
simple motion such that their instantaneous speeds v;, ¢ €
{1,...,n}, lie in the interval [tmin, Umax] With 0 < wmin <
Umax < 1 (Fig. 1). The pursuer is said to intercept the
it" target when its location coincides with that of the i*"
target. The game terminates when the pursuer intercepts the
last evader. A strategy for an evader F; is a measurable
function, defined as v;({X(¢),Y ()}, {x:(t), v:(t)}1y) —
[tmin, Umax], Where the notation {X(¢),Y (¢)} denotes the
set of all locations (X (7),Y(7)),Vr € [0,¢]. The goal is
to solve the following problem.

Problem II.1 (Optimal evasion) Given that the pursuer
follows a fixed order to intercept the evaders, determine
strategies vy, v5, ..., v, for the evaders that maximizes the
total time T}, taken by the pursuer to intercept all n evaders.

III. EVASIVE STRATEGY

We begin with the simple case of a single evader followed
by two evaders, and then present the more general case.
We start by defining the following simple Manhattan pursuit
strategy.

A. Single Evader

In this section, we first consider the case of a single evader
and a pursuer, located at (x1,y1) and (X,Y’) respectively.
We first present a result on the time taken to intercept a single
evader. This will be used in deriving the optimal strategy for
the evader. We denote ij_l = |zi—1 — x|, where g = X
and Tii_l(vi) as the time taken by the pursuer to intercept
evader ¢+ moving with speed v; after intercepting evader ¢ —1.
Specifically, 77 (v) is the time taken to intercept the first
evader moving with speed v. For brevity, we omit the proofs
for the single evader case as they are similar to the general
case presented later.

Lemma III.1 (Time to intercept a single evader) The
time T} taken by P to intercept Ey is

Azlty, Y .
0(0) {— if Az} > (Y — ) /v,
Az +Y -y

T otherwise.

Lemma IIL.2 (Monotonicity of time to intercept) 7The
time TY(v) is a monotonically increasing function of v
if Az§ > % Otherwise, TY(v) is a monotonically
decreasing function of v.

Remark 1 The time to intercept is monotonic even when the
pursuer follows a Euclidean strategy, i.e., given the initial
locations of Ey and P, as (x1,y1) and (X,Y) respectively,
the vehicle moves towards (x1,y1 + vTY), where T} is

(yl—Y)v+\/(X—x1>2 (Y —41)?

1— 02 1— 02 (1 —w02)2°

Lemma II1.2 characterizes the monotonic nature of 77 (v).
This only means that the maximum is achieved at one of
the extremes. The next theorem characterizes the evader’s
optimal choice of speed.

Theorem IIL3 (Single evader optimal strategy) Given
the initial locations (x1,y1) and (X,Y) of the evader and
the pursuer respectively, the optimal strategy v* for the
evader is

) . _ 0 Umin +Umax
o = Umin lfyl <Y Aml(2+ummfumax)
Umax, Otherwise.

We now consider the case of two evaders and derive the
optimal evasion strategies for both evaders. We say that
an evader F; moves greedy if it moves with speed that
maximizes its own intercept time. An evader cooperates if it
moves with a speed that maximizes the total intercept time.
We denote the greedy strategy of evader ¢ as vfg and the
cooperative strategy as v; . In what follows, we only provide
an outline to our proofs. The detailed proofs are contained
in [18].

B. Two evaders

Similar to previous section, we first derive an expression
for the time taken to intercept the evaders followed by the
optimal strategy for both evaders.

Let the first evader E; be located at (x1,y;) and move
with speed v; and the second evader Es be located at
(z2,y2) and move with speed vy. Then, the following result
summarizes the time to intercept Eo after intercepting F;.
For ease of reference, we introduce the following condition:

y1— Y2 + (v1 — v2) TP (v1)

Azb > - . (1)

Lemma IIL4 (Time to intercept E>) The time Ty (v1,v2)
taken by P to intercept Eo after intercepting Ey is
L Al‘é+y2*y1+(v2*U1)T10(U1) lf‘ (1) l’lOldS
_ - ’ )
T2 (Uh Ug) - Am§+y1 7y2+(11))21 71)2)T{’(v1)
1+vg

, otherwise.



Proof: The outline of the proof is as follows. We first
assume that equation (1) holds which implies that after the
completion of stage (1) for the pursuit of Es, the evader’s
y-coordinate strictly exceeds the pursuer’s location, thus,
yielding the expression. The case when equation (1) does
not hold is analogous. [ ]

Lemma III.5 (Monotonicity of time to intercept F>)
Given that E; moves with vy, the time Ty (vi,vs) is
monotonically increasing function of wvo if condition (1)
holds. Otherwise, T) (v1,v2) is a monotonically decreasing
function of va.

1
Proof: From Lemma I11.4, %ﬁ’m > 0 if condition

(1) holds and %ﬁ@ < 0, otherwise. |

We now characterize an optimal greedy strategy for Fs. In
P— min T Umax

what follows, we denote V := m

Lemma IIL.6 (E5’s greedy strategy) The greedy strategy

Vg for Es for a greedy En moving with vi, is

vE = Umax l..ny > 1 — Alév + (ng - V)T{)(Ufg)a
29 Umin, Otherwise.

Proof: The central idea is to determine a location y)
such that if yo = y, then irrespective of Ey’s choice of wumn
O Umax, the time to intercept F5 will be the same and will
be maximum at both uy;, and un.x. Then it follows that the
time to intercept is maximized for vgg = Umin When yo < yh,
and v3, = Umax When yz > Yh. [ |

Lemma II1.6 yields a greedy strategy for E» when E; and
E5 both move greedily. However, it might be better for the
evaders to cooperate to maximize the total intercept time.
We now characterize the conditions on cooperation between
the two evaders.

We define that a point A, located at (x4,ya4), is above
point B, located at (zp,yp), if ya > yp and we define
point A is below point B if ya < yp.

Lemma III.7 (Conditions on cooperation) Given the ini-
tial locations of Ey, Es, and P as (xz1,y1), (22,y2), and
(X,Y) respectively, E1 cooperates with Fs if

(i) Case 1:

Y — Ax(l)V <y <Y - Ax(l)umin, and
Y2 >y — Alév + (Ufg - V)Tlo(vrg)—*—
2(uminA:17[1) +y =Y ()

),
(ii) Case 2:

2 + Umin — Umax

Y — Aaz?umax <y <Y - Az(l)V, and

Y2 < y1 — AzyV + (vi, — V)T (v5y)+
2(umaxAx(1) +y =Y 3)
2+ Umin — Umax '

Proof: The main idea for this proof is as follows.
We observe that there are only two ways for F; and Fo
to cooperate. First, 1 moves with a speed v; such that
E is intercepted below the pursuer and Eo moves greedily
and second, when FE; moves greedily and F, with speed
ve such that it is intercepted below the intercept point of
E;. Thus, to determine which of the two scenarios yield the
greater time to intercept, we arrive at a condition Tlo(umin) +
T (tmins Umax) > TP (Umax) + 713 (Umax, Umin) Which yields the
result. [ ]

Theorem IIL.8 (Optimal cooperative strategy for F)
Given the initial locations (x1,y1), (x2,y2), and (X,Y) of
FE4, Es and P, respectively, if the conditions for cooperation
in Lemma II1.7 hold, then the optimal cooperative strategy
vi. for Eq is

. {umin, for case 1 from Lemma IIl.7 o,
Vie =

Umax, for case 2 from Lemma III.7.

Proof: Consider that case 1 of Lemma II1.7 holds. Then
E1 moves with speed v; such that Az < (Y —y;)/v1. We
know from Lemma III.7 that the conditions on cooperation
ensure that the total time to intercept during cooperation is
higher than the greedy choice. Since T} (v;) is monotonic
in vy, from Lemma III.2, v}, = umin. The second case is
derived analogously. [ ]
In this subsection, we analyzed the case of 2 evaders,
primarily to highlight the underlying problem structure. Next,
we will consider the case of n evaders. Similar to the two
evader case, we will first present a result on the time taken to
intercept the k*" evader after intercepting the k — 1" evader.
Then we will present results on the greedy and cooperative
strategies between Ej and Ej_1.

C. n Evaders

For ease of presentation, we will denote (y; — y;) as Ay;
for some ¢, j and for brevity, we denote Tii_l(vl, ...,0;) as
T/~ (v_;,v;). We present the following condition for ease
of reference.

> Ay~ + (emr — o) Y00 T

k-1
Axy
Uk

4)

Lemma IIL.9 (Time to intercept Ey) The time
T,ffl(v,k, vg) taken by P to intercept Ey, moving
with vy, after intercepting Ej,_1, moving with vi_1, is

Az AYE (v ) S T

, Iif (4) holds,

, otherwise.

Tt = k-1 N k-1 i1
k A:Ek7 +Ayk7 +(vk—1ka)zi;1 Tili

14+vg

Proof: The main idea is to prove this result by using
the method of induction on k, the base case of which was
established in Lemma II1.4 for k£ = 2. |

Lemma II1.10 (Monotonicity of time to intercept)
Given that each E;, i € 1,...,k —1 moves with v;, the
time T,f_l is monotonically increasing function of vy if



Algorithm 1: Seq-GreC Algorithm

1 Assign greedy speeds to all evaders

2 if E; and E;41 can cooperate, ¥V 1 < i < n, then
3 ‘ Assign optimal cooperative strategy

4 else

5 ‘ Assign optimal greedy strategy.
6 end

7 Repeat from step 2.

condition (4) holds. Otherwise, T,ffl
decreasing function of vs.

is a monotonically

Proof: We use induction to establish the result. Lemma
II1.5 yields the base of the induction. Assuming that the result

holds for some k = k, it can be checked that ’”“ > 0 if

condition (4) holds. Otherwise, d?‘“ < 0. This concludes
the proof. [ ]

Since Lemma III.10 establishes that the time to intercept
a k'™ evader is maximized at either Uy, OF Umax, finding an
optimal strategy for all evaders would require analyzing all
2™ possibilities in the worst case.

We now present an algorithm that assigns respective
strategies to the evaders in just two iterations. The algorithm,
summarized in Algorithm 1, first assigns the greedy strate-
gies to all evaders. Then, it assigns cooperative strategies by
considering two sequentially paired evaders at a time.

Now, we will present the results that the algorithm uses in
assigning the strategies.

Lemma III.11 (Evader Kk’s greedy strategy) The greedy
strategy v, for Ey, when each E;, i € {1,...,k—1} moves
with v, is

Umaxs of Yk = Yr—1 — A-TZ_1V+

* * k=1 rpi—1
Ukg = Wlemnyg = V) 2z T
Umin, Otherwise.

_ Proof:  Suppose the result holds for some k =
k. Consider the next evader, Ef, ;. Similar to the proof

of Lemma IIL6, we find y; , A%HV +

1
(v,—m - V)Z LI oy < ka, then, from
Lemma III.10, the time will be maximized at either Up;,
Of Umax. Thus, assuming T,f (vlg,...,
kal(vi‘g,... U, 1)g7umm) yields yzy > y;,, which
contradicts our assumption and hence vk = Umin. BY
induction, the result holds for any value of k. Case 2 is
proved analogously. [ ]

U(k_l)g,umax) >

The previous lemma presented a result on the greedy
strategy of any evader F. This result is the first step of the
Algorithm 1. As the second step of Algorithm 1 requires to
check the conditions of cooperation between two consecutive
evaders, we will now present a result on the conditions if two
evaders should cooperate or not. We introduce the notation,
U:= 2

2+ Umin—Umax

Lemma III.12 (Cooperation conditions for Fj_1) Given
the initial locations of Eyx_1, Ey, and P as (xg—1,Yk—1),
(zk,yr), and (X,Y) respectively, then Ej_1 will cooperate
with Ey, if
(i) Case 1:

Ye—2 + (V(,_2)a ZTl L= ATV <y

k—2

< Yp— 2+(U(k. 2)a — Umin ZTZ ! A:Z?k 1Umm
i=1

and

ZTl 1
— Unin) ZTﬁ 4

k 1)g

U(uminsz:? + Ay]]z:% (U(k 2)a

(ii) Case 2:

k—2
Yk—2 + (rUEkk-,_Q)a - umax) Z ALEk 1umax
i=1

k—2
V) T - Az iV

=1

<yp-1 S Yp—2+ ('UEkk_Q)a -

and
k .
Ayp < =Azy 'V 0y, — V) DT+
=1
k—2

(UZk72)a — Umax) E Tiiil)»
i=1
(6)

U(Umax Az "7 + Ayy—y —

where Uzkk—2)a determined by Algorithm 1.

Proof: 'We use induction hypothesis to establish this
result following similar steps in the proof of Lemma IIL.7.
|

Lemma III.12 establishes the conditions for cooperation
between any two consecutive evaders. The next result char-
acterizes the cooperative strategies of the evaders.

Theorem II1.13 (Cooperative strategy for E;_1) If the
conditions on cooperation in Lemma IIl.12 hold, then the
optimal cooperative strategy kak—l)c for Ey_q is

. Umin, for case 1 of Lemma III.12 |
v _
(k=1)e Umax, Jor case 2 of Lemma II1.12.

Proof: We use induction hypothesis to establish this
result using Lemma II1.8 as the base case. [ ]

Remark 2 (Sandwiched evader) For some i € {1,...,n},
if Lemma II1.12 holds for evader E;_1 and F; as well as E;
and By, then evader E; moves greedy.



IV. FUNDAMENTAL LIMIT

In the previous sections, we considered that the pursuer
followed a fixed strategy to capture all evaders. We now
establish a fundamental upper bound, for a large number of
evaders, on the total time taken to intercept all evaders by
the pursuer following any strategy. We first provide some
existing results that will be useful in establishing the bound.

Given a set of m points, a Euclidean minimum Hamil-
tonian path (EMHP) is the shortest path through m points
such that each point is visited exactly once. When the points
are translating with some constant speed v € (0, 1), then
the shortest tour though the points is called Translational
minimum Hamiltonian path (TMHP) [19].

Lemma IV.1 (Length of EMHP tour) Given m points in
a l x h rectangle in the plane, where h € R~ and | € R,
there exists a path that starts from a unit length edge of the
rectangle, passes through each of the m points exactly once,
and terminates on the opposite unit length edge, with length

upper bounded by v/2lhm + h + 2.5

Proof: The proof is similar to the proof provided in [20]
for a 1 x h rectangle and thus, has been omitted. |

To calculate the EMHP tour through translating points
s,81,...,5y, [ that move with speed v, the points are scaled
by defining a conversion map C, : R?2 — R? such that

Cula9) = (s 1) 119)

Lemma IV.2 (Length of TMHP tour [19]) Let the initial
and final point be denoted as s = (xs,ys) and f =
(xfr,yy) respectively, and v € (0,1) denote a constant
speed of all evaders, then the length of the TMHP tour
is % +LE(Cy(5),Cy(s1)s- .., Cu(ss), Cu(f)) where,
LE(Cy(s),Cu(s1),...,Cu(sy), Cy(f)) denotes the length of
the EMHP starting with point s, moving through points
S1,...,8f and ending at point f.

The optimal order followed by the vehicle in the TMHP
solution is the same as the optimal order followed by the
vehicle in the EMHP solution.

Denote ny. € Z(J{ as the total number of evaders that
move with Umax and npin = 7 — Nmax as the total number of
evaders that move with wp,. Let A and Apin denote the
area of the smallest enclosing rectangular environment that
the nmax and npip, evaders occupy initially. We assume that
all of the evaders are initially located within a rectangular
environment of area .A. The pursuer’s strategy is to capture
all the np,x evaders first, followed by capturing all the
evaders moving with wuy,. This is because if the pursuer
captures the npy, evaders first then naturally, the evaders
moving with un,x will be further away from the pursuer.
Let T;,, . be the time taken by the vehicle to capture all
of the ny,x evaders and T be the time taken to intercept
the last evader that moves with u.,, and the first evader
that moves with un;, after capturing all of the ny.x evaders

respectively. Let T}, , be the total time taken by the vehicle
to capture all of the remaining nm;, — 1 evaders. The next
result characterizes an upper bound on the time taken by the

pursuer to capture all evaders following any strategy.

Theorem IV.3 (Upper bound on intercept time) Ler Ay
and Ax be the difference between the initial y and x-
coordinate of the last evader captured moving with U, and
the first evader that is captured moving with um,. Then, from
Lemma IV.I and Lemma IV.2, the total time taken by the
pursuer to capture all evaders is T' =T, + T} + T,

Mmax Mmin

where,

_ 2Amaxnmax _ Amin (nmin - 1)

e = g T T )

Ui
T = _mu; (Ay + (umin — Umax) Do)+
‘min
Al’Q + (Ay + (umin - umax)cz—‘nr,m)2
1—ug, (1= ugy)?

Moreover, for large n, T is maximum for

* { (umin - Umax)Qn —‘
- (1- ur2nin)%(1 - u?nax)% + (Umin — Unmax)? ’

where | x| denotes the integer nearest to .

Proof: The outline of the proof is as follows. The
expression for 7T,, and T,, . follows directly from Lemma
IV.1 and noting that n is large. The expression for 7} m

follows from [19]. Then we use the derivative test to establish
the result. n

V. SIMULATION RESULTS

We first present the numerical results for Algorithm 1. We
compare the mean of the total time to intercept all evaders
using Algorithm 1 to the mean of the total time to intercept
all evaders by randomly sampling over the evader speeds
of either upi, or um,x (see Figure 2). For each value of n,
we randomly generate the initial locations of the evaders
and the pursuer and we consider 50 Monte Carlo trials.
To select the best evader speeds, we choose 10nin(2/6)
samples uniformly randomly over the set, which guarantees
that the violation probability is less than a small quantity
0 [21], where 6 = 0.1. We compute the maximum over the
samples and then report the mean value in Figure 2. We
observe that Algorithm 1 outperforms random sampling.

Figure 3 shows a comparison when ng, is selected
uniformly randomly to the upper bound obtained by n.,, for
given initial locations. To obtain the EMHP tour required for
the time to intercept evaders, the 1inke rn! solver was used.
We consider 50 Monte Carlo trials for each value of n and
report the mean and standard deviation. It is observed that the
total time to intercept all evaders by randomly selecting npax

is well below the upper bound obtained from n.},.. Thus,

IThe TSP solver 1inkern is freely available for academic research use
at http://www.math.uwaterloo.ca/tsp/concorde/.
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by performing an additional optimization to select nyax the
evaders can reach the upper bound on time to intercept. This
means that a strategy that only depends on ny,x may be
sub-optimal for the evaders.

VI. CONCLUSIONS AND FUTURE WORK

An optimal evasion problem between single a pursuer and
multiple evaders was addressed. It is shown that by enforcing
cooperation among evaders, they are able to maximize the
total interception time. Conditions where cooperation is
optimal are also presented which are crucial to implement
the cooperative strategies. An upper bound on the total time
to intercept all evaders is also presented.

In subsequent work, a generalized setup of multiple
pursuers and evaders will be considered. Constant factor
approximations for both, the evaders and the pursuers will
also be addressed. Identifying which evaders should move
with umax 1S another possible extension.
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